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Abstract

The automatic generation of decision trees based on off-line reasoning on models of
a domain is a reasonable compromise between the advantages of using a model-based ap-
proach in technical domains and the constraints imposed by embedded applications. In this
paper we extend the approach to deal with temporal information. We introduce a notion
of temporal decision tree, which is designed to make use of relevant information as long as
it is acquired, and we present an algorithm for compiling such trees from a model-based
reasoning system.

1. Introduction

The embedding of software components inside physical systems became widespread in the
last decades due to the convenience of including electronic control into the systems them-
selves. This phenomenon occurs in several industrial sectors, ranging from large-scale prod-
ucts such as cars to much more expensive systems like aircraft and spacecrafts.

The case of automotive systems is paradigmatic. In fact, the number and complexity
of vehicle subsystems which are managed by software control increased significantly since
the mid 80s and will further increase in the next decades (see Foresight-Vehicle, 2002), due
to the possibility of introducing, at costs that are acceptable for such wide scale products,
more flexibility in the systems, for e.g. increased performance and safety, and reduced
emissions. Systems such as fuel injection control, ABS (to prevent blockage of the wheels
while braking), ASR (to avoid slipping wheels), ESP (controlling the stability of the vehicle),
would not be possible at feasible costs without electronic control.

The software modules are usually installed on dedicated Electronic Control Units (ECUs)
and they play a very important role since they have complete control of a subsystem: hu-
man “control” becomes simply an input to the control system, together with inputs from
appropriate sensors. For example, the position of the accelerator pedal is an input to the
ECU which controls fuel delivery to the injectors.

A serious problem with these systems is that the software must behave properly also in
presence of faults and must guarantee high levels of availability and safety for the controlled
system and for the vehicle. The controlled systems, in fact, are in many cases safety
critical: the braking system is an obvious example. This means that monitoring the systems

(©2003 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.



CONSOLE, PICARDI, & THESEIDER DUPRE

behaviour, detecting and isolating failures, performing the appropriate recovery actions is
a critical task that must be performed by control software. If any problem is detected or
suspected the software must react, modifying the way the system is controlled, with the
primary goal of guaranteeing safety and availability. According to recent estimates, about
75% of the ECU software deals with detecting problems and performing recovery actions,
that is to the tasks of diagnosis and repair (see again Foresight-Vehicle, 2002).

Thus the design of the diagnostic software is a very critical and time consuming activ-
ity, which is currently performed manually by expert engineers who use their knowledge
to perform the “Failure Mode and Effect Analysis (FMEA)” ! and define diagnostic and
recovery strategies.

The problem is complex and critical per-se, but it is made even more difficult by a
number of other issues and constraints that have to be taken into account:

e The resources that are available on-board must be limited, in terms of memory and
computing power, to keep costs low. This has to be combined with the problem
that near real time performance is needed, especially in situations that may be safety
critical. For example, for direct injection fuel delivery systems, where fuel is maintaned
at a very high pressure (more than 1000 bar) there are cases where the system must
react to problems within a rotation of the engine (e.g. 15 milliseconds at 4000 rpm),
to prevent serious damage of the engine and danger to passengers. In fact, a fuel
leakage can be very dangerous if it comes from a high pressure line. In this case it
is important to distinguish whether a loss of pressure is due to such a leak, in order
to activate some emergency action (for example, stop the engine), or to some other
failure which can simply be signalled to the user.

e In order to keep costs acceptable for a large scale product, the set of sensors available
on board is usually limited to those necessary for controlling the systems under their
correct behaviour; thus, it is not always easy to figure out the impact that faults may
have on the quantities monitored by the sensors, whose physical, logical and temporal
relation to faults may be not straightforward.

e The devices to be diagnosed are complex from the behavioural point of view: they have
a dynamic and time-varying behaviour; they are embedded in complex systems and
they interact with other subsystems; in some cases the control system automatically
compensates deviations from the nominal behaviour.

These aspects make the design of software modules for control and diagnosis very chal-
lenging but also very expensive and time consuming. There is then a significant need for
improving this activity, making it more reliable, complete and efficient through the use of
automated systems to support and complement the experience of engineers, in order to meet
the growing standards which are required for monitoring, diagnosis and repair strategies.

Model-based reasoning (MBR) proved to be an interesting opportunity for automotive
applications and indeed some applications to real systems have been experimented in the

1. The result of FMEA is a table which lists, for each possible fault of each component of a system, the
effect of the faults on the component and on the system as a whole and the possible strategy to detect the
faults. This table is compiled manually by engineers, based on experience knowledge and on a blueprint
of the system.
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90s (e.g., Cascio & Sanseverino, 1997; Mosterman, Biswas, & Manders, 1998; Sachenbacher,
Malik, & Struss, 1998; Sachenbacher, Struss, & Weber, 2000). The type of models adopted
in MBR are conceptually not too far away from those adopted by engineers. In particular,
the component oriented approach typical of MBR fits quite well with the problem of dealing
with several variants of systems, assembled starting from the same set of basic components.
For a more thorough discussion of the advantages of the MBR, approach, see Console and
Dressler (1999).

Most of the applications developed so far, however, concentrated on off-board diagnosis,
that is diagnosis in the workshop, and not on on-board diagnosis. The case of on-board
systems seems to be more complicated since, due to the restrictions on hardware to be
put on-board, it is still questionable if diagnostic systems can be designed to reason on
first-principle models on-board. For this reason other approaches have been developed
in order to exploit the advantages of MBR also in on-board applications. In particular,
a compilation-based scheme to the design of on-board diagnostic systems for vehicles was
experimented in the Vehicle Model Based Diagnosis (VMBD) BRITE-Euram Project (1996-
99), and applied to a Common-rail fuel injection system (Cascio, Console, Guagliumi, Osella,
Sottano, & Theseider, 1999). In this approach a model-based diagnostic system is used to
generate a compact on-board diagnostic system in the form of a decision tree. Similarly,
automated FMEA reports generated by Model-Based Reasoning in the Autosteve system
can be used to generate diagnostic decision trees (Price, 1999). Yet similar is the idea
proposed by Darwiche (1999), where diagnostic rules are generated from a model in order
to meet resource constraints.

These approaches have interesting advantages. On the one hand, they share most of
the benefits of model-based systems, such as relying on a comprehensive representation
of the system behaviour and a well defined characterization of diagnosis. On the other
hand, decision trees and other compact representations make sense for representing on-
board diagnostic strategies, being efficient in space and time. Furthermore, algorithms
for synthesizing decision trees from examples are well established in the machine learning
community. In this specific case the examples are the solutions (diagnoses and recovery
actions) generated by a model-based system.

However, the basic notion of decision tree and the approaches for learning such trees
from examples have a major limitation for our kind of applications: they do not cope
properly with the temporal behaviour of the systems to be diagnosed, and, in particular,
with the fact that incremental discrimination of possible faults, leading to a final decision
on an action to be taken on-board, should be based on observations acquired across time,
thus taking into account temporal patterns.

For such a reason, in the work described in this paper we introduce a new notion of
decision tree, the temporal decision tree, which takes into account the temporal dimension,
and we introduce an algorithm for synthesizing temporal decision trees.

Temporal decision trees extend traditional decision trees in the fact that nodes have a
temporal label which specifies when a condition should be checked in order to select one
of the branches or to make a decision. As we shall see, this allows taking into account
that in some cases the order and the delay between observable measures influences the
decision to be made and thus provides important power to improve the decision process.
Waiting, however, is not always possible and thus the generation of the trees includes a
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notion of deadline for each possible decision. Thus, the temporal decision process supports
the possibility of selecting the best decision, exploiting observations and their temporal
locations (patterns) and taking into account that in some cases at some point a decision
has to be taken anyway to prevent serious problems.

