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Abstract

Supply chain formation is the process of determining thecstire and terms of exchange re-
lationships to enable a multilevel, multiagent productamtivity. We present a simple model of
supply chains, highlighting two characteristic featurbgrarchical subtask decomposition, and
resource contention. To decentralize the formation pyose introduce a market price system
over the resources produced along the chain. In a cometitjuilibrium for this system, agents
choose locally optimal allocations with respect to prieas] outcomes are optimal overall. To de-
termine prices, we define a market protocol based on diséihprogressive auctions, and myopic,
non-strategic agent bidding policies. In the presencesafuece contention, this protocol produces
better solutions than the greedy protocols common in thiécéat intelligence and multiagent sys-
tems literature. The protocol often converges to high-waupply chains, and when competitive
equilibria exist, typically to approximate competitiveudlipria. However, complementarities in
agent production technologies can cause the protocol ttefudly allocate inputs to agents that do
not produce their outputs. A subsequent decommitment pleaseers a significant fraction of the
lost surplus.

1. Introduction

Electronic commerce technology can provide significantrowpments in existing modes of com-
mercial interaction, through increased speed, conveajeqaality, and reduced costs. Yet some
have proposed more radical visions of how business may beftraned. Exponential increases
in communications bandwidth and computational abilityenthe potential to qualitatively decrease
the friction in business interactions. With this as a premidalone and Laubaucher’s treatise on the
emerging “E-Lance Economy” (1998) puts forth the view tlirathe not-too-distant future, business
relationships will lose much of their current persistenarelcter. Indeed, Malone and Laubaucher
propose that large companies as we know them will ceasegt) arid rather be dynamically formed
by “electronically connected freelancers” (e-lancers)tfie purpose of producing particular goods
and services, and then dissolved when projects are cordpl€thers employ the evocative term
“virtual corporation” (Davidow, 1992) to describe groudsagile organizations forming temporary
confederations for ad hoc purposes.
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Whether or not one accepts the full extent of this vision diaal corporations, several business
trends provide evidence that we are moving in this directi®oftware companies are time-shifting
development between the U.S. and India, and Sun Microsgsteaw allows freelance program-
mers to bid to fix customers’ software problems (BorensteiBaoner, 2001). Large, traditional
manufacturing companies, exemplified by major automotiamufacturers, increasingly outsource
the production of various components. Ford and General iMd®M) have spun off parts man-
ufacturing into separate companies (Lucking-Reily & Spull2001). Start-ups and other small
companies form partnerships to compete with larger, mot@bkshed companies. Application
service providers supplant in-house provision of standgetations, information, and technology
services.

We study this phenomenon in the guise of supply chains, a aamform of coordinated com-
mercial interaction. For our purposessapply chainis a network of production and exchange
relationships that spans multiple levels of productionasktdecomposition. Whenever we have a
producer that buys inputs and sells outputs, we have a sapply. Although typically used to refer
to multi-business structures in manufacturing industidy service or contracting relationship that
spans multiple levels can be viewed as a supply chain.

Supply chain formationis the process of determining the participants in the suppain, who
will exchange what with whom, and the terms of the exchangesditionally, supply chains have
been formed and maintained over long periods of time by me&agtensive human interactions.
But the acceleration of commercial decision making is @nged need for more advanced support.
Companies ranging from auto makers to computer manufastare basing their business models
on rapid development, build-to-order, and customized petslto satisfy ever-changing consumer
demand. And fluctuations in resource costs and availabiigan that companies must respond
rapidly to maintain production capabilities and profits. these changes increasingly occur at
speeds, scales, and complexity unmanageable by humaneeddefor automated supply chain
formation becomes acute.

Because the agents are autonomous in an electronic comsedticg), we must generally as-
sume that they have specialized knowledge about their opabilities but limited knowledge about
other individuals and the large-scale structure of the lprab Because agents are self-interested,
they will participate with the goal of maximizing their owreihefit. Additionally, we may have
cause to control the allocation of each resource indivigiuglfor instance, global optimization is
infeasible or if no one entity has global allocative auttyoriFor such environments where infor-
mation, decision making, and control are inherently deadined, we seek to engineer the process
of bottom-up supply chain formation. This problem is corogled if the structure of resource
contention precludes the use of simple greedy allocatiategfies.

We present a decentralized, asynchronous market protocaupply chain formation under
conditions of resource scarcity. The protocol allows agj¢atnegotiate the formation of supply
chains in a bottom-up fashion, requiring only local knovgedind communication. In the market
protocol, agents’ decisions are coordinated by the pristesy, with the price for each resource
determined through an ascending auction.

The remainder of the paper describes our market protocdlcharacterizes its behavior the-
oretically and empirically. We begin in Section 2 with a formal definition of the supply icha
formation problem, and an illustrating application to theécmotive industry. In Section 3, we

1. Further details may be found in the first author’s dissiergWalsh, 2001).
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show how typical greedy top-down approaches to supply clmmimation can fail in the presence
of resource contention. We define a price system and anaigtze groperties of price equilibria in
Section 4. In Section 5, we introduce a price-based markgbpol for supply chain formation and
analyze its convergence properties. We present the redudis empirical study of the protocol in
Section 6. In Section 7, we discuss relevant results anéssisuprice-based analysis and auction
theory, as well as some related work in supply chain formatigVe conclude in Section 8 and
suggest extensions and future work. Throughout, we defmfgpto Appendix A.

2. The Supply Chain Formation Problem

Agents in the supply chain are characterized in terms of tagiabilities to perform tasks, and their
interests in having tasks accomplished. A central featboeiomodel of the problem isierarchical
task decomposition in order to perform a particular task, an agent may need hieae some
subtasks, which may be delegated to other agents. Thesemtasnihave subtasks that may be
delegated, forming a supply chain through a decompositidasé achievement. Constraints on the
task assignment arise from resource contention, wheresgsquire a common resource (e.g., a
task achievement, or something tangible such as a piecaigfragnt) to accomplish their tasks.

Tasks are performed on behalf of particular agents; if twenégyneed a task then it would have
to be performed twice to satisfy them both. In this way, tasksthe same as any other discrete, rival
resource. Hence, we make no distinction in our model, andhesterm “good” to refer to any task
or resource provided or needed by agents. The assumptibgdbes cannot be shared or reused
(i.e., have limited available quantities) is necessarynfimch of our analysis. Goods that can be
replicated at little or no marginal cost, such as softwaiiaformation, provide many interesting
challenges to economic analysis (Shapiro & Varian, 1998)addressed in this work.

2.1 Example: Automotive Supply Chain Formation

We illustrate our model of supply chain formation with an kgdion to a stylized, hypothetical
example from the automotive industry. Traditionally, antgive supply chains span many tiers,
formed and maintained over long periods of time through restt® human negotiations. Some
automation is emerging, for example through Covfsirt company formed by GM, Ford, and
DaimlerChrysler to mediate the negotiation and exchangeads, as well as other supply chain
interactions. Currently the focus in such efforts is on aipalar exchange relationship within a
single level of production. We consider the broader probtdrassembling combinations of rela-
tionships across multiple levels to form complete, feasgulpply chains.

In the example presented in Figure 1, Ford and GM need to @cqantracts for transmissions
in order to produce particular models of cars. Ford can gredhe transmissions in its own facto-
ries or acquire them from an independent transmission geyduM currently does not have the
capacity to produce the desired transmissions, and musbunge. The independent transmission
producer has capacity to provide transmissions to eithed BoGM, but not both. Ford and the
independent factory both require the services of a job shiométal-working tasks, but the job shop
does not have capacity to serve them simultaneously. Gastrath the job shop and with the two
transmission factories are the scarce goods to be allacated

2. http://www.covisint.com
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Figure 1: An automotive supply chain formation problem.

The limited capacity of the job shop entails certain comstseon feasible supply chains. Ford
cannot acquire transmissions from the independent fadi@gause the job shop cannot serve the
independent factory and Ford simultaneously. AdditigndHord and GM cannot simultaneously
be satisfied.

2.2 Problem Specification

We provide a formal description of the supply chain formafwoblem in terms of bipartite graphs.
The two types of nodes represent goods and agents, reghgctivtask dependency netwoiik a
directed, acyclic grapHhV, E), with verticesvV = GUA, where:

G = thesetof goods

A = CuUll,the set of agents
C = the setof consumers

n the set of producers

and a set of edgds connecting agents with goods they can use or produce. TRits an edge
(g,a) from g € G to a € A when agenta can make use of one unit gf and an edgéa,g) when

a can provide one unit of. If an agent requires multiple units of a good as input, thentreat
each unit as a separate edge, distinguishing them by spisscfiEedges without explicit subscripts
are interpreted as implicitly subscripted by “1”.) For muste, if agena requires two units ofj as
input, then its input edges aftg,a); and(g,a)».

The various agent types are characterized by their positidhe task dependency network.
Eachconsumer c € C, wishes to acquire one unit of one good from its set of conslengoods,
G¢ C G, where(g,c) € Eiff g€ Gc.

A producercan produce a single unit of anutput good conditional on acquiring sonmgput
goods. With each producere I we associate:

1. aninput setl;; C G, such thag € |, iff there are edgesg, )k € E for one or morek, and
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Figure 2: NetworkauTo: A task dependency network for the automotive supply chapiaded in
Figure 1.

2. asingle outputy, € G\ I, such thatm, gr) € E.

A producer’s input goods ammplementaryin that the agent must acquire all of them in order
to produce its output; it cannot accomplish anything withyam partial set. Alternate producers
with the same output indicate different ways that a good @prbduced.

Task dependency networks are constrained to be acyclicisthao agent produces goods that
could be used to assemble its inputs through any chain oluptimeh. Although we might broadly
view all global commerce as one large cycle of production @msumption, in practice, negotia-
tions tend to be clustered within more limited scopes of eomcoften referred to as “industries”.
The resulting supply chains are typically acyclic.

Figure 2 shows an example task dependency network for tioenatitve supply chain problem
of Figure 1. Here the goods are indicated by circles, andtaggnboxes. Producers with inputs
are represented by curved boxes. The numbers under agerg beEpresent production costs and
consumption values, explained below. An arrow from an aggeatgood indicates that the agent can
provide that good, and an arrow from a good to an agent irelicthtat the agent can make use of
the good. For instance, the producer labeled Ford Auto Aseraquires Worked Metal and Ford
Transmissions in order to produce cars. Since the tranemgsproduced by the Ford Transmission
Factory can be used only by Ford, we need to distinguish FoddG&M transmissions as separate
goods. This in turn requires that we introduce Ford and GMidmassion Subcontractor producers
to model the fact that the Independent Transmission Factmbe used to produce either type.

An allocation is a subgraphiV’,E’) C (V,E). Forae Aandg € G, an edge/a,g) € E' means
that agent providesg, and(g,a) € E’ meansa acquiresg. An allocation’s vertices are the agents
and goods incident on its edges:

1. Anagentisin an allocation graph iff it acquires or prasd good:

Forac A we haveac V' iff (g,a) € E' or (a,g) € E'.
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Figure 3: A solution to NetworlkeuTo.

2. A good is in an allocation graph iff it is acquired or prosid
Forg e G, we haveg € V' iff (g,a) € E' or (a,g) € E'.

A producerTtis activeiff it provides its output. Aproducer is feasiblgff it is inactive or
acquires all its inputs. Consumers are always feasible.
Goodg is in material balancein (V/,E’) iff the number of edges in equals the number out:

{(@ak)|(agkeE} =[{(ak)|(g.axeE}

An allocation is feasibleiff all agents are feasible and all goods are in material rizda A
solutionis a feasible allocation that forms a partial ordering osfeke production, culminating in
consumption. That is, some consumer acquires a good iedesir

There exists dg,c) € E' suchthace CNV'.

A solution may involve multiple consumers. If consunees in a solution(V’,E’) then we say that
(V',E’) is asolution for c.

Figure 3 shows a solution allocation for the task dependemtwork of Figure 2. Shaded
agents and solid arrows are part of the solution, with unsthagdents and dashed arrows indicating
elements of the problem not part of the solution. Note thatfbrd Auto Assembler wins an input,
but is inactive. However, recall that inactive producers faasible, hence the solution properties
are met. We refer to the configuration of an inactive prodaoeuiring an input in an allocation as
adead end

Each producerthas someroduction cosky for providing a unit of its output. The cost might
represent the valua could obtain from engaging in some other activity (i.e. gpgortunity cost),
or some direct cost incurred in producing its output (butinciuding input costs). Since a producer
provides at most one unit of one good, the total producticst tmr, with outputg, for allocation
E', iskyif (T,g) € E' and 0 otherwise.

We assume that a consumer has preferences over differesiblgogoods, but wishes to obtain
only a single unit of one good. Thus, a consuro@btainsvalue v¢(g) for obtaining a single unit
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of goodg, and, for allocatiorE’, obtains value/((V’,E’)) = maxgqece Ve(9). In depicting task
dependency networks, we display costs and values belowothesponding agent boxes.

Definition 1 (value of an allocation) Thevalue of allocationV’,E’) is:

valug (V' E")) = ZVC((V/’E/))_ Z1Kn((v’,E’)).
ce S
Definition 2 (efficient allocations) The set ofefficient allocationsontains all feasible allocations
(V*,E*) such that:
Ll =4 = I =AY ;
value((V*,E")) = (V/QZZ(V’E)(value((V ,EN) | (V',E") is feasiblg.

Task dependency networks describe the supply chain fasmptoblem from a global perspec-
tive. In a decentralized approach to formation, we wouldegalty not assume that an agent, or any
other entity, has perfect or complete knowledge of the emi@twork. We generally do assume that
all agents have perfect knowledge of their own costs, valrmed goods of interest. When mediators
facilitate the negotiations for goods (as in protocols dbed below), each agent knows of relevant
mediators for its goods of interest. This knowledge inctud# rules enforced by the mediators.
Likewise, mediators know of the existence of all agentsegted in their respective goods. Beyond
that, a mediator knows only what the agents reveal througtmuanication during negotiation. A
mediator does not know the agents’ true costs or valuatiomsis it aware of agents’ preferences
for goods outside of its direct scope of facilitation. We dut address in detail how agents and
mediators achieve mutual awareness (i.e., how connectingmate), but assume that it can be
accomplished via some unspecified search, notification;aadzast protocol.

3. Resource Contention

One natural candidate approach to supply chain formatidimeiS ONTRACT NET protocol (Davis

& Smith, 1983), the most widely studied algorithm for formitask performance relations among
distributed agents. @ITRACT NET does indeed apply to our framework, as it employs local nego-
tiation to achieve a hierarchical task decompaosition. éifh definitive characterization is difficult
due to the many variants GONTRACT NETIn the literature (Baker, 1996; Davis & Smith, 1983;
Dellarocas et al., 2000; Sandholm, 1993), it is fair to saft,tgenerally, “request for quotes” pro-
ceed top down from the root task (right-to-left from consusnén our network terminology), and
contracting proceeds bottom-up (left-to-right towardsstomers), selecting at each level among
candidate “bids” received. (Variants of the protocol anenarrily distinguished by the form of bids
and selection criteria employed.) As a consequence, chaiemade greedily, without reflecting
ramifications upstream in the evolving chain.

This approach can form satisficing supply chains when thegesafficient resources to sup-
port the greedy selection. However, the baSINTRACT NET protocol does not explicitly address
resource scarcity or contention among multiple agentsdl®@rs accept bids on inputs before it
can be established whether this might cause infeasibilitthér upstream. Without lookahead or
backtracking,CONTRACT NET might construct infeasible supply chains when there aréduhre-
sources.

For instance, a greedy protocol would not produce a solditiothe network shown in Figure 4.
Here, if all producers bid according to a common function otone in cost, the output bid of
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Figure 4: NetworkGREEDY-BAD: A network for which greedy protocols can produce infeasibl
allocations.

producera6 would be preferred to that @b, because6 can acquire its inputs cheaper. But since
a7 must acquire the one available unit of gobtb feasibly participate in a solutioap cannot be a
part of the solution.

