
Journal of Artificial Intelligence Research 19 (2003) 569-629 Submitted 05/01; published 12/03

Accelerating Reinforcement Learning
through Implicit Imitation

Bob Price price@cs.ubc.ca

Department of Computer Science
University of British Columbia
Vancouver, B.C., Canada V6T 1Z4

Craig Boutilier cebly@cs.toronto.edu

Department of Computer Science
University of Toronto
Toronto, ON, Canada M5S 3H5

Abstract

Imitation can be viewed as a means of enhancing learning in multiagent environments.
It augments an agent’s ability to learn useful behaviors by making intelligent use of the
knowledge implicit in behaviors demonstrated by cooperative teachers or other more ex-
perienced agents. We propose and study a formal model of implicit imitation that can
accelerate reinforcement learning dramatically in certain cases. Roughly, by observing a
mentor, a reinforcement-learning agent can extract information about its own capabilities
in, and the relative value of, unvisited parts of the state space. We study two specific
instantiations of this model, one in which the learning agent and the mentor have identical
abilities, and one designed to deal with agents and mentors with different action sets. We
illustrate the benefits of implicit imitation by integrating it with prioritized sweeping, and
demonstrating improved performance and convergence through observation of single and
multiple mentors. Though we make some stringent assumptions regarding observability
and possible interactions, we briefly comment on extensions of the model that relax these
restricitions.

1. Introduction

The application of reinforcement learning to multiagent systems offers unique opportunities
and challenges. When agents are viewed as independently trying to achieve their own ends,
interesting issues in the interaction of agent policies (Littman, 1994) must be resolved (e.g.,
by appeal to equilibrium concepts). However, the fact that agents may share information
for mutual gain (Tan, 1993) or distribute their search for optimal policies and communi-
cate reinforcement signals to one another (Mataric, 1998) offers intriguing possibilities for
accelerating reinforcement learning and enhancing agent performance.

Another way in which individual agent performance can be improved is by having a
novice agent learn reasonable behavior from an expert mentor. This type of learning can
be brought about through explicit teaching or demonstration (Atkeson & Schaal, 1997;
Lin, 1992; Whitehead, 1991a), by sharing of privileged information (Mataric, 1998), or
through an explicit cognitive representation of imitation (Bakker & Kuniyoshi, 1996). In
imitation, the agent’s own exploration is used to ground its observations of other agents’

c©2003 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Price & Boutilier

behaviors in its own capabilities and resolve any ambiguities in observations arising from
partial observability and noise. A common thread in all of this work is the use of a mentor
to guide the exploration of the observer. Typically, guidance is achieved through some form
of explicit communication between mentor and observer. A less direct form of teaching
involves an observer extracting information from a mentor without the mentor making an
explicit attempt to demonstrate a specific behavior of interest (Mitchell, Mahadevan, &
Steinberg, 1985).

In this paper we develop an imitation model we call implicit imitation that allows an
agent to accelerate the reinforcement learning process through the observation of an expert
mentor (or mentors). The agent observes the state transitions induced by the mentor’s
actions and uses the information gleaned from these observations to update the estimated
value of its own states and actions. We will distinguish two settings in which implicit
imitation can occur: homogeneous settings, in which the learning agent and the mentor
have identical actions; and heterogeneous settings, where their capabilities may differ. In
the homogeneous setting, the learner can use the observed mentor transitions directly to
update its own estimated model of its actions, or to update its value function. In addition,
a mentor can provide hints to the observer about the parts of the state space on which it
may be worth focusing attention. The observer’s attention to an area might take the form of
additional exploration of the area or additional computation brought to bear on the agent’s
prior beliefs about the area. In the heterogeneous setting, similar benefits accrue, but with
the potential for an agent to be misled by a mentor that possesses abilities different from
its own. In this case, the learner needs some mechanism to detect such situations and to
make efforts to temper the influence of these observations.

We derive several new techniques to support implicit imitation that are largely indepen-
dent of any specific reinforcement learning algorithm, though they are best suited for use
with model-based methods. These include model extraction, augmented backups, feasibility
testing, and k-step repair. We first describe implicit imitation in homogeneous domains,
then we describe the extension to heterogeneous settings. We illustrate its effectiveness
empirically by incorporating it into Moore and Atkeson’s (1993) prioritized sweeping algo-
rithm.

The implicit imitation model has several advantages over more direct forms of imitation
and teaching. It does not require any agent to explicitly play the role of mentor or teacher.
Observers learn simply by watching the behavior of other agents; if an observed “mentor”
shares certain subtasks with the observer, the observed behavior can be incorporated (indi-
rectly) by the observer to improve its estimate of its own value function. This is important
because there are many situations in which an observer can learn from a mentor that is
unwilling or unable to alter its behavior to accommodate the observer, or even communicate
information to it. For example, common communication protocols may be unavailable to
agents designed by different developers (e.g., Internet agents); agents may find themselves
in a competitive situation in which there is disincentive to share information or skills; or
there may simply be no incentive for one agent to provide information to another.1

Another key advantage of our approach—which arises from formalizing imitation in the
reinforcement learning context—is the fact that the observer is not constrained to directly

1. For reasons of consistency, we will use the term “mentor” to describe any agent from which an observer
can learn, even if the mentor is an unwilling or unwitting participant.

570

Implicit Imitation

imitate (i.e., duplicate the actions of) the mentor. The learner can decide whether such
“explicit imitation” is worthwhile. Implicit imitation can thus be seen as blending the
advantages of explicit teaching or explicit knowledge transfer with those of independent
learning. In addition, because an agent learns by observation, it can exploit the existence
of multiple mentors, essentially distributing its search. Finally, we do not assume that
the observer knows the actual actions taken by the mentor, or that the mentor shares a
reward function (or goals) with the mentor. Again, this stands in sharp contrast with many
existing models of teaching, imitation, and behavior learning by observation. While we make
some strict assumptions in this paper with respect to observability, complete knowledge of
reward functions, and the existence of mappings between agent state spaces, the model can
be generalized in interesting ways. We will elaborate on some of these generalizations near
the end of the paper.

The remainder of the paper is structured as follows. We provide the necessary back-
ground on Markov decision processes and reinforcement learning for the development of our
implicit imitation model in Section 2. In Section 3, we describe a general formal framework
for the study of implicit imitation in reinforcement learning. Two specific instantiations
of this framework are then developed. In Section 4, a model for homogeneous agents is
developed. The model extraction technique is explained and the augmented Bellman backup
is proposed as a mechanism for incorporating observations into model-based reinforcement
learning algorithms. Model confidence testing is then introduced to ensure that misleading
information does not have undue influence on a learner’s exploration policy. The use of
mentor observations to to focus attention on interesting parts of the state space is also
introduced. Section 5 develops a model for heterogeneous agents. The model extends
the homogeneous model through feasibility testing, a device by which a learner can detect
whether the mentor’s abilities are similar to its own, and k-step repair, whereby a learner
can attempt to “mimic” the trajectory of a mentor that cannot be duplicated exactly. Both
of these techniques prove crucial in heterogeneous settings. The effectiveness of these models
is demonstrated on a number of carefully chosen navigation problems. Section 6 examines
conditions under which implicit imitation will and will not work well. Section 7 describes
several promising extensions to the model. Section 8 examines the implicit imitation model
in the context of related work and Section 9 considers future work before drawing some
general conclusions about implicit imitation and the field of computational imitation more
broadly.

2. Reinforcement Learning

Our aim is to provide a formal model of implicit imitation, whereby an agent can learn
how to act optimally by combining its own experience with its observations of the behavior
of an expert mentor. Before doing so, we describe in this section the standard model of
reinforcement learning used in artificial intelligence. Our model will build on this single-
agent view of learning how to act. We begin by reviewing Markov decision processes, which
provide a model for sequential decision making under uncertainty, and then move on to
describe reinforcement learning, with an emphasis on model-based methods.

571

Price & Boutilier

2.1 Markov Decision Processes

Markov decision processes (MDPs) have proven very useful in modeling stochastic sequen-
tial decision problems, and have been widely used in decision-theoretic planning to model
domains in which an agent’s actions have uncertain effects, an agent’s knowledge of the en-
vironment is uncertain, and the agent can have multiple, possibly conflicting objectives. In
this section, we describe the basic MDP model and consider one classical solution procedure.
We do not consider action costs in our formulation of MDPs, though these pose no special
complications. Finally, we make the assumption of full observability. Partially observable
MDPs (POMDPs) (Cassandra, Kaelbling, & Littman, 1994; Lovejoy, 1991; Smallwood &
Sondik, 1973) are much more computationally demanding than fully observable MDPs. Our
imitation model will be based on a fully observable model, though some of the generaliza-
tions of our model mentioned in the concluding section build on POMDPs. We refer the
reader to Bertsekas (1987); Boutilier, Dean and Hanks (1999); and Puterman (1994) for
further material on MDPs.

An MDP can be viewed as a stochastic automaton in which actions induce transitions
between states, and rewards are obtained depending on the states visited by an agent.
Formally, an MDP can be defined as a tuple 〈S,A, T,R〉, where S is a finite set of states or
possible worlds, A is a finite set of actions, T is a state transition function, and R is a reward
function. The agent can control the state of the system to some extent by performing actions
a ∈ A that cause state transitions, movement from the current state to some new state.
Actions are stochastic in that the actual transition caused cannot generally be predicted
with certainty. The transition function T : S × A → ∆(S) describes the effects of each
action at each state. T (si, a) is a probability distribution over S; specifically, T (si, a)(sj)
is the probability of ending up in state sj ∈ S when action a is performed at state si.
We will denote this quantity by Pr(si, a, sj). We require that 0 ≤ Pr(si, a, sj) ≤ 1 for all
si, sj, and that for all si,

∑
sj∈S Pr(si, a, sj) = 1. The components S, A and T determine

the dynamics of the system being controlled. The assumption that the system is fully
observable means that the agent knows the true state at each time t (once that stage is
reached), and its decisions can be based solely on this knowledge. Thus, uncertainty lies
only in the prediction of an action’s effects, not in determining its actual effect after its
execution.

A (deterministic, stationary, Markovian) policy π : S → A describes a course of action
to be adopted by an agent controlling the system. An agent adopting such a policy performs
action π(s) whenever it finds itself in state s. Policies of this form are Markovian since the
action choice at any state does not depend on the system history, and are stationary since
action choice does not depend on the stage of the decision problem. For the problems we
consider, optimal stationary Markovian policies always exist.

We assume a bounded, real-valued reward function R : S → <. R(s) is the instan-
taneous reward an agent receives for occupying state s. A number of optimality criteria
can be adopted to measure the value of a policy π, all measuring in some way the reward
accumulated by an agent as it traverses the state space through the execution of π. In this
work, we focus on discounted infinite-horizon problems: the current value of a reward re-
ceived t stages in the future is discounted by some factor γt(0 ≤ γ < 1). This allows simpler

572

Implicit Imitation

computational methods to be used, as discounted total reward will be finite. Discounting
can be justified on other (e.g., economic) grounds in many situations as well.

The value function Vπ : S → < reflects the value of a policy π at any state s; this is
simply the expected sum of discounted future rewards obtained by executing π beginning
at s. A policy π∗ is optimal if, for all s ∈ S and all policies π, we have Vπ∗(s) ≥ Vπ(s).
We are guaranteed that such optimal (stationary) policies exist in our setting (Puterman,
1994). The (optimal) value of a state V ∗(s) is its value Vπ∗(s) under any optimal policy π∗.

By solving an MDP, we refer to the problem of constructing an optimal policy. Value
iteration (Bellman, 1957) is a simple iterative approximation algorithm for optimal policy
construction. Given some arbitrary estimate V 0 of the true value function V ∗, we iteratively
improve this estimate as follows:

V n(si) = R(si) + max
a∈A

{γ
∑
sj∈S

Pr(si, a, sj)V n−1(sj)} (1)

The computation of V n(s) given V n−1 is known as a Bellman backup. The sequence of value
functions V n produced by value iteration converges linearly to V ∗. Each iteration of value
iteration requires O(|S|2|A|) computation time, and the number of iterations is polynomial
in |S|.

For some finite n, the actions a that maximize the right-hand side of Equation 1 form an
optimal policy, and V n approximates its value. Various termination criteria can be applied;
for example, one might terminate the algorithm when

‖V i+1 − V i‖ ≤ ε(1 − γ)
2γ

(2)

(where ‖X‖ = max{|x| : x ∈ X} denotes the supremum norm). This ensures the resulting
value function V i+1 is within ε

2 of the optimal function V ∗ at any state, and that the induced
policy is ε-optimal (i.e., its value is within ε of V ∗) (Puterman, 1994).

A concept that will be useful later is that of a Q-function. Given an arbitrary value
function V , we define QV

a (si) as

QV
a (si) = R(si) + γ

∑
sj∈S

Pr(si, a, sj)V (sj) (3)

Intuitively, QV
a (s) denotes the value of performing action a at state s and then acting in a

manner that has value V (Watkins & Dayan, 1992). In particular, we define Q∗
a to be the

Q-function defined with respect to V ∗, and Qn
a to be the Q-function defined with respect

to V n−1. In this manner, we can rewrite Equation 1 as:

V n(s) = max
a∈A

{Qn
a(s)} (4)

We define an ergodic MDP as an MDP in which every state is reachable from any other
state in a finite number of steps with non-zero probability.

573

Price & Boutilier

2.2 Model-based Reinforcement Learning

One difficulty with the use of MDPs is that the construction of an optimal policy requires
that the agent know the exact transition probabilities Pr and reward model R. In the speci-
fication of a decision problem, these requirements, especially the detailed specification of the
domain’s dynamics, can impose an undue burden on the agent’s designer. Reinforcement
learning can be viewed as solving an MDP in which the full details of the model, in partic-
ular Pr and R, are not known to the agent. Instead, the agent learns how to act optimally
through experience with its environment. We provide a brief overview of reinforcement
learning in this section (with an emphasis on model-based approaches). For further details,
please refer to the texts of Sutton and Barto (1998) and Bertsekas and Tsitsiklis (1996),
and the survey of Kaelbling, Littman and Moore (1996).

In the general model, we assume that an agent is controlling an MDP 〈S,A, T,R〉 and
initially knows its state and action spaces, S and A, but not the transition model T or
reward function R. The agent acts in its environment, and at each stage of the process
makes a “transition” 〈s, a, r, t〉; that is, it takes action a at state s, receives reward r and
moves to state t. Based on repeated experiences of this type it can determine an optimal
policy in one of two ways: (a) in model-based reinforcement learning, these experiences can
be used to learn the true nature of T and R, and the MDP can be solved using standard
methods (e.g., value iteration); or (b) in model-free reinforcement learning, these experiences
can be used to directly update an estimate of the optimal value function or Q-function.

Probably the simplest model-based reinforcement learning scheme is the certainty equiv-
alence approach. Intuitively, a learning agent is assumed to have some current estimated
transition model T̂ of its environment consisting of estimated probabilities P̂r(s, a, t) and
an estimated rewards model R̂(s). With each experience 〈s, a, r, t〉 the agent updates its es-
timated models, solves the estimated MDP M̂ to obtain an policy π̂ that would be optimal
if its estimated models were correct, and acts according to that policy.

To make the certainty equivalence approach precise, a specific form of estimated model
and update procedure must be adopted. A common approach is to used the empirical dis-
tribution of observed state transitions and rewards as the estimated model. For instance,
if action a has been attempted C(s, a) times at state s, and on C(s, a, t) of those occasions
state t has been reached, then the estimate P̂r(s, a, t) = C(s, a, t)/C(s, a). If C(s, a) = 0,
some prior estimate is used (e.g., one might assume all state transitions are equiprobable). A
Bayesian approach (Dearden, Friedman, & Andre, 1999) uses an explicit prior distribution
over the parameters of the transition distribution Pr(s, a, ·), and then updates these with
each experienced transition. For instance, we might assume a Dirichlet (Generalized Beta)
distribution (DeGroot, 1975) with parameters n(s, a, t) associated with each possible suc-
cessor state t. The Dirichlet parameters are equal to the experience-based counts C(s, a, t)
plus a “prior count” P (s, a, t) representing the agent’s prior beliefs about the distribution
(i.e., n(s, a, t) = C(s, a, t)+P (s, a, t)). The expected transition probability Pr(s, a, t) is then
n(s, a, t)/

∑
t′ n(s, a, t′). Assuming parameter independence, the MDP M̂ can be solved

using these expected values. Furthermore, the model can be updated with ease, simply
increasing n(s, a, t) by one with each observation 〈s, a, r, t〉. This model has the advantage
over a counter-based approach of allowing a flexible prior model and generally does not

574

Implicit Imitation

assign probability zero to unobserved transitions. We will adopt this Bayesian perspective
in our imitation model.

One difficulty with the certainty equivalence approach is the computational burden of re-
solving an MDP M̂ with each update of the models T̂ and R̂ (i.e., with each experience). One
could circumvent this to some extent by batching experiences and updating (and re-solving)
the model only periodically. Alternatively, one could use computational effort judiciously to
apply Bellman backups only at those states whose values (or Q-values) are likely to change
the most given a change in the model. Moore and Atkeson’s (1993) prioritized sweeping
algorithm does just this. When T̂ is updated by changing P̂r(s, a, t), a Bellman backup is
applied at s to update its estimated value V̂ , as well as the Q-value Q̂(s, a). Suppose the
magnitude of the change in V̂ (s) is given by ∆V̂ (s). For any predecessor w, the Q-values
Q̂(w, a′)—hence values V̂ (w)—can change if P̂r(w, a′, s) > 0. The magnitude of the change
is bounded by P̂r(w, a′, s)∆V̂ (s). All such predecessors w of s are placed in a priority
queue with P̂r(w, a′, s)∆V̂ (s) serving as the priority. A fixed number of Bellman backups
are applied to states in the order in which they appear in the queue. With each backup,
any change in value can cause new predecessors to be inserted into the queue. In this way,
computational effort is focused on those states where a Bellman backup has the greatest
impact due to the model change. Furthermore, the backups are applied only to a subset
of states, and are generally only applied a fixed number of times. By way of contrast, in
the certainty equivalence approach, backups are applied until convergence. Thus prioritized
sweeping can be viewed as a specific form of asynchronous value iteration, and has appealing
computational properties (Moore & Atkeson, 1993).