The rest of the paper is organized as follows. In section 2 we summarize some basic
ideas about model-based diagnosis (MBD), the use of decision trees in conjunction with it,
and the temporal dimension in MBD and in decision trees. In section 3 we provide basic
formal definitions about decision trees, which form the basis for their extension to temporal
decision trees in section 4. We then describe (section 5) the problem of synthesizing temporal
decision trees and our solution (section 6).

2. Model-based Diagnosis and Decision Trees

In this section we briefly recall the basic notions of model-based diagnosis and we discuss
how decision trees can be used for diagnostic purposes, focusing on how they have been
used in VMBD in conjunction with the model-based approach (Cascio et al., 1999).

2.1 The Atemporal Case

First of all let us sketch the atemporal case and the “traditional” use of diagnostic decision
trees.

2.1.1 ATEMPORAL MODEL-BASED DIAGNOSIS

The starting point for model-based diagnosis is a model of the structure and behaviour of
the device to be diagnosed. More specifically, we assume a component centered approach
in which:

e A model is provided for each component type; a component is characterized by

— A set of variables (with a distinguished set of interface variables);

— A set of modes, including an ok mode (correct behaviour) and possibly a set of
fault modes.

— A set of relations involving component variables and modes, describing the be-
haviour of the component in such a mode. These relations may model the correct
behaviour of the device and, in some cases, the behaviour in presence of faults
(faulty behaviour).

e A model for the device is given as a list of the component instances and of their
connections (connections between interface variables).

In the Artificial Intelligence approach, models are usually qualitative, that is the domain
of each variable is a finite set of values. Such an abstraction has proven to be useful for
diagnostic purposes.

The model can be used for simulating the behaviour of a system and then for computing
diagnoses. In fact, given a set of observations about the system behaviour, diagnoses can
be determined after comparing the behaviour predicted by the model (in normal conditions
or in the presence of single or multiple faults) and the observed behaviour.
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In order for the model to be useful for on-board diagnosis, for each fault mode F' (or
combination of fault modes) the model must include the recovery action the control software
should perform in case F' occurs. In general these actions have a cost, mainly related to the
resulting reduction of functionality of the system. Moreover, two actions a; and as can be
related in the following sense:

e a1, the recovery action associated with fault F}, carries out operations that include
those performed by as, the recovery action associated with Fy;

e a1 can be used as a recovery action also when F, occurs; it may however carry out
unneeded operations, thus reducing the system functionality more than strictly nec-
essary.

e However, in case we cannot discriminate between F) and F5, applying a; is a rational
choice.

In section 4.3 we will present a model for actions which formalizes this relation.

Thus the main goal of the on-board diagnostic procedure is to decide the best action
to be performed, given the observed malfunction. This type of procedure can be efficiently
represented using decision trees.

2.1.2 DECISION TREES

Decision trees can be used to implement classification problem solving and thus some form
of diagnostic procedure. Each node of the tree corresponds to an observable. In on-board
diagnosis, observables correspond either to direct sensor readings, or to the results of com-
putations carried out by the ECUs on the available measurements. In the following the
word “sensor” will denote both types of observables; it is worth pointing out that the latter
may require some time to be performed. In this paper we mainly assume that a sensor
reading takes no time; however the apporach we propose deals also with the case in which a
sensor reading is time consuming, as pointed out in section 5.1. A node can have as many
descendants as the number of qualitative values associated with the sensor. The leaves of
the tree correspond to actions that can be performed on board. Thus, given the available
sensor readings, the tree can be very easily used to make a decision on the recovery action
to be performed.

Such decision trees can be generated automatically from a set of examples or cases.
By example here we mean a possible assignment of values to observables and the corre-
sponding diagnosis, or possible alternative diagnoses, and a selected recovery action which
is appropriate for such a set of suspect diagnoses. This set can be produced using a model-
based diagnostic systems, which, given a set of observables can compute the diagnoses and
recovery actions.

In the atemporal case, with finite qualitative domains, the number of possible combina-
tions of observations is finite, and usually small, therefore considering all cases exhaustively
(and not just a sample) is feasible and there are two equivalent ways of building such an
exhaustive set of cases:

1. Simulation approach: for each fault F', we run the model-based system to predict the
observations corresponding to F'.
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2. Diagnostic approach: we run a diagnosis engine on combinations (all relevant com-
binations) of observations, to compute the candidate diagnoses for each one of these
cases.

In either case, the resulting decision tree contains the same information as the set of cases;
if, once sensors are placed in the system, observations have no further cost, the decision
tree is just a way to save space with respect to a table, and speed up lookup of information.
In this way the advantages of the model-based approach and of the use of compact deci-
sion trees can be combined: the model-based engine produces diagnoses based on reusable
component models and can be used as the diagnoser off-board; compact decision trees,
synthesized from cases classified by the model-based engine, can be installed on-board.

2.2 Towards Temporal Decision Trees

In this section we briefly recall some basic notions on temporal model-based diagnosis (see
Brusoni, Console, Terenziani, & Theseider Dupré, 1998 for a general discussion on temporal
diagnosis), and we informally introduce temporal decision trees.

2.2.1 TEMPORAL MBD

The basic definition of MBD is conceptually similar to the atemporal case. Let us consider
the main differences.

As regards the model of each component type we consider a further type of variable:
state variables used to model the dynamic behaviour of the component. The set of relations
describing the behavior of the component (for each mode) is augmented with temporal
information (constraints); we do not make specific assumptions on the model of time, even
though, as we shall see in the following, this has an impact on the cases which can be
considered for the tree generation. As an example, these constraints may specify a delay
between an input and an output or in the change of state of the component.

As regards recovery actions, a deadline for performing the action must be specified; this
represents the maximum time that can elapse between fault detection and the recovery ac-
tion; this is the amount of time available for the control software to perform discrimination.
This piece of information is specific to each component instance, rather than component
type, because the action and the deadline are related to the potential unacceptable effects
that a fault could have on the overall system; the same fault of the same component type
could be very dangerous for one instance and tolerable for another.

Diagnosis is started when observations indicate that the system is not behaving correctly.
Observations correspond to (possibly qualitative) values of variables across time. In general,
in the temporal case a diagnosis is an assignment of a mode of behaviour to component
instances across time such that the observed behaviour is explained by the assignment given
the model. For details on different ways of defining explanation in this case see Brusoni et
al. (1998). For the purposes of this paper we are only interested in the fact that, given a
set of observables, a diagnosis (or a set of candidate diagnoses if no complete discrimination
is possible) can be computed and a recovery action is determined.

This means that the starting point of our approach is a table containing the results of
running the model-based diagnostic system on a set of cases, (almost) independently of the
model-based diagnostic system used for generating the table.
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We already mentioned that in the static case, with finite qualitative domains, an ex-
haustive set of cases can be considered. In the temporal case, if the model of time is purely
qualitative, a table with temporal information cannot be built by prediction, while it can be
built running the diagnosis engine on a set of cases with quantitative information: diagnoses
which make qualitative predictions that are inconsistent with the quantitative information
can be ruled out. Of course, this cannot in general be done exhaustively, even if observa-
tions are assumed to be acquired at discrete times; if it is not, the decision tree generation
will actually be learning from examples.

Thus a simulation approach can only be used in case the temporal constraints in the
model are precise enough to predict at least partial information on the temporal location
of the observations, e.g., in case the model includes quantitative temporal constraints.

The diagnostic approach can be used also in case of weaker (qualitative) temporal con-
straints in the model.

As regards the observations, we consider the general case where a set of snapshots is
available; each snapshot is labelled with the time of observation and reports the value of the
sensors (observables) at that time. This makes the approach suitable for different notions of
time in the underlying model and on the observations (see again the discussion in Brusoni
et al., 1998).

Example 1 The starting point for generating a temporal decision tree is a table like the
one n Figure 1.