The issue of resource contention motivates our adoptionnoéiket-based approach. The key
idea is that prices can signal resource value and scarcigndpdown the chain, enabling local
decision making while avoiding the pitfalls of greedy oresp selection or communication of global
structure information.

4. Price Systems

A price systenp assigns to each goay a nonnegative numbex(g) as itsprice. Prices are anony-
mous (i.e., not agent dependent) and linear in the quarttigpods. Intuitively, prices indicate the
relative value of the goods, and agents use the prices te gl local decision making.

We assume agents hageasilinear utility functions, defined by “money” holdings plus the
value (or minus cost) associated with the allocation of goddjents wish to maximize thesurplus
with respect to prevailing prices.

Definition 3 (surplus) Thesurplus a(a, (V',E’), p), of agent a with allocatior{V’,E’) at prices
p, is given by:

o Va((V',E")) = 3 gaee P(9), ifaeC
® > (ag)cE p(g) — 2 (ga)eE’ p(g) —kn((V',E")), ifac .

4.1 Price Equilibrium

Generally, an allocatiorV’, E’) is acompetitive equilibriumat pricesp if (V’,E’) is feasible and
assigns to each agent an allocation that optimizes the’'agenplus aip. For our model, this means
specifically:
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e A producer’s optimal choice is to be either active and fdasitr to acquire no goods. Hence,
a producer in the allocation obtains nonnegative surplusdiyg active, and a producer not
in the allocation would obtain nonpositive surplus by behagjve.

vmennv, % p@—- 3 PO -Kn>0

(g)eE (9meE
ymemVv’, 5 p@— Y p(@—kn<0
(mg)eE (9mekE

e Because a consumer receives value for obtaining at most @od @ consumer’s optimal
choice is to obtain the good that gives it maximum nonnegativplus, and to obtain no other
goods at a positive price. Furthermore, a consumer not iltheation (i.e., not obtaining
any goods) would obtain nonpositive surplus from any good.

vceCnV’,3(g,c) eE/, g=arg g,rr;%wc(g’) —p(d)

AVe(g) —p(g) >0

AY(J,E), d #9, p(g)=0
VceC\V/,vge G,

Ve(9) — p(g) <0

Figure 5 shows an example of a competitive equilibrium fotidek GREEDY-BAD. The prices
are shown under their respective goods.

Figure 5: A competitive equilibrium for NetworkREEDY-BAD.

A competitive equilibrium allocation is stable in the setis& no agent would want a different
allocation at the equilibrium prices. Moreover, from edurilim there is no way to reallocate the re-
sources (including money transfers) so that some agentrbateg surplus, without degrading some
other agent’s surplus. This absence of further gains frabetis referred to aBareto optimality
Given quasilinear utility, price equilibria have been shaw be efficient under fairly general con-
ditions (Bikhchandani & Mamer, 1997; Gul & Stacchetti, 1999ge, 1998). This also holds for
the particular case of task dependency networks, as statédrollary 4.
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9>p(6)>10

Figure 6: NetworkGREEDY-BAD with costs and values that do not support competitive dwuili
rium.

4.2 Existence of Competitive Equilibrium

Not all task dependency networks have competitive equalifConsider again NetworkREEDY-
BAD but withv..,s = 9, as shown in Figure 6. The allocation shown is the only efficallocation,
hence any equilibrium must support it. Recall that in equilim, active agents must obtain nonneg-
ative surplus, and inactive producers must not be able @iropositive surplus. The price inequali-
ties under the goods follow from constraints on the surpés®eiated with agent activity. The lower
bounds on the prices of goodls2, and5 ensure that producesd, a2, andab, respectively receivbe
nonnegative surplus. The upper bound3oansures thai3 could not obtain positive surplus. The
lower bound ot ensures thai6 would receive nonpositive surplus. Propagating these d®tm

6, we see thap(6) > 10 to givea7 positive surplus, but also that6) < 9 to givecons nonnegative
surplus. Since this is impossible, a competitive equililsricannot exist.

Technically, non-existence of equilibrium is due to compdmtarity of inputs for producers with
discrete-quantity goods. In fact, complementarities aeensary to preclude competitive equilib-
rium in task dependency networks. A network masinput complementaritiesvhen all producers
have at most one input.

Theorem 1 Competitive equilibria exist for any network with no inpohgplementarities.

We defer the proof of this and subsequent theorems to Appendi

Consider again Figure 6. The multiple undirected paths beit and4 give rise to the lower
bound on the price of goadl It turns out that these undirected cycles are also negetspreclude
competitive equilibrium.

A polytreeis a graph in which there is at most one undirected path froyrvartex to another.
Recall that in task dependency networks, if a producer usdthe units of a good, then each unit
is represented by a separate edge. It follows that an albocsta polytree iff no more than one unit
of a good is used to produce another given good, or used inplewvays to produce a good.

Theorem 2 Competitive equilibria exist for any polytree.
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4.3 Approximate Price Equilibrium

We should generally expect that market protocols basedsumade price adjustments (such as the
SAMP-SB protocol we describe in Section 5) would overshoaiceequilibria by at least a small
amount. Therefore, our analysis emphasizes approximatdéibemm concepts (Demange et al.,
1986; Wellman et al., 2001a). We introduce a particular tghbapproximation,A-d-competitive
equilibrium, defined in terms of parameters that bound the degree to vagehts acquire sub-
optimal surplus. Intuitivelydy, bounds the suboptimality of a consumer’s surplisbounds the
suboptimality of a producer’s surplus attributable to itgput, and\? bounds the suboptimality of
a producents surplus attributable to inpyt As described in Section 5, these parameters also have
special interpretation in our market protocol as applietagik dependency networks.

Denote adH,(p) the maximum surplus that agemtan obtain in(V,E), at pricesp, subject to
feasibility. That is,

Ha( p) = (V’,Q%.E)G(a’ (V/> E/)v p)

such that is feasible atV’,E’).
Definition 4 (A-d-competitive equilibrium) Given the parameters:
o 8y, 85> 0,
e M forall meNandallge G,
an allocation(V’,E’) is in A-d-competitive equilibriumat prices p iff:
1. Forallae A o(a,(V',E’),p) > 0.
2. Forallce C,o(c,(V',E’),p) > He(p) — Op.
3. Forallme M, o(1, (V/,E’), p) = Hu(p) — (3 (gmee M+ 3s), andTtis feasible at(V',E’).
4

. All goods are in material balance.

Consider NetworlGREEDY-BAD with the same prices shown in Figure 5 except @t = 8.
This does not constitute an exact competitive equilibrivenause6, though inactive, could make
a positive profit. However, k2, +A3, + A4 + 85 > 1, then sincéH,6(p) = 1, a6 obeys Condition 3
and the allocation is &-0-competitive equilibrium at the specified prices.

Theorem 3 If (V/,E’) is aA-8-competitive equilibrium fofV,E) at some prices p, thefv’,E’) is
a feasible allocation with a nonnegative value that diffieosn the value of an efficient allocation
by at mosty ren [3. g mee A+ 8 +[C|2b.

A A-0-competitive equilibrium corresponds to the standardamotif competitive equilibrium
whendy, = 8s = 0, andA¥ = 0 for all tandg.

Corollary 4 (to Theorem 3) A competitive equilibrium allocation is efficient.

As noted in Section 4.1, this is consistent with previousiiablished results.

523



WALSH & WELLMAN

4.4 Valid Solutions

In the following sections we show thatd-competitive equilibria can be a useful concept for analyz-
ing decentralized market protocols. However, such prdsogo not always reach-d-competitive
equilibria for all networks. Hence we also consider weakm®rstraints on prices, consistent with a
lesser degree of agent optimization in a solution allocatio

We say that a solutiofV’, E’) is valid with respect to priceg if:

1. Each consumer in the solution pays no more than its valuafsingle good. That is, for all
ce CNV/, there exists a singl@g, c) € E’ such that

P(g) < Ve(9),
andp(g') =0 for allg # g such that/g,c) € E'.

2. None of the active producers are unprofitable. Fortall NV’ where(m, g;;) € E’ we have
o(t, (V/,E’), p) > 0. Note that solution validity does not precludeinactiveproducer from
being unprofitable (i.e., it admits dead ends).

Note that (1) effectively states that consumers do not nbtagative utility, which is weaker than
the competitive equilibrium conditions in that it does nequire consumers to receive their optimal
allocation. Similarly, (2) does not require producers ttirojze, as in competitive equilibrium, but
only requires nonnegative utility factive producers.

Figure 7: A valid solution for Network:REEDY-BAD.

Figure 7 shows an example valid solution, with the same Uyidgr costs and values as in
Figure 5. Because it allows dead ends, validity does nottlirerovide useful bounds on the
inefficiency of an allocation.

5. SAMP-SB Protocol

The preceding section introduces some static propertiggicé configurations and allocations.
Here we address the problem of how prices might be obtaine@ompute prices and allocations,
we must elicit information bearing on the relative value obds, through some systematic com-
munication process. Mechanisms that determine marketbaschanges based on messages from
agents are calleductions(McAfee & McMillan, 1987).
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The agentsbidding policiesrepresent their strategies for interacting with the anstioVhereas
the auction mechanism may be designed by a central authbidglging policies are generally de-
termined by individual agents. To understand the implioetiof the auction design requires an
analysis of themarket protocolthat arises from the combination the auction mechanism laad t
agent bidding policies.

The space of potential auctions is expansive (Wurman e2@01), and definitive theoretical
results are currently known only for fairly limited classafsproblems (Bikhchandani & Mamer,
1997; Demange & Gale, 1985; Gul & Stacchetti, 2000; Klempek899; McAfee & McMillan,
1987). Complementarities with discrete goods, which carseaonexistence of price equilibria,
also greatly complicate auction design and analysis oi@g{Milgrom, 2000).

For our supply-chain domain, we have investigated a paatiqrotocol, calledSAMP-SB(Si-
multaneous Ascending (M+1)st Price with Simple Bidding)s @demonstrated below, SAMP-SB
can produce good allocations which, in some cases, arestentsiwith competitive price equilib-
rium theory.

5.1 Auction Mechanism

The SAMP-SB mechanism comprises a set of auctions, one ¢brg@aod. Auctions run simulta-
neously, asynchronously, and independently, withoutctliceordination. Agents interact with the
auctions by submitting bids for goods they wish to buy or. g&lbid is of the form: (1 p1) ... (On
pn)). Each pair §i p;) indicates an offer to buy or sell the good, withindicating the quantity of the
offer andp; indicating the price. Ify > 0, it is an offer to buyg; units of the good for no more than
pi per unit, and we refer to it askauy offer. If g, < 0, it is an offer to selly; units for no less than
pi per unit, and we refer to it assell offer. Because no agent both buys and sells the same good
in a task dependency network, a bid contains either allipesitr all negative quantity offers. Bids
possess what is sometimes called “additive-OR” semantios-effers are treated exactly as if they
came from separate bids, hence the auction can match ang afidlvidual offers independently.
Without loss of generality, we henceforth impose the retitm |g;| = 1 for all offers in all bids,
continuing to allow that agents may submit multiple offersibid.

When an auction receives a new bid, it sends each of its lsdgierice quotespecifying the
price that would result if the auction ended in the curremt $tate. Price quotes are not issued
until all initial bids are received, but are subsequentiuéxd immediately on receipt of new bids.
Because some offers may be tied at the current price, trosnation alone is not sufficient for an
agent to tell whether it is winning an offer placed at thateriTo clarify this ambiguity, the price
guote also reports to each bidder the quantity it would bugedirin the current state. The same
prices are sent to all bidders, but the reported winning staspecific to the recipient. Agents may
then choose to revise their bids in response to the notificatfif an agent does not wish to change
its bid, inaction leaves its previous bid standing in thetiang.

We assume that communication is reliable but asynchrohdusat is, all messages sent even-
tually reach their recipients, although we impose no boumthe delays. Agents and auctions use
message IDs to ensure that they handle messages in the agigrapder. Note that even if all auc-
tions and agents have deterministic behaviors, an overalbt SAMP-SB may be nondeterministic
due to this asynchrony.

3. Technically, we adopt the model asynchronous reliable message passggtems (Fagin et al., 1995).
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Under asynchrony, it is helpful for the auction to send theof@he most recent bid received
from the agent with its price quote. An agent responds only poice quote that reflects its most
recent bid sent. Without this device, an agent can have dliffiestablishing feasibility, as its
understanding of its input and output bid states may be basednuniformly delayed reports.

Bidding continues untiuiescencea state where all messages have been received, no agent
chooses to revise its bids, and no auction changes its peskgrices, or allocation. At this point,
the auctionglear, each bidder is notified of the final prices and how many ubit&nsacts in each
good. Note that a quiescent system is not necessarily inéi@oktate or (approximate) equilibrium
state.

Although detecting quiescence is straightforward in aredimed system, in a decentralized,
asynchronous system we need to perform the operation uslgdazal message passing. In pre-
vious work (Wellman & Walsh, 2000), we described a protoooldetecting quiescence in general
distributed negotiations, based on a well-known termamatietection algorithm.

Each auction runs according to (M+1)st-price rules (Stvemite & Williams, 1989, 1993;
Wurman et al., 1998). The (M+1)st price auction is a varidnthe (second-price) Vickrey auc-
tion (Vickrey, 1961), generalized to allow for the exchamdenultiple units of a good. Given a set
of offers includingM units offered for sale, the (M+1)st-price auction sets agéqual to the price
of the (M+1)st highest offer oveall of the offers. The price can be said to separate the winners
from the losers, in that the winners include all sell offargcly below the price and all buy offers
strictly above the price. Some agents that offer at the (MtHidice also win; in case of ties, offers
submitted earlier have precedence. Winning buy and satofire matched one-to-one, and pay
(or get paid) the (M+1)st price.

When issuing price quotes, the auction reports both the (fiie., the current going price, or
(M+1)st price),p(g) and theask price a(g) of the goodg. The ask price specifies the amount above
which a buyer would have to offer in order to buy the good, gitlee current set of offers. The ask
price is determined by the price of tivth highest of all offers in the auction, henaég) > p(g).

For instance, if we have buy bids 12, 10, and 6 and sell bidd15and 8,p(g) = 10,a(g) = 11,
and if the auction is in quiescence, the buy bids 12 and 10dvmatch the sell bids 15 and 11 and
trade atp(g) = 10.

Because a producer has complementary inputs, ensurindpifidass a challenging problem,
requiring careful design. The auctions run simultanequsig each auction requires that the prices
of an agent’s successive buy offers increase by no less tmea &enerally small) positive number
dp and the prices of successive sell offers increase by nohesst.* An auction can enforce the
ascending rule by simply rejecting an agent’s offer if thiegodoes not increase ®y or ds. By
constraining the direction of price changes, this desigagproducers a more accurate indication of
the relative prices for inputs and outputs than if pricesenslowed to fluctuate in both directions.

The ascending bid restriction ensures ascending auctioaspwith one technicality. Due to
asynchrony and immediate issuance of price quotes, if tkialibid from an agent arrives after a
higher bid, the price quote could decrease. This can be édrsilinply at the auction by issuing no
price quotes until some specified period of time after thdian@pens. After the first price quote
is issued, the auction accepts new bids only from agent$ittthpreviously placed bids.

It is common in auction literature and practice to place arending restriction on buy-offer
prices. It may seem counterintuitive—and is in fact atypie@ place the same restriction on

4. These rules differ from those of a more typical simultarseascending auction (Demange et al., 1986; Milgrom,
2000), which specify that agents must submit offer prices #ne at least an increment above the current price.
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sell-offer prices. However, such an ascending offer presgriction ensures that price quotes rise
monotonically as the auctions progress. Section 5.4 shawsam ascending—offer-price restric-

tion for both buy and sell offers serves a key role in esthbigs the relationships between system
quiescence and solution convergence of the system.