Under certainty equivalence, the agent acts as if the current approximation of the model
is correct, even though the model is likely to be inaccurate early in the learning process. If
the optimal policy for this inaccurate model prevents the agent from exploring the transi-
tions which form part of the optimal policy for the true model, then the agent will fail to
find the optimal policy. For this reason, explicit exploration policies are invariably used to
ensure that each action is tried at each state sufficiently often. By acting randomly (assum-
ing an ergodic MDP), an agent is assured of sampling each action at each state infinitely
often in the limit. Unfortunately, the actions of such an agent will fail to exploit (in fact,
will be completely uninfluenced by) its knowledge of the optimal policy. This exploration-
exploitation tradeoff refers to the tension between trying new actions in order to find out
more about the environment and executing actions believed to be optimal on the basis of
the current estimated model.

The most common method for exploration is the ε–greedy method in which the agent
chooses a random action a fraction ε of the time, where 0 < ε < 1. Typically, ε is decayed
over time to increase the agent’s exploitation of its knowledge. In the Boltzmann approach,
each action is selected with a probability proportional to its value:

Prs(a) = eQ(s,a)/τ∑
a′∈A eQ(s,a′)/τ (5)

The proportionality can be adjusted nonlinearly with the temperature parameter τ . As
τ → 0 the probability of selecting the action with the highest value tends to 1. Typically,
τ is started high so that actions are randomly explored during the early stages of learning.
As the agent gains knowledge about the effects of its actions and the value of these effects,

575

Price & Boutilier

the parameter τ is decayed so that the agent spends more time exploiting actions known to
be valuable and less time randomly exploring actions.

More sophisticated methods attempt to use information about model confidence and
value magnitudes to plan a utility-maximizing exploration plan. An early approximation
of this scheme can be found in the interval estimation method (Kaelbling, 1993). Bayesian
methods have also been used to calculate the expected value of information to be gained
from exploration (Meuleau & Bourgine, 1999; Dearden et al., 1999).

We concentrate in this paper on model-based approaches to reinforcement learning.
However, we should point out that model-free methods—those in which an estimate of the
optimal value function or Q-function is learned directly, without recourse to a domain
model—have attracted much attention. For example, TD-methods (Sutton, 1988) and
Q-learning (Watkins & Dayan, 1992) have both proven to be among the more popular
methods for reinforcement learning. Our methods can be modified to deal with model-free
approaches, as we discuss in the concluding section. We also focus on so-called table-
based (or explicit) representations of models and value functions. When state and action
spaces are large, table-based approaches become unwieldy, and the associated algorithms
are generally intractable. In these situations, approximators are often used to estimate the
values of states. We will discuss ways in which our techniques can be extended to allow for
function approximation in the concluding section.

3. A Formal Framework for Implicit Imitation

To model the influence that a mentor agent can have on the decision process or the learning
behavior of an observer, we must extend the single-agent decision model of MDPs to account
for the actions and objectives of multiple agents. In this section, we introduce a formal
framework for studying implicit imitation. We begin by introducing a general model for
stochastic games (Shapley, 1953; Myerson, 1991), and then impose various assumptions
and restrictions on this general model that allow us to focus on the key aspects of implicit
imitation. We note that the framework proposed here is useful for the study of other forms
of knowledge transfer in multiagent systems, and we briefly point out various extensions of
the framework that would permit implicit imitation, and other forms of knowledge transfer,
in more general settings.

3.1 Non-Interacting Stochastic Games

Stochastic games can be viewed as a multiagent extension of Markov decision processes.
Though Shapley’s (1953) original formulation of stochastic games involved a zero-sum (fully
competitive) assumption, various generalizations of the model have been proposed allowing
for arbitrary relationships between agents’ utility functions (Myerson, 1991).2 Formally,
an n-agent stochastic game 〈S, {Ai : i ≤ n}, T, {Ri : i ≤ n}〉 comprises a set of n agents
(1 ≤ i ≤ n), a set of states S, a set of actions Ai for each agent i, a state transition function
T , and a reward function Ri for each agent i. Unlike an MDP, individual agent actions do
not determine state transitions; rather it is the joint action taken by the collection of agents
that determines how the system evolves at any point in time. Let A = A1 × · · · × An be

2. For example, see the fully cooperative multiagent MDP model proposed by Boutilier (1999).

576

Implicit Imitation

the set of joint actions; then T : S × A → ∆(S), with T (si, a)(sj) = Pr(si, a, sj) denoting
the probability of ending up in state sj ∈ S when joint action a is performed at state si.

For convenience, we introduce the notation A−i to denote the set of joint actions A1 ×
· · · × Ai−1 × Ai+1 × · · · × An involving all agents except i. We use ai · a−i to denote the
(full) joint action obtained by conjoining ai ∈ Ai with a−i ∈ A−i.

Because the interests of the individual agents may be at odds, strategic reasoning and
notions of equilibrium are generally involved in the solution of stochastic games. Because
our aim is to study how a reinforcement agent might learn by observing the behavior of an
expert mentor, we wish to restrict the model in such a way that strategic interactions need
not be considered: we want to focus on settings in which the actions of the observer and
the mentor do not interact. Furthermore, we want to assume that the reward functions of
the agents do not conflict in a way that requires strategic reasoning.

We define noninteracting stochastic games by appealing to the notion of an agent pro-
jection function which is used to extract an agent’s local state from the underlying game. In
these games, an agent’s local state determines all aspects of the global state that are relevant
to its decision making process, while the projection function determines which global states
are identical from an agent’s local perspective. Formally, for each agent i, we assume a local
state space Si, and a projection function Li : S → Si. For any s, t ∈ S, we write s ∼i t
iff Li(s) = Li(t). This equivalence relation partitions S into a set of equivalence classes
such that the elements within a specific class (i.e., L−1

i (s) for some s ∈ Si) need not be
distinguished by agent i for the purposes of individual decision making. We say a stochastic
game is noninteracting if there exists a local state space Si and projection function Li for
each agent i such that:

1. If s ∼i t, then ∀ai ∈ Ai, a−i ∈ A−i, wi ∈ Si we have∑
{Pr(s, ai · a−i, w) : w ∈ L−1

i (wi)} =
∑

{Pr(t, ai · a−i, w) : w ∈ L−1
i (wi)}

2. Ri(s) = Ri(t) if s ∼i t

Intuitively, condition 1 above imposes two distinct requirements on the game from the
perspective of agent i. First, if we ignore the existence of other agents, it provides a notion
of state space abstraction suitable for agent i. Specifically, Li clusters together states
s ∈ S only if each state in an equivalence class has identical dynamics with respect to
the abstraction induced by Li. This type of abstraction is a form of bisimulation of the
type studied in automaton minimization (Hartmanis & Stearns, 1966; Lee & Yannakakis,
1992) and automatic abstraction methods developed for MDPs (Dearden & Boutilier, 1997;
Dean & Givan, 1997). It is not hard to show—ignoring the presence of other agents—that
the underlying system is Markovian with respect to the abstraction (or equivalently, w.r.t.
Si) if condition 1 is met. The quantification over all a−i imposes a strong noninteraction
requirement, namely, that the dynamics of the game from the perspective of agent i is
independent of the strategies of the other agents. Condition 2 simply requires that all
states within a given equivalence class for agent i have the same reward for agent i. This
means that no states within a class need to be distinguished—each local state can be viewed
as atomic.

577

Price & Boutilier

A noninteracting game induces an MDP Mi for each agent i where Mi = 〈Si,Ai,Pri, Ri〉
where Pri is given by condition (1) above. Specifically, for each si, ti ∈ Si:

Pri(si, ai, ti) =
∑{Pr(s, ai.a−i, t) : t ∈ L−1

i (ti)}

where s is any state in L−1
i (si) and a−i is any element of A−i. Let πi : Sa → Ai be an

optimal policy for Mi. We can extend this to a strategy πG
i : S → Ai for the underlying

stochastic game by simply applying πi(si) to every state s ∈ S such that Li(s) = si. The
following proposition shows that the term “noninteracting” indeed provides an appropriate
description of such a game.

Proposition 1 Let G be a noninteracting stochastic game, Mi the induced MDP for agent
i, and πi some optimal policy for Mi. The strategy πG

i extending πi to G is dominant for
agent i.

Thus each agent can solve the noninteracting game by abstracting away irrelevant as-
pects of the state space, ignoring other agent actions, and solving its “personal” MDP
Mi.

Given an arbitrary stochastic game, it can generally be quite difficult to discover whether
it is noninteracting, requiring the construction of appropriate projection functions. In what
follows, we will simply assume that the underlying multiagent system is a noninteracting
game. Rather than specifying the game and projection functions, we will specify the in-
dividual MDPs Mi themselves. The noninteracting game induced by the set of individual
MDPs is simply the “cross product” of the individual MDPs. Such a view is often quite
natural. Consider the example of three robots moving in some two-dimensional office do-
main. If we are able to neglect the possibility of interaction—for example, if the robots can
occupy the same 2-D position (at a suitable level of granularity) and do not require the
same resources to achieve their tasks—then we might specify an individual MDP for each
robot. The local state might be determined by the robot’s x, y-position, orientation, and
the status of its own tasks. The global state space would be the cross product S1 ×S2 ×S3

of the local spaces. The individual components of any joint action would affect only the
local state, and each agent would care (through its reward function Ri) only about its local
state.

We note that the projection function Li should not be viewed as equivalent to an ob-
servation function. We do not assume that agent i can only distinguish elements of Si—in
fact, observations of other agents’ states will be crucial for imitation. Rather the existence
of Li simply means that, from the point of view of decision making with a known model,
the agent need not worry about distinctions other than those made by Li. Assuming no
computational limitations, an agent i need only solve Mi, but may use observations of other
agents in order to improve its knowledge about Mi’s dynamics.3

3.2 Implicit Imitation

Despite the very independent nature of the agent subprocesses in a noninteracting multia-
gent system, there are circumstances in which the behavior of one agent may be relevant to

3. We elaborate on the condition of computational limitations below.

578

Implicit Imitation

another. To keep the discussion simple, we assume the existence of an expert mentor agent
m, which is implementing some stationary (and presumably optimal) policy πm over its
local MDP Mm = 〈Sm,Am,Prm, Rm〉. We also assume a second agent o, the observer, with
local MDP Mo = 〈So,Ao,Pro, Ro〉. While nothing about the mentor’s behavior is relevant
to the observer if it knows its own MDP (and can solve it without computational difficulty),
the situation can be quite different if o is a reinforcement learner without complete knowl-
edge of the model Mo. It may well be that the observed behavior of the mentor provides
valuable information to the observer in its quest to learn how to act optimally within Mo.
To take an extreme case, if mentor’s MDP is identical to the observer’s, and the mentor
is an expert (in the sense of acting optimally), then the behavior of the mentor indicates
exactly what the observer should do. Even if the mentor is not acting optimally, or if the
mentor and observer have different reward functions, mentor state transitions observed by
the learner can provide valuable information about the dynamics of the domain.

Thus we see that when one agent is learning how to act, the behavior of another can
potentially be relevant to the learner, even if the underlying multiagent system is noninter-
acting. Similar remarks, of course, apply to the case where the observer knows the MDP
Mo, but computational restrictions make solving this difficult—observed mentor transitions
might provide valuable information about where to focus computational effort.4 The main
motivation underlying our model of implicit imitation is that the behavior of an expert
mentor can provide hints as to appropriate courses of action for a reinforcement learning
agent.

Intuitively, implicit imitation is a mechanism by which a learning agent attempts to
incorporate the observed experience of an expert mentor agent into its learning process.
Like more classical forms of learning by imitation, the learner considers the effects of the
mentor’s action (or action sequence) in its own context. Unlike direct imitation, however,
we do not assume that the learner must “physically” attempt to duplicate the mentor’s
behavior, nor do we assume that the mentor’s behavior is necessarily appropriate for the
observer. Instead, the influence of the mentor is on the agent’s transition model and its
estimate of value of various states and actions. We elaborate on these points below.

In what follows, we assume a mentor m and associated MDP Mm, and a learner or
observer o and associated MDP Mo, as described above. These MDPs are fully observable.
We focus on the reinforcement learning problem faced by agent o. The extension to multiple
mentors is straightforward and will be discussed below, but for clarity we assume only one
mentor in our description of the abstract framework. It is clear that certain conditions must
be met for the observer to extract useful information from the mentor. We list a number
of assumptions that we make at different points in the development of our model.

Observability: We must assume that the learner can observe certain aspects of the men-
tor’s behavior. In this work, we assume that state of the mentor’s MDP is fully
observable to the learner. Equivalently, we interpret this as full observability of the
underlying noninteracting game, together with knowledge of the mentor’s projection

4. For instance, algorithms like asynchronous dynamic programming and prioritized sweeping can benefit
from such guidance. Indeed, the distinction between reinforcement learning and solving MDPs is viewed
by some as rather blurry (Sutton & Barto, 1998; Bertsekas & Tsitsiklis, 1996). Our focus is on the
case of an unknown model (i.e., the classical reinforcement learning problem) as opposed to one where
computational issues are key.

579

Price & Boutilier

function Lm. A more general partially observable model would require the specifica-
tion of an observation or signal set Z and an observation function O : So×Sm → ∆(Z),
where O(so, sm)(z) denotes the probability with which the observer obtains signal z
when the local states of the observer and mentor are so and sm, respectively. We do
not pursue such a model here. It is important to note that we do not assume that the
observer has access to the action taken by m at any point in time. Since actions are
stochastic, the state (even if fully observable) that results from the mentor invoking a
specific control signal is generally insufficient to determine that signal. Thus it seems
much more reasonable to assume that states (and transitions) are observable than the
actions that gave rise to them.

Analogy: If the observer and the mentor are acting in different local state spaces, it is clear
that observations made of the mentor’s state transitions can offer no useful information
to the observer unless there is some relationship between the two state spaces. There
are several ways in which this relationship can be specified. Dautenhahn and Nehaniv
(1998) use a homomorphism to define the relationship between mentor and observer
for a specific family of trajectories (see Section 8 for further discussion).

A slightly different notion might involve the use of some analogical mapping h : Sm →
So such that an observed state transition s → t provides some information to the
observer about the dynamics or value of state h(s) ∈ So. In certain circumstances, we
might require the mapping h to be homomorphic with respect to Pr(·, a, ·) (for some,
or all, a), and perhaps even with respect to R. We discuss these issues in further detail
below. In order to simplify our model and avoid undue attention to the (admittedly
important) topic of constructing suitable analogical mappings, we will simply assume
that the mentor and the observer have “identical” state spaces; that is, Sm and So are
in some sense isomorphic. The precise sense in which the spaces are isomorphic—or
in some cases, presumed to be isomorphic until proven otherwise—is elaborated below
when we discuss the relationship between agent abilities. Thus from this point we
simply refer to the state S without distinguishing the mentor’s local space Sm from
the observer’s So.

Abilities: Even with a mapping between states, observations of a mentor’s state transitions
only tell the observer something about the mentor’s abilities, not its own. We must
assume that the observer can in some way “duplicate” the actions taken by the mentor
to induce analogous transitions in its own local state space. In other words, there must
be some presumption that the mentor and the observer have similar abilities. It is
in this sense that the analogical mapping between state spaces can be taken to be
a homomorphism. Specifically, we might assume that the mentor and the observer
have the same actions available to them (i.e., Am = Ao = A) and that h : Sm → So

is homomorphic with respect to Pr(·, a, ·) for all a ∈ A. This requirement can be
weakened substantially, without diminishing its utility, by requiring only that the
observer be able to implement the actions actually taken by the mentor at a given
state s. Finally, we might have an observer that assumes that it can duplicate the
actions taken by the mentor until it finds evidence to the contrary. In this case,
there is a presumed homomorphism between the state spaces. In what follows, we
will distinguish between implicit imitation in homogeneous action settings—domains

580

Implicit Imitation

in which the analogical mapping is indeed homomorphic—and heterogeneous action
settings—where the mapping may not be a homomorphism.

There are more general ways of defining similarity of ability, for example, by assuming
that the observer may be able to move through state space in a similar fashion to the
mentor without following the same trajectories (Nehaniv & Dautenhahn, 1998). For
instance, the mentor may have a way of moving directly between key locations in state
space, while the observer may be able to move between analogous locations in a less
direct fashion. In such a case, the analogy between states may not be determined by
single actions, but rather by sequences of actions or local policies. We will suggest
ways for dealing with restricted forms of analogy of this type in Section 5.

Objectives: Even when the observer and mentor have similar or identical abilities, the
value to the observer of the information gleaned from the mentor may depend on
the actual policy being implemented by the mentor. We might suppose that the
more closely related a mentor’s policy is to the optimal policy of the observer, the
more useful the information will be. Thus, to some extent, we expect that the more
closely aligned the objectives of the mentor and the observer are, the more valuable
the guidance provided by the mentor. Unlike in existing teaching models, we do
not suppose that the mentor is making any explicit efforts to instruct the observer.
And because their objectives may not be identical, we do not force the observer to
(attempt to) explicitly imitate the behavior of the mentor. In general, we will make
no explicit assumptions about the relationship between the objectives of the mentor
and the observer. However, we will see that, to some extent, the “closer” they are,
the more utility can be derived from implicit imitation.

Finally, we remark on an important assumption we make throughout the remainder
of this paper: the observer knows its reward function Ro; that is, for each state s, the
observer can evaluate Ro(s) without having visited state s. This view is consistent
with view of reinforcement learning as “automatic programming.” A user may easily
specify a reward function (e.g., in the form of a set of predicates that can be evaluated
at any state) prior to learning. It may be more difficult to specify a domain model
or optimal policy. In such a setting, the only unknown component of the MDP Mo is
the transition function Pro. We believe this approach to reinforcement learning is, in
fact, more common in practice than the approach in which the reward function must
be sampled.

To reiterate, our aim is to describe a mechanism by which the observer can accelerate
its learning; but we emphasize our position that implicit imitation—in contrast to explicit
imitation—is not merely replicating the behaviors (or state trajectories) observed in another
agent, nor even attempting to reach “similar states”. We believe the agent must learn
about its own capabilities and adapt the information contained in observed behavior to
these. Agents must also explore the appropriate application (if any) of observed behaviors,
integrating these with their own, as appropriate, to achieve their own ends. We therefore
see imitation as an interactive process in which the behavior of one agent is used to guide
the learning of another.