S1 S2 S3

0[1[2[314[5]6]7|0]1]2]3]4]5]6]7]0]1[2]3]4[5]6]7|Act|D!
sit; ([ n{n|n{n|h|h l{v|iv|v|v|v ninin|1{1]1 a |5
sitc |h|h|h hin|n ninin b |2
sitsn{n{nin|fh{h|h|jh|{l]|1]|l{l|v|v|v|v|nin|n|l|l|l|v|v|] b |7
sity /n{n{n|h|h|h|h Fyrprprprt|v ninlh|{h|h|h|h c |6
sits; |h|{h|h|h hin{n|n ninin|l c |3
sits|n{n|{n|h|h|h l|lviv|z|z|z ninin|{l|1l]|v d |5
sit;(h|h|h|h|h|h I{l|{n|n|l ninin{l|l]|v b |5
sits|h|{h|h|h|h|h hihin{n|l]I ninin|l|v|z c |5

Figure 1: An example of a set of cases for learning temporal decision trees.

FEach row of the table corresponds to a situation (case or “example” in the terminology
of machine learning) and it reports:

e For each sensor s; the values that have been observed at each snapshots (in the example
we have 8 snapshots, labelled as 0 to 7); n, |, h and v correspond to the qualitative
values of the sensor measurements; n for normal, | for low, h for high, v for very low
and z for zero.

e The recovery action Act to be performed in that situation.

e The deadline DI for performing such an action. o

A table as the one in the above example represents a set of situations that may be
encountered in case of faults and, as noticed above, it can be generated using either a
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diagnostic or a simulation approach. In the next section we shall introduce the notion of
temporal decision trees and show how the pieces of information about sensor histories like
those in the table above can be exploited in the generation of such trees.

2.2.2 INTRODUCTION TO TEMPORAL DECISION TREES

Traditional decision trees do not include a notion of time, i.e., the fact that data may
be observable at different times or that different faults may be distinguished only by the
temporal patterns of data. Thus, neglecting the notion of time may lead to limitations in
the decision process.

For such a reason in this work we introduce a notion of temporal decision tree. Let us
analyse the intuition behind temporal decision trees and the decision process they support.
Formal definitions will be provided later in the paper.

Let us consider, for example, the fault situations sits and sity in Figure 1, and let
us assume, for the sake of simplicity, that the only available sensor is so. The two fault
situations have to be distinguished in the control software because they require different
recovery actions. Both of them can be detected by the fact that s shows a low value.
Moreover, in both situation after a while so starts showing a very low value.

The only way to discriminate these two situations is to make use of temporal information,
that is to exploit the fact that in sitg value v shows up after 4 time units from fault detection,
while in sity the same value shows up after 6 time units.

In order to take into account this in a decision tree, we have to include time into the
tree. In both examples, the best decision procedure is to wait after observing thst sy = |
(that is, after dectecting that a fault has occurred). After 4 time units we can make a
decision, depending on whether so = v or not. This corresponds to the procedure described
by the tree in Figure 2.

so after 4

| v

sity sits

Figure 2: A simple example of temporal decision tree

Obviously, waiting is not always the solution or is not always possible. In many cases, in
fact, safety or other constraints may impose some deadlines for performing recovery actions.
This has to be reflected in the generation of the decision procedure. Suppose, in the example
above, that the deadline for sits was 3 rather than 6: in this case the two situations would
have been indistinguishable, beacause it would have been infeasible to wait 4 time units.
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Thus, an essential idea for generating small decision trees in the temporal case is to
take advantage of the fact that in some cases there is nothing better than waiting®, in order
to get a good discrimination, provided that safety and integrity of the physical system are
kept into account, and that deadlines for recovery actions are always met.

More generally, one should exploit all the information about temporal patterns of ob-
servables and about deadline, like the ones in Figure 1, to produce an optimal diagnostic
procedure.

Another idea we use in our approach is the integration of incremental discrimination,
which is the basis for the generation and traversal of a decision tree, with the incremental
acquisition of information across time.

In the atemporal case, the decision tree should be generated in order to guide the incre-
mental acquisition of information: different subtrees of a node are relative to different sets
of faults and therefore may involve different measurements: in a subtree T we perform the
measurements that are useful for discriminating the faults compatible with the measure-
ments that made us reach subtree T, starting from the root. For off-board diagnosis, this
allows reducing the average number of measurements to get to a decision (i.e. the average
depth of the tree), which is useful because measurements have a cost - e.g. time for an op-
erator to take them from the system; for on-board diagnosis, even in case all measurements
are simply sensor readings, which have no cost once the sensor has been made part of the
system, we are interested in generating small decision trees to save space.

In the temporal case there is a further issue: the incremental acquisition of information
is naturally constrained by the flow of time. If we do not want to store sensor values across
time — which seems a natural choice since we have memory constraints — information must
be acquired when it is available and it is not possible to read sensors once the choice of
waiting has been made. This issue will be taken into account in the generation of temporal
decision trees.

3. Basic Notions on Decision Trees

Before moving to a formal definition of temporal decision trees, in this section we briefly
recall some definitions and algorithms for the atemporal case. In particular, we recall the
standard ID3 algorithm (Quinlan, 1986), which will be the basis for our algorithm for the
temporal case. The definitions in this section are the standard ones (see any textbook on
Artificial Intelligence, e.g., Russel & Norvig, 1995).

3.1 Decision Trees
We adopt the following formal definition of decision tree, which will be extended in section

4.1 to temporal decision trees.

Definition 1 Let us consider a decision process P where A is the set of available decisions,
O is the set of tests that can be performed on the external environment, and out(o;) =

2. A different approach would be that of weighing the amount of elapsed time agains the possibility of
better discriminating faults; such an approach is something we are considering in the future work on
temporal decision trees, as outlined in section 7.
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{v1,...,vx,} are the possible outcomes of test o; € Q. A decision tree for P is a labelled
tree structure T = (r, N, E, L) where:

e (r,N,E) is a tree structure with root r, set of nodes N and set of edges E C N x N;
N is partitioned in a set of internal nodes N; and a set of leaves Ny,.

e [ is a labelling function defined over N U E.

e If n € N7, L(n) € O; in other words each internal node is labelled with the name of a
test.

e If (n,c) € E then L((n,c)) € out(L(n)); that is, an edge directed from n to ¢ is
labelled with a possible outcome of the test associated with n.

e Moreover, if (n,c1), (n,c2) € E and L((n,c1)) = L((n,c2)) then ¢; = co, and for each
v € out(L(n)) there is ¢ such that

(n,c) € E and L((n,c)) = v; that is, n has exactly one outgoing edge for each possible
outcome of test L(n).

e If I € Np, L(I) € A; in other words each leaf is labelled with a decision. o

When the decision-making agent uses the tree, it starts from the root. Every time it reaches
an inner node n, the agent performs test £(n), observes its outcome v and follows the v-
labelled edge. When the agent reaches a leaf [, it makes decision a = L(I).

3.2 Building Decision Trees

Figure 3 shows a generic recursive algorithm that can be used to build a decision tree
starting from a set of Examples and a set of Tests.

Recursion ends when either the remaining examples do not need further discrimination
because they all correspond to the same decision, or all available observables have been used,
and the values observed match cases with different decisions. In the latter case observables
are not enough for getting to the proper decision and if an agent is actually using the tree,
it should take into account this.

In case no terminating condition holds, the algorithm chooses an observable variable
test to become the root label for subtree T. Depending on how CHOOSETEST is imple-
mented we get different specific algorithms and different decision trees.

A subtree is built for each possible outcome value of test in a recursive call of
BUILDTREE, with sets Tests_Update and SubExamples as inputs. Tests Update is ob-
tained by removing test from the set of tests, in order to avoid using it again. SubExamples
is the subset of Examples containing only those examples that have value as outcome for
test.