5.2 Bidding Policies

Although designers of negotiation mechanisms do not géyndrave control over the agents’ be-
haviors, any conclusions about the outcome of a mechanisst Ibeubased on some assumptions
about these behaviors. A typical assumption in economidgisagents are rational in some sense,
for example that they play policies that form a Bayes-Naslhilibgium. However, as discussed in
Section 7.1, the complexity of supply chain formation mé&ske beyond the current state-of-the-art
in analyzing Bayes-Nash equilibria with simultaneous adio® auctions. Instead, our analysis as-
sumes that the agents follow a simple, non-strategic bgddailicy, described in this section. Other
variations may be reasonable, or perhaps better in someatssihan the policies we describe.
Rather than explore the range of possibilities, we chodeisniork to investigate a particular set of
policies in depth. Our chosen policies obey the ascendifeg odstriction enforced by the auction,
respect the locality of information in that they require mowledge of other agents in the system,
and are myopic in that they use only information provided by turrent price quotes, without
forecasting future prices.

Recall that a consumer wishes to acquire a single good thetmzes its surplus at the given
prices. We assume that a consumer initially offers zero &hegood of interest. So long as it is
winning a good, it does not change its offer. Whenever it tswioning a good, it offerp(g*) + &,
for goodg" = argmaxcc(Ve(g) — p(g) — ) if ve(g*) — p(g*) — & > O, otherwise it stops bidding.

A producer’s objective is much more complex, namely to mézanthe difference between the
price it receives for its output and the total price it paysif® inputs, while remaining feasible. We
assume that a producer initially offers zero for each ofimit goods, and gradually increases these
offers to ensure feasibility. It raises its offer price far iaput good bydy, if and only if the price
guotes indicate that it is losing that good but winning it§oor

We assume that producaibids for its output goodj; in an effort to recover its production cost
and theperceived costsf its inputs. The producer places its first output offer caifter receiving
the first price quotes for all its inputs, and subsequenttjatgs its output offer whenever it receives
a new price quote on any input. For simplicity, consider tasecin whichit has one offer (each at
quantity one) for each input. Iftis currently winning an inpug, its perceived costp.{g) of g is
simply p(g). Whenrttis not currently winningy with a particular offerpy(g) = maxa(g), p(9) +
dp). If B is the price of the previous offer made imfor g;;, then when its perceived costs increase,
ntoffers maxp + 3, ¥ gmee Pn(9)) for its outputgn. If Tthas multiple offers for a good, then
it assumes a separate perceived cost with respect to eachasftl bids for its output accordingly.
Figure 8 shows how a producer would bid next as a function efctirrent prices and its current
offers, whend, = 1 andds < 2.

Note that throughout the negotiation, a producer places foidits output goods before it has
received commitments on its input goods. Producers caattipotential risk by continually updat-
ing their bids based on price changes and feasibility stadugroducer reduces exposure to dead
ends by incrementing its offer prices on inputs by minimabants and only when necessary.
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Current offer price for A = 2 Next Offer

Good Price
p((t\\)) = 12 A hold at 2
-

p(B) =2 Current offer price for C =3
a(B) =4

Current offer price for B = 1

Figure 8: A producer’s next offers, according to SAMP-SBewb, = 1 andds < 2. The dashed
arrow from goodB indicates that the producer is currently losiBg The solid arrows
indicate that the producer is currently winning go@ddandC.

5.3 Bidding with General Preferences

The task dependency network model represents fairly sipnolduction capabilities and consumer
utility. Here we discuss some natural potential extensartbe bidding policies to a broader class
of capabilities and preferences.

A producer capable of variable-unit production could bidaly as if it were multiple identical
producers. Such a producer would maintain separate offieits bids for each unit, and update
the separate offers independently. Similarly, a consunitr additive value for multiple goods, or
multiple units of a good, could bid for each unit of each gosdf & were a separate consumer.

A producer with alternatives on some input, independentleérinputs, can switch its bidding
to the currently cheapest option. Subtle issues can anisegiamducer that has alternative ingets
particularly when it is tentatively winning parts of these®Dne option would be to focus bidding on
the set with the lowest perceived cost, which may includesanurm for goods not in the tentatively
winning set. Alternatively, the producer could assume ithatll definitely win its tentatively won
goods and effectively treat them as sunk costs. Fracticc@duating of sunk costs may also be
reasonable. Similar considerations arise for extensioesepting complex consumption choices.

5.4 Properties of SAMP-SB

In this section we describe a number of theoretical propeif SAMP-SB. In Section 5.4.1 we
describe properties relating to convergence to quiesem@zction 5.4.2 we present properties re-
lating to efficiency and convergence to price equilibriumd & Section 5.4.3 we present properties
relating to solution convergence.

5.4.1 ONVERGENCE TOQUIESCENCE

The SAMP-SB auctions and bidding policies guarantee thafststem will always reach quies-
cence.

Theorem 5 SAMP-SB reaches quiescence after a finite number of bidshesmreplaced.
However, convergence can take a long time.
Observation 6 In an asynchronous environment, itis possible that a ruhefirotocol may require

a number of bids that is exponential in the network size, adariunction of the consumer value.
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Figure 9: NetworkexPONENTIAL: A network that may require an exponential number of bids to
reach quiescence.

Figure 9 shows NetworkxPONENTIAL, which illustrates this observation. The agent named
start places a one-time bid to sell one unit of gdbtbr $2. Sincen(0) = 2, and producer$-1 and
1-2 are initially losing their input bids, these agents eacleré#f price of 2 for their output goods.
Producerl-3 will receive the new price quotes for goottsA and1-B asynchronously, hence may
update its bid for good twice, offering a price of 2 the first time and a price of 4 thewwl
time. Continuing with this process, we see that proddegmupdates its bid for good up to eight
times. If we extend this network and maintain labeling cstesit with Figure 9, then producer3
would placeO(2") bids for goodn. Note however, that if bids and price quotes are propagated
synchronously, the exponential growth would not occur.

In the example above, most of the bids are actually supedluothat they do not meaningfully
affect the outcome of the protocol. This appears often tfustoations exhibiting the worst-case
behavior described. To capture the distinction betweavaglt and irrelevant bidding, we introduce
the notion ofquasi-quiescencea persistent state from which all subsequent bids effelgtido not
matter for solution convergence. SAMP-SB convergence &sigguiescence requires a number of
“meaningful” bids that can be bounded by the size of the ndtvand the value of the maximum
consumer value.

Definition 5 (quasi-quiescent) A run of SAMP-SB is in guasi-quiescerdtate when, for any con-
sumer or active producer, all bids byt have been received amdwould not change its bids in
response to any price quotes already received or transthiijeauctions.

Clearly, the requirements of quasi-quiescence are subfgt cequirements for quiescence.
Observation 7 A quiescent state is a quasi-quiescent state.

Theorem 8 If a run of SAMP-SB reaches a guasi-quiescent state, theaniiains in a quasi-
guiescent state. Furthermore, neither the allocation tar prices p subsequently change.

This theorem means that, once quasi-quiescence is reaahedbsequent bids effectively do
not matter in terms of equilibrium and solution convergence

Corollary 9 (to Theorem 8) The quiescent state of SAMP-SB is-&-equilibrium or valid solution
iff the first quasi-quiescent state reached is-&-equilibrium or valid solution, respectively.

The following theorem establishes a bound on the numberlefant bids necessary to reach
guasi-quiescence.
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Theorem 10 SAMP-SB reaches a quasi-quiescent state after a numbedobbunded by a poly-
nomial of the size of the network and the value of the maximamaumer value have been placed
by consumers and active producers.

Our previously mentioned quiescence-detection protds@liman & Walsh, 2000) can also detect
guasi-quiescence, and thus terminate negotiations wiens&ched.

5.4.2 BEFFICIENCY AND CONVERGENCE TOPRICE EQUILIBRIUM

We intentionally usé, andds, to parametrize both SAMP-SB and our conceph@-competitive
equilibrium. With an interpretation of2 in terms of prices and ask prices, we can specify neces-
sary and sufficient conditions for which tihesult of SAMP-SB corresponds to Xe-0-competitive
equilibrium.

Theorem 11 The prices and allocation determined in quiescence by tHdFSAB protocol is a
A-8-competitive equilibrium, with§ = max(a(g) — p(g), &), iff no inactive producer buys any
positive-price input.

From Theorems 3 and 11, we can establish bounds on the irafficof aA-d-competitive equi-
librium, parametrized by = max(a(g) — p(g),d,) for each good. In some cases, the difference
betweern(g) andp(g) may be quite high. However, we can actually establish agighbdund.

Theorem 12 If (V/,E’) is aA-0-competitive equilibrium computed by SAMP-SB, théhE’) has
a nonnegative value that differs from the value of an effiaéincation by at mos§ .. (|{(9, 1) €
E}| dp+ 3s) + |C|Sp.

Note that the theorem replack$ from Theorem 3 witt®y, in the bound.
A network is atreeif it is a polytree with no more than one consumer.

Theorem 13 The quiescent state of SAMP-SB is-&-competitive equilibrium for a tree.

We are unaware of other general network structures for wB&RNP-SB is guaranteed to con-
verge to a\-d-competitive equilibrium. However, Theorem 11 impliestth& can improve alloca-
tions if we modify SAMP-SB to avoid dead ends. We say that dibglpolicy issafefor a producer
if the producer cannot obtain a negative surplus in quiaseelis clear that if a protocol is safe for
all producers, then it will converge #6d-competitive equilibrium.

In SAMP-SB we have assumed that a producer updates buy dnuoffeed simultaneously in
response to price quotes. This policy is not safe, even fuylesiinput producers, because the
producer bids for its input based on the state o§itsdingoffer for its output, rather than the offer
it is about to place. The producer would get negative suripliisloes not win its new output offer
but gets stuck winning its new input offer. However, a slightiant of the bidding policy, which we
call safe SAMP-SB s safe for any single-input producer. With this proto@producer updates
its input bids only when it would not update, and it curremiyining, its most recent output offer.
Clearly, safe SAMP-SB has the same static properties as S8BlIfhence Theorem 12 applies to
safe SAMP-SB.

Theorem 14 The quiescent state of safe SAMP-SB s&competitive equilibrium for a network
with no input complementarities.
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Safe SAMP-SB is not guaranteed to be safe for producers withipte inputs in arbitrary
networks, nor do we know of any safe producer bidding polmat £nsures safety for producers in
any arbitrary network (other than degenerate policies sisatot bidding).

Safe SAMP-SB may take longer to reach quiescence than regdP-SB. With safe SAMP-SB,
a producer must always wait for notification of the resultpending output offers before increas-
ing input offers. For a producer to win an output offer mayuieg propagations of many messages
through various paths in the network before buyers of thpudwood would increase their buy offer
prices for that good. The resulting delay would be greatan titne local delay in communicating
with the output good auction.

That nonA-d-competitive equilibrium runs of SAMP-SB result in dead &sdggests a potential
source of significant efficiency loss. For example, Figur@dis the result of a run of SAMP-SB
on NetworkGREEDY-BAD. This valid solution has a dead end at produster Since produces3
incurs its cost of $1 to provide goddto a6, but does not contribute to any value in the system, this
dead end is pure waste from a global efficiency perspectite. allocation is undesirable directly
for producerab because it is committed to pay $1 for an input it cannot uséh \&rge networks or
costs, dead ends can result in significant efficiency lossgsagative profits to individual agents.

We propose &ontract decommitment protocdb remove dead ends after SAMP-SB reaches
guiescence. According to the decommitment protocol, eaattive producer can decommit from
its contracts for its inputs for which it would pay a positmece. The protocol is applied recursively
to the producers that lose their outputs due to decommitm@fiten the decommitment process
terminates, agents exchange goods as specified by the reghaomtracts. We refer to SAMP-SB
with decommitment aSAMP-SB-D

In Figure 7, produces6 would decommit from its contract with3. Clearly, Theorem 11 implies
that no agent decommits iff SAMP-SB produced-a-competitive equilibrium. Moreover, if we
remove from consideration all producers that decommitrgh®aining agents are kxd-competitive
equilibrium.

Decommitment has the benefit that, whereas some produaetsseamoney in the SAMP-SB
protocol, no agent receives a negative surplus from ppdiicig in SAMP-SB-D. However, this
is achieved by making the auction allocations non-bindimlich is undesirable to the producers
who lose their output sales to decommitments. It also beggtlestion of how to enforce the
requirement that inactive producers be the only agentgigammit.

In addition to dead ends, efficiency can also be lost if SAMBPSIs to find a solution when
a positive value solution exists, or if SAMP-SB forms a siolntwith value inferior to an effi-
cient solution (dead ends are not necessarily mutuallyusket of these two cases). In Section 6
we describe an experimental analysis of the efficiency, tiece of inefficiency, and equilibrium
attainment of SAMP-SB in a set of networks.

5.4.3 DLUTION CONVERGENCE

Recall that SAMP-SB always converges to a valid solutior¢#jrally aA-d-competitive equilib-
rium) for networks with tree structures, and the safe varamverges for networks with no input
complementarities. The following theorem shows that, wsitfficiently high consumer value, reg-
ular SAMP-SB can always converge to a (possibly non-equilib) valid solution for polytrees.
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Theorem 15 If (V,E) is a polytree with a solution that assigns good g to consuménen given
all other costs and values, there exists a valg@ysuch that SAMP-SB is guaranteed to converge
to a valid solution(V’, E’) for c.

Because dead ends may result, we cannot usefully bounddfiigiency of the solution reached by
SAMP-SB in a polytree.

For general network structures, the prices of all sell sffer all consumers’ goods could rise
above their values, in which case the system will necegsegtich quasi-quiescence in a non-
solution state. If, however, quasi-quiescence is reackéuord the price of some consumer’s good
reaches its value for the good, we have a valid solution.

Theorem 16 If SAMP-SB reaches quasi-quiescence with) p< vc(g) for some(g,c) € E, ce C,
then the system’s state represents a valid solution.

The next theorem establishes conditions under which a galigtion state will immediately
lead to quasi-quiescence.

Theorem 17 If a run of SAMP-SB iV, E) is in a valid solution state such that:

e each consumer c is either winning an offer qgp+ &, > v¢(g) for all (g,c) € E,
¢ all agents have correct beliefs about which goods they areently winning,

¢ all bids from consumers and active producers have beenveden response to the current
price quotes,

¢ and no sell offers are lost due to tie breaking,

then after the subsequent price quote from each auctionsybhtem will be in a quasi-quiescent
state with a valid solution.

Although SAMP-SB is not guaranteed to converge to a soluttenfact that the problem of find-
ing a solution is NP-Complete (Walsh et al., 2003) should lesito expect that there are problems
for which SAMP-SB would converge to a solution only after ap@nential number of meaningful
bids. Since the number of meaningful bids is bounded by angohyjal of the maximum consumer
value, we should further expect that there exist networksmaich SAMP-SB can converge to a
solution only with a exponential consumer values. In pcactive find that we can construct prob-
lems for which the consumer value must be exponential inrdiaeSAMP-SB to converge to a
solution (Walsh et al., 2003). However, we have run many kitrans for which the required value
is much more reasonable (Walsh et al., 2003).

For some networks, costs, and values, SAMPe&Bnotconverge to a valid solution with some
values ofd, andds, no matter how high the consumer value. One example (thelesstnwe have
been able to construct) is Netwo”O-CONVERGE, shown in Figure 10. Observe that a solution
must include agend8, but cannot include7. Agenta6 always offers a price of at leag{2) + 20
for good4, hencea8 cannot win two units of good for less tharp(2) + 20 each. Thus agen8 will
always offer a price of at leasip22) + 40 for good5. Since agens7 will never offer a price more
than 2p(2) + 2\2, for good5, agenta8 could only win goodb if A2, > 20. But, for this to occur,
we must havé, > 20. A more thorough analysis, taking into account the dyearaf SAMP-SB,
shows we must hav®, > 40 andds = 0 to obtain a valid solution in quiescence, and then only for
certain patterns of asynchrony.
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Figure 10: Networkio-CONVERGE: A network for which SAMP-SB cannot converge to a solution
for certain values ody, andos.

6. Empirical Performance of SAMP-SB

Whereas our analytic results provide some insight into SABHBPand its variants, they do not sup-
port a comprehensive characterization of performancemxor certain special-case network struc-
tures. In order to gain further understanding of the effectess of SAMP-SB and SAMP-SB-D, we
performed an empirical study based on protocol simulatmnsample task dependency networks.