581

Price & Boutilier

Given this setting, we can list possible ways in which an observer and a mentor can (and
cannot) interact, contrasting along the way our perspective and assumptions with those of
existing models in the literature.5 First, the observer could attempt to directly infer a
policy from its observations of mentor state-action pairs. This model has a conceptual
simplicity and intuitive appeal, and forms the basis of the behavioral cloning paradigm
(Sammut, Hurst, Kedzier, & Michie, 1992; Urbancic & Bratko, 1994). However, it assumes
that the observer and mentor share the same reward function and action capabilities. It
also assumes that complete and unambiguous trajectories (including action choices) can be
observed. A related approach attempts to deduce constraints on the value function from
the inferred action preferences of the mentor agent (Utgoff & Clouse, 1991; Šuc & Bratko,
1997). Again, however, this approach assumes congruity of objectives. Our model is also
distinct from models of explicit teaching (Lin, 1992; Whitehead, 1991b): we do not assume
that the mentor has any incentive to move through its environment in a way that explicitly
guides the learner to explore its own environment and action space more effectively.

Instead of trying to directly learn a policy, an observer could attempt to use observed
state transitions of other agents to improve its own environment model Pro(s, a, t). With
a more accurate model and its own reward function, the observer could calculate more
accurate values for states. The state values could then be used to guide the agent towards
distant rewards and reduce the need for random exploration. This insight forms the core
of our implicit imitation model. This approach has not been developed in the literature,
and is appropriate under the conditions listed above, specifically, under conditions where
the mentor’s actions are unobservable, and the mentor and observer have different reward
functions or objectives. Thus, this approach is applicable under more general conditions
than many existing models of imitation learning and teaching.

In addition to model information, mentors may also communicate information about the
relevance or irrelevance of regions of the state space for certain classes of reward functions.
An observer can use the set of states visited by the mentor as heuristic guidance about
where to perform backup computations in the state space.

In the next two sections, we develop specific algorithms from our insights about how
agents can use observations of others to both improve their own models and assess the
relevance of regions within their state spaces. We first focus on the homogeneous action
case, then extend the model to deal with heterogeneous actions.

4. Implicit Imitation in Homogeneous Settings

We begin by describing implicit imitation in homogeneous action settings—the extension
to heterogeneous settings will build on the insights developed in this section. We develop
a technique called implicit imitation through which observations of a mentor can be used
to accelerate reinforcement learning. First, we define the homogeneous setting. Then we
develop the implicit imitation algorithm. Finally, we demonstrate how implicit imitation
works on a number of simple problems designed to illustrate the role of the various mecha-
nisms we describe.

5. We will describe other models in more detail in Section 8.

582

Implicit Imitation

4.1 Homogeneous Actions

The homogeneous action setting is defined as follows. We assume a single mentor m and
observer o, with individual MDPs Mm = 〈S,Am,Prm, Rm〉 and Mo = 〈S,Ao,Pro, Ro〉,
respectively. Note that the agents share the same state space (more precisely, we assume
a trivial isomorphic mapping that allows us to identify their local states). We also assume
that the mentor is executing some stationary policy πm. We will often treat this policy as
deterministic, but most of our remarks apply to stochastic policies as well. Let the support
set Supp(πm, s) for πm at state s be the set of actions a ∈ Am accorded nonzero probability
by πm at state s. We assume that the observer has the same abilities as the mentor in
the following sense: ∀s, t ∈ S, am ∈ Supp(πm, s), there exists an action ao ∈ Ao such that
Pro(s, ao, t) = Prm(s, am, t). In other words, the observer is able to duplicate (in a the sense
of inducing the same distribution over successor states) the actual behavior of the mentor;
or equivalently, the agents’ local state spaces are isomorphic with respect to the actions
actually taken by the mentor at the subset of states where those actions might be taken.
This is much weaker than requiring a full homomorphism from Sm to So. Of course, the
existence of a full homomorphism is sufficient from our perspective; but our results do not
require this.

4.2 The Implicit Imitation Algorithm

The implicit imitation algorithm can be understood in terms of its component processes.
First, we extract action models from a mentor. Then we integrate this information into
the observer’s own value estimates by augmenting the usual Bellman backup with mentor
action models. A confidence testing procedure ensures that we only use this augmented
model when the observer’s model of the mentor is more reliable than the observer’s model
of its own behavior. We also extract occupancy information from the observations of mentor
trajectories in order to focus the observer’s computational effort (to some extent) in specific
parts of the state space. Finally, we augment our action selection process to choose actions
that will explore high-value regions revealed by the mentor. The remainder of this section
expands upon each of these processes and how they fit together.

4.2.1 Model Extraction

The information available to the observer in its quest to learn how to act optimally can be
divided into two categories. First, with each action it takes, it receives an experience tuple
〈s, a, r, t〉; in fact, we will often ignore the sampled reward r, since we assume the reward
function R is known in advance. As in standard model-based learning, each such experience
can be used to update its own transition model Pro(s, a, ·).

Second, with each mentor transition, the observer obtains an experience tuple 〈s, t〉.
Note again that the observer does not have direct access to the action taken by the mentor,
only the induced state transition. Assume the mentor is implementing a deterministic,
stationary policy πm, with πm(s) denoting the mentor’s choice of action at state s. This
policy induces a Markov chain Prm(·, ·) over S, with Prm(s, t) = Pr(s, πm(s), t) denoting

583

Price & Boutilier

the probability of a transition from s to t.6 Since the learner observes the mentor’s state
transitions, it can construct an estimate P̂rm of this chain: P̂rm(s, t) is simply estimated by
the relative observed frequency of mentor transitions s → t (w.r.t. all transitions taken from
s). If the observer has some prior over the possible mentor transitions, standard Bayesian
update techniques can be used instead. We use the term model extraction for this process
of estimating the mentor’s Markov chain.

4.2.2 Augmented Bellman Backups

Suppose the observer has constructed an estimate P̂rm of the mentor’s Markov chain. By
the homogeneity assumption, the action πm(s) can be replicated exactly by the observer at
state s. Thus, the policy πm can, in principle, be duplicated by the observer (were it able
to identify the actual actions used). As such, we can define the value of the mentor’s policy
from the observer’s perspective:

Vm(s) = Ro(s) + γ
∑
t∈S

Prm(s, t)Vm(t) (6)

Notice that Equation 6 uses the mentor’s dynamics but the observer’s reward function.
Letting V denote the optimal (observer’s) value function, clearly V (s) ≥ Vm(s), so Vm

provides a lower bound on the observer’s value function.
More importantly, the terms making up Vm(s) can be integrated directly into the Bell-

man equation for the observer’s MDP, forming the augmented Bellman equation:

V (s) = Ro(s) + γ max

{
max
a∈Ao

{∑
t∈S

Pro(s, a, t)V (t)

}
,

∑
t∈S

Prm(s, t)V (t)

}
(7)

This is the usual Bellman equation with an extra term added, namely, the second
summation,

∑
t∈S Prm(s, t)V (t) denoting the expected value of duplicating the mentor’s

action am. Since this (unknown) action is identical to one of the observer’s actions, the
term is redundant and the augmented value equation is valid. Of course, the observer using
the augmented backup operation must rely on estimates of these quantities. If the observer
exploration policy ensures that each state is visited infinitely often, the estimates of the Pro

terms will converge to their true values. If the mentor’s policy is ergodic over state space S,
then Prm will also converge to its true value. If the mentor’s policy is restricted to a subset
of states S′ ⊆ S (those forming the basis of its Markov chain), then the estimates of Prm
for the subset will converge correctly with respect to S′ if the chain is ergodic. The states
in S − S′ will remain unvisited and the estimates will remain uninformed by data. Since
the mentor’s policy is not under the control of the observer, there is no way for the observer
to influence the distribution of samples attained for Prm. An observer must therefore be
able to reason about the accuracy of the estimated model Prm for any s and restrict the
application of the augmented equation to those states where Prm is known with sufficient
accuracy.

6. This is somewhat imprecise, since the initial distribution of the Markov chain is unknown. For our
purposes, it is only the dynamics that are relevant to the observer, so only the transition probabilities
are used.

584

Implicit Imitation

While Prm cannot be used indiscriminately, we argue that it can be highly informative
early in the learning process. Assuming that the mentor is pursuing an optimal policy (or at
least is behaving in some way so that it tends to visit certain states more frequently), there
will be many states for which the observer has much more accurate estimates of Prm(s, t)
than it does for Pro(s, a, t) for any specific a. Since the observer is learning, it must explore
both its state space—causing less frequent visits to s—and its action space—thus spreading
its experience at s over all actions a. This generally ensures that the sample size upon which
Prm is based is greater than that for Pro for any action that forms part of the mentor’s
policy. Apart from being more accurate, the use of Prm(s, t) can often give more informed
value estimates at state s, since prior action models are often “flat” or uniform, and only
become distinguishable at a given state when the observer has sufficient experience at state
s.

We note that the reasoning above holds even if the mentor is implementing a (station-
ary) stochastic policy (since the expected value of stochastic policy for a fully-observable
MDP cannot be greater than that of an optimal deterministic policy). While the “direc-
tion” offered by a mentor implementing a deterministic policy tends to be more focused,
empirically we have found that mentors offer broader guidance in moderately stochastic
environments or when they implement stochastic policies, since they tend to visit more of
the state space. We note that the extension to multiple mentors is straightforward—each
mentor model can be incorporated into the augmented Bellman equation without difficulty.

4.2.3 Model Confidence

When the mentor’s Markov chain is not ergodic, or if the mixing rate7 is sufficiently low, the
mentor may visit a certain state s relatively infrequently. The estimated mentor transition
model corresponding to a state that is rarely (or never) visited by the mentor may provide a
very misleading estimate—based on the small sample or the prior for the mentor’s chain—of
the value of the mentor’s (unknown) action at s; and since the mentor’s policy is not under
the control of the observer, this misleading value may persist for an extended period. Since
the augmented Bellman equation does not consider relative reliability of the mentor and
observer models, the value of such a state s may be overestimated;8 that is, the observer can
be tricked into overvaluing the mentor’s (unknown) action, and consequently overestimating
the value of state s.

To overcome this, we incorporate an estimate of model confidence into our augmented
backups. For both the mentor’s Markov chain and the observer’s action transitions, we
assume a Dirichlet prior over the parameters of each of these multinomial distributions
(DeGroot, 1975). These reflect the observer’s initial uncertainty about the possible tran-
sition probabilities. From sample counts of mentor and observer transitions, we update
these distributions. With this information, we could attempt to perform optimal Bayesian
estimation of the value function; but when the sample counts are small (and normal approx-
imations are not appropriate), there is no simple, closed form expression for the resultant
distributions over values. We could attempt to employ sampling methods, but in the in-

7. The mixing rate refers to how quickly a Markov chain approaches its stationary distribution.
8. Note that underestimates based on such considerations are not problematic, since the augmented Bellman

equation then reduces to the usual Bellman equation.

585

Price & Boutilier

VM
-

VO
- VO VM

Figure 1: Lower bounds on action values incorporate uncertainty penalty

terest of simplicity we have employed an approximate method for combining information
sources inspired by Kaelbling’s (1993) interval estimation method.

Let V denote the current estimated augmented value function, and Pro and Prm denote
the estimated observer and mentor transition models. We let σ2

o and σ2
m denote the variance

in these model parameters.
An augmented Bellman backup with respect to V using confidence testing proceeds

as follows. We first compute the observer’s optimal action a∗o based on the estimated
augmented values for each of the observer’s actions. Let Q(a∗o, s) = Vo(s) denote its value.
For the best action, we use the model uncertainty encoded by the Dirichlet distribution to
construct a lower bound V −

o (s) on the value of the state to the observer using the model
(at state s) derived from its own behavior (i.e., ignoring its observations of the mentor).
We employ transition counts no(s, a, t) and nm(s, t) to denote the number of times the
observer has made the transition from state s to state t when the action a was performed,
and the number of times the mentor was observed making the transition from state s to
t, respectively. From these counts, we estimate the uncertainty in the model using the
variance of a Dirichlet distribution. Let α = no(s, a, t) and β =

∑
t′∈S−t no(s, a, t′). Then

the model variance is:

σ2
model(s, a, t) =

α + β

(α + β)2 + (α + β + 1)
(8)

The variance in the Q-value of an action due to the uncertainty in the local model
can be found by simple application of the rule for combining linear combinations of vari-
ances, V ar(cX + dY) = c2V ar(X) + d2V ar(Y) to the expression for the Bellman backup,
V ar(R(s) + γ

∑
t Pr(t|s, a)V (t). The result is:

σ2(s, a) = γ2
∑

t

σ2
model(s, a, t)v(t)2 (9)

Using Chebychev’s inequality,9 we can obtain a confidence level even though the Dirichlet
distributions for small sample counts are highly non-normal. The lower bound is then
V −

o (s) = Vo(s)−cσo(s, a∗o) for some suitable constant c. One may interpret this as penalizing

9. Chebychev’s inequality states that 1 − 1
k2 of the probability mass for an arbitrary distribution will be

within k standard deviations of the mean.

586

Implicit Imitation

FUNCTION augmentedBackup(V ,Pro,σ
2
omodel,Prm,σ2

mmodel,s,c)

a∗ = arg maxa∈Ao

∑
t∈S Pr(s, a, t)V (t)

Vo(s) = Ro(s) + γ
∑

t∈S Pro(s, a
∗, t)V (t)

Vm(s) = Ro(s) + γ
∑

t∈S Prm(s, t)V (t)

σ2
o(s, a∗) = γ2

∑
t∈S σ2

omodel(s, a
∗, t)V (t)2

σ2
m(s) = γ2

∑
t∈S σ2

mmodel(s, t)V (t)2

V −
o (s) = Vo(s) − c ∗ σo(s, a

∗)
V −

m (s) = Vm(s) − c ∗ σm(s)

IF Vo(s)
− > Vm(s)− THEN

V (s) = Vo(s)
ELSE

V (s) = Vm(s)

END

Table 1: Implicit Backup

the value of a state by subtracting its “uncertainty” from it (see Figure 1).10 The value
Vm(s) of the mentor’s action πm(s) is estimated similarly and an analogous lower bound
V −

m (s) on it is also constructed. If V −
o (s) > V −

m (s), then we say that Vo(s) supersedes
Vm(s) and we write Vo(s) � Vm(s). When Vo(s) � Vm(s) then either the mentor-inspired
model has, in fact, a lower expected value (within a specified degree of confidence) and
uses a nonoptimal action (from the observer’s perspective), or the mentor-inspired model
has lower confidence. In either case, we reject the information provided by the mentor and
use a standard Bellman backup using the action model derived solely from the observer’s
experience (thus suppressing the augmented backup)—the backed up value is Vo(s) in this
case.

An algorithm for computing an augmented backup using this confidence test is shown
in Table 1. The algorithm parameters include the current estimate of the augmented value
function V , the current estimated model Pro and its associated local variance σ2

omodel,
and the model of the mentor’s Markov chain Prm and its associated variance σ2

mmodel. It
calculates lower bounds and returns the mean value, Vo or Vm, with the greatest lower
bound. The parameter c determines the width of the confidence interval used in the mentor
rejection test.

4.2.4 Focusing

The augmented Bellman backups improves the accuracy of the observer’s model. A second
way in which an observer can exploit its observations of the mentor is to focus attention on
the states visited by the mentor. In a model-based approach, the specific focusing mecha-

10. Ideally, we would like to take not only the uncertainty of the model at the current state into account,
but also the uncertainty of future states as well (Meuleau & Bourgine, 1999).

587

Price & Boutilier

nism we adopt is to require the observer to perform a (possibly augmented) Bellman backup
at state s whenever the mentor makes a transition from s. This has three effects. First, if
the mentor tends to visit interesting regions of space (e.g., if it shares a certain reward struc-
ture with the observer), then the significant values backed up from mentor-visited states
will bias the observer’s exploration towards these regions. Second, computational effort will
be concentrated toward parts of state space where the estimated model P̂rm(s, t) changes,
and hence where the estimated value of one of the observer’s actions may change. Third,
computation is focused where the model is likely to be more accurate (as discussed above).

4.2.5 Action Selection

The integration of exploration techniques in the action selection policy is important for any
reinforcement learning algorithm to guarantee convergence. In implicit imitation, it plays a
second, crucial role in helping the agent exploit the information extracted from the mentor.
Our improved convergence results rely on the greedy quality of the exploration strategy to
bias an observer towards the higher-valued trajectories revealed by the mentor.

For expediency, we have adopted the ε-greedy action selection method, using an ex-
ploration rate ε that decays over time. We could easily have employed other semi-greedy
methods such as Boltzmann exploration. In the presence of a mentor, greedy action selec-
tion becomes more complex. The observer examines its own actions at state s in the usual
way and obtains a best action a∗o which has a corresponding value Vo(s). A value is also
calculated for the mentor’s action Vm(s). If Vo(s) � Vm(s), then the observer’s own action
model is used and the greedy action is defined exactly as if the mentor were not present.
If, however, Vm(s) � Vo(s) then we would like to define the greedy action to be the action
dictated by the mentor’s policy at state s. Unfortunately, the observer does not know which
action this is, so we define the greedy action to be the observer’s action “closest” to the
mentor’s action according to the observer’s current model estimates at s. More precisely,
the action most similar to the mentor’s at state s, denoted κm(s), is that whose outcome
distribution has minimum Kullback-Leibler divergence from the mentor’s action outcome
distribution:

κm(s) = argmina

{
−

∑
t

Pro(s, a, t) log Prm(s, t)

}
(10)

The observer’s own experience-based action models will be poor early in training, so there
is a chance that the closest action computation will select the wrong action. We rely on the
exploration policy to ensure that each of the observer’s actions is sampled appropriately in
the long run.11

In our present work we have assumed that the state space is large and that the agent
will therefore not be able to completely update the Q-function over the whole space. (The
intractability of updating the entire state space is one of the motivations for using imitation
techniques). In the absence of information about the state’s true values, we would like to
bias the value of the states along the mentor’s trajectories so that they look worthwhile to
explore. We do this by assuming bounds on the reward function and setting the initial Q-
values over the entire space below this bound. In our simple examples, rewards are strictly

11. If the mentor is executing a stochastic policy, the test based on KL-divergence can mislead the learner.

588

Implicit Imitation

positive so we set the bounds to zero. If mentor trajectories intersect any states valued by
the observing agent, backups will cause the states on these trajectories to have a higher
value than the surrounding states. This causes the greedy step in the exploration method
to prefer actions that lead to mentor-visited states over actions for which the agent has no
information.

4.2.6 Model Extraction in Specific Reinforcement Learning Algorithms

Model extraction, augmented backups, the focusing mechanism, and our extended notion of
the greedy action selection, can be integrated into model-based reinforcement learning al-
gorithms with relative ease. Generically, our implicit imitation algorithm requires that: (a)
the observer maintain an estimate P̂rm(s, t) of the Markov chain induced by the mentor’s
policy—this estimate is updated with every observed transition; and (b) that all backups
performed to estimate its value function use the augmented backup (Equation 7) with confi-
dence testing. Of course, these backups are implemented using estimated models P̂ro(s, a, t)
and P̂rm(s, t). In addition, the focusing mechanism requires that an augmented backup be
performed at any state visited by the mentor.