As mentioned before, there are as many specific algorithms, and, in general, results, as
there are implementations of CHOOSETEST. It is in general desirable to generate a tree
with minimum average depth, for two reasons:

e Minimizing average depth means minimizing the average number of tests and thus
speeding up the decision process.

e In machine learning, a small number of tests also means a higher degree of general-
ization on the particular examples used in building the tree.
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1  function BUILDTREE (set Examples, set Tests)
2 returns a decision tree T = (root, Nodes, Edges, Labels)
3 begin
4 if all ex € Examples correspond to the same decision then
5 return BUILDLEAF(Examples);
6 if Tests is empty then
7 return BUILDLEAF(Examples);
8 test « CHOOSETEST (Tests, Examples);
9 root < new node;
10 Nodes < {root}; Edges < &; Labels(root) < test;
11 T < (root,Nodes, Edges, Labels);
12 Tests_Update < Tests \ {test};
13 for each possible outcome value of test do begin
14 SubExamples <« {ex € Examples | test has outcome value in ex};
15 if SubExamples is not empty then begin
16 SubTree < BUILDTREE (SubExamples, Tests_Update);
17 APPEND(T, root, SubTree);
18 Labels((root, ROOT(SubTree))) < value;
19 end;
20 end;
21 return T;
22 end.
Figure 3: Generic algorithm for building a decision tree
3.3 ID3

Unfortunately, finding a decision tree with minimum average depth is an intractable prob-
lem; however, there exists a good best-first heuristic for choosing tests in order to produce
trees that are “not too deep”. This heuristic was proposed in the ID3 algorithm (Quinlan,
1986), and is base on the concept of entropy from information theory. In the following we
recall this approach in some detail also in order to introduce some notation which will be
used in the rest of the paper.

Definition 2 Given a (discrete) probability distribution P = {p1,...,pn} its entropy E(P)
is:

(1) E(P) == pilog,p;
=1
o

Entropy measures the degree of disorder. When we choose a test, we want it to split the
examples with the lowest degree of disorder with respect to the decisions associated with
them.

Given a set of examples E we introduce the sets:

E|,= {e € E | the decision associated with example e is a}.

If the set of available decisions is A = {ay,...,a,} then E|, = {E|
tion of E.

- El, }is a parti-

ap "
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Definition 3 For each a; € A, ¢ = 1,...,n, we define the probability of a; with respect to
E as follows:
(El,, )l

P(a;E) = |

%

It is worth noting that, if examples are endowed with their a priori probabilities, we can
redefine P(a;;E) in order to take them into account. The basic formulation of ID3 assumes
however that all examples are equiprobable and it computes the probability distribution
from the frequencies of the examples.

The entropy of E is:

n

(2) E(E) = —ZP(%E) logy P(ai; E).

i=1

If all decisions are equiprobable, we get £(E) = logy n, which is the maximum degree of
disorder for n decisions. If all decisions but one have probability equal to 0, then £(E) = 0:
the degree of disorder is minimum.
Entropy is used as follows for test selection. A test o with possible outcomes w1, ..., v,
splits the set of examples into:
El

= {e € E | test o has value v; in e}.
0—; {

} is again a partition of E. In particular, if while building the
is the subset of examples we use in building the subtree for

IE|0: {E‘o—n)l 7"'7E|0—>Uk

tree we choose test o, E|
J

the child corresponding to v;. The lowest the degree of disorder in E | o—v; the closer we

are to a leaf. Therefore, following equation (2):

n
EE|,,,)=— > P(a;E oo, ) 1082 P(ai; E |, )-
=1

Finally, we define the entropy of a test o as the average entropy on its possible outcomes:

Definition 4 The entropy of a test o with respect to a set of examples E is:

k
(3) E(0E) =Y Plo— 1;)E(E], ., ).
j=1
(B, )|

where3 P(o — v;) =
’ [E|

The ID3 algorithm simply consists of choosing the test with lowest entropy. Figure 4 shows
the implementation of CHOOSETEST that yields 1D3.

3. Again, if examples are endowed with a priori probabilities, this definition can be changed in order to
take them into account
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1  function ID3CHOOSETEST (set Tests, set Examples)
2  returns a test best_test
3 begin
4 best_test < any element in Tests;
5 min_entropy < log, |[Examples|;
6 for each test € Tests do begin
7 part < PARTITION({Examples}, test);
8 ent «— ENTROPY(part);
9 if (ent < min_entropy) then begin
10 min_entropy < ent;
11 best_test « test;
12 end;
13 end;
14 return best_test;
15  end.

Figure 4: ID3 implementation of CHOOSETEST

4. Extending Decision Trees

In this section we formally introduce the notion of temporal decision tree, and we show how
timing information can be added to the set of examples used in tree building. Moreover we
introduce a model for recovery action that expresses information needed by the algorithm.

4.1 Temporal Decision Trees

In section 2.2.2 we motivated the monotonicity requirement for temporal decision trees, so
that their traversal requires information relative to increasing time and then no information
has to be stored.

We now discuss how temporal information is actually included in the tree and matched
with temporal information on the observations. The tree has to be used when some abnor-
mal value is detected for some sensor (fault detection). We then intend the time of fault
detection as the reference time for temporal labels of observations in the tree. If we look
for example at the data shown in Figure 1, we see that, for every fault situation, there is
always at least one sensor whose value at time 0 is different than nnormal. The reason is
that, for each fault situation, we associate a 0 time label to the first snapshot in which there
is a sensor showing some deviation from nominal behaviour.

The following definition provides the extension for the temporal dimension in decision
trees.

Definition 5 A temporal decision tree is a decision tree (r, Ny, N1, E, L) endowed with a
time-labelling function 7 such that:

(1) 7 :N;— IRY; we call 7(n) a time label;

(2) if n’ € Ny and there exist n such that (n,n') € E (in other words, n’ is child of n),
then 7 (n') > 7 (n). o
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Since we assume not to store any information, but rather to use information for travers-
ing the tree as dictated by the tree itself, a first branching for discrimination is provided
depending on which is the sensor that provided such a value. We then assume to have
different temporal decision trees, one for each sensor which could possibly provide the first
abnormal value, or, alternatively, that the root node has no time label, and the edges from
the root are not labelled with different values of a single observable, but with different
sensors which could provide the first abnormal observation. Each tree, or subtree in the
second alternative, can be generated independently of the other ones, only using the exam-
ples where the sensor providing fault detection is the same. This generation is what will be
described in the rest of the paper.

Let us tree how a temporal decision tree (or forest, in the case of multiple detecting
sensors) can be exploited by an on-board diagnostic agent in order to choose a recovery
action. When the first abnormal value is detected, the agent activates a time counter and
starts visiting the appropriate tree from the root. When it reaches an inner node n, the
agent retrieves both the associated test s = L£(n) and the time label t = 7 (n). Then it
waits until the time counter reaches ¢, performs test s and chooses one of the child nodes
depending on the outcome. When the agent reaches a leaf, it performs the corresponding
recovery action.

With respect to the atemporal case, the agent has now the option to wait. From the
point of view of the agent it may seem pointless to wait when it could look at sensor values,
since reading sensor values has no cost. However, from the point of view of the tree things
are quite different: we do not want to add a test that makes the tree deeper and at the
same time is not necessary.

Condition (2) states that the agent can only move forward in time. This corresponds
to the assumption that sensor readings are not stored, discussed in section 2.2.2.

Ezxample 2 Let us consider the diagnostic setting described in example 1. Figure 5 shows a
temporal decision tree for such setting, that is a temporal decision tree that uses the sensors
and recovery actions mentioned in Figure 1. If such a tree is run on the fault situations in
the table, a proper recovery action is selected within the deadline. o

4.2 Adding Timing Information to the Set of Examples

In order to generate temporal decision trees, we need temporal information in the examples.
We already introduced informally the notion of a set of examples (or “fault situations”)
with temporal information when describing the table in Figure 1. The following definition
formalizes the same notion.