6.1 Setup

Our investigation focuses on a small set of networks exhipia variety of structural properties:
SIMPLE (Figure 11),UNBALANCED (Figure 12),Two-coNs (Figure 13) BIGGER (Figure 14), and
MANY-CONS (Figure 15). We also also studied Netwa@rkEEDY-BAD (Figure 4).

Figure 11: NetworlSIMPLE.

We ran experiments on multiple instances of each network. eBoh instance we randomly
chose producer costs uniformly frof@,1], but for each consumer in a network, we calculated
a fixed value so that, excluding all other consumers, thergtsea positive-surplus solution for
this consumer with 0.9 probability. We determined consuwadues via simulation, assuming the
specified distributions of producer costs. We discardethatances whose efficient solutions had
value zero. We sdl, = 65 = .01.

To test the effect of competitive equilibrium existence e performance of the protocols,
we generated instances ONBALANCED, TWO-CONS, and GREEDY-BAD With costs that admit
competitive equilibrium and with costs that do not. BecauseLE andMANY-CONS are polytrees,
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Figure 14: NetworkBIGGER.
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Figure 15: NetworkiANY-CONS.

we know from Theorem 2 that all instances thereof have coitiyeeequilibria. We were not able
to generate no-equilibrium instancesmtGER with the given cost distributions.

To generate an instance with a desired type of cost struagpalibrium or no-equilibrium)
we repeatedly chose sets of producer costs randomly frommiifierm distribution until the desired
property was met. In the experiments, we determined whethpetitive equilibrium existed—
given complete information about the network structurdues, and costs—using the following
procedure. Recall that a competitive equilibrium is alwefficient (Corollary 4). Hence, given
an optimal allocatior{V*,E*), we attempt to solve the system of linear equations thatachenize
a competitive equilibrium, as described in Section 4.1. #otution to the equations exists, the
resulting prices constitute a competitive equilibriumhestvise no equilibrium exists. We used
CPLEX, a commercial mixed-integer-linear programmingkaage, to find the efficient allocation
and to solve the corresponding equilibrium equations.

For each type of cost structure in each network, we testedar@fbm instances, with the excep-
tion of siMPLE, for which we tested 3220 instance$or each instance and each protocol, we mea-
sured theefficiency—the fraction of the efficient value—attained by SAMP-SB &#&MP-SB-D.
We also measured the percentage of available surplusgéesentage of the value of an optimal
solutions) obtained by the producers.

6.2 Results

We classify the efficiency of a run of the protocols in one afrffvays: Negative, Zero, Suboptimal
(but positive), and Optimal efficiency. Table 1 shows théritigtion of the efficiency classes in our
experiments. Note that SAMP-SB-D cannot produce negaffi@ency, by construction.

5. We tested more instancesofPLE as a part of a broader study (Walsh et al., 2000).
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SAMP-SB SAMP-SB-D
% of instances % of instances
Network Neg Zero Sub Opt Zero Sub Opt
SIMPLE 00 03 00 997 03 00 997
UNBALANCED, case:
— equilibrium exists 50 10 70 8740 10 1.0 98.0

—no equilibrium exist§ 10000 0.0 0.0 0.0 100.0 0.0 0.0
TWO-CONS, case:
— equilibrium exists 11.0 00 6.0 8.0 00 3.0 97.0
—no equilibrium existy 180 0.0 780 40 1.0 95.0 4.0

BIGGER 00 00 40 9.0 0.0 0.0 100.0
MANY-CONS 270 00 56.0 170 00 20 98.0
GREEDY-BAD, case:

— equilibrium exists 40 00 210 7509 1.0 0.0 990

—no equilibrium exist§ 10000 0.0 0.0 0.0 100.0 0.0 0.0

Table 1: Distribution of efficiency classes from SAMP-SB é88MP-SB-D. Efficiency classes:
Negative (Neg), Zero, Suboptimal (Sub), and Optimal (Opt).

Recall (from Section 5.4.2) that efficiency loss in SAMP-3B de attributable to any of three,
not necessarily exclusive, causes: dead ends, failurerto #solution when a positive-valued
solution exists, and finding a suboptimal solution. We cd@rithe percentage of instances exhibit-
ing dead-end suboptimality in SAMP-SB by examining theat#hces between SAMP-SB-D and
SAMP-SB totaled over the Negative, Zero, and Suboptimalrook in Table 1. Decommitment
does not affect the contribution of no-solution and sulyogtisolution losses, but helps reveal them
by eliminating dead-end suboptimality. Hence, we can itifier percentage of instances exhibit-
ing no-solution and suboptimal-solution suboptimalitySAMP-SB by examining the Zero and
Suboptimal columns of SAMP-SB-D, respectively.

Table 2 shows the average efficiency attained by the pratp&attored by network and equi-
librium existence (where relevant). We see, from the diffiee between the SAMP-SB-D and
SAMP-SB columns, that dead ends are a significant sourceefifdiency. Additionally, existence
of competitive equilibrium has a significant effect on thefpemance of the protocols. In these net-
works, SAMP-SB-D produces nearly perfect efficiency whempetitive equilibrium exists (recall
that all studied instances siMPLE, BIGGER, andMANY-CONS have equilibria), but is is much less
effective when equilibrium does not exist, in fact failirgfind any solutions in the no-equilibrium
cases OUNBALANCED andGREEDY-BAD.

To check whether these differences in performance arefisigni, we performed Student’s t-
Tests for each protocol, comparing the mean efficiencieastéinces that admit competitive equi-
librium with the means of those instances that do not admmitpeitive equilibrium. Table 3 shows
the results, indicating the p-values that the means of ibguin and no-equilibrium instances came
from the same underlying population. In typical analysks, riull hypothesis that the means are
equal is rejected if the p-value is belowdB. With this threshold, it seems we can safely reject the
hypothesis that the mean efficiencies of equilibrium andeguilibrium instances are the same for
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Network SAMP-SB SAMP-SB-D
SIMPLE 0.997 0.997
UNBALANCED

— equilibrium exists 0.867 0.990
—no equilibrium exists  —20.080 0.000
TWO-CONS, case:

— equilibrium exists 0.733 0.986
—no equilibrium exists 0.268 0.686
BIGGER 1.000 1.000
MANY-CONS 0.120 0.996
GREEDY-BAD, Case:

— equilibrium exists: —5.320 0.990
—no equilibrium exists: —18230 0.000

Table 2: Average efficiency in each network for the protocols

Network SAMP-SB  SAMP-SB-D

UNBALANCED 6.27x 1030 823x 10101
TWO-CONS 515x 107 1.43x 10 %2
GREEDY-BAD 141x101 804x 10101

Table 3: P-values computed with the Student’s t-Test. Thest-compared the means efficiencies
of instances that admit competitive equilibrium and thdss tlo not admit competitive
equilibrium.
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Networks UNBALANCED and GREEDY-BAD. Inspection of the data further supports this conclu-
sion, as SAMP-SB-D essentially always produces zero dfitgidout produces perfect efficiency in
many of the instances that do admit competitive equilibrium

On the face of it, the high SAMP-SBREEDY-BAD p-value suggests that we cannot safely
reject the hypothesis that the mean efficiencies differ betwthe equilibrium and no-equilibrium
instances of the network. However, inspection of the dadécates that this high probability re-
sults from one outlying equilibrium instance with a largegyatve efficiency. Indeed, the fact that
SAMP-SB-D always produces essentially optimal results@tances that admit competitive equi-
librium, but predominantly produces suboptimal resultdhie instances without such equilibria,
suggests that it is unlikely that the equilibrium and noilgium means are the same for SAMP-SB
in Network GREEDY-BAD.

% A-0-Competitive
Network Equilibrium
SIMPLE 100
UNBALANCED
— equilibrium exists 88
—no equilibrium exists q
TWO-CONS, case:
— equilibrium exists 83
—no equilibrium exists 2
BIGGER 96
MANY-CONS 17
GREEDY-BAD, case:
— equilibrium exists 75
—no equilibrium exists (g

Table 4: Percentage of instances in which SAMP-SB atta&acompetitive equilibrium.

Table 4 shows the percentage of instances for which SAMPt&hadA-d-competitive equi-
librium in each network. It is straightforward to determiwhetherA-d-competitive equilibrium
is attained by observing whether there are any dead end®1@ihell). Again, we see a strong
connection with the existence of competitive equilibriu@ne notable exception MANY-CONS
(which always admits a competitive equilibrium), for whisAMP-SB frequently produced dead
ends. We do see thatd-competitive equilibria form in a small percentage of theagmilibrium
TWO-CONS instances, although this is not a prevalent phenomenonthgth, and d; parameters
we chose.

Table 5 shows the average efficiency, factored Ns§-competitive equilibrium attainment
(SAMP-SB and SAMP-SB-D produce the same results wkéacompetitive equilibrium is at-
tained). We must be careful in drawing conclusions from ¢hgtsitistics because, for any given
network case, there were relatively few or mang-competitive equilibrium instances (Table 4).
Still, we note certain salient trends. The&-competitive equilibrium runs produce near perfect ef-
ficiency, with smaller degrees of inefficiency than specibgdhe bounds in Theorem 12. Because
an allocation produced by SAMP-SB i3 &-competitive equilibrium iff there are no dead ends, we
should expect that a significant portion of efficiency lossiam-\-&-competitive equilibrium pro-
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A-0-Equilibrium A-0-Equilibrium

Not Found Found
Network SAMP-SB SAMP-SB-D SAMP-SB/ SAMP-SB-D
SIMPLE N/A N/A 0.997
UNBALANCED
— equilibrium exists —0.248 0.989 0.998
—no equilibrium exists ~ —20.08 0.000 N/A
TWO-CONS, case:
— equilibrium exists —-0.570 0.920 1.000
— no equilibrium exists 0.130 0.707 1.000
BIGGER 0.997 1.000 1.000
MANY-CONS —0.060 0.995 1.000
GREEDY-BAD, case:
— equilibrium exists —24.28 0.960 1.000
—no equilibrium exists  —18.22 0.000 N/A

Table 5: Average efficiency in each network for the protocfaistored by\-d-competitive equilib-
rium attainment.

ducing runs of SAMP-SB would be attributable to negativeokis incurred from dead ends. The
significant differences between the efficiency of SAMP-SBuizl SAMP-SB shown in the non-
A-0-competitive equilibrium column provides evidence forsthiypothesis. Indeed, it appears that
surplus lost to dead ends (as opposed to suboptimal solatiamment) is the dominant cause of
inefficiency when\-d-competitive equilibrium is not attained. In all instanca#sprovement from
decommitment is greater than the difference between thaefly of SAMP-SB-D and optimal
efficiency.

Table 6 shows the average fraction of available surplusirddaby producers, respectively, in
each network. Perhaps surprisingly, in some networks thdymers can gain significant surplus
with the SAMP-SB-D protocol, even though they are biddingltain zero surplus. The reason
for this is that a producer’s output offer indicates the minm amount it is willing to accept in
exchange for its output. But rising buy offers can cause tlee o rise above the producer’s output
offer. This could happen in cases when it is necessary tkldatcertain agents to have a feasible
allocation in quiescence. Note however, that the decomemitratep is needed for the producers to
obtain high average surplus. Without decommitment, theaaeeproducer surplus can be highly
negative, as shown in the SAMP-SB column.

7. Related Literature
In this section we discuss literature related to our pres@mk. In Section 7.1 we discuss related
literature on price-based analysis and auction theoryjraBéction 7.2 we discuss related literature

on supply chain formation.
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Network SAMP-SB SAMP-SB-D
SIMPLE 0.000 0.000
UNBALANCED, case:

— equilibrium exists —0.041 0.082

—no equilibrium exists  —20.09 0.000
TWO-CONS, case:

— equilibrium exists (210 0.464
—no equilibrium exists 0.137 0.555
BIGGER 0.001 0.001
MANY-CONS —-0.517 0.359
GREEDY-BAD, Case:

— equilibrium exists —6.08 0.137

—no equilibrium exists  —1811 0.000

Table 6: Average fraction of available surplus obtained lmgdpcers in each network for the proto-
cols.

7.1 Price-Based Analysis and Auction Theory

We have shown some special cases for which competitiveilegaikexist in task dependency net-
works (polytree and single-input-producer networks)t ®aMP-SB always finda.-d-competitive
equilibrium in trees, and that a minor variant always fike&scompetitive equilibria in single-input-
producer networks. A review of the results in price equilibr and auction theory reveals that such
limited positive results are typical.

It is well-known that given arbitrarily divisible goods amnvex utility, cost, and produc-
tion functions, competitive equilibrium prices exist. Hditionally, the gross substitutes condition
(which is a generalization of no-complementarities) is,rttet classic tatonnement procedure finds
competitive equilibrium in a distributed manrfer.

When goods are discrete, competitive equilibria exist ichexige (non-production) economies
if the gross substitutes conditions are met (BikhchandaMaiiner, 1997; Gul & Stacchetti, 1999;
Kelso & Crawford, 1982). Milgrom (2000) showed that the éie of a single complementarity
can be sufficient to preclude equilibrium in exchange ecaasnBickhchandani and Mamer (1997)
also show existence under a variety of other conditionsclvtb not appear to have natural inter-
pretations in task dependency networks. In exchange edespmie gross substitutes condition
also ensures convergence to (approximately) competitiudlileria with simultaneous ascending
auctions (Demange et al., 1986; Gul & Stacchetti, 2000).

That distributed price-based auction protocols can legeats with undesired goods when their
preferences are complementary (e.g., dead ends in a taskdkcy network), is a widely recog-
nized problem. An alternative approach is to usembinatorial auction which mediates negotia-
tion at a single location, performing global matching of ¢@nations of goods based on indivisible
bids. This general approach has received much attentidreidt community as of late, motivated

6. The reader may consult a standard microeconomic textdag-Colell et al., 1995) for details on these results.
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in part by techniques for quickly performing the necessdopa optimization (Andersson et al.,
2000; Leyton-Brown et al., 2000; Sandholm & Suri, 2000).

Currently, some results on combinatorial equilibria anctians have been established for one-
sided (i.e., buyer only) bidding. Bikhchandani and Ost2§02) and Wurman and Wellman (2000),
using different combinatorial frameworks, provide paegtresults on equilibrium existence, and
properties thereof. Wurman and Wellman describe a contniahtauction for their framework.
Parkes and Ungar (2000) describe a combinatorial auctianishguaranteed to converge to an
efficient allocation if agents follow myopic best-resporstmategies. By adding an “extend-and-
adjust” phase, these authors are able to obtain this albocat ex postNash equilibrium (Parkes
& Ungar, 2002). Ausubel and Milgrom (2002) present a promgtieon mechanism that obtains
efficient allocations with straightforward bidding in elijoiium when goods are substitutes.

In the present work we consider only simple, local, myopiddiig policies. These policies
are non-strategic, in that agents do not reason about tfieat ®n the negotiations in an attempt
to extract greater surplus. The assumption of non-sti@tegfavior is plausible when there are a
large number of agents. In networks with many agents bidtingndividual goods, many parallel
branches, or many agents in sequence, the potential adtiiribof any one agent to the value of a
solution is relatively small and there is little to gain byaségic behavior.

Our experiments have shown that, even when producers blitainazero surplus with the spec-
ified policy, they can obtain positive surplus in some neksoiNevertheless, in smaller networks,
the potential for strategic improvement is more pronouneed our non-strategic assumption be-
comes less plausible. A widely studied concept used folyaimag strategic behavior is Bayes-Nash
equilibrium. Informally, a set of strategies constitutes a Bayes-Nasiliegqum if no single agent
has an incentive to deviate from its strategy, given thabthkér agents play their Bayes-Nash equi-
librium strategies. McAfee and McMillan (1987) and Klem@e(1999) survey the state of knowl-
edge of strategic analysis of auctions in exchange ecomsoniilgrom (2000) provides insights
on some of the fundamental challenges to understandinggtiiet &ehavior with complementary
preferences. However, definitive results are known onlygfate restrictive market structures, and
do not encompass two-sided markets with complementaritmser mind the multi-level character-
istic of negotiation in task dependency networks. The mnobbf even specifying the information
structure of the extensive form game of simultaneous asegrit¥+1)st price auctions in task de-
pendency networks, prerequisite to computing Bayes-Nagsiiileria, is well beyond the current
state of the art in game-theoretic analysis.