We demonstrate the generality of these mechanisms by combining them with the well-
known and efficient prioritized sweeping algorithm (Moore & Atkeson, 1993). As outlined
in Section 2.2, prioritized sweeping works by maintaining an estimated transition model P̂r
and reward model R̂. Whenever an experience tuple 〈s, a, r, t〉 is sampled, the estimated
model at state s can change; a Bellman backup is performed at s to incorporate the revised
model and some (usually fixed) number of additional backups are performed at selected
states. States are selected using a priority that estimates the potential change in their values
based on the changes precipitated by earlier backups. Effectively, computational resources
(backups) are focused on those states that can most “benefit” from those backups.

Incorporating our ideas into prioritized sweeping simply requires the following changes:

• With each transition 〈s, a, t〉 the observer takes, the estimated model P̂ro(s, a, t) is up-
dated and an augmented backup is performed at state s. Augmented backups are then
performed at a fixed number of states using the usual priority queue implementation.

• With each observed mentor transition 〈s, t〉, the estimated model P̂rm(s, t) is updated
and an augmented backup is performed at s. Augmented backups are then performed
at a fixed number of states using the usual priority queue implementation.

Keeping samples of mentor behavior implements model extraction. Augmented backups
integrate this information into the observer’s value function, and performing augmented
backups at observed transitions (in addition to experienced transitions) incorporates our
focusing mechanism. The observer is not forced to “follow” or otherwise mimic the actions
of the mentor directly. But it does back up value information along the mentor’s trajectory
as if it had. Ultimately, the observer must move to those states to discover which actions
are to be used; in the meantime, important value information is being propagated that can
guide its exploration.

Implicit imitation does not alter the long run theoretical convergence properties of the
underlying reinforcement learning algorithm. The implicit imitation framework is orthogo-
nal to ε-greedy exploration, as it alters only the definition of the “greedy” action, not when

589

Price & Boutilier

the greedy action is taken. Given a theoretically appropriate decay factor, the ε-greedy
strategy will thus ensure that the distributions for the action models at each state are
sampled infinitely often in the limit and converge to their true values. Since the extracted
model from the mentor corresponds to one of the observer’s own actions, its effect on the
value function calculations is no different than the effect of the observer’s own sampled
action models. The confidence mechanism ensures that the model with more samples will
eventually come to dominate if it is, in fact, better. We can therefore be sure that the con-
vergence properties of reinforcement learning with implicit imitation are identical to that
of the underlying reinforcement learning algorithm.

The benefit of implicit imitation lies in the way in which the models extracted from the
mentor allow the observer to calculate a lower bound on the value function and use this
lower bound to choose its greedy actions to move the agent towards higher-valued regions
of state space. The result is quicker convergence to optimal policies and better short-term
practical performance with respect to accumulated discounted reward while learning.

4.2.7 Extensions

The implicit imitation model can easily be extended to extract model information from
multiple mentors, mixing and matching pieces extracted from each mentor to achieve good
results. It does this by searching, at each state, the set of mentors it knows about to find
the mentor with the highest value estimate. The value estimate of the “best” mentor is then
compared using the confidence test described above with the observer’s own value estimate.
The formal expression of the algorithm is given by the multi-augmented Bellman equation:

V (s) = Ro(s) + γ max

{
max
a∈Ao

{∑
t∈S

Pro(s, a, t)V (t)

}
,

max
m∈M

∑
t∈S

Prm(s, t)V (t)

}
(11)

where M is the set of candidate mentors. Ideally, confidence estimates should be taken
into account when comparing mentor estimates with each other, as we may get a mentor
with a high mean value estimate but large variance. If the observer has any experience
with the state at all, this mentor will likely be rejected as having poorer quality information
than the observer already has from its own experience. The observer might have been
better off picking a mentor with a lower mean but more confident estimate that would
have succeeded in the test against the observer’s own model. In the interests of simplicity,
however, we investigate multiple mentor combination without confidence testing.

Up to now, we have assumed no action costs (i.e., the agent’s rewards depend only on
the state and not on the action selected in the state); however, we can use more general
reward functions (e.g., where reward has the form R(s, a)). The difficulty lies in backing
up action costs when the mentor’s chosen action is unknown. In Section 4.2.5 we defined
the closest action function κ. The κ function can be used to choose the appropriate reward.
The augmented Bellman equation with generalized rewards takes the following form:

V (s) = max

{
max
a∈Ao

{
Ro(s, a) + γ

∑
t∈S

Pro(s, a, t)V (t)

}
,

590

Implicit Imitation

Ro(s, κ(s)) + γ
∑
t∈S

Prm(s, t)V (t)

}

We note that Bayesian methods could be used could be used to estimate action costs
in the mentor’s chain as well. In any case, the generalized reward augmented equation can
readily be amended to use confidence estimates in a similar fashion to the transition model.

4.3 Empirical Demonstrations

The following empirical tests incorporate model extraction and our focusing mechanism into
prioritized sweeping. The results illustrate the types of problems and scenarios in which
implicit imitation can provide advantages to a reinforcement learning agent. In each of the
experiments, an expert mentor is introduced into the experiment to serve as a model for the
observer. In each case, the mentor is following an ε-greedy policy with a very small ε (on
the order of 0.01). This tends to cause the mentor’s trajectories to lie within a “cluster”
surrounding optimal trajectories (and reflect good if not optimal policies). Even with a
small amount of exploration and some environment stochasticity, mentors generally do not
“cover” the entire state space, so confidence testing is important.

In all of these experiments, prioritized sweeping is used with a fixed number of back-
ups per observed or experienced sample.12 ε-greedy exploration is used with decaying ε.
Observer agents are given uniform Dirichlet priors and Q-values are initialized to zero. Ob-
server agents are compared to control agents that do not benefit from a mentor’s experience,
but are otherwise identical (implementing prioritized sweeping with similar parameters and
exploration policies). The tests are all performed on stochastic grid world domains, since
these make it clear to what extent the observer’s and mentor’s optimal policies overlap (or
fail to). In Figure 2, a simple 10 × 10 example shows a start and end state on a grid.
A typical optimal mentor trajectory is illustrated by the solid line between the start and
end states. The dotted line shows that a typical mentor-influenced trajectory will be quite
similar to the observed mentor trajectory. We assume eight-connectivity between cells so
that any state in the grid has nine neighbors including itself, but agents have only four
possible actions. In most experiments, the four actions move the agent in the compass
directions (North, South, East and West), although the agent will not initially know which
action does which. We focus primarily on whether imitation improves performance during
learning, since the learner will converge to an optimal policy whether it uses imitation or
not.

4.3.1 Experiment 1: The Imitation Effect

In our first experiment we compare the performance of an observer using model extraction
and an expert mentor with the performance of a control agent using independent reinforce-
ment learning. Given the uniform nature of this grid world and the lack of intermediate
rewards, confidence testing is not required. Both agents attempt to learn a policy that
maximizes discounted return in a 10 × 10 grid world. They start in the upper-left corner
and seek a goal with value 1.0 in the lower-right corner. Upon reaching the goal, the agents

12. Generally, the number of backups was set to be roughly equal to the length of the optimal “noise-free”
path.

591

Price & Boutilier

S

X

Figure 2: A simple grid world with start state S and goal state X

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−10

0

10

20

30

40

50
Obs

Ctrl

Delta

FA Series

A
ve

ra
ge

 R
ew

ar
d

pe
r

10
00

 S
te

ps

Simulation Steps

Figure 3: Basic observer and control agent comparisons

are restarted in the upper-left corner. Generally the mentor will follow a similar if not iden-
tical trajectory each run, as the mentors were trained using a greedy strategy that leaves
one path slightly more highly valued than the rest. Action dynamics are noisy, with the
“intended” direction being realized 90% of the time, and one of the other directions taken
otherwise (uniformly). The discount factor is 0.9. In Figure 3, we plot the cumulative
number of goals obtained over the previous 1000 time steps for the observer “Obs” and
control “Ctrl” agents (results are averaged over ten runs). The observer is able to quickly
incorporate a policy learned from the mentor into its value estimates. This results in a
steeper learning curve. In contrast, the control agent slowly explores the space to build a
model first. The “Delta” curve shows the difference in performance between the agents.
Both agents converge to the same optimal value function.

592

Implicit Imitation

0 1000 2000 3000 4000 5000 6000
−5

0

5

10

15

20

25

30

Basic

Scale

Stoch

A
ve

ra
ge

 R
ew

ar
d

pe
r

10
00

 S
te

ps

Simulation Steps

Figure 4: Delta curves showing the influence of domain size and noise

4.3.2 Experiment 2: Scaling and Noise

The next experiment illustrates the sensitivity of imitation to the size of the state space and
action noise level. Again, the observer uses model-extraction but not confidence testing.
In Figure 4, we plot the Delta curves (i.e., difference in performance between observer and
control agents) for the “Basic” scenario just described, the “Scale” scenario in which the
state space size is increased 69 percent (to a 13 × 13 grid), and the “Stoch” scenario in
which the noise level is increased to 40 percent (results are averaged over ten runs). The
total gain represented by the area under the curves for the observer and the non-imitating
prioritized sweeping agent increases with the state space size. This reflects Whitehead’s
(1991a) observation that for grid worlds, exploration requirements can increase quickly
with state space size, but that the optimal path length increases only linearly. Here we see
that the guidance of the mentor can help more in larger state spaces.

Increasing the noise level reduces the observer’s ability to act upon the information
received from the mentor and therefore erodes its advantage over the control agent. We
note, however, that the benefit of imitation degrades gracefully with increased noise and is
present even at this relatively extreme noise level.

4.3.3 Experiment 3: Confidence Testing

Sometimes the observer’s prior beliefs about the transition probabilities of the mentor can
mislead the observer and cause it to generate inappropriate values. The confidence mech-
anism proposed in the previous section can prevent the observer from being fooled by
misleading priors over the mentor’s transition probabilities. To demonstrate the role of the
confidence mechanism in implicit imitation, we designed an experiment based on the sce-
nario illustrated in Figure 5. Again, the agent’s task is to navigate from the top-left corner
to the bottom-right corner of a 10×10 grid in order to attain a reward of +1. We have cre-

593

Price & Boutilier

+5 +5

+5+5

Figure 5: An environment with misleading priors

ated a pathological scenario in which islands of high reward (+5) are enclosed by obstacles.
Since the observer’s priors reflect eight-connectivity and are uniform, the high-valued cells
in the middle of each island are believed to be reachable from the states diagonally adjacent
with some small prior probability. In reality, however, the agent’s action set precludes this
and the agent will therefore never be able to realize this value. The four islands in this
scenario thus create a fairly large region in the center of the space with a high estimated
value, which could potentially trap an observer if it persisted in its prior beliefs.

Notice that a standard reinforcement learner will “quickly” learn that none of its actions
take it to the rewarding islands; in contrast, an implicit imitator using augmented backups
could be fooled by its prior mentor model. If the mentor does not visit the states neighboring
the island, the observer will not have any evidence upon which to change its prior belief that
the mentor actions are equally likely to take one in any of the eight possible directions. The
imitator may falsely conclude on the basis of the mentor action model that an action does
exist which would allow it to access the islands of value. The observer therefore needs a
confidence mechanism to detect when the mentor model is less reliable than its own model.

To test the confidence mechanism, we have the mentor follows a path around the outside
of the obstacles so that its path cannot lead the observer out of the trap (i.e., it provides
no evidence to the observer that the diagonal moves into the islands are not feasible). The
combination of a high initial exploration rate and the ability of prioritized sweeping to
spread value across large distances then virtually guarantees that the observer will be led to
the trap. Given this scenario, we ran two observer agents and a control. The first observer
used a confidence interval with width given by 5σ, which, according to the Chebychev rule,
should cover approximately 96 percent of an arbitrary distribution. The second observer
was given a 0σ interval, which effectively disables confidence testing. The observer with no
confidence testing consistently became stuck. Examination of the value function revealed
consistent peaks within the trap region, and inspection of the agent state trajectories showed
that it was stuck in the trap. The observer with confidence testing consistently escaped the
trap. Observation of its value function over time shows that the trap formed, but faded
away as the observer gained enough experience to with its own actions to allow it to ignore

594

Implicit Imitation

0 2000 4000 6000 8000 10000 12000
−5

0

5

10

15

20

25

30

35

40

45

Ctrl

Obs

Delta

CR Series

A
ve

ra
ge

 R
ew

ar
d

pe
r

10
00

 S
te

ps

Simulation Steps

Figure 6: Misleading priors may degrade performance

overcome erroneous priors over the mentor actions. In Figure 6, the performance of the
observer with confidence testing is shown with the performance of the control agent (results
are averaged over 10 runs). We see that the observer’s performance is only slightly degraded
from that of the unaugmented control agent even in this pathological case.

4.3.4 Experiment 4: Qualitative Difficulty

The next experiment demonstrates how the potential gains of imitation can increase with
the (qualitative) difficulty of the problem. The observer employs both model extraction and
confidence testing, though confidence testing will not play a significant role here.13 In the
“maze” scenario, we introduce obstacles in order to increase the difficulty of the learning
problem. The maze is set on a 25 × 25 grid (Figure 7) with 286 obstacles complicating the
agent’s journey from the top-left to the bottom-right corner. The optimal solution takes
the form of a snaking 133-step path, with distracting paths (up to length 22) branching
off from the solution path necessitating frequent backtracking. The discount factor is 0.98.
With 10 percent noise, the optimal goal-attainment rate is about six goals per 1000 steps.

From the graph in Figure 8 (with results averaged over ten runs), we see that the control
agent takes on the order of 200,000 steps to build a decent value function that reliably leads
to the goal. At this point, it is only achieving four goals per 1000 steps on average, as its
exploration rate is still reasonably high (unfortunately, decreasing exploration more quickly
leads to slower value function formation). The imitation agent is able to take advantage of
the mentor’s expertise to build a reliable value function in about 20,000 steps. Since the
control agent has been unable to reach the goal at all in the first 20,000 steps, the Delta
between the control and the imitator is simply equal to the imitator’s performance. The

13. The mentor does not provide evidence about some path choices in this problem, but there are no
intermediate rewards which would cause the observer to make use of the misleading mentor priors at
these states.

595

Price & Boutilier

Figure 7: A complex maze

0 0.5 1 1.5 2 2.5

x 10
5

0

1

2

3

4

5

6

7

Ctrl

Obs

Delta

CMB Series

A
ve

ra
ge

 R
ew

ar
d

pe
r

10
00

 S
te

ps

Simulation Steps

Figure 8: Imitation in a complex space

imitator can quickly achieve the optimal goal attainment rate of six goals per 1000 steps,
as its exploration rate decays much more quickly.

4.3.5 Experiment 5: Improving Suboptimal Policies by Imitation

The augmented backup rule does not require that the reward structure of the mentor and
observer be identical. There are many useful scenarios where rewards are dissimilar but
the value functions and policies induced share some structure. In this experiment, we
demonstrate one interesting scenario in which it is relatively easy to find a suboptimal
solution, but difficult to find the optimal solution. Once the observer finds this suboptimal
path, however, it is able to exploit its observations of the mentor to see that there is a

596

Implicit Imitation

*

*

*

*

*
*
*
*
*

*
*
*
*
*
*
*
*
*

1 4

3

5

2

Figure 9: A maze with a perilous shortcut

shortcut that significantly shortens the path to the goal. The structure of the scenario
is shown in Figure 9. The suboptimal solution lies on the path from location 1 around
the “scenic route” to location 2 and on to the goal at location 3. The mentor takes the
vertical path from location 4 to location 5 through the shortcut.14 To discourage the
use of the shortcut by novice agents, it is lined with cells (marked “*”) from which the
agent immediately jumps back to the start state. It is therefore difficult for a novice agent
executing random exploratory moves to make it all the way to the end of the shortcut
and obtain the value which would reinforce its future use. Both the observer and control
therefore generally find the scenic route first.

In Figure 10, the performance (measured using goals reached over the previous 1000
steps) of the control and observer are compared (averaged over ten runs), indicating the
value of these observations. We see that the observer and control agent both find the longer
scenic route, though the control agent takes longer to find it. The observer goes on to find
the shortcut and increases its return to almost double the goal rate. This experiment shows
that mentors can improve observer policies even when the observer’s goals are not on the
mentor’s path.

4.3.6 Experiment 6: Multiple Mentors

The final experiment illustrates how model extraction can be readily extended so that the
observer can extract models from multiple mentors and exploit the most valuable parts of
each. Again, the observer employs model extraction and confidence testing. In Figure 11,
the learner must move from start location 1 to goal location 4. Two expert agents with
different start and goal states serve as potential mentors. One mentor repeatedly moves from
location 3 to location 5 along the dotted line, while a second mentor departs from location
2 and ends at location 4 along the dashed line. In this experiment, the observer must

14. A mentor proceeding from 5 to 4 would not provide guidance without prior knowledge that actions are
reversible.

597

Price & Boutilier

0 0.5 1 1.5 2 2.5 3

x 10
4

0

5

10

15

20

25

30

35

Ctrl

Obs

Delta

CSB Series

Simulation Steps

A
ve

ra
ge

 R
ew

ar
d

pe
r

10
00

 S
te

ps

Figure 10: Transfer with non-identical rewards

2 45

1 3

Figure 11: Multiple mentors scenario

combine the information from the examples provided by the two mentors with independent
exploration of its own in order to solve the problem.

In Figure 12, we see that the observer successfully pulls together these information
sources in order to learn much more quickly than the control agent (results are averaged
over 10 runs). We see that the use of a value-based technique allows the observer to choose
which mentor’s influence to use on a state-by-state basis in order to get the best solution
to the problem.

598

Implicit Imitation

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

Ctrl

Obs

Delta

CMM Series

A
ve

ra
ge

 R
ew

ar
d

pe
r

10
00

 S
te

ps

Simulation Steps

Figure 12: Learning from multiple mentors

5. Implicit Imitation in Heterogeneous Settings

When the homogeneity assumption is violated, the implicit imitation framework described
above can cause the learner’s convergence rate to slow dramatically and, in some cases,
cause the learner to become stuck in a small neighborhood of state space. In particular,
if the learner is unable to make the same state transition (or a transition with the same
probability) as the mentor at a given state, it may drastically overestimate the value of
that state. The inflated value estimate causes the learner to return repeatedly to this state
even though its exploration will never produce a feasible action that attains the inflated
estimated value. There is no mechanism for removing the influence of the mentor’s Markov
chain on value estimates—the observer can be extremely (and correctly) confident in its
observations about the mentor’s model. The problem lies in the fact that the augmented
Bellman backup is justified by the assumption that the observer can duplicate every mentor
action. That is, at each state s, there is some a ∈ A such that Pro(s, a, t) = Prm(s, t) for
all t. When an equivalent action a does not exist, there is no guarantee that the value
calculated using the mentor action model can, in fact, be achieved.