Definition 6 A temporal example-set (te-set for short) E is a collection of fault situations
sity, ..., sit, characterized by a number of sensors sensy,...,sens,, and an ascending se-
quence of time labels t; < ... < tjast representing the instants in time for which sensor
readings are available. In this context we call observation a pair (sens;,t;). A te-set is
organized in a table as follows:

(1) The table has n rows, one for each fault situation.
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low (5,/0) high
high (5,,0) normal normal (51) high
im (5,01 'OW—L
very low (5,,3) zero normal (53:2) high

v

~ ~
Action: a [Action: d] [Action: b] Action: c

Figure 5: A temporal decision tree for the situations described in Figure 1.

(2) The table has m x last observation columns containing the outcomes of the different
observations for each fault situation. We denote by Val(sity, (sens;,t;)) the value
measured by sensor sens; at time ¢; in fault situation sity,.

(3) The table has a distinguished column Act containing the recovery action associated
with each fault situation. We denote by Act(sit;,) the recovery action associated
with sity,.

(4) The table has a second distinguished column DI containing the deadline for each
fault situation. We denote by DI(sit,) the deadline for sit,, and we have that
DI(sity) € {t1,...,tiast} for each h = 1,...,n. We define a global deadline for a
te-set S as DI(S) = min{DI(sit) | sit € S}.

We moreover assume that a probability* P(sit; E) is associated with each sit € E | such that
> siter P(sit; E) = 1. For every E' C E and for every sit € E’ we introduce the following

notation: P(EE) = ¥ gcp P(sit;E) and P(sit; E) = Sar. o

4.3 A Model for Recovery Actions

The algorithms we shall introduce require a more detailed model of recovery actions. In
particular we want to better characterize what happens when it is not possible to uniquely
identify the most appropriate recovery action. Moreover, we want to quantify the loss we
incur in when this happens.

We start with a formal definition:

Definition 7 A basic model for recovery actions is a triple (A, <, x) where:

(1) A={ay,...,ax} is a finite set of symbols denoting basic recovery actions.

4. P(sit;[E) can be computed as a frequency, that is P(sit;[E) = 1/n, where n is the number of fault
situations, or it can be known a priori and added to the set of examples.
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(2) <C A x A is a partial strict order relation on A. We say that a; is weaker than
aj, written as a; < aj, if a; produces more recovery effects than a;, in the sense
that a; could be used in place of a; (but not the vice versa). We therefore assume
that there are no drawbacks in actions, that is any action can be performed at any
time with no negative consequences, apart from the cost of the action itself (see
below). This is clearly a limitation and something to be tackled in future work (see
the discussion in section 7).

(3) x:A— IRT is the cost function, and is such that if a; < a; then x(a;) < x(a;). x
associates a cost with each basic recovery action, expressing possible drawbacks of
the action itself. Recovery actions performed on-board usually imply a performance
limitation or the abortion of some ongoing activity; costs are meant to estimate
monetary losses or inconveniences for the users resulting from these. The require-
ment of monotonicity with respect to < stems from the following consideration: if
a; < aj and x(a;) > x(aj) it would not make any sense to ever perform a;, since a;
could be performed with the same effects at the same (or lower) cost. We moreover
assume that costs are independent from the fault situation (a consequence of the
no-drawbacks assumption mentioned in the previous point). o

Example 3 Let us consider again the four recovery actions a,b,c,d that appear in the te-

set of Figure 1. Figure 6 shows a basic action model for them. The graph expresses the
oredering relation <, while costs are shown next to action names. o

a - x: 100

b-x: 20 c-x: 50

d-x: 10

Figure 6: A basic action model.

We have seen in the previous section that with each fault situation is associated a
recovery action; usually this association depends on the fault, but it may also depend on
the operating conditions in which the fault occurs.

What happens when we cannot discriminate multiple fault situations? In section 3.2,
while outlining the generic algorithm for the atemporal case, we referred the solution to the
decision-making agent. In this case we want to be more precise.

Definition 8 Let (A, <, ) be a basic model for recovery actions. We define the function
merge : 2% — 24 as follows:

(4) merge(S) = {a; € S | there is no a; € S such that a; < a;}
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We moreover define:
(5) merge-set(A) = {merge(S) | S € 24} C 2

merge-set(A) is the set of compound recovery actions which includes basic recovery actions
in the form of singletons. o

The intuition behind merge is that when we cannot discriminate multiple fault situations
we simply merge the corresponding recovery actions. This means that we collect all recovery
actions, and then remove the unnecessary ones (equation (4)). An action in a set becomes
unnecessary when the set contains a stronger action. Thus given a te-set E, we define:

(6) Act(E) = merge({Act(sit) | sit € E}).

If we take into account compound actions, we can extend the notion of model for recovery
actions as follows:

Definition 9 Let A = (A, <, x) be a basic model for recovery actions. An extended model
for A is a triple (A, <ext, Xext) Where:

(1) <extC merge-set(A) x merge-set(A) and given A, A’ € merge-set(A), A <exx A’ if
for every a € A either a € A’ or there exists a’ € A’ such that a < a’. Notice that
{ai} <ext {aj} if and only if a; < a;.

(2) Xext : merge-set(A) — IR™ is a cost function over compound actions such that for
every A € merge-set(A), maxaea X(a) < Xext(A) < Y ,ca- Moreover, if A <ex A’
then it must hold that yext(A4) < Xext(4').

While <ext is uniquely determined by <, the same does not hold for yext: for this rea-
son there is more than one extended model for any basic model. The requirement that
maxgea X(a) < Xext(A) is motivated as follows: if there existed a € A such that yext(A) <
X (a) then it would make sense never to perform a, substituting it for A. In fact, {a} <ext A
and A would have the same or lower cost. We also ask Yext - as we did for basic models -
to be monotonic with respect to <ext.

In the following we shall consider only extended models for recovery actions, thus we
shall drop the ext prefix from both < and y.

Example 4 Figure 7 shows a possible extension for the basic model in Figure 6. In this
case the cost of the compound action {b,c} is given by the sum of the individual costs of b
and c. o

5. The Problem of Building Temporal Decision Trees

In this section we outline the peculiarities of building temporal decision trees, showing the
differences with respect to the “traditional” case.
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{a} - x: 100

{b,c} - x: 70

{b} - x: 20 {c} - x: 50

{d} - x: 10

Figure 7: An extended action model.

5.1 The Challenge of Temporal Decision Trees

What makes the generation of temporal decision trees more difficult from standard ones is
the requirement that time labels do not decrease when moving from the root to the leaves:
this corresponds to assuming that sensor values cannot be stored; when the decision-making
agent decides to wait it gives up using all values that sensors show while it is waiting.

If we release this restriction we can actually generate temporal decision trees with a
minor variation of 1D3, essentially by considering each pair formed by a sensor and a time
label as an individual test. In other words ID3CHOOSETEST selects a sensor s and a time
label ¢ such that reading s at time ¢ allows for the maximum discrimination among examples.

However in systems as the ones we are considering, that is low-memory real-time systems,
the possibility of performing the diagnostic task without discarding dynamics but also
without having to store sensor values across time is a serious issue to take into account.
For this reason the definition of temporal decision tree includes the requirement that time
labels be not decreasing on root-leaf paths.

Figure 8 shows a generic algorithm for building temporal decision trees that can help us
outline the difficulties of the task. Line 8 shows a minor modification aimed at taking into
account deadlines: an observation can be used on a given set of examples only if its time
label does not exceed its global deadline. Violating this condition would result in a tree
that selects a recovery action only after the deadline for the corresponding fault situation
has expired.

The major change with respect to the standard algorithm is however shown in line
15: once we select an observation pair (sensor,tlabel) we must remove from the set of
observations all those pairs whose time label is lower than tlabel®.