As auction theory currently fails to provide satisfactonyidance for understanding strategic
behavior in even moderately complicated domains, some hsed tournaments as a framework
for developing and evaluating candidate agent strategié® Santa Fe Double Auction Tourna-
ment (Rust et al., 1994) provided some unexpected insigltseiffective strategies in continuous
double auctions, and the recent “TAC” series of trading agempetitions (Wellman et al., 2001b,
2003) encouraged the development of sophisticated agemegies (Greenwald, 2003; Stone &
Greenwald, 2000) for a complex market game.

The Vickrey-Clarke-Groves mechanism (Clarke, 1971; GsovE973; Vickrey, 1961), also
called the Generalized Vickrey Auction (GVA) (MacKie-Mas& Varian, 1994), is a direct rev-
elation approach, where agents report their valuationsllooagions, and the auction computes a
lump-sum payment. For the GVA, the solution is the optimadation based on the reports, and

7. For a foundational reference, Chapter 7 of Fudenberg aontes game theory text (1998) provides a formal treat-
ment of the strategic issues in auction mechanism desigamalgsis.
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the payment function is such that it is a dominant strategyafgents to report their true utility.
Because of this incentive compatibility and perfect efficie the GVA may seem ideal from an
economic perspective (although the computation can badiatble). However, the GVA is not bud-
get balanced—when both buyers and sellers bid, the GVA caropamore money than it takes
in. Unfortunately this is unavoidable, as it is impossildeimultaneously ensure efficiency, budget
balance, and individual rationality (no agent achievesatieg surplus) (Myerson & Satterthwaite,
1983). Recently, Babaioff et al. (Babaioff & Nisan, 2001;bR@ff & Walsh, 2003) described
distributed auction mechanisms, based on McAfee’s tradecten auction (1992), that obtain in-
centive compatibility and budget balance in linear supplgins, at the expense of perfect efficiency.
Recent work by Parkes, Kalagnanam, and Eso (2001) exploeésonts to minimize the deviation
from efficiency while maintaining budget balance in twoesld5VA-like mechanisms.

7.2 Supply Chain Formation

Supply chain management—the problem of accurately foteggand planning production and de-
liveries to meet demand and minimize inventory—is an adiie of study in operations research.
The problem of management differs from supply chain foromatn that the exchange partners in
the supply chain are pre-established, and it is assumednfloamation can be gathered from all

agents to effectively optimize global production acrossshpply chain. In contrast, in this work
we approached the problem of automating the process ofndigieg supply chain participants dy-

namically, under the assumption that information and detisnaking is decentralized. Readers
interested in supply chain management may refer to Kjer(d1@@8) for an extensive review.

Relatively less effort has been explicitly devoted to thelgbem we cast as supply chdwrma-
tion, despite the rhetorical appeals to decentralized and dignatation-building commonplace in
the popular literature. Nevertheless, as we point out ini@e8, some venerable Al methods—in
particular the widely-knowrtONTRACT NET protocol—can in principle be applied to supply chain
formation. As discussed in Section 3, the standamdhTRACT NET does not have mechanisms to
resolve nontrivial resource contention, precluding aesysitic comparison with SAMP-SB on gen-
eral network structures. We can, however, compare the gots@n network structures for which
a resource contention mechanism is not necessargdTRACT NET. It is clear that if agents
bid their true costs, theaONTRACT NET with greedy allocation will converge to optimal alloca-
tions for trees. The same holds for tree structures relaxedldw multiple-unit input bids. As we
have shown, SAMP-SB is guaranteed to converge to approaiynafficient allocations for trees.
However, it can be shown that it may not converge to good iswisitif multiple unit input bids are
allowed. In the latter case, competitive equilibrium may exist, and and we have observed that
equilibrium non-existence can substantially hurt efficiein SAMP-SB allocations. In contrast,
producers may receive different prices for the same goold ®@NTRACT NET. This discrimina-
tory pricing mechanism makesSONTRACT NET robust in the presence of complementarities, for
this class of network structures.

Sandholm (1993) examines a specializatio@ ONTRACT NETfor a generalization of Task Ori-
ented Domains (TODs) (Rosenschein & Zlotkin, 1994). Agdmetgin with an initial allocation of
tasks and negotiate task exchanges until there are no riyubealeficial trades. Sandholm’s model
allows local constraints on task achievement in that an taggm perform only certain combina-
tions of tasks. However, there is no dependency structureagant does not rely on other agents’
task achievement in order to accomplish its own tasks. Téwesy locally feasible trade results in
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a globally feasible allocation, and can be executed imntelgiand independently of other trades.
We cannot generally apply an incremental trading protazolir task allocation model with subtask
dependencies. A local exchange may require reallocatimudfmout the entire network to maintain
production feasibility.

Andersson and Sandholm (1998) find that decommitment poltdecrease the quality of the
resulting allocations in variants of TODs. With incremémtading, decommitment gives agents the
opportunity to engage in other more cost-effective comgraéndersson and Sandholm also con-
sider decommitment penalties to provide friction in reediton and to compensate agents whose
contracts are broken. We expect that such penalties wouldnbappropriate extension to the
SAMP-SB-D protocol.

Veeramani et al. (Veeramani et al., 1999; Joshi et al., 1888%ider issues arising from si-
multaneous negotiation of multiple subtasking issues dbwa levels of a supply chain. In their
asynchronous model, agents may have the opportunity tazéelcontract while other negotiations
are still pending. This uncertainty induces a complex deciproblem for agents that do not wish
to overextend their commitments.

Hunsberger and Grosz (2000) study the problem of assigasigpderformance roles to agents
in the SharedPlans collaborative planning framework. Tloelehis based on recipes, which de-
scribe the precedence constraints on the execution tinosstne various sub-tasks that constitute
a complex task. Contention for shared resources is not radd=dplicitly in the recipe, but indi-
vidual agents may have additional cost, timing, or otherstraimts, potentially arising from their
individual resource limitations. Hunsberger and Groszausembinatorial auction to assign tasks to
agents, given the constraints, to produce a high-valuegkdhan. They find that limiting task as-
signment to certain combinations in roles can effect a tHidetween computational and allocative
efficiency.

In other work (Walsh et al., 2000; Walsh, 2001), we have stiditrategic behavior of agents
bidding in a particular one-shot combinatorial auctionhivitthe task dependency network model.
We empirically compared the performance of SAMP-SB, SAMRER and the combinatorial auc-
tion (with strategic bidding). The combinatorial auctidimrgnates the problem of dead ends by al-
locating inputs and outputs to producers on an all-or-magtlivasis. This advantage notwithstanding,
combinatorial auctions may not always be an appropriateharésm. Since finding any feasible
supply chain solution is NP-hard (Walsh et al., 2003), sigffitty large problems will be intractable,
even for advanced optimization procedures. Even when thmpuatation is tractable, social factors
may limit the authority of any one entity to compute allooas over the entire supply chain.

8. Extensions and Future Work

The task dependency network model we propose provides & faadieginning to understand the
automation of supply chain formation. We have discussedesaays to extend the bidding poli-

cies in our market protocol to accommodate more generalugtamh capabilities and consumer
preferences. With these extensions we can model capabilind preferences on multi-attribute
goods (e.g., goods with multiple features such as qualitiydslivery time, in addition to price and

guantity) by simply representing each configuration as tindisgood in the network. However, it

is clear that this can explode the number of goods with jusiadttributes. To effectively handle

greater numbers of attributes would require multiattebatictions (Bichler, 2001), where multiple
inseparable features of an exchange are negotiated siraatlialy.
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In more realistic scenarios, producers may also have te samnplex internal scheduling, plan-
ning, forecasting, or other complex problems in order tduata their costs and feasible options.
These types of extensions would increase the fidelity of tbdat) but would have implications
for agent bidding policies and computation and convergespeed in market protocols. Despite
the best efforts of agents to forecast and plan, agents tanedict with certainty their operation
within a formed supply chain. Sophisticated agents woulgleynprobabilistic reasoning tech-
niques in evaluating their options during negotiation. Whaexpected events do occur that impair
the operation of a formed supply chain, agents would neeguts for repairing or reforming the
supply chain.

We assumed a simple set of non-strategic, myopic biddinigipsifor the simultaneous ascend-
ing auction. Because agents must coordinate input and thigigiin a dynamic auction mechanism,
understanding strategic bidding behavior is a challengmtjunsolved, albeit important problem for
future work. It seems likely that significant developmemtgame-theoretic methodology would be
necessary to analytically solve, or even realisticallycefgethe extensive form games of incomplete
information corresponding to asynchronous iterativeianst In the meantime, to make progress in
understanding the performance of auctions, we should densiternate approaches to developing
“good” bidding policies. Tournaments have proven to bectife ways to both encourage smart
people to design smart trading policies and to evaluate te&itive qualities (Rust et al., 1994;
Wellman et al., 2001b). Axelrod (1987) used an evolutiorgpproach to evaluate populations of
strategies, with fixed types, for the iterated prisonerigrdma. A major challenge in applying an
evolutionary approach to the supply chain formation pnobis to develop a sufficiently rich, yet
reasonably searchable set of agent bidding policies.

We suggested decommitment as a solution to the problem af eleds in SAMP-SB, and a
strategic analysis of the protocol would have to take thigsphinto account. Because producers
could not lose money when decommitment is allowed, we shextebct that producers would be
more willing to participate, and would also be more aggressi their bidding. Allowing decom-
mitment begs the question of how to enforce that producersrdmit only when they are in dead
ends, and also does not address the fact that unilateralialesifor decommitment can potentially
break the (possibly desirable) contracts of many other dawam producers. To reduce aggressive
bidding and mitigate the potential problems, we could chgrgnalties to producers who initiate
decommitment (Andersson & Sandholm, 1998), perhaps pdidgetproducers whose output con-
tracts get decommitted. This would reduce spurious decemmanits while still allowing an out for
producers stuck in costly dead ends.

Finally, we note that the market configuration studied heseparate auctions for each good—
represents just one possible partition of the scope of regwis on the supply chain. At the other
extreme, production activity could be mediated by one coiatiorial auction mechanism covering
the entire supply chain (Walsh et al., 2000). This avoidsesopordination pitfalls of the separate
auction approach, but imposes other disadvantages asgsbeih imposing a mechanism with
global scope. Intermediate configurations, involving iplétauctions for clusters of highly related
goods, represent a promising alternative for further itigaton.
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Appendix A. Proofs

This appendix provides proofs of our theorems. For converiewe restate the theorems before
the proofs.

In our proofs, it is sometimes useful to index the positioragfroducer in a network. The-
level of a producemith outputg is the maximum distance from it to any consumer, formallyesta
as follows: one if no producer, but some consumer,dnas input, ank -+ 1 if the maximum level
of any producer with inpug) is k. The S-level of a producers defined similarly, but with respect
to the distance to any producer with no input, and with a baizero for producers that have no
inputs themselves. Both the C-level and S-level are welhdelfiby acyclicity.

A.1 Proof of Theorem 1

Let (V,E) be a network with no input complementarities, that is allduwers have at most one
input, and letV*, E*) be the optimal allocation faiV, E). For convenience, we partition producers
MM into setd14, the producers with a single input, afid, the producers with no inputs.

ProcedureNo Input Complementarities Equilibrium constructs prices that support a
competitive equilibrium foV* E*).

No Input Complementarities Equilibrium:

1. Initialize all prices to zero.
2. Perform any of the following until no price changes are enad

(a) If for somec € C\V*, we havev:(g) > p(g), where(g,c) € E\ E*,
P(g) — Vve(9)-
(b) If for somec e CNV*, we havev(d') — p(d') > ve(g) — p(g) > 0,
where(g,c) € E* and(d’,c) € E\ E*,
P(g) — ve(d) — (ve(9) — P(9))-
(c) If forsomeme MoNV*, we havep(gn) < K, Where(tt, gn) € E*,
P(9n) < K
(d) If for somette M1 NV*, we havep(gn) < p(9) + Kn
where(m,gn) € E* and(g, ) € E¥,
P(gn) — P(9) + K.
(e) If for somerte M1\ V*, we havep(gr) > p(Q) + K,
where(ttgy) € E\ E* and(g, ) € E\ E*,
P(9) < P(gn) — Kn.

In network (V, E) (with no input complementarities) at pric@s a closed, reverse-surplus se-
guenceis a directly connected sequence of agents and goods suavérg agent would be better
off by “reversing” its allocation. Formally, it is a sequen@y, ..., ny) of verticesn; € V, such that:
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1. (ni,niy1) € Eor(ni1,n) € E for alli where 1<i <k-—1.
2. ng e G
3. m e (C\V U (MpNV™).

(@) If np € C\V*, then(nz,n;) € E\ E* andn; would obtain nonnegative surplus pt
from obtainingn,. If 1 = k— 1, thenn; would obtain strictly positive surplus g@tfrom
obtainingn,.

(b) If g € NoNV*, then(n;,ny) € E* andn; would obtain nonpositive surplus atfrom
being active. Itk = 2, thenn; would obtain strictly negative surplus ptfrom being
active.

4. Fori > 2, if np € Athenn; € MU (CNV¥).

(@) Ifn e Ny NV*, then(n_1,n;) € E*, (n,ni1) € E*, andn; would obtain nonpositive
surplus afp from being active. If = k— 1, thenn; would obtain strictly negative surplus
at p by being active.

(b) If mj € N1 \V*, then(ni 1,n;) € E*, (nj,ni_1) € E*, andn; would obtain nonnegative
surplus atp from being active. If = k— 1, thenn; would obtain strictly positive surplus
at p by being active.

(c) If m eCnV*, then(ni_1,n;) € E*, (ni;+1,n) € E\ E*, andn; would obtain no less surplus
from nj 1 than fromn;_; at p. If i = k— 1, thenn, would obtain strictly better surplus
from nj_; than fromn;_1.

An open reverse-surplusequence is the same as a closed, reverse-surplus sequeape e
that, instead of Condition 3, we hawg € G andn;, € M U (CNV*) as with Condition 4. Clearly
any closed, reverse-surplus sequence of length greatemlmacontains an open, reverse-surplus
sequence.

Lemma 18 ProcedureNo Input Complementarities Equilibriumdoes notreach a state such
that there is an open, reverse-surplus sequence {0y, ...,ny) constituting a cycle with n= ng
and k> 3.

Proof. Assume, contrary to which we wish to prove, that there is sadycleK at pricesp.
Moreover, let the cycle be the smallest, in that it contaimther such cycle.

We show how to create an alternate, feasible solutnE’) with a higher value thatv*,E*),
giving us a contradiction. Initializév’,E") = (V*,E*). For alln;, where 1< j <k, if (nj,nj;1) €
E*, remove the edge frof’, and if the edge is it \ E*, add the edge t&’. Also, add and remove
vertices as necessary to be consistent with the added amyedredges.

Each producer ifV',E’) is feasible because it was feasible(\f*,E*) and if it has an input,
either both its input and output are added, both are remavratkither is changed. Consider a good
nj € G, with 1 < j < k. Sincej —1 > 1, it must be that agents_; andnj,; are inl1; U (CNV*).

By inspecting Conditions 4(a)—4(b) of the definition of asdd, reverse-surplus sequence (which
also apply to an open reverse-surplus sequence), we seedi@s incident om; are added or
removed in such a way tha is in material balance. Similarly, considering agemts;, np, and
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goodn; = ng, we have material balance for goagd= n¢. Since goods are in material balance and
producers are feasiblgy’,E’) is feasible.

The surpluses of agents notknare unaffected by the transformation. By definition of anmpe
reverse-surplus sequence, every agemd wbtains no lower surplus gt after the transformation,
and agenhy_1 obtains strictly higher surplus @t Because the value of a feasible allocation is the
sum of agent surpluses at any particular prices (Lemma 22)nwust then have valgg/’,E")) >
valug((V*,E*)). But this contradicts the optimality qiv*,E*), so the assumption th#t exists
must be falsel

Lemma 19 If the price of good g increases in Procedur&/o Input Complementarities
Equilibrium, then there there exists a finite closed, reverse-surplgseseeny, ..., n) at prices
p just before the price increase.