5.1 Feasibility Testing

In such heterogeneous settings, we can prevent “lock-up” and poor convergence through the
use of an explicit action feasibility test: before an augmented backup is performed at s, the
observer tests whether the mentor’s action am “differs” from each of its actions at s, given
its current estimated models. If so, the augmented backup is suppressed and a standard
Bellman backup is used to update the value function.15 By default, mentor actions are

15. The decision is binary; but we could envision a smoother decision criterion that measures the extent to
which the mentor’s action can be duplicated.

599

Price & Boutilier

assumed to be feasible for the observer; however, once the observer is reasonably confident
that am is infeasible at state s, augmented backups are suppressed at s.

Recall that uncertainty about the agent’s true transition probabilities are captured by a
Dirichlet distribution derived from sampled transitions. Comparing am with ao is effected by
a difference of means test with respect to the corresponding Dirichlets. This is complicated
by the fact that Dirichlets are highly non-normal for small parameter values and transition
distributions are multinomial. We deal with the non-normality by requiring a minimum
number of samples and using robust Chebychev bounds on the pooled variance of the
distributions to be compared. Conceptually, we will evaluate Equation 12:

|Pro(s, ao, t) − Prm(s, t)|√
no(s,ao,t)σ2

omodel
(s,ao,t)+nm(s,t)σ2

mmodel
(s,t)

no(s,ao,t)+nm(s,t)

> Zα/2 (12)

Here Zα/2 is the critical value of the test. The parameter α is the significance of the test,
or the probability that we will falsely reject two actions as being different when they are
actually the same. Given our highly non-normal distributions early in the training process,
the appropriate Z value for a given α can be computed from Chebychev’s bound by solving
2α = 1 − 1

Z2 for Zα/2.
When we have too few samples to do an accurate test, we persist with augmented

backups (embodying our default assumption of homogeneity). If the value estimate is
inflated by these backups, the agent will be biased to obtain additional samples, which will
then allow the agent to perform the required feasibility test. Our assumption is therefore
self-correcting. We deal with the multivariate complications by performing the Bonferroni
test (Seber, 1984), which has been shown to give good results in practice (Mi & Sampson,
1993), is efficient to compute, and is known to be robust to dependence between variables. A
Bonferroni hypothesis test is obtained by conjoining several single variable tests. Suppose
the actions ao and am result in r possible successor states, s1, · · · , sr (i.e., r transition
probabilities to compare). For each si, the hypothesis Ei denotes that ao and am have the
same transition probability to successor state si; that is Pr(s, am, si) = Pr(s, ao, si). We let
Ēi denote the complementary hypothesis (i.e., that the transition probabilities differ). The
Bonferroni inequality states:

Pr

[
r⋂

i=1

Ei

]
≥ 1 −

r∑
i=1

Pr
[
Ēi

]
Thus we can test the joint hypothesis

⋂r
i=1 Ei—the two action models are the same—by

testing each of the r complementary hypotheses Ēi at confidence level α/r. If we reject
any of the hypotheses we reject the notion that the two actions are equal with confidence
at least α. The mentor action am is deemed infeasible if for every observer action ao, the
multivariate Bonferroni test just described rejects the hypothesis that the action is the same
as the mentor’s.

Pseudo-code for the Bonferroni component of the feasibility test appears in Table 2. It
assumes a sufficient number of samples. For efficiency reasons, we cache the results of the
feasibility testing. When the duplication of the mentor’s action at state s is first determined
to be infeasible, we set a flag for state s to this effect.

600

Implicit Imitation

FUNCTION feasible(m,s) : Boolean
FOR each a in Ao do

allSuccessorProbsSimilar = true
FOR each t in successors(s) do

µ∆ = |Pro(s, a, t) − Prm(s, t)|
z∆ = µ∆/

√
no(s,a,t)∗σ2

omodel
(s,a,t)+nm(s,t)σ2

mmodel
(s,t)

no(s,a,t)+nm(s,t)

IF z∆ > zα/2r

allSuccessorProbsSimilar = false
END FOR
IF allSuccessorProbsSimilar

return true
END FOR
RETURN false

Table 2: Action Feasibility Testing

5.2 k-step Similarity and Repair

Action feasibility testing essentially makes a strict decision as to whether the agent can
duplicate the mentor’s action at a specific state: once it is decided that the mentor’s action is
infeasible, augmented backups are suppressed and all potential guidance offered is eliminated
at that state. Unfortunately, the strictness of the test results in a somewhat impoverished
notion of similarity between mentor and observer. This, in turn, unnecessarily limits the
transfer between mentor and observer. We propose a mechanism whereby the mentor’s
influence may persist even if the specific action it chooses is not feasible for the mentor; we
instead rely on the possibility that the observer may approximately duplicate the mentor’s
trajectory instead of exactly duplicating it.

Suppose an observer has previously constructed an estimated value function using aug-
mented backups. Using the mentor action model (i.e., the mentor’s chain Prm(s, t)), a high
value has been calculated for state s. Subsequently, suppose the mentor’s action at state s
is judged to be infeasible. This is illustrated in Figure 13, where the estimated value at state
s is originally due to the mentor’s action πm(s), which for the sake of illustration moves
with high probability to state t, which itself can lead to some highly-rewarding region of
state space. After some number of experiences at state s, however, the learner concludes
that the action πm(s)—and the associated high probability transition to t—is not feasible.

At this point, one of two things must occur: either (a) the value calculated for state
s and its predecessors will “collapse” and all exploration towards highly-valued regions
beyond state s ceases; or (b) the estimated value drops slightly but exploration continues
towards the highly-valued regions. The latter case may arise as follows. If the observer
has previously explored in the vicinity of state s, the observer’s own action model may be
sufficiently developed that they still connect the higher value-regions beyond state s to state
s through Bellman backups. For example, if the learner has sufficient experience to have
learned that the highly-valued region can be reached through the alternative trajectory
s−u−v−w, the newly discovered infeasibility of the mentor’s transition s− t will not have
a deleterious effect on the value estimate at s. If s is highly-valued, it is likely that states
close to the mentor’s trajectory will be explored to some degree. In this case, state s will

601

Price & Boutilier

States

w

u v

t

"Bridge"

High-value

Infeasible Transition

Figure 13: An alternative path can bridge value backups around infeasible paths

not be as highly-valued as it was when using the mentor’s action model, but it will still be
valued highly enough that it will likely to guide further exploration toward the area. We call
this alternative (in this case s−u−v−w) to the mentor’s action a bridge, because it allows
value from higher value regions to “flow over” an infeasible mentor transition. Because
the bridge was formed without the intention of the agent, we call this process spontaneous
bridging.

Where a spontaneous bridge does not exist, the observer’s own action models are gener-
ally undeveloped (e.g., they are close to their uniform prior distributions). Typically, these
undeveloped models assign a small probability to every possible outcome and therefore dif-
fuse value from higher valued regions and lead to a very poor value estimate for state s.
The result is often a dramatic drop in the value of state s and all of its predecessors; and
exploration towards the highly-valued region through the neighborhood of state s ceases.
In our example, this could occur if the observer’s transition models at state s assign low
probability (e.g., close to prior probability) of moving to state u due to lack of experience
(or similarly if the surrounding states, such as u or v, have been insufficiently explored).

The spontaneous bridging effect motivates a broader notion of similarity. When the
observer can find a “short” sequence of actions that bridges an infeasible action on the
mentor’s trajectory, the mentor’s example can still provide extremely useful guidance. For
the moment, we assume a short path is any path of length no greater than some given
integer k. We say an observer is k-step similar to a mentor at state s if the observer can
duplicate in k or fewer steps the mentor’s nominal transition at state s with “sufficiently
high” probability.

Given this notion of similarity, an observer can now test whether a spontaneous bridge
exists and determine whether the observer is in danger of value function collapse and the
concomitant loss of guidance if it decides to suppress an augmented backup at state s. To do
this, the observer initiates a reachability analysis starting from state s using its own action
model Pro(s, a, t) to determine if there is a sequence of actions with leads with sufficiently
high probability from state s to some state t on the mentor’s trajectory downstream of
the infeasible action.16 If a k-step bridge already exists, augmented backups can be safely
suppressed at state s. For efficiency, we maintain a flag at each state to mark it as “bridged.”
Once a state is known to be bridged, the k-step reachability analysis need not be repeated.

If a spontaneous bridge cannot be found, it might still be possible to intentionally set out
to build one. To build a bridge, the observer must explore from state s up to k-steps away,
hoping to make contact with the mentor’s trajectory downstream of the infeasible mentor

16. In a more general state space where ergodicity is lacking, the agent must consider predecessors of state
s up to k steps before s to guarantee that all k-step paths are checked.

602

Implicit Imitation

action. We implement a single search attempt as a k2-step random walk, which will result
in a trajectory on average k steps away from s as long ergodicity and local connectivity
assumptions are satisfied. In order for the search to occur, we must motivate the observer to
return to the state s and engage in repeated exploration. We could provide motivation to the
observer by asking the observer to assume that the infeasible action will be repairable. The
observer will therefore continue the augmented backups which support high-value estimates
at the state s and the observer will repeatedly engage in exploration from this point. The
danger, of course, is that there may not in fact be a bridge, in which case the observer will
repeat this search for a bridge indefinitely. We therefore need a mechanism to terminate
the repair process when a k-step repair is infeasible. We could attempt to explicitly keep
track of all of the possible paths open to the observer and all of the paths explicitly tried by
the observer and determine the repair possibilities had been exhausted. Instead, we elect
to follow a probabilistic search that eliminates the need for bookkeeping: if a bridge cannot
be constructed within n attempts of k-step random walk, the “repairability assumption” is
judged falsified, the augmented backup at state s is suppressed and the observer’s bias to
explore the vicinity of state s is eliminated. If no bridge is found for state s, a flag is used
to mark the state as “irreparable.”

This approach is, of course, a very näıve heuristic strategy; but it illustrates the basic
import of bridging. More systematic strategies could be used, involving explicit “planning”
to find a bridge using, say, local search (Alissandrakis, Nehaniv, & Dautenhahn, 2000).
Another aspect of this problem that we do not address is the persistence of search for
bridges. In a specific domain, after some number of unsuccessful attempts to find bridges,
a learner may conclude that it is unable to reconstruct a mentor’s behavior, in which case
the search for bridges may be abandoned. This involves simple, higher-level inference, and
some notion of (or prior beliefs about) “similarity” of capabilities. These notions could also
be used to automatically determine parameter settings (discussed below).

The parameters k and n must be tuned empirically, but can be estimated given knowl-
edge of the connectivity of the domain and prior beliefs about how similar (in terms of
length of average repair) the trajectories of the mentor and observer will be. For instance,
n > 8k−4 seems suitable in an 8-connected grid world with low noise, based on the number
of trajectories required to cover the perimeter states of a k-step rectangle around a state.
We note that very large values of n can reduce performance below that of non-imitating
agents as it results in temporary “lock up.”

Feasibility and k-step repair are easily integrated into the homogeneous implicit imita-
tion framework. Essentially, we simply elaborate the conditions under which the augmented
backup will be employed. Of course, some additional representation will be introduced to
keep track of whether a state is feasible, bridged, or repairable, and how many repair at-
tempts have been made. The action selection mechanism will also be overridden by the
bridge-building algorithm when required in order to search for a bridge. Bridge building
always terminates after n attempts, however, so it cannot affect long run convergence. All
other aspects of the algorithm, however, such as the exploration policy, are unchanged.

The complete elaborated decision procedure used to determine when augmented backups
will be employed at state s with respect to mentor m appears in Table 3. It uses some
internal state to make its decisions. As in the original model, we first check to see if the
observer’s experience-based calculation for the value of the state supersedes the mentor-

603

Price & Boutilier

FUNCTION use augmented?(s,m) : Boolean
IF Vo(s) � Vm(s) THEN RETURN false
ELSE IF feasible(s, m) THEN RETURN true
ELSE IF bridged(s,m) THEN RETURN false
ELSE IF reachable(s,m) THEN

bridged(s,m) := true
RETURN false

ELSE IF not repairable(s,m) THEN return false
ELSE % we are searching

IF 0 < search steps(s,m) < k THEN % search in progress
return true

IF search steps(s,m) > k THEN % search failed
IF attempts(s) > n THEN

repairable(s) = false
RETURN false

ELSE
reset search(s,m)
attempts(s) := attempts(s) + 1
RETURN true

attempts(s) :=1 % initiate first attempt of a search
initiate-search(s)
RETURN true

Table 3: Elaborated augmented backup test

based calculation; if so, then the observer uses its own experience-based calculation. If
the mentor’s action is feasible, then we accept the value calculated using the observation-
based value function. If the action is infeasible we check to see if the state is bridged. The
first time the test is requested, a reachability analysis is performed, but the results will be
drawn from a cache for subsequent requests. If the state has been bridged, we suppress
augmented backups, confident that this will not cause value function collapse. If the state
is not bridged, we ask if it is repairable. For the first n requests, the agent will attempt a
k-step repair. If the repair succeeds, the state is marked as bridged. If we cannot repair
the infeasible transition, we mark it not-repairable and suppress augmented backups.

We may wish to employ implicit imitation with feasibility testing in a multiple-mentor
scenario. The key change from implicit imitation without feasibility testing is that the
observer will only imitate feasible actions. When the observer searches through the set of
mentors for the one with the action that results in the highest value estimate, the observer
must consider only those mentors whose actions are still considered feasible (or assumed to
be repairable).

5.3 Empirical Demonstrations

In this section, we empirically demonstrate the utility of feasibility testing and k-step repair
and show how the techniques can be used to surmount both differences in actions between
agents and small local differences in state-space topology. The problems here have been

604

Implicit Imitation

chosen specifically to demonstrate the necessity and utility of both feasibility testing and
k-step repair.

5.3.1 Experiment 1: Necessity of Feasibility Testing

Our first experiment shows the importance of feasibility testing in implicit imitation when
agents have heterogeneous actions. In this scenario, all agents must navigate across an
obstacle-free, 10 × 10 grid world from the upper-left corner to a goal location in the lower-
right. The agent is then reset to the upper-left corner. The first agent is a mentor with
the “NEWS” action set (North, South, East, and West movement actions). The mentor
is given an optimal stationary policy for this problem. We study the performance of three
learners, each with the “Skew” action set (N, S, NE, SW) and unable to duplicate the mentor
exactly (e.g., duplicating a mentor’s E-move requires the learner to move NE followed by
S, or move SE then N). Due to the nature of the grid world, the control and imitation
agents will actually have to execute more actions to get to the goal than the mentor and
the optimal goal rate for both the control and imitator are therefore lower than that of the
mentor. The first learner employs implicit imitation with feasibility testing, the second uses
imitation without feasibility testing, and the third control agent uses no imitation (i.e., is a
standard reinforcement learning agent). All agents experience limited stochasticity in the
form of a 5% chance that their action will be randomly perturbed. As in the last section,
the agents use model-based reinforcement learning with prioritized sweeping. We set k = 3
and n = 20.

The effectiveness of feasibility testing in implicit imitation can be seen in Figure 14.
The horizontal axis represents time in simulation steps and the vertical axis represents the
average number of goals achieved per 1000 time steps (averaged over 10 runs). We see that
the imitation agent with feasibility testing converges much more quickly to the optimal
goal-attainment rate than the other agents. The agent without feasibility testing achieves
sporadic success early on, but frequently “locks up” due to repeated attempts to duplicate
infeasible mentor actions. The agent still manages to reach the goal from time to time, as
the stochastic actions do not permit the agent to become permanently stuck in this obstacle-
free scenario. The control agent without any form of imitation demonstrates a significant
delay in convergence relative to the imitation agents due to the lack of any form of guidance,
but easily surpasses the agent without feasibility testing in the long run. The more gradual
slope of the control agent is due to the higher variance in the control agent’s discovery time
for the optimal path, but both the feasibility-testing imitator and the control agent converge
to optimal solutions. As shown by the comparison of the two imitation agents, feasibility
testing is necessary to adapt implicit imitation to contexts involving heterogeneous actions.

5.3.2 Experiment 2: Changes to State Space

We developed feasibility testing and bridging primarily to deal with the problem of adapting
to agents with heterogeneous actions. The same techniques, however, can be applied to
agents with differences in their state-space connectivity (ultimately, these are equivalent
notions). To test this, we constructed a domain where all agents have the same NEWS
action set, but we alter the environment of the learners by introducing obstacles that aren’t
present for the mentor. In Figure 15, the learners find that the mentor’s path is obstructed

605

Price & Boutilier

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

15

20

25

30

35

40

Feas

Ctrl

NoFeas

FS Series

Simulation Steps

A
ve

ra
ge

 R
ew

ar
d

pe
r

10
00

 S
te

ps

Figure 14: Utility of feasibility testing

S

X

Figure 15: Obstacle map and mentor path

by obstacles. Movement toward an obstacle causes a learner to remain in its current state.
In this sense, its action has a different effect than the mentor’s.

In Figure 16, we see that the results are qualitatively similar to the previous experiment.
In contrast to the previous experiment, both imitator and control use the “NEWS” action set
and therefore have a shortest path with the same length as that of the mentor. Consequently,
the optimal goal rate of the imitators and control is higher than in the previous experiment.
The observer without feasibility testing has difficulty with the maze, as the value function
augmented by mentor observations consistently leads the observer to states whose path to
the goal is directly blocked. The agent with feasibility testing quickly discovers that the
mentor’s influence is inappropriate at such states. We conclude that local differences in
state are well handled by feasibility testing.

Next, we demonstrate how feasibility testing can completely generalize the mentor’s
trajectory. Here, the mentor follows a path which is completely infeasible for the imitating
agent. We fix the mentor’s path for all runs and give the imitating agent the maze shown

606

Implicit Imitation

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

15

20

25

30

35

40

45

50
Feas

Ctrl

NoFeas

FO Series

Simulation Steps

A
ve

ra
ge

 R
ew

ar
d

pe
r

10
00

 S
te

ps

Figure 16: Interpolating around obstacles

S

X

Observer

Mentor

Figure 17: Parallel generalization

in Figure 17 in which all but two of the states the mentor visits are blocked by an obstacle.
The imitating agent is able to use the mentor’s trajectory for guidance and builds its own
parallel trajectory which is completely disjoint from the mentor’s.