As a consequence of these operations - ruling out invalid observations and discarding
those that are in the past - the set of observations available when building a child node can
be different from the one used for its parent in more than one way:

5. Actually this assumes that reading a sensor and moving downwards the tree accordingly can be done
so swiftly that the qualitative sensor values have no time to change in the meanwhile. If this is not the
case, one can choose to remove also the pairs with time labels equal to tlabel, or more generally those
with time labels lower than tlabel + k£ where k is the time needed by the diagnostic agent to carry out
tree operations. For the sake of simplicity, however, in the following we will assume that & is 0, since the
choice of k does not affect the approach we propose.
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1  function BUILDTEMPORALTREE (te-set Examples, set Obs, action model ActModel)
2 returns a temporal decision tree T = (root,Nodes, Edges, Labels, TLabels)
3 begin
4 if for all sit € Examples Act(sit) is the same then
5 return BUILDLEAF(Examples, ActModel);
6 deadline < DI(Examples);
7 UsefulObs < {o € Obs | 3s1, s2 € Examples s.t. Val(s1,0) # Val(s2,0)};
8 ValidObs « {(sensor,tlabel) € UsefulObs | tlabel < deadline};
9 if ValidObs is empty then
10 return BUILDLEAF(Examples, ActModel);
11 (sensor,tlabel) « CHOOSEOBSs (ValidObs, Examples, ActModel);
12 root <+ new node;
13 Nodes < {root}; Edges « &; Labels(root) < sensor; TLabels(root) « tlabel;
14 T « (root,Nodes, Edges, Labels, TLabels);
15 Obs_Update < {(sens, tst) € UsefulObs | tst > tlabel};
16 for each possible measure value of sensor do begin
17 SubExamples « {sit € Examples | Val(sit, (sensor,tlabel)) = value};
18 if SubExamples is not empty then begin
19 SubTree « BUILDTEMPORALTREE (SubExamples, Obs_Update, ActModel);
20 APPEND(T, root, SubTree);
21 Labels((root, ROOT(SubTree))) < value;
22 end;
23 end;
24 return T;
25 end.

26  function BUILDLEAF (te-set Examples, action model ActModel)
27  returns a loose temporal decision tree T = (leaf, {leaf}, &, Labels, &)

28  begin

29 all_act <« {Act(sit) | sit € Examples};

30 comp_act < merge(all_act);

31 leaf <« new node; Labels(leaf) < comp_act; T < (leaf, {leaf}, &, Labels, @);
32 return T;

33 end.

Figure 8: Generic algorithm for building a temporal decision tree

e Some observations can be invalid for the parent and valid for the child. The recursive
call for the child works on a smaller set of examples; therefore the global deadline may
be further ahead in time, allowing more observations to be used.

e Some observations can become unavailable for the child because they have a time
label lower than that used for the parent.

Of course the problematic issue is the latter: some observations are lost, and among them
there may be some information which is necessary for properly selecting a recovery action.

Let us consider as an example the te-set in Figure 9, with four fault situations, two time
labels (0 and 1) and only one sensor (s). Each fault situation is characterized by a different
recovery action, and the te-set obviously allows to discriminate all of them. However the
entropy criterion would first select the observation (s, 1), which is more discriminating.
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(s,0) | (s,1) | Act
sit1 X b'e a
sity be y b
sits y y ¢
sity vy Z d

Figure 9: A te-set causing some problems to standard ID3 algorithm if used for temporal
decision trees.

The observation (s,0) would then become unavailable, and the resulting tree could never
discriminate sito and sitg.

This shows that there is a relevant difference between building standard decision trees
and building temporal decision trees. Let us look again at the generic algorithm for standard
decision trees presented in Figure 3: the particular strategy implemented in CHOOSETEST
does not affect the capability of the tree of selecting the proper recovery action, but only the
size of the tree. Essentially the tree contains the same information as the set of examples -
at least for what concerns the association between observations and recovery actions. We
can say that the tree has always the same discriminating power as the set of examples,
meaning that the only case when the tree is not capable of deciding between two recovery
actions is when the set of examples contains two fault situations with identical observations
and different actions.

If we consider the algorithm in Figure 8 we see that the order in which observations are
selected - that is, the particular implementation of CHOOSEOBS - can affect the discrimi-
nating power of the tree, and not only its size. Since from one recursive call to the following
some observations are discarded, we can obtain a tree with less discriminating information
than the original set of examples. Our primary task is then to avoid such a situation, that is
to build a tree which is small, but which does not sacrifice relevant information. As a con-
sequence, we cannot exploit the strategy of simply selecting an observation with minimum
entropy.

In the next sections we shall formalize the new requirements for the output tree, and
propose an implementation of CHOOSEOBS which meets them.

5.2 Each Tree Has a Cost

In the previous section we informally introduced the notion of discriminating power. In
this section we shall introduce a more general notion of expected cost of a temporal decision
tree. Intuitively, the expected cost associated with a temporal decision tree is the expected
cost of a recovery action selected by the tree, with respect to the probability distribution
of the fault situations.

Expected cost is a stronger notion than discriminating power: on the one hand if a tree
discriminates better than another, than it has also a lower expected cost (we shall soon
prove this statement). On the other hand expected cost adds something to the notion of
discriminating power, since any two trees are comparable from the point of view of cost,
while they may not be from the point of view of the discrimination they carry out.
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Before defining expected cost, we need to introduce some preliminary definitions.

We shall make use of a function, named examples, that given an initial set of examples
E and a tree T associates to each node of the tree a subset of E. To understand the meaning
of such a function before formally defining it, let us imagine to run the tree on E and at
a certain point of the decision process to reach a node n: examples tells us which is the
subset of fault situations which we have not yet discarded.

Definition 10 Let E be a te-set with sensors sq, ..., sy, time labels £1, ..., tjast and actions
model (A, <, x). Moreover let T = (r, N,E,L,7T) be a temporal decision tree such that
for every internal node n € N we have L£(n) € {s1,...,s,} and T(n) € {t1,...,tlast}. We
define a function examples(-;E) : N +— 2F as follows:

(7) examples(r;E) =E where r is the root of T;
examples(n; E) = {sit € examples(p; E) | Val(sit, (L(p), 7 (p))) = L((p,n))}
where n € N, n # r and (p,n) € E.

examples is well defined since for any n € N different from the root there exists exactly
one p € N such that (p,n) € E. o

Notice that, if E is the set of examples used for building T, examples(n;E) corresponds to
the subset of examples used while creating node n.

Example 5 Let us consider Figure 10: it shows the same tree as Figure 5, but for every
node n we can also see the set of fault situations examples(n;E), where E is the te-set of

Figure 1. o
low (s22) high
sit,,sit,,sit,,sit,
sit,sitg, sit,, sitg
high (s1,0) normal normal | (S21) | high
sit,,sit,,sit, sit,,sitg
sitg,sit, sitg
y Actions: b,c Action: c
. sit,,sit, sit
Action: b 1 2 2
sit, very low| (S2r1) | 1ow
sit,,sit;
sit,,sitg
very low (Sszi;3) zero normal (s3/2) high
sit: sit,, sit,

A 4
Action: a Action: d Action: b Action: c
sit, sitg sit; sit,

Figure 10: A temporal decision tree showing the value of example(n,E).
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In the following when using function examples we shall omit the second argument,
denoting the initial te-set, when there is no ambiguity about which te-set is considered.

Not every tree can be used on a given set of examples: actually we need some compati-
bility between the two, which is characterized by the following definition.

Definition 11 Let [E be as in previous definition. We say that a temporal decision tree
T = (r,N,E,L,T) is compatible with E if:

e For every internal node n € N, L(n) € {s1,...,Sm}, T(n) € {t1,... ,tiast} and 7 (n) <
Dl(examples(n; E)).

e For every leaf [ € N, L(l) € merge(A) and L(I) = merge(Act(examples(/;E))).

It is straightforward to see that a tree is compatible with the set of examples used in building
it.
We have the following property®:

Proposition 12 Let T = (r,N,E,L,T) be a temporal decision tree compatible with a te-
set E. Letly,...,ly € N denote the leaves of T'. Then examples(ly), ..., examples(ls) is a
partition of E.

For each sit € E we then denote by leafr(sit) the unique leaf [ of T such that sit €
examples(l). We are now ready to formalize the notion of discriminating power.