Proof.

We show how to construct the desired closed, reverse-surpdguence, referring to the
conditions in the definition, and to the steps in Procediise Input Complementarities
Equilibrium. The price increase afy occurred in one of Steps 2(a)-2(e), triggered by agent
Nk_1. Since the step was triggered,_; would obtain strictly better surplus by reversing its al-
location atp, as specified in the conditions 3(a), 3(b), or 4(a)—4(c). h& price ofng was in-
creased in Step 2(a) or 2(c), then we have the desired closedise-surplus sequence, with
-1 € (C\V*)U(MonV*) andk—1 = 1. Otherwise, the price ai was increased in Step 2(b),
2(d), or 2(e), witn,_1 € M1 U (CNV*) andk—1 > 2. In this case, we lat,_» be the good that also
matched the condition of the step.

If the price ofng_» increased, then Proced¥e Input Complementarities Equilibrium
ensures that we can find an agejtz matching one of the Conditions 3(a), 3(b), or 4(a)—4(c)off,
the other handp(nk_,) =0, then because producers have positive costs and consaverpositive
values, we can also find such an agepts. If we find an agent that corresponds to condition 3(a)
or 3(b), thenk — 3 =1 and we are done. Otherwise, we can find a gaod, as we didn_», and
continue in the same manner.

Clearly, this process constructs an open, reverse-susplysence. Now, we must show that this
process of selecting vertices eventually selects an efemen (C\V*)U (MoNV*). Since(V,E)
is finite, and since by Lemma 18 there can be no cycles in any, apeerse-surplus sequence, we
must eventually find a; € (C\V*)U (MpNV*) to give us a closed, reverse-surplus sequence.

Lemma 20 ProcedureNo Input Complementarities Equilibriumterminates.

Proof. Assume, contrary to which we wish to prove, that the procediaes not terminate and that
the price of goody increases an infinite number of times. Consider accte(n; =g,...,nk=0Q)
of verticesn; € V, k > 3 such that:

1. (ni,n;1) € Eor(ni,n) eEforallie{l,... k—1}.
2. Forallie{2,...,k—1},n #g.

3. Foralli€ {3,... k}, if nj € G, the price increase of goad occurred in one of the Steps 2(b),
2(d), or 2(e) in the procedure, and agent; and goodh;_» also matched the condition in that
step. Furthermore, the price increasenab, triggered by agent;_3 and goodn,_4, caused
the need for the price increase of gagd
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Because the price @fincreases an infinite number of times, such a cycle must exist

Let p be prices such thai(n;) is as it was whem; and agenty, triggered the price increase of
nz, and for alln; € Gand 1< i <k, p(n;) is as it was just after the it was increased, as triggered by
agentn;_; and good;_». The price of all other goods is an arbitrary nonnegative loemm

By the way we constructed, and by the way prices are increased in the proceddnsust
be an open, reverse-surplus sequence. But by Lemma 18, sdataanot exist. Therefore, the
procedure terminates)

Theorem 1Competitive equilibria exist for any network with no inpogplementarities.

Proof. We show that ProcedurBo Input Complementarities Equilibrium terminates at
prices p with every agent obtaining its maximum surplus accordingMd,E*) . Since(V*,E*)
is efficient, it is also feasible, giving us a competitive déigtium at pricesp.

By Lemma 20, the procedure terminates. Clearly, when thegolare terminates, agents in
MU (MoNnV*)U(C\V*) optimize according tg¢V*,E*). It remains to show the same f¢€ N
V*)U (Mo \V*). Assume, contrary to which we wish to prove, that sae(CNV*)U (Mp\V*)
does not optimize according {v/*,E*).

Consider the case wheeec (CNV*) and(g,a) € E*. Since the algorithm guarantees tlaat
does not prefer any other goaf to g at pricesp, it must be thatp(g) > vc(g). Let p’ be the
prices immediately before the price gfrose aboves;(g) and p” be the prices immediately after.
By Lemma 19, there is a closed, reverse-surplus sequence.,n, = g) at pricesp’. At p’, the
conditions of the closed, reverse-surplus sequence heotepée that the surplus condition in 4(a),
4(b), or 4(c) that applies tox_1 becomes non-strict. However,obtains a strictly negative surplus
atp”. Denotea asn, ;.

We can create an alternate, feasible soluff/dhE’) as in the proof of Lemma 18 by adding
edges(n;,ni;1) that are inE \ E*, and removing such edges that aregin for all i € {1,... k}.
The surpluses of agents notknare unaffected by the transformation. Every agenain. .., ng_1)
obtains no lower surplus at’ after the transformation. Agemt= ny obtains zero surplus after
the transformation, which is higher than the negative sigrjilhad before. Because the value of a
feasible allocation is the sum of agent surpluses at anicphat prices (Lemma 22), we must have
value((V',E’)) > value((V*,E*)). But this contradicts the optimality ¢¥*,E*), so it must be that
p(9) < v¢(g) anda is obtaining its maximum surplus atin (V*,E*).

If, on the other handa € (Mo \V*), and(a,g) € E. It must be thak, < p(g). We can use the
same line of proof as the case©@fV* to show thatV*,E*) has a suboptimal value, providing a
contradiction. Thua must optimize according t¢/*,E*) at p.

Thus we have shown that the algorithm terminates with alhtsgeptimizing according to
(V*,E*) atp. Thusp supports a competitive equilibrium for allocati¢vi*, E*). O

A.2 Proof of Theorem 2

Given a polytree(V,E) and an efficient allocatiorfV*,E*), we present Procedur®olytree
Equilibrium that constructs lower bounds (g) and upper boundp~(g) on the prices of all
goodsg, and in turn uses these bounds to construct phices all goods. Then we prove that the
resulting prices are in fact competitive equilibrium pedbat supportV*,E*).
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Observe that, for the purposes of competitive equilibriumcipg, we can treat a consumer
that wishes to obtain one good from the &tas a consumer that desires a single ggewith
valuevg(ge) = Ve = Maxges, Vc(9), along with additional producers. For eaglke G; we create a
producerrt with outputge, inputg, and withky; = vc — V¢(g). Thus, without loss of generality, we
consider only consumers with preferences for single goddsdenote ag. the good that consumer
c desires and denote gsthe valuec has forgc.

We refer to all’ € V such that eithefn,n’) € E or (n’,n) € E as theneighborsof a vertex
neV. We usel to refer to a null vertex that is not a neighbor of any otheteser

Polytree Equilibrium:

1. Foreaclye G, p_(g) < O0andp (g) « co.
-

2. For each connected subgrafsh E)
PerformSet Bounds(g, L).

p(9) « p-(9).

(V,E), select ay € GNV arbitrarily:

Set Bounds recursively visits the vertices, updating the price boundsostorder (i.e., as the
recursion unwinds) and setting prices to either the lowenpmper bounds. Becaus¥,E) is a
polytree, the procedure sets the price for each good exaicty.

In Set Bounds(n, r), if n€ A, thenr € G and the procedure either updates(r) or p(r)
after the bounds for all neighbors of other tharr, have been fixed. If it updatgs_(r), it does so
in such a way that ih ¢ V* thenn, if active, would get a nonpositive surplus for apfr) > p_(r),
given the bounds on the other neighborsypand ifn € V* thenn, if active, would get a nonnega-
tive surplus for anyp(r) > p_(r), given the bounds on the other neighborsrofincep_(r) only
increases (Steps 2, 4(b), and 5(c)), this property is maeda Similarly, if Set Bounds(n, r)
updatesp™(r), it does so in such a way thatnf¢ V* thenn, if active, would get a nonpositive
surplus for anyp(r) < p~(r), given the bounds on the other neighborsnpfand if n € V* then
n, if active, would get a nonnegative surplus for guy) < p~(r), given the bounds on the other
neighbors oh. Sincep™(r) only decreases (Steps 3, 4(c), and 5(b)), this property isteiaed.

Set Bounds(n, r):

1. For each neighbarof n such thatz# r, performSet Bounds(z, n).

2. IfneC\V*,
p-(r) < max(vn, p(r)).
. Elseifne CNnV*,
p™(r) < min(va, p~(r)).
. Elseifne M\V* then,

w

N

(a) For each neighbay of n such thag # r
If gis an input ofn
p(g) — P (9).
Elseg is the output oh,
P(g) — P-(9).
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(b) If r is an input ofn,
and with the outputgy,, of n
p_(r) < max(p_(r), p—(gn) — 2 (gn)eE, g#r P~ (9) —Kn)-
(c) Elser is the output oh,
p(r) —min(p™(r), 3 gnee P~ (9) +Kn).

5. Else ifne MNV* then,

(a) For each neighbay of nsuch thag #r,
If gis an input ofn,
pP(g) < P-(9).
If gis the output oh,
p(g) «— P (9).

(b) If r is an input ofn,
and with the outputgy, of n),
p(r) «—min(p(r), p~(gn) — 2 (gn)eE, g#r P— (9) — Kn).
(c) Elser is the output oh,
p_(r) < max(p_(r), 2 (gnyeE P- (9) +Kn)

Lemma 21 ProcedurePolytree Equilibriumcomputes price bounds such that(g) < p=(g)
for all goods ge G.

Proof. Assume, contrary to which we wish to prove, that at some thate is somg & G such that
p-(§) > p~(§). Assume further thag i5 the first such good visited.

We say that agerd constrainedp_(g) if Set Bounds(a, g) was the last to changp_(g).
Similarly, we say that agerd constrainedp™ (g) if Set Bounds(a, @) was the last to change

P (9).
Recall from Lemma 22 that the value of any feasible allocatsoequal to the sum of the agent

surpluses at any particular prices. We show how to transffimE*) to an alternate feasible
allocation(V’,E’) and compute alternate pric@sto show that the sum of surpluses(M’,E’) is
greater than ifV*,E*).

First, initialize (V/,E") = (V*,E*) and for each good € G initialize p(g) = 0. Next, setp(§) =
p-(§). Then we recursively change prices and the allocation foortéign of the subtree rooted
atd. PerformLower Bound(a, @) for the agenta that constrainecp_(§) and performUpper
Bound(a, §) for the agent that constraingd (g).

Throughout the transformation, we perfoitawer Bound (&, §) iff we visit § and agena”
constrainedp_(§). Similarly, we performUpper Bound(&, §) iff we visit § and agentton-
strainedp™ (§). The following describes these portions of the transforonat

Lower Bound(a, Q):

1. Ifae N\V*, it must be thag is an input ofa (because constrained_ (g)).
For each neighbay +# g of a:
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(a) If d is an input ofa,

p(g) < P (9).

performUpper Bound (&, ¢') for the agen#’ that constraineg(g').
(b) Else ¢ is an output of),

p(g) — p-(9),

performLower Bound(&, ¢') for the agen#’ that constraineg_(g').

2. Else ifae MNV*, it must be thag is an output ofa (because constrainedp_(g)).
For each input of a:
p(g) < p-(9),
performLower Bound(&, ¢') for the agen#’ that constraineg_(g').

3. IfaeV?,
removea and all incident edges frorfy’,E’).

4. ElseifacV\V*,
adda and all incident edges ', E’).

Upper Bound(a, Q):

1. Ifae N\V*, it must be thag is an output ofa (because constrainedo™ (Q)).
For each inputy of a:
p(g) — P (9),
performUpper Bound(&, ¢') onthe agen#’ that constraineg™ (g').

2. Ifae MnNV*, it must be thag is an input ofa (because constrained™ (g)).
For each neighbay +# g of a:

(a) If g is an input ofa,

p(g) < p-(9),

performLower Bound (&, ¢') for the agen# that constraineg_(g').
(b) Else ¢ is an output of),

p(g) — p(9),

performUpper Bound(&, ¢') for the agen#’ that constraineg(g').

3. IfaeVr,
removea and all incident edges frorfy’,E’).

4. ElseifacV\V*,
adda and all incident edges ', E’).

Observe that, becau$¥, E) is a polytree, a vertex can be visited at most once by eitbper
Bound Or Lower Bound.

Now we show thatV’,E’) is feasible. Consumers are always feasible. Producer®asibfe
because we add or remove all incident edges when we add oveesmyaroducer, respectively. We
now prove that everg € G is in material balance itvV’,E’).
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Consider good for which p_(§) > p (§). Lower Bound(a, @) is performed only if agent
a constrainedp_(§), which occurred in 2, 4(b), or 5(c) &fet Bounds(a, §). ThereforeLower
Bound(a, §) either adds(§,a) € E\ E* or else removesa,§) € E*. Upper Bound(a, §) is
performed only ifa constrainedo™ (§), which occurred in 3, 4(c), or 5(b) &fet Bounds(a, §).
ThereforeUpper Bound(a, Q) either addsa,§) € E\ E* or else removes§,a) € E*. For any
possible combination, material balance is maintainedyfor *

Now consider any other goagl# §. If g is visited byLower Bound(a, @), thenp(g) was set
to p_(g) in one of the following ways, immediately prior:

1. p(g) was set tgp_(g) by 1(b) of Lower Bound(&, §), for some other agert< M\ V* and
other goody” In this caseg is an output of’so (&,9) € E\ E* was added t¢V',E’) in 4 of
Lower Bound(&, §).

2. p(g) was set top_(g) by 2 of Lower Bound (&, @), for some other agerst € M NV* and
other goody” In this casey is an input ofa’so (g, d) € E* was removed frontV’,E’) in 3 of
Lower Bound(&d, §).

3. p(g) was set top_(g) by 2(a) ofUpper Bound(&, &), for some other agert< NMNV* and
other goody” In this case casgis an input ofa’so (g, d) € E* was removed frontV’,E’) in
3 of Upper Bound(d, §).

One of the following operations occurredliawer Bound(a, Q):

1. If aconstrainedp_(g) in 2 or 4(b) ofSet Bounds(a, @), then(g,a) € E\ E* is added to
(V/,E’) in 4 of Lower Bound(a, Q).

2. If agentaconstrained_(g) in 5(c) of Set Bounds(a, @), then(a,g) € E* is removed from
(V/,E’) in 3 of Lower Bound(a, Q).

For any possible combination of additions or removals ofsdgcident org prior to, and inLower
Bound(a, @), material balance is maintained fgr We can show a similar result gfis visited by
Upper Bound(a, g). Hence we have established feasibility(df,E’).

Now we show that for any ageate A, o(a, (V',E’),p) > o(a,(V*,E*), p), and there is some
agenta’ € Asuch thao(a, (V',E’),p) > o(&,(V*,E*), p).

For any agena not visited in the construction ¢V’ E’), a(a, (V',E’), p) = o(a,(V*,E*), p),
because has the same allocation as(M*,E*).

Considera visited by Upper Bound(a, §). Becausea’ was thus visited@ constrained
p~(§). Upper Bound(a, §) sets the prices of all other neighbor goapg § to the prices used
to computep™(§) in Set Bounds (&', §). The prices of these neighboring goods were computed
such that ifa’ € V*, @ would get negative surplus at any price gpabovep (§) and ifa’ € V \V*
it would get a positive surplus for at any price fpabovep~(§). But, in the alternate prices we
computed,p(§) = p—(§), and we assump_(§) > p (§). Sinced' is inV’ if and only if it is not in
V*, we haves(d, (V',E’), p) > o(d,(V*,E*), p).

Now consider any othes € A, a # &, visited in the construction ofvV’,E’). If ais visited
by Upper Bound(a, @), thenp(g) = p~(g) anda must have constrainep (g). If a € C, then
Set Bounds(a, Q) setp (g) such thaty; — p(g) =0. If a€ N, Upper Bound(a, @) sets the
prices of the other goods neighboriagp the prices used to compupe (g) in Set Bounds(a, Q).
These neighboring prices are such thatvere active and feasible, it would get zero surplus when
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p(g) = p(p). Thusa(a, (V',E’),p) =0o(a, (V*,E*), p). If, on the other handa s visited byLower
Bound, thenp(g) = p-(g) anda must have constrainggl_(g). By a similar argument we used with
Upper Bound, a gets a zero surplus whep(g) = p_(g). Again, this giveso(a, (V/,E’),p) =
o(a, (V¥ E*), p).