The results in Figure 18 show that gain of the imitator with feasibility testing over the
control agent diminishes, but still exists marginally when the imitator is forced to generalize
a completely infeasible mentor trajectory. The agent without feasibility testing does very
poorly, even when compared to the control agent. This is because it gets stuck around the
doorway. The high value gradient backed up along the mentor’s path becomes accessible to
the agents at the doorway. The imitation agent with feasibility will conclude that it cannot
proceed south from the doorway (into the wall) and it will then try a different strategy.
The imitator without feasibility testing never explores far enough away from the doorway
to setup an independent value gradient that will guide it to the goal. With a slower decay
schedule for exploration, the imitator without feasibility testing would find the goal, but this

607

Price & Boutilier

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

Feas

Ctrl

NoFeas

FP Series

Simulation Steps

A
ve

ra
ge

 R
ew

ar
d

pe
r

10
00

 S
te

ps

Figure 18: Parallel generalization results

would still reduce its performance below that of the imitator with feasibility testing. The
imitator with feasibility testing makes use of its prior beliefs that it can follow the mentor
to backup value perpendicular to the mentor’s path. A value gradient will therefore form
parallel to the infeasible mentor path and the imitator can follow along side the infeasible
path towards the doorway where it makes the necessary feasibility test and then proceeds
to the goal.

As explained earlier, in simple problems there is a good chance that the informal effects
of prior value leakage and stochastic exploration may form bridges before feasibility testing
cuts off the value propagation that guides exploration. In more difficult problems where the
agent spends a lot more time exploring, it will accumulate sufficient samples to conclude
that the mentor’s actions are infeasible long before the agent has constructed its own bridge.
The imitator’s performance would then drop down to that of an unaugmented reinforcement
learner.

To demonstrate bridging, we devised a domain in which agents must navigate from the
upper-left corner to the bottom-right corner, across a “river” which is three steps wide and
exacts a penalty of −0.2 per step (see Figure 19). The goal state is worth 1.0. In the figure,
the path of the mentor is shown starting from the top corner, proceeding along the edge of
the river and then crossing the river to the goal. The mentor employs the “NEWS” action
set. The observer uses the “Skew” action set (N, NE, S, SW) and attempts to reproduce
the mentor trajectory. It will fail to reproduce the critical transition at the border of the
river (because the “East” action is infeasible for a “Skew” agent). The mentor action can
no longer be used to backup value from the rewarding state and there will be no alternative
paths because the river blocks greedy exploration in this region. Without bridging or an
optimistic and lengthly exploration phase, observer agents quickly discover the negative
states of the river and curtail exploration in this direction before actually making it across.

608

Implicit Imitation

Figure 19: River scenario

If we examine the value function estimate (after 1000 steps) of an imitator with feasibility
testing but no repair capabilities, we see that, due to suppression by feasibility testing, the
darkly shaded high-value states in Figure 19 (backed up from the goal) terminate abruptly
at an infeasible transition without making it across the river. In fact, they are dominated by
the lighter grey circles showing negative values. In this experiment, we show that bridging
can prolong the exploration phase in just the right way. We employ the k-step repair
procedure with k = 3.

Examining the graph in Figure 20, we see that both imitation agents experience an early
negative dip as they are guided deep into the river by the mentor’s influence. The agent
without repair eventually decides the mentor’s action is infeasible, and thereafter avoids
the river (and the possibility of finding the goal). The imitator with repair also discovers
the mentor’s action to be infeasible, but does not immediately dispense with the mentor’s
guidance. It keeps exploring in the area of the mentor’s trajectory using a random walk,
all the while accumulating a negative reward until it suddenly finds a bridge and rapidly
converges on the optimal solution.17 The control agent discovers the goal only once in the
ten runs.

6. Applicability

The simple experiments presented above demonstrate the major qualitative issues con-
fronting an implicit imitation agent and how the specific mechanisms of implicit imitation
address these issues. In this section, we examine how the assumptions and the mecha-
nisms we presented in the previous sections determine the types of problems suitable for
implicit imitation. We then present several dimensions that prove useful for predicting the
performance of implicit imitation in these types of problems.

17. While repair steps take place in an area of negative reward in this scenario, this need not be the case.
Repair doesn’t imply short-term negative return.

609

Price & Boutilier

0 1000 2000 3000 4000 5000 6000
−20

−15

−10

−5

0

5

10

15

Repair

Repair

Ctrl
Ctrl

NoRepair

NoRepair

FB Series

Simulation Steps

A
ve

ra
ge

 R
ew

ar
d

pe
r

10
00

 S
te

ps

Figure 20: Utility of bridging

We have already identified a number of assumptions under which implicit imitation is
applicable—some assumptions under which other models of imitation or teaching cannot be
applied, and some assumptions that restrict the applicability of our model. These include:
lack of explicit communication between mentors and observer; independent objectives for
mentors and observer; full observability of mentors by observer; unobservability of mentors’
actions; and (bounded) heterogeneity. Assumptions such as full observability are necessary
for our model—as formulated—to work (though we discuss extension to the partially ob-
servable case in Section 7). Assumptions of lack of communication and unobservable actions
extend the applicability of implicit imitation beyond other models in the literature; if these
conditions do not hold, a simpler form of explicit communication may be preferable. Finally,
the assumptions of bounded heterogeneity and independent objectives also ensure implicit
imitation can be applied widely. However, the degree to which rewards are the same and
actions are homogeneous can have an impact on the utility (i.e., the acceleration of learn-
ing offered by) implicit imitation. We turn our attention to predicting the performance of
implicit imitation as a function of certain domain characteristics.

6.1 Predicting Performance

In this section we examine two questions: first, given that implicit imitation is applicable,
when can implicit imitation bias an agent to a suboptimal solution; and second, how will
the performance of implicit imitation vary with structural characteristics of the domains
one might want to apply it to? We show how analysis of the internal structure of state space
can be used to motivate a metric that (roughly) predicts implicit imitation performance.
We conclude with an analysis of how the problem space can be understood in terms of
distinct regions playing different roles within an imitation context.

610

Implicit Imitation

In the implicit imitation model, we use observations of other agents to improve the ob-
server’s knowledge about its environment and then rely on a sensible exploration policy to
exploit this additional knowledge. A clear understanding of how knowledge of the environ-
ment affects exploration is therefore central to understanding how implicit imitation will
perform in a domain.

Within the implicit imitation framework, agents know their reward functions, so knowl-
edge of the environment consists solely of knowledge about the agent’s action models. In
general, these models can take any form. For simplicity, we have restricted ourselves to
models that can be decomposed into local models for each possible combination of a system
state and agent action.

The local models for state-action pairs allow the prediction of a j-step successor state
distribution given any initial state and sequence of actions or local policy. The quality of
the j-step state predictions will be a function of every action model encountered between
the initial state and the states at time j − 1. Unfortunately, the quality of the j-step
estimate can be drastically altered by the quality of even a single intermediate state-action
model. This suggests that connected regions of state space, the states of which all have
fairly accurate models, will allow reasonably accurate future state predictions.

Since the estimated value of a state s is based on both the immediate reward and the
reward expected to be received in subsequent states, the quality of this value estimate
will also depend on the quality of the action models in those states connected to s. Now,
since greedy exploration methods bias their exploration according to the estimated value
of actions, the exploratory choices of an agent at state s will also be dependent on the
connectivity of reliable action models at those states reachable from s. Our analysis of
implicit imitation performance with respect to domain characteristics is therefore organized
around the idea of state space connectivity and the regions such connectivity defines.

6.1.1 The Imitation Regions Framework

Since connected regions play an important role in implicit imitation, we introduce a classi-
fication of different regions within the state space shown graphically in Figure 21. In what
follows, we describe of how these regions affect imitation performance in our model.

We first observe that many tasks can be carried out by an agent in a small subset of
states within the state space defined for the problem. More precisely, in many MDPs, the
optimal policy will ensure that an agent remains in a small subspace of state space. This
leads us to the definition of our first regional distinction: relevant vs. irrelevant regions. The
relevant region is the set of states with non-zero probability of occupancy under the optimal
policy.18 An ε-relevant region is a natural generalization in which the optimal policy keeps
the system within the region a fraction 1 − ε of the time.

Within the relevant region, we distinguish three additional subregions. The explored
region contains those states where the observer has formulated reliable action models on the
basis of its own experience. The augmented region contains those states where the observer
lacks reliable action models but has improved value estimates due to mentor observations.

18. One often assumes that the system starts in one of a small set of states. If the Markov chain induced by
the optimal policy then is not ergodic, then the irrelevant region will be nonempty. Otherwise it will be
empty.

611

Price & Boutilier

Reward

Region
Augmented

Region
Irrelevant

Mentor

Blind
Region

Observer

Region
Explored

Figure 21: Classification of regions of state space

Note that both the explored and augmented regions are created as the result of observations
made by the learner (of either its own transitions or those of a mentor). These regions will
therefore have significant “connected components;” that is, contiguous regions of state space
where reliable action or mentor models are available. Finally, the blind region designates
those states where the observer has neither (significant) personal experience nor the benefit
of mentor observations. Any information about states within the blind region will come
(largely) from the agent’s prior beliefs.19

We can now ask how these regions interact with an imitation agent. First we consider the
impact of relevance. Implicit imitation makes the assumption that more accurate dynamics
models allow an observer to make better decisions which will, in turn, result in higher returns
sooner in the learning process. However, not all model information is equally helpful: the
imitator needs only enough information about the irrelevant region to be able to avoid it.
Since action choices are influenced by the relative value of actions, the irrelevant region will
be avoided when it looks worse than the relevant region. Given diffuse priors on action
models, none of the actions open to an agent will initially appear particularly attractive.
However, a mentor that provides observations within the relevant region can quickly make
the relevant region look much more promising as a method of achieving higher returns and
therefore constrain exploration significantly. Therefore, considering problems just from the
point of view of relevance, a problem with a small relevant region relative to the entire space
combined with a mentor that operates within the relevant region will result in maximum
advantage for an imitation agent over a non-imitating agent.

In the explored region, the observer has sufficiently accurate models to compute a good
policy with respect to rewards within the explored region. Additional observations on

19. Our partitioning of states into explored, blind and augmented regions bears some resemblance to Kearns
and Singh’s (1998) partitioning of state space into known and unknown regions. Unlike Kearns and Singh,
however, we use the partitions only for analysis. The implicit imitation algorithm does not explicitly
maintain these partitions or use them in any way to compute its policy.

612

Implicit Imitation

the states within the explored region provided by the mentor can still improve performance
somewhat if significant evidence is required to accurately discriminate between the expected
value of two actions. Hence, mentor observations in the explored region can help, but will
not result in dramatic speedups in convergence.

Now, we consider the augmented region in which the observer’s Q-values have been
augmented with observations of a mentor. In experiments in previous sections, we have
seen that an observer entering an augmented region can experience significant speedups in
convergence due to the information inherent in the augmented value function about the
location of rewards in the region. Characteristics of the augmented zone, however, can
affect the degree to which augmentation improves convergence speed.

Since the observer receives observations of only the mentor’s state, and not its actions,
the observer has improved value estimates for states in the augmented region, but no policy.
The observer must therefore infer which actions should be taken to duplicate the mentor’s
behavior. Where the observer has prior beliefs about the effects of its actions, it may be able
to perform immediate inference about the mentor’s actual choice of action (perhaps using
KL-divergence or maximum likelihood). Where the observer’s prior model is uninformative,
the observer will have to explore the local action space. In exploring a local action space,
however, the agent must take an action and this action will have an effect. Since there is no
guarantee that the agent took the action that duplicates the mentor’s action, it may end up
somewhere different than the mentor. If the action causes the observer to fall outside of the
augmented region, the observer will lose the guidance that the augmented value function
provides and fall back to the performance level of a non-imitating agent.

An important consideration, then, is the probability that the observer will remain in
augmented regions and continue to receive guidance. One quality of the augmented region
that affects the observer’s probability of staying within its boundaries is its relative coverage
of the state space. The policy of the mentor may be sparse or complete. In a relatively
deterministic domain with defined begin and end states, a sparse policy covering few states
may be adequate. In a highly stochastic domain with many start and end states, an agent
may need a complete policy (i.e., covering every state). Implicit imitation will provide
more guidance to the agent in domains that are more stochastic and require more complete
policies, since the policy will cover a larger part of the state space.

As important as the completeness of a policy is in predicting its guidance, we must
also take into account the probability of transitions into and out of the augmented region.
Where the actions in a domain are largely invertible (directly, or effectively so), the agent
has a chance of re-entering the augmented region. Where ergodicity is lacking, however,
the agent may have to wait until the process undergoes some form of “reset” before it has
the opportunity to gather additional evidence regarding the identity of the mentor’s actions
in the augmented region. The reset places the agent back into the explored region, from
which it can make its way to the frontier where it last explored. The lack of ergodicity
would reduce the agent’s ability to make progress towards high-value regions before resets,
but the agent is still guided on each attempt by the augmented region. Effectively, the
agent will concentrate its exploration on the boundary between the explored region and the
mentor augmented region.

The utility of mentor observations will depend on the probability of the augmented
and explored regions overlapping in the course of the agent’s exploration. In the explored

613

Price & Boutilier

regions, accurate action models allow the agent to move as quickly as possible to high
value regions. In augmented regions, augmented Q-values inform agents about which states
lead to highly-valued outcomes. When an augmented region abuts an explored region, the
improved value estimates from the augmented region are rapidly communicated across the
explored region by accurate action models. The observer can use the resultant improved
value estimates in the explored region, together with the accurate action models in the
explored region, to rapidly move towards the most promising states on the frontier of the
explored region. From these states, the observer can explore outward and thereby eventually
expand the explored region to encompass the augmented region.

In the case where the explored region and augmented region do not overlap, we have a
blind region. Since the observer has no information beyond its priors for the blind region,
the observer is reduced to random exploration. In a non-imitation context, any states that
are not explored are blind. However, in an imitation context, the blind area is reduced in
effective size by the augmented area. Hence, implicit imitation effectively shrinks the size
of the search space of the problem even when there is no overlap between explored and
augmented spaces.

The most challenging case for implicit imitation transfer occurs when the region aug-
mented by mentor observations fails to connect to both the observer explored region and
the regions with significant reward values. In this case, the augmented region will initially
provide no guidance. Once the observer has independently located rewarding states, the
augmented regions can be used to highlight “shortcuts”. These shortcuts represent im-
provements on the agent’s policy. In domains where a feasible solution is easy to find, but
optimal solutions are difficult, implicit imitation can be used to convert a feasible solution
to an increasingly optimal solution.

6.1.2 Cross regional textures

We have seen how distinctive regions can be used to provide a certain level of insight into how
imitation will perform in various domains. We can also analyze imitation performance in
terms of properties that cut across the state space. In our analysis of how model information
impacts imitation performance, we saw that regions connected by accurate action models
allowed an observer to use mentor observations to learn about the most promising direction
for exploration. We see, then, that any set of mentor observations will be more useful
if it is concentrated on a connected region and less useful if dispersed about the state
space in unconnected components. We are fortunate in completely observable environments
that observations of mentors tend to capture continuous trajectories, thereby providing
continuous regions of augmented states. In partially observable environments, occlusion
and noise could lessen the value of mentor observations in the absence of a model to predict
the mentor’s state.

The effects of heterogeneity, whether due to differences in action capabilities in the
mentor and observer or due to differences in the environment of the two agents, can also
be understood in terms of the connectivity of action models. Value can propagate along
chains of action models until we hit a state in which the mentor and observer have different
action capabilities. At this state, it may not be possible to achieve the mentor’s value
and therefore, value propagation is blocked. Again, the sequential decision making aspect

614

Implicit Imitation

of reinforcement learning leads to the conclusion that many scattered differences between
mentor and observer will create discontinuity throughout the problem space, whereas a
contiguous region of differences between mentor and observer will cause discontinuity in
a region, but leave other large regions fully connected. Hence, the distribution pattern of
differences between mentor and observer capabilities is as important as the prevalence of
difference. We will explore this pattern in the next section.

6.2 The Fracture Metric

We now try to characterize connectivity in the form of a metric. Since differences in re-
ward structure, environment dynamics and action models that affect connectivity all would
manifest themselves as differences in policies between mentor and observer, we designed a
metric based on differences in the agents’ optimal policies. We call this metric fracture.
Essentially, it computes the average minimum distance from a state in which a mentor and
observer disagree on a policy to a state in which mentor and observer agree on the pol-
icy. This measure roughly captures the difficulty the observer faces in profitably exploiting
mentor observations to reduce its exploration demands.

More formally, let πm be the mentor’s optimal policy and πo be the observer’s. Let S
be the state space and Sπm 6=πo be the set of disputed states where the mentor and observer
have different optimal actions. A set of neighboring disputed states constitutes a disputed
region. The set S − Sπm 6=πo will be called the undisputed states. Let M be a distance
metric on the space S. This metric corresponds to the number of transitions along the
“minimal length” path between states (i.e., the shortest path using nonzero probability
observer transitions).20 In a standard grid world, it will correspond to the Manhattan
distance. We define the fracture Φ(S) of state space S to be the average minimal distance
between a disputed state and the closest undisputed state:

Φ(S) =
1

|Sπm 6=πo|
∑

s∈Sπm 6=πo

min
t∈S−Sπm 6=πo

M(s, t). (13)

Other things being equal, a lower fracture value will tend to increase the propagation
of value information across the state space, potentially resulting in less exploration being
required. To test our metric, we applied it to a number of scenarios with varying fracture
coefficients. It is difficult to construct scenarios which vary in their fracture coefficient yet
have the same expected value. The scenarios in Figure 22 have been constructed so that the
length of all possible paths from the start state s to the goal state x are the same in each
scenario. In each scenario, however, there is an upper path and a lower path. The mentor
is trained in a scenario that penalizes the lower path and so the mentor learns to take the
upper path. The imitator is trained in a scenario in which the upper path is penalized
and should therefore take the lower path. We equalized the difficulty of these problems
as follows: using a generic ε-greedy learning agent with a fixed exploration schedule (i.e.,
a fixed initial rate and decay) in one scenario, we tuned the magnitude of penalties and
their exact placement along loops in their other scenarios so that a learner using the same
exploration policy would converge to the optimal policy in roughly the same number of
steps in each.