Definition 13 Let T = (rr, N1, E1, L1, T1), U = (ry, Nu, Eu, Lu, Tuy) denote two tem-
poral decision trees compatible with the same te-set E. Let moreover (A, <, x) be the
recovery action model used in building T and U. We say that T is more discriminating
than U with respect to E if:

(1) for every sit € E either Ly (leafp(sit)) < Ly(leafy(sit)) or Lr(leafp(sit)) =
Ly (leafy(sit));

(2) there exists sit € E such that Lr(leafp(sit)) < Ly(leafy(sit)). o

Notice that the second condition makes sure that the two trees are not equal (in which
case they would be equally discriminating), something that the first condition alone cannot
guarantee.

Example 6 Let us consider the tree in Figure 10 above and the tree in Figure 11 below.
The former is more discriminating than the latter. In fact, the two trees associate the same
actions to sity, sitg, sits, sity, sits and sitg. However the former associates action b with sity
and action ¢ with sitg, while the latter associates to both sit7 and sitg the compound action

{b,c}. o

Unfortunately we cannot easily use discriminating power - as defined above - as a pref-
erence criterion for decision trees. The reason is that it does not define a total order on
decision trees, but only a partial one. The following situations may arise:

6. For the sake of readability, all proofs are collected in a separate appendix at the end of the paper.
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e For some sit, Lr(leafr(sit)) < Ly(leafy(sit)); for some other sit, Ly (leafy(sit)) <
ET(IeafT(sit)).

e For a given sit, L (leafy(sit)) A Ly(leafy (sit)), nor Ly (leafy(sit)) £ Lr(leafy(sit)).

From the point of view of discriminating power alone, it is reasonable for T and U not to be
comparable in the above cases. Nonetheless, there may be a reason for preferring one over
the other, and this reason is cost. For example if we consider the second situation, even if
Lr(sit) and Ly (sit) are not directly comparable from the point of view of their strength,
one of the two may be cheaper than the other and thus preferable.

We therefore introduce the notion of expected cost of a tree.

Definition 14 Let T = (r, N, E,L,7) be a temporal decision tree compatible with a te-
set E and an action model A = (A, <, x). We inductively define an expected cost function
g A N — IR™ on tree nodes as follows:

x(L(1)) if € N is a leaf;
(8) Xg.a(n) = Z P(L(n) — L((n,c))) - Xg a(c) if n € N is an inner node.
c:(n,c)€E

where P(L(n) — L((n,c))) is the probability of sensor £(n) showing a value v = L((n,c))
and is given by:

P(examples(c); E)

P(L(n) — L((n,c))) = P(examples(n); E)

= P(examples(c); examples(n)).

The expected cost of T with respect to E and A, denoted by X a(T) , is then defined as:

9) XpA(T) = Xga(r) where r is the root of T

The above definition states that:

e The expected cost of a tree leaf [ is simply the cost of its recovery action L£(1);

e The expected cost of an inner node n is given by the weighted sum of its children’s
expected costs; weight for child ¢ is given by the probability P(L(n) — L((n,c))).

e The expected cost of a temporal decision tree T is the expected cost of its root.

The following proposition states that the weighted sum for computing the expected cost
of the root can be performed directly on tree leaves.

Proposition 15 Let T = (r, N, E,L,T) denote a temporal decision tree, and let ly,...,l,
be its leaves. Then

(10) Xz a(T) = x(L£(L)) - P(examples(l); E)
=1
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very low (s2/0) low
sit,,sit,,sit;,sit,
sit;, sit,,sit,, sitg

high
very low (82/5) | zero very low (s3,6) high
sit, sit;
sitg sit,

N A
Action: a Action: d Actions: b Action: c
sit, sitg sit; sit,

A

Actions: b
sit,, sit;,sit,,sitg

Figure 11: A temporal decision tree less discriminating than the one in Figure 10.

The next proposition shows that expected cost is monotonic with respect to the “better
discrimination” relation, and therefore it is a good preference criterion for temporal decision
trees, since a tree with the lowest possible expected cost is the most discriminating one,
and moreover it is the cheapest among equally discriminating trees.

PTOpOS?:t’iO’n 16 Let T = (TT, NT,ET,,CT,TT>, U = <T‘U7 NU7EU7,CU7TU> be two tempo—
ral decision trees compatible with the same te-set [E and the same actions model A. If T is
more discriminating than U then Xg a(T) < Ak a(U).

Example 7 Let us compute the expected cost of tree T1 in Figure 10 and of tree Ta in
Figure 11, with respect to the te-set E in Figure 1 and the action model A in Figure 7. We
shall assume that all fault situations are equiprobable, that is each of them has probability
1/8. By exploiting proposition 15 we obtain:

Ara(T1) = P(sit1)x(a) + P(sit7)x(b) + P(sits)x(d) + P(sit3)x(b) + P(sits)x(c) +

+P({sity, sits })x({b, ¢}) + P(sits)x(c) =
1 1 1 1 1 1

1
= —--100+<--20+<-104+<--204+—--50+—--70+ < - 50 =
8 +8 +8 +8 +8 +4 +8

= 1254+25+125+254+6.25+17.5+6.25 = 48.75
Xe a(T2) = P(sity)x(a) + P(site)x(d) + P(sit3)x(b) + P(sits)x(c) +

—I—P({Sitg, Sit5, Sit7, Sitg})x({b, C}) =

1 1 1 1 1

= --100+<-104+<-204<--504+--70 =
8 +8 +8 +8 +2

= 125+4+1.25425+4+6.25435 =575

We can see that the less discriminating tree, that is To, has a higher expected cost. o

5.3 Restating the Problem

In the previous section we introduced expected cost as a preference criterion for decision
trees. Given this notion, we can restate the problem of building temporal decision tree as
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that of building a tree with minimum possible expected cost. This section formally shows
that the notion of “minimum possible expected cost” is well defined, and more precisely
it corresponds to the cost of a tree that exploits all observations in the te-set. The goal
can then be expressed as finding a reasonably small tree among those whose expected cost
1S minimum.

In this section, as well as formalizing the above mentioned notions, we introduce some
formal machinery that will be useful in proving the correctness of our algorithm.

Definition 17 Let E denote a te-set. Moreover, let tq,...,tjast denote the time labels of
E. We say that sit;,sit; € E are pairwise indistinguishable, and we write sit; ~ sit;, if
for all ¢; < min{DI(sit;), DI(sit;)} and for all sensors s we have that Val(sit;, (s,t;)) =
Val(sitj, (s,t3)). <&

As a relation, ~ is obviously reflexive and symmetric, but it is not transitive. If we consider
a sit; with a particularly strict deadline, it might well be that sit; ~ sit, sit; ~ sit;, but
sit; ~ sit;. We now introduce a new relation ~ which is the transitive closure of ~.

Definition 18 Let E denote a te-set. We say that sit;,sit; € E are indistinguishable, and
we write sit; ~ sit;, if there exists a finite sequence sity, , ..., sit;, € E such that

o sity, = sit;;

e sity, = sit;;

o for every g=1,...,u— 1, sity, ~sitg . o

~ is an equivalence relation over E, and we denote by E/~ the corresponding quotient set.
We have the following definition:

Deﬁnition 19 Let E be a te-set, with actions model A. The expected cost of E, denoted
by X A, is defined as:

(11) Xpa = Y x(merge({Act(sit) |sit € 1})) - P(n;E)
neEL/~

%

Example 8 Let us consider the te-set E in Figure 1 and the action model A in Figure 7.
The only two indistinguishable fault situations in E are sity and sits. Thus we have:

Xea = P(sity)x(a) + P({sita,sits})x({b, c}) + P(sit3)x(b) + P(sits)x(c) +

+P(sitg)x(d) + P(sit7)x(b) + P(sitg)x(c) =
1 1 1 1 1 1 1

= -.1 Z. Z.92 . .1 Z.204+Z.50=
3 00+4 70—1—8 0+8 50—1—8 0+8 0—1—8 50

= 12541754+2546.254+1.254+2.546.25 = 48.75

Notice that the tree in Figure 10 has the same cost as the te-set, thus its cost is the minimum
possible, as we show below. Of course we may still be able to build another smaller tree with
the same cost. o
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Now we need to show that ?IE, A is actually the minimum possible expected cost for a
temporal decision tree compatible with E.