We have shown that for any ageatc A, o(a, (V',E),p) > o(a,(V*,E*),p), and there is
some agent’ € A such thato(a,(V',E’),p) > o(d,(V*,E*),p). But then valugV’,E’)) >
valug((V*,E*)), which is a contradiction. Hence, the initial assumptioat . (§) > p~(§) must
be false. But them_(g) < p~(g) for all goodsg.

O

Theorem 2Competitive equilibria exist for any polytree.

Proof. We show that agents optimize according(¥¢*,E*) at the pricesp computed by proce-
durePolytree Equilibrium. Since(V* E*) is feasible by definition, the resulting prices and
allocation constitute a competitive equilibrium £, E).

Because the construction pf (g) ensures that it never decreases, Step 2eaf Bounds en-
sures that every consumee C\V* optimizes ifp(gec) > p-(gc). Because_(ge) < p(c) < p~(Qe)
(by construction ofp and by Lemma 21)¢ then optimizes according & *,E*). By a similar ar-
gument, everg € CNV* optimizes according tov*,E*).

Consider a producem € N\ V*, visited bySet Bounds(m, @). If good g is an input ofT,
then 4(a) oSet Bounds (11, Q) sets the price of every other neighbor gapek g of Ttto the price
bounds used to compute (g) in Step 4(b) ofSet Bounds (T, g). Moreover,p_(Q) is set to the
smallest price such that could get a maximum surplus of zero, given the specified bewfdhe
other neighbor goods. Singe (g) could only increase subsequently, sinze(g) < p(g) < p(9)
(by the construction op and by Lemma 21), and since the price of each good is set omlg on
(becausdV,E) is a polytree)rt cannot get a positive surplus at the prices seSéy Bounds (T,

g). By a similar argument, ifj is an output ofit, then in Step 4(cp~(g) is set to the largest price
such thatrt would get at a maximum surplus of zero, given the prices sehemeighbor goods.
Since againp_(g) < p(g9) < p~(9), p~(g) only increases subsequently, and the price of each good
is set only once, it must be that can get at most zero surplus. Thaptimizes according to
(V*,E*). Symmetrically, we can see that every 1 NV* optimizes according t&v*,E*).

We have shown that all agents optimize according/t E*) at p, hence we have shown that a
competitive equilibrium exists for polytre®/,E). O

A.3 Proof of Theorem 3

Lemma 22 The value of a feasible allocatigiv’,E’), at any prices p, can be expressed as:

valueg((V',E")) = ;o(a, (V' E"), p). (1)

ac
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Proof. Equation (1) expands to:

value((V/,E")) = Ec (vc((V’,E’))—< ; p(g)>
ce 0,c)€E’

- —kn((V,EN) | .
+n; (m - p(9) o P(g) — Kn(( )))

Since all goods are in material balance in a feasible allmeasll the price terms cancel out. We
are left with

ECVC((VI’E/))_ ;Ks((V',E’)),

Ce S

which is the original formula for the value of a solution (Defion 1). O

Theorem 3If (V',E’) is a A-6-competitive equilibrium fofV,E) at some prices p, thefv’,E’) is
a feasible allocation with a nonnegative value that diffssn the value of an efficient allocation
by at most ren [Z(g,rr}eE AR+ 8] + [C|Bp.

Proof. We refer to the four conditions forad-competitive equilibrium (Definition 4). LevV*, E*)
be an efficient allocation faiv, E).

Conditions (3) and (4) imply thatV’,E’) is feasible. Recall the formula for the value of a
feasible allocation from Equation (1). Sin¢¢’,E’) and(V*,E*) are both feasible, we can express
their values as

value (V. E) = 3 ofa.(V'.E).p) 2)

ac

valug((V*,E¥)) = Z\o(a, (V*,E"), p). (3)

ac

For all c € C, by Condition (2),0(c,(V’,E’),p) > Hc(p) — &,. Because no allocation is any
better for an agent than its optimal allocatiaric, (V*,E*), p) < Hc(p). Thus,

o(c,(V*,E"),p) —o(c,(V,E'),p) < & (4)

For all te M, by Condition (3),0(tt (V',E’), p) > Ha(p) — (3 (gmece A%+ 8s). Because no
allocation is any better for an agent than its optimal alioca o (1, (V*,E*), p) < Hy(p). Thus,

o(m (V4E),p)—o(m(V E).p) < Y A+ds (5)
(gmeE

Equations (2)—(5) together imply that val@é*,E*)) —valug((V',E’)) < ¥ ren [ gmee AS A+
Os] + |C|dp. Condition (1) implies that each sum term in Equation (2) é@megative, hence
valug((V/,E")) > 0. As notedV’,E’) is feasible.

O
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A.4 Proof of Theorem 5

In proving the theorem, we refer to the C-level and S-levagdroflucers in a network, as defined in
the beginning of Section A.
A task dependency network, E) is characterized by the following parameters:

e @ the maximum C-level of any producer in the network,
e Y: the maximum number of input goods for any producer,

e R the maximum consumer value, Mg¥ cejcec Ve(9)-
Lemma 23 In a run of SAMP-SB for networf/, E), no agent places a buy offer above-R@dy,.

Proof. Consumers never offer above their valuation, which is bedryR. We prove by induction
on the producer C-level that no producer at C-ldvplaces a buy offer above+ 2kdy,.

Suppose that a producarat C-level one places an offer to buy an ingut pricefy > R+ 20y,
Since it always increments buy offers By, this means at some previous time it submitted a buy
offer for g at priceR+ &, < ' < R+ 2dp. At that time, it must have been losiiggelse it would not
be bidding. But then the ask quote @must have been greater thRnand then offered greater
thanR for its output. Since only a consumer will offer to buy for thetput of a producer at C-level
one,tmust lose its output. Because offers are nondecreasirggithation is permanent, and hence
TLnever again raises an input offer, contrary to our suppmositiThus a C-level one producer will
never place a buy offer abowe+ 29y,

For the inductive step, we assume that no producer at anyeTilevherei < k, places a buy
offer aboveR+ 2id,. Thus, no producer at C-levklcan win its output offer for more thaR +
2(k—1)dp. Applying reasoning analogous to the base case (C-levg| areesee that no producer
at C-levelk places a buy offer above+ 2kd,. Because < ¢ for all producers, the lemma follows
immediately.0

Lemma 24 No agent places more tha¥{iR+ 2@dy,) /8, + Y buy offers.

Proof. Since consumers offer at moRtand increase offers by at lead, they place offers at
mostR/d, times. A producer initially places at mo¥tbuy offers for its inputs. According to
Lemma 23 and the producer bidding policy, a producer sulesgtyuoffers no higher thaR+ 2¢dy
in increments oby, for each of a maximum of inputs. O

Theorem 5SAMP-SB reaches quiescence after a finite number of bidskereplaced.

Proof. By Lemma 24, a finite number of buy offers are placed. We neesvsinly that pro-
ducers place a finite number of sell (output) offers to esthtihat a finite number of total bids are
placed.

A producer will change its output offer only if: 1) the pricé @an input changes, 2) the ask
price of an input changes, or 2) it loses an an offer for a gbad it was previously winning.
An unchanged input offer can switch between winning anchipsit most once without the price
changing. Similarly, an unchanged input offer can switchninig state at most once without the ask
price changing. Hence, it is sufficient to show that the peand ask price of each of a producer’s
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input goods change at most a finite number of times. We prowedugction on the producer S-level
that the price and ask quotes of an input good to a produceteatesk changes a finite number of
times.

Only a producer with no input places an output offer for a tgmodg to a producer at S-level
one, and producers with no input place only one offer eachncElethe price or ask price of
change only in response to a change in a buy offegfd@ut by Lemma 24, the number of buy offer
changes fogis finite.

Now assume that all producers at all S-levels less kalace a finite number of output offers.
For a goodg which is an input for a producert at S-levelk, the number of output offer changes is
finite. Again the number of input offers fgrmust be finite. Since the number of input and output
offers forg is finite, Tt places a finite number of output offefs.

A.5 Proof of Theorem 8

In proving the theorem, we refer to the C-level of producers network, as defined in the beginning
of Section A. For reference, quasi-quiescence is desciibBefinition 5.

Lemma 25 If a run of SAMP-SB is in a quasi-quiescent state during tmefintervalt, t'] then no
inactive producer changes an offer for an input good in tieetinterval[t, t’ + €], whereg is the
smallest period of time an agent requires to update a bid spoase to a price quote.

Proof. By definition of quasi-quiescence, during the interftat’], no consumer or active producer
changes any offer. Thus, a simple induction on the C-levéi@inactive producers shows that any
producer that is inactive at timtewould not win its output duringt,t’], hence inactive producers
remain inactive during this interval. But a producer thanictive during]t, t'] would not change
its input offer during[t, t' +¢€]. O

Lemma 26 If a run of SAMP-SB is in a quasi-quiescent during the timerirdl [t, t'], then it is
quasi-quiescent during the time interval t’ + €], wheree is the smallest period of time an agent
requires to update a bid in response to a price quote.

Proof. Assume, contrary to that we wish to prove, that a run of SAMBRisSjuasi-quiescent during
[t, t'] but not during timgt’,t’ + €]. Letabe a consumer or active producer that will change an offer
inft’, t' +¢.

If ais a consumer, thea would only change an offer if it lost some offer it was prewsbu
winning in quasi-quiescence. #is a producer, it must be feasible, otherwise it would chatge
input offer (because it is active) violating quasi-quiesme Sincea is feasible, it would change an
offer only if it loses an input it was previously winning, dre price of one of its inputs increases.
In any of these cases, either loses a buy offer it was previously winning, or thecerof one of
its buy offers increased. For one of these to occur, it mughaeat timet” € [t,t'], some agent
either 1) changed its own winning output offer or 2) changsdriput offer. But the definition of
quasi-quiescence precludes #1, and Lemma 25 and the aefiniftiquasi-quiescence preclude #2.
This gives us a contradiction, proving the lemra.

Lemma 27 If a run of SAMP-SB is in a quasi-quiescent state at time 1 this quasi-quiescent at
all times t > t.
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Proof. By Lemma 26 we can conclude that we have quasi-quiescenbe intervalt, t + €], then
further extend that interval bg, and so on indefinitelyd

Lemma 28 If a run of SAMP-SB is in a quasi-quiescent at time t, then apcer that is inactive
attimet is inactive at time+ ¢, and a producer that is active at timet is also inactive aim- €,
whereg is the smallest period of time an agent requires to updatelarbiesponse to a price quote.
Furthermore, fg) does not change for any good g at time ¢

Proof. Since an agent cannot lower its offers, the only way for aatina producentto become
active is for some other agent to raise its buy offer. By Lenfivisand the definition of quasi-
quiescence, only inactive producers will change any oféétsrt, and by Lemma 25 no inactive
producer will change its input offers. But therremains inactive.

Since offers do not decrease, an active producean become inactive only by increasing its
offer for its output. Butrt will do this only if the prices on its inputs increase. Since have a
guasi-quiescent state, this can happen only if an inactvdyzer’ changes its offer for its output
g. But sincert is inactive, a change to its offer fgrcan cause onlg(g) to change. Since active
producers are feasible (otherwise they would want to ch#mgebids, violating quasi-quiescence),
Ttis not losing a buy offer fog at timet. Thereforetdoes not respond to changesiifg), hence
does not change its output offer and will remain active.

Theorem 8If a run of SAMP-SB reaches a quasi-quiescent state, theaniams in a quasi-
quiescent state. Furthermore, neither the allocation i@ prices p subsequently change.

Proof. The theorem follows directly from Lemmas 27 and 28.

A.6 Proof of Theorem 10

In proving the theorem, we refer to the C-level of producers network, as defined in the beginning
of Section A.
A given run of SAMP-SB in networkV, E) is characterized by the following parameters:

e ¢ the maximum C-level of any producer in the network,
e Y: the maximum number of input goods for any producer,

e R the maximum consumer value, Mg¥ cgjcec Ve(9)-

Theorem 10SAMP-SB reaches a quasi-quiescent state after a numbedsbbiunded by a poly-
nomial of the size of the network and the value of the maximamaummer value have been placed
by consumers and active producers.

Proof. SAMP-SB is guaranteed to reach a quasi-quiescent statei@ie5 and Observation 7).
By Lemma 24, the number of buy offers is bounded by a polynbmithe value ofR, hence we
need only be concerned with the number of sell offers plaS@tte the prices of buy offers increase
by at leas®y, a producer’s perceived cost for any good must rise by at &aso will increase its
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sell offer by no less thady,. Also, a producer will increase its sell offer by no less tldgnas re-
quired by the auction. Hence, Lemma 23 implies that an agtigducer will become permanently
inactive after it places at mo&R-+ 2¢dy) /[max(dp, 6s)] output offers.c

A.7 Proof of Theorem 11

In proving the theorem, we refer to the conditions far-&competitive equilibrium (Definition 4).

Lemma 29 When SAMP-SB reaches quiescence in nety\yk) then each consumer obeys the
A-0-competitive equilibrium conditions (Conditions (1) ar&j)(

Proof. Since each consumer maintains at most a single winning faffex good that gives it non-
negative surplus, it obeys Condition (1).

Let the final prices and allocation and (V’,E’), respectively. Assume, contrary to Condi-
tion (2), thata(c, (V',E’), p) < Hc(p) — 8, for some consumet. Letg* be a surplus-maximizing
good forc at p.

If c does not buy a good, thes(g*) + o, < V¢(g*) (otherwise it would have placed and won an
offer for g*) anda(c, (V/,E’), p) = 0. Noting also thaH.(p) = v¢(g*) — p(g*), algebraic manipu-
lation gives uss(c, (V/,E’), p) > Hc(p) — O, Which is a contradiction.

Thus,c buys one goody such that

ve(d) —p(g) < ve(g")—p(g) — b (6)

Let p(g*) and p{d') be the prices fog* andg’ whenc placed its final offer foig’. Sincec offers
p(d') + oy for ¢, and sincec won this offer atp(g'), we have

p(g) +3 > p(d). (7)
Since prices do not decrease, we have
p(g") < p(g"). (8)
Substituting Equations (7) and (8) into the left and rigdesi, respectively, of Equation (6) gives us
ve(d) = (B(g) +8) < ve(g) — (P(g") +3b).

But the consumer bidding policy specifies titatould have bid forg*, rather tharny' at pricesp;
which is a contradiction. Thus each consumer obeys Condigh O

Lemma 30 If SAMP-SB reaches quiescence in netw®ke) such that no inactive producer buys
a positive-price input, then each producer obeysik®competitive equilibrium conditions (Con-
ditions (1) and (3)), witd\$ = max(a(g) — p(g), &).

Proof. The bidding policy ensures that each produreells its outpu;; only at a nonnegative
surplus, and the lemma conditions directly imply thetas zero surplus if it does not s&ll Thus
Ttobeys Condition (1).

The producer bidding policy guarantees thias feasible in quiescence.
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Let the final prices bg and allocation b&V',E’). If Hu(p) > ¥ gnee A+ 8 in quiescence,
thenHn(p) = p(gn) — 2 (gmeE p(g) > 2 (gmeE )\%"‘65- Thusp(gr) > 2 (gmeE p(g) + 2 (gmeE 7\191"‘
ds. The producer bidding policy ensures timedffers no more thary g e P(9) + ¥ (g e A+ O
for gr, SO it must be winningy,; at a profit. Thuss(1t, (V/,E’), p) = Hp(p) and Condition (3) holds.

If insteadHn(p) < 3 (g mce A$+ 8, then sinces(1t, (V/,E’), p) > 0, Condition (3) holdsC

Theorem 11 The prices and allocation determined in quiescence by tHdFSAB protocol is a
A-8-competitive equilibrium, witi = max(a(g) — p(g), &), iff no inactive producer buys any
positive-price input.

Proof. Case only if:Condition (1) ofA-&-competitive equilibrium (Definition 4) fails if an inac-
tive producer buys any positive-price input.