20. The expected distance would give a more accurate estimate of fracture, but is more difficult to calculate.

615

Price & Boutilier

S

X

(a) Φ = 0.5

S

X

(b) Φ = 1.7

S

X

(c) Φ = 3.5

S X

(d) Φ = 6.0

Figure 22: Fracture metric scenarios

Observer Initial Exploration Rate δI

Φ 5 × 10−2 1 × 10−2 5 × 10−3 1 × 10−3 5 × 10−4 1 × 10−4 5 × 10−5 1 × 10−5

0.5 60% 70% 90%
1.7 0% 80% 90% 90 %
3.5 30% 100 %
6.0 30 % 70 % 100 % 100 %

Figure 23: Percentage of runs (of ten) converging to optimal policy given fracture Φ and
initial exploration rate δI

In Figure 22(a), the mentor takes the top of each loop and in an optimal run, the imitator
would take the bottom of each loop. Since the loops are short and the length of the common
path is long, the average fracture is low. When we compare this to Figure 22(d), we see
that the loops are very long—the majority of states in the scenario are on loops. Each of
these states on a loop has a distance to the nearest state where the observer and mentor
policies agree, namely, a state not on the loop. This scenario therefore has a high average
fracture coefficient.

Since the loops in the various scenarios differ in length, penalties inserted in the loops
vary with respect to their distance from the goal state and therefore affect the total dis-
counted expected reward in different ways. The penalties may also cause the agent to
become stuck in a local minimum in order to avoid the penalties if the exploration rate is
too low. In this set of experiments, we therefore compare observer agents on the basis of
how likely they are to converge to the optimal solution given the mentor example.

Figure 23 presents the percentage of runs (out of ten) in which the imitator converged
to the optimal solution (i.e., taking only the lower loops) as a function of exploration rate
and scenario fracture.21 We can see a distinct diagonal trend in the table illustrating that
increasing fracture requires the imitator to increase its levels of exploration in order to find

21. For reasons of computational expediency, only the entries near the diagonal have been computed. Sam-
pling of other entries confirms the trend.

616

Implicit Imitation

the optimal policy. This suggests that fracture reflects a feature of RL domains that is may
be important in predicting the efficacy of implicit imitation.

6.3 Suboptimality and Bias

Implicit imitation is fundamentally about biasing the exploration of the observer. As such,
it is worthwhile to ask when this has a positive effect on observer performance. The short
answer is that a mentor following an optimal policy for an observer will cause an observer to
explore in the neighborhood of the optimal policy and this will generally bias the observer
towards finding the optimal policy.

A more detailed answer requires looking explicitly at exploration in reinforcement learn-
ing. In theory, an ε-greedy exploration policy with a suitable rate of decay will cause
implicit imitators to eventually converge to the same optimal solution as their unassisted
counterparts. However, in practice, the exploration rate is typically decayed more quickly
in order to improve early exploitation of mentor input. Given practical, but theoretically
unsound exploration rates, an observer may settle for a mentor strategy that is feasible,
but non-optimal. We can easily imagine examples: consider a situation in which an agent
is observing a mentor following some policy. Early in the learning process, the value of the
policy followed by the mentor may look better than the estimated value of the alternative
policies available to the observer. It could be the case that the mentor’s policy actually
is the optimal policy. On the other hand, it may be the case that one of the alternative
policies, with which the observer has neither personal experience, nor observations from a
mentor, is actually superior. Given the lack of information, an aggressive exploitation pol-
icy might lead the observer to falsely conclude that the mentor’s policy is optimal. While
implicit imitation can bias the agent to a suboptimal policy, we have no reason to expect
that an agent learning in a domain sufficiently challenging to warrant the use of imitation
would have discovered a better alternative. We emphasize that even if the mentor’s policy
is suboptimal, it still provides a feasible solution which will be preferable to no solution for
many practical problems.

In this regard, we see that the classic exploration/exploitation tradeoff has an additional
interpretation in the implicit imitation setting. A component of the exploration rate will
correspond to the observer’s belief about the sufficiency of the mentor’s policy. In this
paradigm, then, it seems somewhat misleading to think in terms of a decision about whether
to “follow” a specific mentor or not. It is more a question of how much exploration to
perform in addition to that required to reconstruct the mentor’s policy.

6.4 Specific Applications

We see applications for implicit imitation in a variety of contexts. The emerging electronic
commerce and information infrastructure is driving the development of vast networks of
multi-agent systems. In networks used for competitive purposes such as trade, implicit
imitation can be used by an RL agent to learn about buying strategies or information
filtering policies of other agents in order to improve its own behavior.

In control, implicit imitation could be used to transfer knowledge from an existing
learned controller which has already adapted to its clients to a new learning controller with
a completely different architecture. Many modern products such as elevator controllers

617

Price & Boutilier

(Crites & Barto, 1998), cell traffic routers (Singh & Bertsekas, 1997) and automotive fuel
injection systems use adaptive controllers to optimize the performance of a system for
specific user profiles. When upgrading the technology of the underlying system, it is quite
possible that sensors, actuators and the internal representation of the new system will be
incompatible with the old system. Implicit imitation provides a method of transferring
valuable user information between systems without any explicit communication.

A traditional application for imitation-like technologies lies in the area of bootstrapping
intelligent artifacts using traces of human behavior. Research within the behavioral cloning
paradigm has investigated transfer in applications such as piloting aircraft (Sammut et al.,
1992) and controlling loading cranes (Šuc & Bratko, 1997). Other researchers have inves-
tigated the use of imitation to simplify the programming of robots (Kuniyoshi, Inaba, &
Inoue, 1994). The ability of imitation to transfer complex, nonlinear and dynamic behaviors
from existing human agents makes it particularly attractive for control problems.

7. Extensions

The model of implicit imitation presented above makes certain restrictive assumptions re-
garding the structure of the decision problem being solved (e.g., full observability, knowledge
of reward function, discrete state and action space). While these simplifying assumptions
aided the detailed development of the model, we believe the basic intuitions and much of
the technical development can be extended to richer problem classes. We suggest several
possible extensions in this section, each of which provides a very interesting avenue for
future research.

7.1 Unknown Reward Functions

Our current paradigm assumes that the observer knows its own reward function. This
assumption is consistent with the view of RL as a form of automatic programming. We
can, however, relax this constraint assuming some ability to generalize observed rewards.
Suppose that the expected reward can be expressed in terms of a probability distribution
over features of the observer’s state, Pr(r|f(so)). In model-based RL, this distribution
can be learned by the agent through its own experience. If the same features can be
applied to the mentor’s state sm, then the observer can use what it has learned about the
reward distribution to estimate expected reward for mentor states as well. This extends
the paradigm to domains in which rewards are unknown, but preserves the ability of the
observer to evaluate mentor experiences on its “own terms.”

Imitation techniques designed around the assumption that the observer and the mentor
share identical rewards, such as Utgoff’s (1991), would of course work in the absence of a
reward function. The notion of inverse reinforcement learning (Ng & Russell, 2000) could be
adapted to this case as well. A challenge for future research would be to explore a synthesis
between implicit imitation and reward inversion approaches to handle an observer’s prior
beliefs about some intermediate level of correlation between the reward function of observer
and mentor.

618

Implicit Imitation

7.2 Interaction of agents

While we cast the general imitation model in the framework of stochastic games, the re-
striction of the model presented thus far to noninteracting games essentially means that the
standard issues associated with multiagent interaction do not arise. There are, of course,
many tasks that require interactions between agents; in such cases, implicit imitation offers
the potential to accelerate learning. A general solution requires the integration of imitation
into more general models for multiagent RL based on stochastic or Markov games (Littman,
1994; Hu & Wellman, 1998; Bowling & Veloso, 2001). This would no doubt be a rather
challenging, yet rewarding endeavor.

To take a simple example, in simple coordination problems (e.g., two mobile agents
trying to avoid each other while carrying out related tasks) we might imagine an imitator
learning from a mentor by reversing the roles of their roles when considering how the
observed state transition is influenced by their joint action. In this and more general
settings, learning typically requires great care, since agents learning in a nonstationary
environment may not converge (say, to equilibrium). Again, imitation techniques offer
certain advantages: for instance, mentor expertise can suggest means of coordinating with
other agents (e.g., by providing a focal point for equilibrium selection, or by making clear
a specific convention such as always “passing to the right” to avoid collision).

Other challenges and opportunities present themselves when imitation is used in multi-
agent settings. For example, in competitive or educational domains, agents not only have to
choose actions that maximize information from exploration and returns from exploitation;
they must also reason about how their actions communicate information to other agents.
In a competitive setting, one agent may wish to disguise its intentions, while in the context
of teaching, a mentor may wish to choose actions whose purpose is abundantly clear. These
considerations must become part of any action selection process.

7.3 Partially Observable Domains

The extension of this model to partially observable domains is critical, since it is unrealistic
in many settings to suppose that a learner can constantly monitor the activities of a mentor.
The central idea of implicit imitation is to extract model information from observations of
the mentor, rather than duplicating mentor behavior. This means that the mentor’s internal
belief state and policy are not (directly) relevant to the learner. We take a somewhat
behaviorist stance and concern ourselves only with what the mentor’s observed behaviors
tell us about the possibilities inherent in the environment. The observer does have to keep a
belief state about the mentor’s current state, but this can be done using the same estimated
world model the observer uses to update its own belief state.

Preliminary investigation of such a model suggests that dealing with partial observability
is viable. We have derived update rules for augmented partially observable updates. These
updates are based on a Bayesian formulation of implicit imitation which is, in turn, based
on Bayesian RL (Dearden et al., 1999). In fully observable contexts, we have seen that more
effective exploration using mentor observations is possible in fully observable domains when
this Bayesian model of imitation is used (Price & Boutilier, 2003). The extension of this
model to cases where the mentor’s state is partially observable is reasonably straightforward.
We anticipate that updates performed using a belief state about the mentor’s state and

619

Price & Boutilier

action will help to alleviate fracture that could be caused by incomplete observation of
behavior.

More interesting is dealing with an additional factor in the usual exploration-exploitation
tradeoff: determining whether it is worthwhile to take actions that render the mentor “more
visible” (e.g., ensuring the mentor remains in view so that this source of information remains
available while learning).

7.4 Continuous and Model-Free Learning

In many realistic domains, continuous attributes and large state and action spaces prohibit
the use of explicit table-based representations. Reinforcement learning in these domains
is typically modified to make use of function approximators to estimate the Q-function
at points where no direct evidence has been received. Two important approaches are
parameter-based models (e.g., neural networks) (Bertsekas & Tsitsiklis, 1996) and the
memory-based approaches (Atkeson, Moore, & Schaal, 1997). In both these approaches,
model-free learning is generally employed. That is, the agent keeps a value function but uses
the environment as an implicit model to perform backups using the sampling distribution
provided by environment observations.

One straightforward approach to casting implicit imitation in a continuous setting would
employ a model-free learning paradigm (Watkins & Dayan, 1992). First, recall the aug-
mented Bellman backup function used in implicit imitation:

V (s) = Ro(s) + γ max

{
max
a∈Ao

{∑
t∈S

Pro(s, a, t)V (t)

}
,

∑
t∈S

Prm(s, t)V (t)

}
(14)

When we examine the augmented backup equation, we see that it can be converted to a
model-free form in much the same way as the ordinary Bellman backup. We use a standard
Q-function with observer actions, but we will add one additional action which corresponds
to the action am taken by the mentor.22 Now imagine that the observer was in state so,
took action ao and ended up in state s′o. At the same time, the mentor made the transition
from state sm to s′m. We can then write:

Q(so, ao) = (1 − α)Q(so, ao) + α(Ro(so, ao) + γ max
{

max
a′∈Ao

{
Q(s′o, a

′)
}

, Q(s′o, am)
}

(15)

Q(sm, am) = (1 − α)Q(sm, am) + α(Ro(sm, am) + γ max
{

max
a′∈Ao

{
Q(s′m, a′)

}
, Q(s′m, am)

}
As discussed earlier, the relative quality of mentor and observer estimates of the Q-

function at specific states may vary. Again, in order to avoid having inaccurate prior beliefs
about the mentor’s action models bias exploration, we need to employ a confidence measure
to decide when to apply these augmented equations. We feel the most natural setting for
these kind of tests is in the memory-based approaches to function approximation. Memory-
based approaches, such as locally-weighted regression (Atkeson et al., 1997), not only pro-
vide estimates for functions at points previously unvisited, they also maintain the evidence

22. This doesn’t imply the observer knows which of its actions corresponds to am.

620

Implicit Imitation

set used to generate these estimates. We note that the implicit bias of memory-based ap-
proaches assumes smoothness between points unless additional data proves otherwise. On
the basis of this bias, we propose to compare the average squared distance of the query from
the exemplars used in the estimate of the mentor’s Q-value to the average squared distance
from the query to the exemplars used in the observer-based estimate to heuristically decide
which agent has the more reliable Q-value.

The approach suggested here does not benefit from prioritized sweeping. Prioritized-
sweeping, has however, been adapted to continuous settings (Forbes & Andre, 2000). We
feel a reasonably efficient technique could be made to work.

8. Related Work

Research into imitation spans a broad range of dimensions, from ethological studies, to
abstract algebraic formulations, to industrial control algorithms. As these fields have cross-
fertilized and informed each other, we have come to stronger conceptual definitions and
a better understanding of the limits and capabilities of imitation. Many computational
models have been proposed to exploit specialized niches in a variety of control paradigms,
and imitation techniques have been applied to a variety of real-world control problems.

The conceptual foundations of imitation have been clarified by work on natural imita-
tion. From work on apes (Russon & Galdikas, 1993), octopi (Fiorito & Scotto, 1992), and
other animals, we know that socially facilitated learning is widespread throughout the an-
imal kingdom. A number of researchers have pointed out, however, that social facilitation
can take many forms (Conte, 2000; Noble & Todd, 1999). For instance, a mentor’s attention
to an object can draw an observer’s attention to it and thereby lead the observer to ma-
nipulate the object independently of the model provided by the mentor. “True imitation”
is therefore typically defined in a more restrictive fashion. Visalberghi and Fragazy (1990)
cite Mitchell’s definition:

1. something C (the copy of the behavior) is produced by an organism

2. where C is similar to something else M (the Model behavior)

3. observation of M is necessary for the production of C (above baseline levels of C
occurring spontaneously)

4. C is designed to be similar to M

5. the behavior C must be a novel behavior not already organized in that precise way in
the organism’s repertoire.

This definition perhaps presupposes a cognitive stance towards imitation in which an
agent explicitly reasons about the behaviors of other agents and how these behaviors relate
to its own action capabilities and goals.

Imitation can be further analyzed in terms of the type of correspondence demonstrated
by the mentor’s behavior and the observer’s acquired behavior (Nehaniv & Dautenhahn,
1998; Byrne & Russon, 1998). Correspondence types are distinguished by level. At the
action level, there is a correspondence between actions. At the program level, the actions

621

Price & Boutilier

may be completely different but correspondence may be found between subgoals. At the
effect level, the agent plans a set of actions that achieve the same effect as the demonstrated
behavior but there is no direct correspondence between subcomponents of the observer’s
actions and the mentor’s actions. The term abstract imitation has been proposed in the
case where agents imitate behaviors which come from imitating the mental state of other
agents (Demiris & Hayes, 1997).

The study of specific computational models of imitation has yielded insights into the
nature of the observer-mentor relationship and how it affects the acquisition of behaviors by
observers. For instance, in the related field of behavioral cloning, it has been observed that
mentors that implement conservative policies generally yield more reliable clones (Urbancic
& Bratko, 1994). Highly-trained mentors following an optimal policy with small coverage of
the state space yield less reliable clones than those that make more mistakes (Sammut et al.,
1992). For partially observable problems, learning from perfect oracles can be disastrous, as
they may choose policies based on perceptions not available to the observer. The observer is
therefore incorrectly biased away from less risky policies that do not require the additional
perceptual capabilities (Scheffer, Greiner, & Darken, 1997). Finally, it has been observed
that successful clones would often outperform the original mentor due to the “cleanup effect”
(Sammut et al., 1992).

One of the original goals of behavioral cloning (Michie, 1993) was to extract knowledge
from humans to speed up the design of controllers. For the extracted knowledge to be
useful, it has been argued that rule-based systems offer the best chance of intelligibility
(van Lent & Laird, 1999). It has become clear, however, that symbolic representations are
not a complete answer. Representational capacity is also an issue. Humans often organize
control tasks by time, which is typically lacking in state and perception-based approaches
to control. Humans also naturally break tasks down into independent components and
subgoals (Urbancic & Bratko, 1994). Studies have also demonstrated that humans will
give verbal descriptions of their control policies which do not match their actual actions
(Urbancic & Bratko, 1994). The potential for saving time in acquisition has been borne out
by one study which explicitly compared the time to extract rules with the time required to
program a controller (van Lent & Laird, 1999).

In addition to what has traditionally been considered imitation, an agent may also face
the problem of “learning to imitate” or finding a correspondence between the actions and
states of the observer and mentor (Nehaniv & Dautenhahn, 1998). A fully credible approach
to learning by observation in the absence of communication protocols will have to deal with
this issue.

The theoretical developments in imitation research have been accompanied by a number
of practical implementations. These implementations take advantage of properties of differ-
ent control paradigms to demonstrate various aspects of imitation. Early behavioral cloning
research took advantage of supervised learning techniques such as decision trees (Sammut
et al., 1992). The decision tree was used to learn how a human operator mapped percep-
tions to actions. Perceptions were encoded as discrete values. A time delay was inserted in
order to synchronize perceptions with the actions they trigger. Learning apprentice systems
(Mitchell et al., 1985) also attempted to extract useful knowledge by watching users, but the
goal of apprentices is not to independently solve problems. Learning apprentices are closely
related to programming by demonstration systems (Lieberman, 1993). Later efforts used

622

Implicit Imitation

more sophisticated techniques to extract actions from visual perceptions and abstract these
actions for future use (Kuniyoshi et al., 1994). Work on associative and recurrent learn-
ing models has allowed work in the area to be extended to learning of temporal sequences
(Billard & Hayes, 1999). Associative learning has been used together with innate following
behaviors to acquire navigation expertise from other agents (Billard & Hayes, 1997).