Case if:Lemmas 29 and 30 show that the consumers and producers;tiesiye obey the\-o-
competitive equilibrium conditions (Conditions (1)—(3)yhe (M+1)st-price auction rules ensure
Condition (4). All conditions oh-d-competitive equilibrium are met

A.8 Proof of Theorem 12

In proving the theorem, we refer to the conditions far-&competitive equilibrium (Definition 4).

Lemma 31 If a(g) — p(g) > oy, for any good g in a quiescent state of SAMP-SB for netWdrE),
then no agent wins an offer for g.

Proof. Assume, contrary to which we wish to prove, thgg) — p(g) > &, and some agent is
winning an offer forg, in quiescence of SAMP-SB. Either a buy offer or a sell offesa(g).

Case 1: An agent sets(g) with a buy offer. According to the SAMP-SB bidding policies, an
agent will increase a buy offer only if it is losing that offekn agent will win any offer forg at a
price abovep(g). A producer increases its buy offer in incrementgand a consumer offers at
mostp(g) + d. In either case, an agent will place a buy offer no higher thia) + &, for g. But
thena(g) < p(g) + &, which is a contradiction.

Case 2: An agent setg(g) with a sell offer.As with Case 1, there are no buy offers higher than
p(g) + &, hence every buy offer is strictly beloa(g). Recall that, if there ar® sell offers, the
Mth highest offer determines(g). Then since there are no buy offers at or abayg), it must be
that all sell offers are at or abowgg). But then all sell offers are strictly above all buy offerglan
no agent wins an offer fag, which is a contradiction.

Since each case gives us a contradiction, it must be the lsasad agent wins an offer fay
whena(g) — p(g) > &. O

Lemma 32 If (V/,E’) is in A-0-competitive equilibrium at prices p, in quiescence of SASBPfor
network(V, E), then there exist prices puch thatVV’',E’) is also inA-d-competitive equilibrium at
'/, with AY = &, for all producersmand goods g.

Proof. We specifyp’ as follows: ifa(g) > p(g) + o, thenp/(g) = a(g), otherwisep'(g) = p(g).
We will show that all the conditions df-8-competitive equilibrium hold withd = &,. Because we
are considering the same allocation, the goods are stilkiterial balance so Condition 4 still holds
atp.
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Consider an ager# such thatp'(g) = p(g) for all adjacent goods. Clearly,Ha(p') = Ha(p)
ando(a, (V',E"),p) =0o(a,(V',E'), p). We then haves(a, (V',E’), p’) > 0 (Condition 1), and the
surplus bound is met for consumers (Condition 2) since thed# atp. If a is a producer, then
for any inputg, a(g) — p(g) < &, sincep’(g) = p(g). Hence, we have the following bound on
its perceived cost fog: Pa(g) < p(g) + d. As a result, the producer bidding policies imply that
o(a, (V/7 E/), p) > Hn( p) - (Z(gmeE 6b‘f‘és)- Thereforeo(a, (V/7 E/), p/) > Hn( p/) - (Z(g,a}eE 7\2—1—
0s) and and the producer surplus bound (Condition 3) holds Mﬁtfor all inputsg'.

Now consider an agematadjacent to a good with p’(g) = a(g). By Lemma 31a does not win
an offer forg, soa(a, (V',E’),p’) = o(a, (V',E’), p), implying o(a, (V',E’), p’) > 0 (Condition 1).

If ais a consumer, sincg (g) > p(g), and sincea does not wirg, we haveH,(p') = Ha(p), so the
surplus bound is met for consumers (Condition 2).

If ais a producer, then since it did not wi it must not have won any good (according to
the A-3-competitive equilibrium conditions and Theorem 11), iyipy o(a, (V',E’),p’) = 0. The
producer bidding policy specifies thaobffered a price at Mo = Ka+ 3 (¢ ace Max(a(g’), p(g') +
Op) + Os for its outputg,. Sincea did not win g,, it must be thati(ga) < . But by the way
p’ is constructedp’(da) < a(ga) and p'(d) + & > maxa(g’), p(d) + &), giving us p'(ga) <
0(da) < B <Kat+ Y (gace(P(g)+ )+ If awould optimize atp’ by being active, we have
Ha(p') = P'(Ga) —Ka— Y (g.a)ce P'(9) < 3 (g.ace &+ 8s. But sinceo(a, (V',E’), p') = 0 it follows
thato(a, (V',E’), p') > Ha(p') — (3 (g.a)ce O+ Os). If, On the other handg would optimize afp’ by
being inactive atg(a, (V',E’), p') = Ha(p'). In either case, the surplus bound is met for producers
(Condition 3) withAd = Oy, for all inputsg’. O

Theorem 12If (V/,E’) is a A-6-competitive equilibrium computed by SAMP-SB ttéhE’) has
a nonnegative value that differs from the value of an effi@dincation by at mos§y .. (|{(9,10) €
E}| 8+ 8s) + |C|p.

Proof. By Lemma 32, there is A-8-competitive equilibrium forV/,E’) with A% = &, for all pro-
ducersmtand goodsy. With &, substituted fod in the equation from Theorem 3, we have proved
the present theorent

A.9 Proof of Theorem 13

In proving the theorem, we refer to the S-level of produceis metwork, as defined in the beginning
of Section A.

Theorem 13The quiescent state of SAMP-SB is-&-competitive equilibrium for a tree.

Proof. We prove, by induction on the S-level of producers, that rmdpcer changes its initial
output offer. Since buy offers never decrease, it follovat,tif a producer is winning its output, it
will not lose its output at any successive state of the rutheffdrotocol. Since a producer bids for
its inputs only when winning its output, no inactive produadl buy any positive-price output and
the present theorem follows from Theorem 11.

Basis caseThe hidding policy specifies that a producer at S-level zesenchanges its initial
output offer.
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Inductive caseAssume that no producer at S-level less tkahanges its initial output offer to
show that a producertat S-levelk never changes its initial output offer. Consider input ggadth
M sell offers and the lowest sell off@ Since the network is a treg,is the only agent that places
buy offers forg. Producerminitially offers zero forg, and so long as it offers less th@int loses
its offer, andpr(g) = a(g). While this holdsa(g), defined as th&th highest price, is the lowest
sell offer, hencepr(g) = B. As soon ast offers B or greater forg it will win its offer, and then
Pr(g) = p(g). When this holdsp(g), defined as thé + 1st highest price, is the lowest sell offer,
hencepr(g) = B. We conclude thap{g) never changes for any inpgt hencer never changes its
initial output offer.

We have proven that no producer changes its initial outget,aind by the argument above, the
theorem is proven

A.10 Proof of Theorem 14

Theorem 14The quiescent state of safe SAMP-SB ds&competitive equilibrium for a network
with no input complementarities.

Proof. We will show that that no inactive producer buys its input pbaitive price in quiescence of
safe SAMP-SB. Since the properties of safe SAMP-SB in geiese are the same as in SAMP-SB,
the present theorem then follows from Theorem 11. Assumthea@ontrary, that, in quiescence,
producerrtwins its inputg at a positive price but loses its offer for outmgt

Let 3 be the price of the final offer b for g, p(g) > 0 be the final price of,, andpr(g) be the
final perceived cost af to 1. Sincemwins g in quiescencepy(g) = p(g). Let B’ be the price of the
second to last offer frorm. Immediately beforat places offer3, let (§,(g) be the perceived price
of g to mand p'(g) be the price component from the price quote dorAccording to the bidding
policy, B = B’ + &. Sincemoffersf3 only if it losesg with offer ', it must be thafi’ < p/(g), hence
B < p'(g) + d. Furthermore, sinca loses with offer’, we havep,(g) > p'(g) + d,. Because we
assume thait wins g in quiescence, it must be thptg) < B, hencep(g) < p'(g) + &. It follows
that, sincepn(9) = p(g) and g (9) > P'(9) + &, we havepr(g) < Pr(9).

According to the safe SAMP-SB bidding policigspffers 3 for g only if it is first winning gn
with offer price gj(g). Sincepr(9) < p(9), Tits offer for gy is the same in quiescence as when it
had placeg for g. But since no offers from any agent decreaseust continue to win its final offer
for gr, contradicting the assumption thmiosesg;, in quiescence. Thustdoes not win its input
at a positive price if it is inactive, and the quiescent sti#tsafe SAMP-SB is a-d-competitive
equilibrium. O

A.11 Proof of Theorem 15
In proving the theorem, we refer to the C-level and S-levgdrofducers in a network, as defined in
the beginning of Section A.

Theorem 15If (V,E) is a polytree with a solution that assigns good g to consumtran given all
other costs and values, there exists a valg@ysuch that SAMP-SB is guaranteed to converge to
a valid solution(V’,E’) for c.
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Proof. For convenience, denote m@znemv, K, MaXyec, (g,0)£(g,0) vd(g’)) asy. We show that
the theorem holds for:

Ve(9) = [y+ (28p+ 86)[M]] || + Bp.

We need to show that SAMP-SB cannot reach a state in w{igh> v¢(g) — dp andcis not winning
g, because theawould stop bidding fog and the desired solution would not form.

First, observe that for any consuneéand any goody such thatg’,a) # (g, c), ¢’ will not offer
abovey for ¢, by construction.

Now, consider a producet such that there is no directed path fromto g through the output
of Tt We show, by induction on the C-level of producers, that rdhgaroducer offers higher than
v+ dpdy, Wheredy; is the C-level offt, for one of its inputs. For the basis case, such a prodaegr
C-level one cannot win an output offer abovéby the definition ofy). Ttincreases its input offers in
increments oby, so to offerf’ > y-+ &,, on any inputy, it must first offerp3, wherey < B < y+ oy
for that input. Tt will only offer B’ if it is losing B but winning its output offer. But ifitis losing
B, we must havep(g') > B, sort must be offering more thapfor its output. But then it cannot be
winning its output, hence would not off@f for g. Thusmat C-level one does not offer more than
v+ & for any input, establishing the base case. Now, assumehiharoperty holds for every such
producer at C-level less th&to show that it holds for producerat C-levelk. Given the inductive
assumption, it must be thatcannot win its output for more thays- d,(k — 1). By an argument
similar to the basis caser does not offer abovg-+ dyk for its input, proving the inductive case.
Sinced; < ||, then no such producer offers higher than oy || for its input.

For any producem e NMNV’, denote as$; the maximum number of producers, other thain
the subgraph ofV, E), rooted att. Now we show by induction on the S-level, that a produten
a directed path tg offers no more thafy+ dp(|M| 4 dr) 4+ ds(drr — 1)]1;: + s for its output, where
dr is the S-level ofit. For the basis case, consider such a produckrS-level one, offering to buy
someg’. No consumer offers abowgefor g. Becaus€V,E) is a polytree, any other producaf
that offers to buyg' is not on a directed path tg, hence offers at most+ dp|M| to buyg. Any
producer that offers to sedf must have no inputs, hence offers no more tigdor g. Hencert
can successfully bug’ with a offer no higher thay+ d,(|M| + 1), thus will offer no higher than
this amount forg'. Since the the number of inputs tois equal toly, it will offer no more than
(Y+ & (|M]+ 1))l + & for its output, and the basis case is proven. Now, assuméttbgtroperty
holds for every such producer at S-level less tham prove that it holds for producertoffering to
buy somey’ at S-levelk. By the inductive assumption, no produgeoffers to sellg’ for more than
(Y+ (M| +k—1)+ds(k—2))l5+ds. As in the basis case, no consumer offers more thizm
d and any producer other tharwill offer no more thary+ &,|M| to buyg’. Hence,mtwill offer at
most(y+ op(|M| +k— 1) + ds(k— 2)) I+ s+ &, to buyd’, and for its output will offer at most

(Y4 0p(|M| +k—1) + ds(k— 2))l5t+ 8s+ dp | + s <
(fLg) peE | (g ,meE

[y+ 8 (|M]+K) +8s(k — 1)]lr+ s,

proving the inductive case. Sintg< || anddy < ||, then no such producer offers higher than
[y -+ 286|861 — )] 1|+ 85 < [y+ (285 + 85)|M[] 11| = Ve (Q) — B

We have shown that no agem$ c places a buy offer as high &g(g) — &, for g and no producer
on a directed path tg places a sell offer as high &g(g) — oy for g. Hencec is the only agent that
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could possibly offer as high ag(g) — &, for g. But c will offer this high, if necessary, to wig,
and will win g if it offers v¢(g) — & or higher. It follows that will win g at a price below,(g) in
guiescence. By Observation 7 and Theorem 16, the state muastdlid solutionD

A.12 Proof of Theorem 16

Theorem 161f SAMP-SB reaches quasi-quiescence with) p< vc(g) for some(g,c) € E, ce C,
then the system’s state represents a valid solution.

Proof. Because the definition of quasi-quiescence requires thaegeroducers do not change
their bids, they must be feasible. All other agents are fbadiy definition. The price of an active
producer’s output good must be no less than the total prides @fiput goods, otherwise it would
increase its output offer, violating quasi-quiescence.

Because(g) < v¢(g), consumer must have won its offer fag. A consumer bids in such a way
that it wins only one unit of one good, and consumers do nat@haheir bids in quasi-quiescence.

Finally, the auction guarantees that there is a one-to-aqping between successful buy offers
and successful sell offers for any good, ensuring mateaiartce.

Thus, each of the constraints for a valid solution is satisfie

A.13 Proof of Theorem 17

Theorem 17If a run of SAMP-SB iV, E) is in a valid solution state such that:
e each consumer c is either winning an offer qgp+ &, > v¢(g) for all (g,c) € E,
¢ all agents have correct beliefs about which goods they areently winning,

¢ all bids from consumers and active producers have beenveden response to the current
price quotes,

¢ and no sell offers are lost due to tie breaking,

then after the subsequent price quote from each auctionsykem will be in a quasi-quiescent
state with a valid solution.

Proof. Let the current prices bp. The consumer bidding policy dictates that the consumers do
not change their offers under the specified conditions. Bssave have a valid solution, each pro-
ducer is feasible and thus will not raise any of its buy offerdnputs. Therefore, no agent changes
any buy offers.

An active producertis feasible in a valid solution. Sinaeis winning all of its inputs, it only
raises its offer for outpug, if p(g) changes for once of its inpugs and will place an offer for its
output a price no higher than the sum of its input good priBgsthe definition of a valid solution,
if Ttis active, then the current price of its output good is no thas sum of the current prices of its
inputs. But sincatwon its offer forgy, it must have offered no higher thaotgy) for gr. Because
the previous offer price byt for g, is no higher tharp(gy), and because the sum of the current
prices of its inputs are no higher thafg), Ttwill offer no higher thanp(gr) for gr.

563



WALSH & WELLMAN

We have established that no agent changes any buy offerspcandrrently active producer
places a sell offer abovg(g) for any goody. We show this implies that, at the next price quotes with
pricesp’, we havep'(g) = p(g). Assume the contrary. Since offers do not decreg4g) > p(g).
Since no buy offer and no winning sell offer changed, theepiicrease is due an updated losing
sell offer at priceB, such thaf3 = p/(g). But if the agent was losing with a previous offer price
of B, it must be tha’ was at least as high as tliel 4 1)st highest offer. Thug, being higher,
must be strictly higher than th@M + 1)st highest offer, hence cannot raise the pricg.oHence
P'(9) = p(9).

Since prices do not change, the temporal-precedence t&ibgeensures that the set of winning
buy offers does not change. Additionally, since no winnieties offers abovep(g) and no sell
offers are currently lost to tie breaking, the set of winngadj offers does not change. Since prices
and allocations do not change, no consumer or active produtiechange its bids. Furthermore,
because the system is in a valid solution state based on ttentprice quotes, it must be in a valid
solution state based on the next price quotes.

We note that temporal-precedence tie-breaking itselfhuit the requirement that no tied sell
offers are lost) is not sufficient to ensure that the allarato sellers does not change. If some tied
sell offers are lost, it is possible that an active produaaia increase its next sell offer price up
to the price of its output good. If this occurs, then that mer would lose the tie breaking of its
output at the next quote, and the system would not be in guasscence.
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