A related but slightly different form of imitation has been studied in the multi-agent
reinforcement learning community. An early precursor to imitation can be found in work
on sharing of perceptions between agents (Tan, 1993). Closer to imitation is the idea of
replaying the perceptions and actions of one agent for a second agent (Lin, 1991; Whitehead,
1991a). Here, the transfer is from one agent to another, in contrast to behavioral cloning’s
transfer from human to agent. The representation is also different. Reinforcement learning
provides agents with the ability to reason about the effects of current actions on expected
future utility so agents can integrate their own knowledge with knowledge extracted from
other agents by comparing the relative utility of the actions suggested by each knowledge
source. The “seeding approaches” are closely related. Trajectories recorded from human
subjects are used to initialize a planner which subsequently optimizes the plan in order
to account for differences between the human effector and the robotic effector (Atkeson &
Schaal, 1997). This technique has been extended to handle the notion of subgoals within
a task (Atkeson & Schaal, 1997). Subgoals are also addressed by others (Šuc & Bratko,
1997). Our own work is based on the idea of an agent extracting a model from a mentor
and using this model information to place bounds on the value of actions using its own
reward function. Agents can therefore learn from mentors with reward functions different
than their own.

Another approach in this family is based on the assumption that the mentor is rational
(i.e., follows an optimal policy), has the same reward function as the observer and chooses
from the same set of actions. Given these assumptions, we can conclude that the action
chosen by a mentor in a particular state must have higher value to the mentor than the
alternatives open to the mentor (Utgoff & Clouse, 1991) and therefore higher value to the
observer than any alternative. The system of Utgoff and Clouse therefore iteratively adjusts
the values of the actions until this constraint is satisfied in its model. A related approach
uses the methodology of linear-quadratic control (Šuc & Bratko, 1997). First a model of
the system is constructed. Then the inverse control problem is solved to find a cost matrix
that would result in the observed controller behavior given an environment model. Recent
work on inverse reinforcement learning takes a related approach to reconstructing reward
functions from observed behavior (Ng & Russell, 2000). It is similar to the inversion of the
quadratic control approach, but is formulated for discrete domains.

Several researchers have picked up on the idea of common representations for percep-
tual functions and action planning. One approach to using the same representation for
perception and control is based on the PID controller model. The PID controller represents
the behavior. Its output is compared with observed behaviors in order to select the action
which is closest to the observed behavior (Demiris & Hayes, 1999). Explicit motor action
schema have also been investigated in the dual role of perceptual and motor representations
(Matarić, Williamson, Demiris, & Mohan, 1998).

Imitation techniques have been applied in a diverse collection of applications. Clas-
sical control applications include control systems for robot arms (Kuniyoshi et al., 1994;

623

Price & Boutilier

Friedrich, Munch, Dillmann, Bocionek, & Sassin, 1996), aeration plants (Scheffer et al.,
1997), and container loading cranes (Šuc & Bratko, 1997; Urbancic & Bratko, 1994). Imi-
tation learning has also been applied to acceleration of generic reinforcement learning (Lin,
1991; Whitehead, 1991a). Less traditional applications include transfer of musical style
(Cañamero, Arcos, & de Mantaras, 1999) and the support of a social atmosphere (Bil-
lard, Hayes, & Dautenhahn, 1999; Breazeal, 1999; Scassellati, 1999). Imitation has also
been investigated as a route to language acquisition and transmission (Billard et al., 1999;
Oliphant, 1999).

9. Concluding Remarks

We have described a formal and principled approach to imitation called implicit imitation.
For stochastic problems in which explicit forms of communication are not possible, the
underlying model-based framework combined with model extraction provides an alternative
to other imitation and learning-by-observation systems. Our new approach makes use of a
model to compute the actions an imitator should take without requiring that the observer
duplicate the mentor’s actions exactly. We have shown implicit imitation to offer significant
transfer capability on several test problems, where it proves to be robust in the face of
noise, capable of integrating subskills from multiple mentors, and able to provide benefits
that increase with the difficulty of the problem.

We have seen that feasibility testing extends implicit imitation in a principled manner
to deal with the situations where the homogeneous action assumption is invalid. Adding
bridging capabilities preserves and extends the mentor’s guidance in the presence of infea-
sible actions, whether due to differences in action capabilities or local differences in state
spaces. Our approach also relates to the idea of “following” in the sense that the imitator
uses local search in its model to repair discontinuities in its augmented value function be-
fore acting in the world. In the process of applying imitation to various domains, we have
learned more about its properties. In particular we have developed the fracture metric to
characterize the effectiveness of a mentor for a given observer in a specific domain. We have
also made considerable progress in extending imitation to new problem classes. The model
we have developed is rather flexible and can be extended in several ways: for example, a
Bayesian approach to imitation building on this work shows great potential (2003); and we
have initial formulations of promising approaches to extending implicit imitation to multi-
agent problems, partially observable domains and domains in which the reward function is
not specified a priori.

A number of challenges remain in the field of imitation. Bakker and Kuniyoshi (1996)
describe a number of these. Among the more intriguing problems unique to imitation are:
the evaluation of the expected payoff for observing a mentor; inferring useful state and
reward mappings between the domains of mentors and those of observers; and repairing
or locally searching in order to fit observed behaviors to an observer’s own capabilities
and goals. We have also raised the possibility of agents attempting to reason about the
information revealed by their actions in addition to whatever concrete value the actions
have for the agent.

Model-based reinforcement has been applied to numerous problems. Since implicit imi-
tation can be added to model-based reinforcement learning with relatively little effort, we

624

Implicit Imitation

expect that it can be applied to many of the same problems. Its basis in the simple but
elegant theory of Markov decision processes makes it easy to describe and analyze. Though
we have focused on some simple examples designed to illustrate the different mechanisms
required for implicit imitation, we expect that variations on our approach will provide in-
teresting directions for future research.

Acknowledgments

Thanks to the anonymous referees for their suggestions and comments on earlier versions of
this work and Michael Littman for editorial suggestions. Price was supported by NCE IRIS-
III Project BAC. Boutilier was supported by NSERC Research Grant OGP0121843, and
the NCE IRIS-III Project BAC. Some parts of this paper were presented in “Implicit Im-
itation in Reinforcement Learning,” Proceedings of the Sixteenth International Conference
on Machine Learning (ICML-99), Bled, Slovenia, pp.325–334 (1999) and ”Imitation and
Reinforcement Learning in Agents with Heterogeneous Actions,” Proceedings Fourteenth
Biennial Conference of the Canadian Society for Computational Studies of Intelligence (AI
2001), Ottawa, pp.111–120 (2001).

References

Alissandrakis, A., Nehaniv, C. L., & Dautenhahn, K. (2000). Learning how to do things with
imitation. In Bauer, M., & Rich, C. (Eds.), AAAI Fall Symposium on Learning How to Do
Things, pp. 1–6 Cape Cod, MA.

Atkeson, C. G., & Schaal, S. (1997). Robot learning from demonstration. In Proceedings of the
Fourteenth International Conference on Machine Learning, pp. 12–20 Nashville, TN.

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Locally weighted learning for control. Artificial
Intelligence Review, 11 (1-5), 75–113.

Bakker, P., & Kuniyoshi, Y. (1996). Robot see, robot do: An overview of robot imitation. In AISB96
Workshop on Learning in Robots and Animals, pp. 3–11 Brighton,UK.

Bellman, R. E. (1957). Dynamic Programming. Princeton University Press, Princeton.

Bertsekas, D. P. (1987). Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall,
Englewood Cliffs.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic Programming. Athena, Belmont, MA.

Billard, A., & Hayes, G. (1997). Learning to communicate through imitation in autonomous robots.
In Proceedings of The Seventh International Conference on Artificial Neural Networks, pp.
763–68 Lausanne, Switzerland.

Billard, A., & Hayes, G. (1999). Drama, a connectionist architecturefor control and learning in
autonomous robots. Adaptive Behavior Journal, 7, 35–64.

Billard, A., Hayes, G., & Dautenhahn, K. (1999). Imitation skills as a means to enhance learning of a
synthetic proto-language in an autonomous robot. In Proceedings of the AISB’99 Symposium
on Imitation in Animals and Artifacts, pp. 88–95 Edinburgh.

Boutilier, C. (1999). Sequential optimality and coordination in multiagent systems. In Proceedings of
the Sixteenth International Joint Conference on Artificial Intelligence, pp. 478–485 Stockholm.

625

Price & Boutilier

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision theoretic planning: Structural assumptions
and computational leverage. Journal of Artificial Intelligence Research, 11, 1–94.

Bowling, M., & Veloso, M. (2001). Rational and convergent learning in stochastic games. In Proceed-
ings of the Seventeenth International Joint Conference on Artificial Intelligence, pp. 1021–1026
Seattle.

Breazeal, C. (1999). Imitation as social exchange between humans and robot. In Proceedings of the
AISB’99 Symposium on Imitation in Animals and Artifacts, pp. 96–104 Edinburgh.

Byrne, R. W., & Russon, A. E. (1998). Learning by imitation: a hierarchical approach. Behavioral
and Brain Sciences, 21, 667–721.

Cañamero, D., Arcos, J. L., & de Mantaras, R. L. (1999). Imitating human performances to au-
tomatically generate expressive jazz ballads. In Proceedings of the AISB’99 Symposium on
Imitation in Animals and Artifacts, pp. 115–20 Edinburgh.

Cassandra, A. R., Kaelbling, L. P., & Littman, M. L. (1994). Acting optimally in partially ob-
servable stochastic domains. In Proceedings of the Twelfth National Conference on Artificial
Intelligence, pp. 1023–1028 Seattle.

Conte, R. (2000). Intelligent social learning. In Proceedings of the AISB’00 Symposium on Starting
from Society: the Applications of Social Analogies to Computational Systems Birmingham.

Crites, R., & Barto, A. G. (1998). Elevator group control using multiple reinforcement learning
agents. Machine-Learning, 33 (2–3), 235–62.

Dean, T., & Givan, R. (1997). Model minimization in Markov decision processes. In Proceedings of
the Fourteenth National Conference on Artificial Intelligence, pp. 106–111 Providence.

Dearden, R., & Boutilier, C. (1997). Abstraction and approximate decision theoretic planning.
Artificial Intelligence, 89, 219–283.

Dearden, R., Friedman, N., & Andre, D. (1999). Model-based bayesian exploration. In Proceedings
of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 150–159 Stockholm.

DeGroot, M. H. (1975). Probability and statistics. Addison-Wesley, Reading, MA.

Demiris, J., & Hayes, G. (1997). Do robots ape?. In Proceedings of the AAAI Fall Symposium on
Socially Intelligent Agents, pp. 28–31 Cambridge, MA.

Demiris, J., & Hayes, G. (1999). Active and passive routes to imitation. In Proceedings of the
AISB’99 Symposium on Imitation in Animals and Artifacts, pp. 81–87 Edinburgh.

Fiorito, G., & Scotto, P. (1992). Observational learning in octopus vulgaris. Science, 256, 545–47.

Forbes, J., & Andre, D. (2000). Practical reinforcement learning in continuous domains. Tech. rep.
UCB/CSD-00-1109, Computer Science Division, University of California, Berkeley.

Friedrich, H., Munch, S., Dillmann, R., Bocionek, S., & Sassin, M. (1996). Robot programming by
demonstration (RPD): Support the induction by human interaction. Machine Learning, 23,
163–189.

Hartmanis, J., & Stearns, R. E. (1966). Algebraic Structure Theory of Sequential Machines. Prentice-
Hall, Englewood Cliffs.

Hu, J., & Wellman, M. P. (1998). Multiagent reinforcement learning: Theoretical framework and an
algorithm. In Proceedings of the Fifthteenth International Conference on Machine Learning,
pp. 242–250 Madison, WI.

Kaelbling, L. P. (1993). Learning in Embedded Systems. MIT Press, Cambridge,MA.

626

Implicit Imitation

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 4, 237–285.

Kearns, M., & Singh, S. (1998). Near-optimal reinforcement learning in polynomial time. In Proceed-
ings of the Fifthteenth International Conference on Machine Learning, pp. 260–268 Madison,
WI.

Kuniyoshi, Y., Inaba, M., & Inoue, H. (1994). Learning by watching: Extracting reusable task
knowledge from visual observation of human performance. IEEE Transactions on Robotics
and Automation, 10 (6), 799–822.

Lee, D., & Yannakakis, M. (1992). Online miminization of transition systems. In Proceedings of the
24th Annual ACM Symposium on the Theory of Computing (STOC-92), pp. 264–274 Victoria,
BC.

Lieberman, H. (1993). Mondrian: A teachable graphical editor. In Cypher, A. (Ed.), Watch What
I Do: Programming by Demonstration, pp. 340–358. MIT Press, Cambridge, MA.

Lin, L.-J. (1991). Self-improvement based on reinforcement learning, planning and teaching. Machine
Learning: Proceedings of the Eighth International Workshop (ML91), 8, 323–27.

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine Learning, 8, 293–321.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In
Proceedings of the Eleventh International Conference on Machine Learning, pp. 157–163 New
Brunswick, NJ.

Lovejoy, W. S. (1991). A survey of algorithmic methods for partially observed Markov decision
processes. Annals of Operations Research, 28, 47–66.

Mataric, M. J. (1998). Using communication to reduce locality in distributed multi-agent learning.
Journal Experimental and Theoretical Artificial Intelligence, 10 (3), 357–369.

Matarić, M. J., Williamson, M., Demiris, J., & Mohan, A. (1998). Behaviour-based primitives for
articulated control. In R. Pfiefer, B. Blumberg, J.-A. M. . S. W. W. (Ed.), Fifth International
conference on simulation of adaptive behavior SAB’98, pp. 165–170 Zurich. MIT Press.

Meuleau, N., & Bourgine, P. (1999). Exploration of multi-state environments: Local mesures and
back-propagation of uncertainty. Machine Learning, 32 (2), 117–154.

Mi, J., & Sampson, A. R. (1993). A comparison of the Bonferroni and Scheffé bounds. Journal of
Statistical Planning and Inference, 36, 101–105.

Michie, D. (1993). Knowledge, learning and machine intelligence. In Sterling, L. (Ed.), Intelligent
Systems. Plenum Press, New York.

Mitchell, T. M., Mahadevan, S., & Steinberg, L. (1985). LEAP: A learning apprentice for VLSI
design. In Proceedings of the Ninth International Joint Conference on Artificial Intelligence,
pp. 573–580 Los Altos, California. Morgan Kaufmann Publishers, Inc.

Moore, A. W., & Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning with less
data and less real time. Machine Learning, 13 (1), 103–30.

Myerson, R. B. (1991). Game Theory: Analysis of Conflict. Harvard University Press, Cambridge.

Nehaniv, C., & Dautenhahn, K. (1998). Mapping between dissimilar bodies: Affordances and the
algebraic foundations of imitation. In Proceedings of the Seventh European Workshop on
Learning Robots, pp. 64–72 Edinburgh.

627

Price & Boutilier

Ng, A. Y., & Russell, S. (2000). Algorithms for inverse reinforcement learning. In Proceedings of the
Seventeenth International Conference on Machine Learning, pp. 663–670 Stanford.

Noble, J., & Todd, P. M. (1999). Is it really imitation? a review of simple mechanisms in social
information gathering. In Proceedings of the AISB’99 Symposium on Imitation in Animals
and Artifacts, pp. 65–73 Edinburgh.

Oliphant, M. (1999). Cultural transmission of communications systems: Comparing observational
and reinforcement learning models. In Proceedings of the AISB’99 Symposium on Imitation
in Animals and Artifacts, pp. 47–54 Edinburgh.

Price, B., & Boutilier, C. (2003). A Bayesian approach to imitation in reinforcement learning. In Pro-
ceedings of the Eighteenth International Joint Conference on Artificial Intelligence Acapulco.
to appear.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley and Sons, Inc., New York.

Russon, A., & Galdikas, B. (1993). Imitation in free-ranging rehabilitant orangutans (pongo-
pygmaeus). Journal of Comparative Psychology, 107 (2), 147–161.

Sammut, C., Hurst, S., Kedzier, D., & Michie, D. (1992). Learning to fly. In Proceedings of the
Ninth International Conference on Machine Learning, pp. 385–393 Aberdeen, UK.

Scassellati, B. (1999). Knowing what to imitate and knowing when you succeed. In Proceedings of
the AISB’99 Symposium on Imitation in Animals and Artifacts, pp. 105–113 Edinburgh.

Scheffer, T., Greiner, R., & Darken, C. (1997). Why experimentation can be better than perfect
guidance. In Proceedings of the Fourteenth International Conference on Machine Learning,
pp. 331–339 Nashville.

Seber, G. A. F. (1984). Multivariate Observations. Wiley, New York.

Shapley, L. S. (1953). Stochastic games. Proceedings of the National Academy of Sciences, 39,
327–332.

Singh, S. P., & Bertsekas, D. (1997). Reinforcement learning for dynamic channel allocation in
cellular telephone systems. In Advances in Neural information processing systems, pp. 974–
980 Cambridge, MA. MIT Press.

Smallwood, R. D., & Sondik, E. J. (1973). The optimal control of partially observable Markov
processes over a finite horizon. Operations Research, 21, 1071–1088.

Šuc, D., & Bratko, I. (1997). Skill reconstruction as induction of LQ controllers with subgoals.
In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, pp.
914–919 Nagoya.

Sutton, R. S. (1988). Learning to predict by the method of temporal differences. Machine Learning,
3, 9–44.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA.

Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents. In ICML-
93, pp. 330–37.

Urbancic, T., & Bratko, I. (1994). Reconstruction human skill with machine learning. In Eleventh
European Conference on Artificial Intelligence, pp. 498–502 Amsterdam.

628

Implicit Imitation

Utgoff, P. E., & Clouse, J. A. (1991). Two kinds of training information for evaluation function
learning. In Proceedings of the Ninth National Conference on Artificial Intelligence, pp. 596–
600 Anaheim, CA.

van Lent, M., & Laird, J. (1999). Learning hierarchical performance knowledge by observation.
In Proceedings of the Sixteenth International Conference on Machine Learning, pp. 229–238
Bled, Slovenia.

Visalberghi, E., & Fragazy, D. (1990). Do monkeys ape?. In Parker, S., & Gibson, K. (Eds.),
Language and Intelligence in Monkeys and Apes, pp. 247–273. Cambridge University Press,
Cambridge.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8, 279–292.

Whitehead, S. D. (1991a). Complexity analysis of cooperative mechanisms in reinforcement learn-
ing. In Proceedings of the Ninth National Conference on Artificial Intelligence, pp. 607–613
Anaheim.

Whitehead, S. D. (1991b). Complexity and cooperation in q-learning. In Machine Learning. Pro-
ceedings of the Eighth International Workshop (ML91), pp. 363–367.

629