Theorem 20 Let E be a te-set with actions model A. We have that:
(i) There exists a decision tree T compatible with E such that Xg a(T) = XgA.

(ii) For every temporal decision tree T compatible with E, Xg a < Xg a(T). o

Now we can state more precisely the problem of building a temporal decision tree:

Given a te-set E with actions model A, we want to build a temporal decision
tree T over E, such that Xg A(T) = Xg . Moreover, we want to keep the tree
reasonably small by exploiting entropy.

6. The Algorithm

In this section we describe in detail our proposal for building temporal decision trees from a
given te-set and action model. We also discuss the complexity of the algorithm we introduce,
and give an example of how the algorithm works.

6.1 Preconditions

Our goal is now to define an implementation of function CHOOSEOBS such that, once
plugged into function BUILDTEMPORALTREE, yields a solution to the problem of building
temporal decision trees as stated in section 5.3. First however we shall analyze some prop-
erties of BUILDTEMPORALTREE as defined in Figure 8: this will lead us smoothly to the
solution and will help us prove formally its correctness. In order to accomplish this task we
need to introduce some notation that allows us to speak about algorithm properties.

Let E be a te-set with fault situations {sity,...,sit,}, sensors {si,...,s,}, time labels
{t1,...,tiast} and action model A. We aim at computing our tree T by executing:

(12) T <« BUILDTEMPORALTREE({sity,...,sit,},{s1,.-.,Sm} X {t1,.- ., tiast}, A)

Each execution of BUILDTEMPORALTREE comprises several recursive calls to the same
function; given two recursive calls ¢,¢ we shall write ¢ C ¢ when ¢ occurs immediately
inside ¢/. Moreover we shall denote by ¢y the initial call. Finally, we shall call terminal a
recursive call which does not have any further inner call.

For a given call ¢, we shall denote by [Example]., [0bs]., [ActModel]. the actual values
of the formal parameters in ¢. With a slight abuse of notation, we shall also write [var].
to denote the value of those variables var in ¢ that, once set, never change their value
(deadline, UsefulObs, ValidObs, sensor, tlabel, Obs_Update). Finally, we shall denote
by [[T]lc the tree returned by call c.

Each recursive call ¢ works on a different te-set, which is defined by [Examples].
and [[Obs]l.. The actions model however is always the same, since for ¢ C ¢ we have
[ActModel], = [ActModel].,. We shall denote by E. the te-set used in call ¢, which is
determined by its input parameters.
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The following proposition is critical for proving the correctness of our approach. It
states that we can obtain a tree with minimum expected cost if and only if we guarantee
that there is no increase in the expected cost of the te-set when passing from the set of
observations Obs to the set Obs_Update:

Proposition 21 Let us consider an execution of BUILDTEMPORALTREE starting with a
main call cg. The initial te-set, which we want to build a tree over, is E = E., with
A = [[ActModel].,. For any recursive call ¢, let us denote by E} the te-set determined by
[Examples]. and [Obs_Update].. Then:

(1) Xea([Tle) > XE,a

(2) A A([Tle) = ?E,A_z'f and only if for every non terminal’ recursive call ¢ generated
by co it holds that Xg, A = XEx A

6.2 Implementing ChooseObs

Proposition 21 suggests that we need to provide an implementation for CHOOSEOBS such
that at each recursive call c, ?EC, A= ?]EL A. Let us examine in more detail the relations
between [[0bs]). and [[0bs_Update].

As a first step, [UsefulObs]. is obtained by removing from [[Obs]. those observations
that do not help in discriminating fault situations. This has no effect on the expected cost
of the te-set, since it does not affect the relation of indistinguishability.

Then [Obs_Update]. is obtained from [UsefulObs]. by removing those observations
whose time label precedes the chosen one. The expected cost of the resulting te-set thus
depends on the time label selected by function CHOOSEOBS. We have the following prop-
erties:

Proposition 22 Let c,d denote two independent calls to BUILDTEMPORALTREE with the
same input arguments but with different implementations of CHOOSEOBS. If [tlabell, <
[[tlabel]]d then XE;,A < XIE;,A-

Proposition 23 Let ¢ be a call to BUILDTEMPORALTREE. If [t1label]. = tmin, = min{t |
(t,s) € [ValidObs].} then Xg: A < XE,A-

Now we define the notion of a safe time label:

Definition 24 Let ¢ denote a call to BUILDTEMPORALTREE. A time label ¢ is said to be
safe with respect to c if [t1label]. = ¢ implies Xgx A = X, A.

An immediate consequence of propositions 22 and 23 is the following:
Proposition 25 For any call ¢ to BUILDTEMPORALTREE there ezist a time label tmax,

such that the safe time labels are all and only those t with tmin, <t < tmax., wWhere tmin, 1S
as in proposition 23.

7. We exclude terminal calls because they do not even compute Obs_Update.
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Figure 12 describes ID3CHOOSESAFEOBS, the implementation of CHOOSEOBS we pro-
pose. It exploits the properties we have proved in this and the previous section in order to
achieve the desired task in an efficient way. Let us examine it in more detail.

ID3CHOOSESAFEOBS (Figure 12) computes the set of safe observations (line 4) and
then chooses among them one with minimum entropy (line 5). For what we have proved
up to now, such an implementation yields a temporal decision tree with minimum expected
cost, and at the same time exploits entropy in order to keep the tree small.

Let us now see how FINDSAFEOBS (also in Figure 12) computes the set of safe obser-
vations. Proposition 23 shows that the notion of safeness is tied to time labels rather than
to individual observations. First of all FINDSAFEOBS determines the range of valid time
labels for the current set of examples (line 12); the lower bound #oy is the lowest time label
in Obs, and is stored in variable t_low, while the upper bound ¢, is given by the global
deadline for Examples, and is stored in variable t_up.

Then the idea is to find the maximum safe label tmax (variable t_max) which allows us
to easily build the set of safe observations (line 21).

In order to accomplish this task the following steps have to be performed:

e Given the initial te-set E, defined by Examples, Obs and ActModel, compute X A.

e Lor each time label ¢ in the range delimited by tjow and t,p, consider the te-set E;
defined by Examples and by those observations with time label equal or greater than
t. Then compute X', A.

e As soon as we find a time label ¢t with ?Et,A > ?E,A, we know that tmax is the time
label immediately preceding t.

Here the most critical operation (in terms of efficiency) is that of computing the expected
cost of each E;, because this involves finding the quotient set E;/~. In fact, in order
to obtain the quotient set, we need to repeatedly partition the te-set with respect to all
observations available for it.

QUOTIENTSET function (Figure 12) performs precisely this task. It takes in input the
current time label tlabel, an initial partition (possibly made of a single block with the
entire te-set) and the set of all observations, from which it will select valid ones.

First of all it partitions the input te-set with respect to observations with the current
time label (lines 28-31). Then it executes iteratively the following operations:

e For each partition block it checks whether the deadline has moved further in time
(lines 36-38).

e If so, it partitions again the block and stores the resulting sub-blocks for further
examination (lines 39-41).

e If not, the block is part of the Final partition that will be returned (line 42).

In order to simplify the task, we introduce as a data type the extended partition, where each
partition block is stored together with the highest time label used in building it. In this way
we can easily check if the deadline for the block allows us to exploit more observations or
not. Using extended partitions instead of standard ones we need to define a new function,
EXTPARTITION, which works in the same way as the PARTITION function used in Figure 4,
but also records with each block the highest time label used for it.
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1  function ID3CHOOSESAFEOBS (set Obs, te-set Examples, action model ActModel)
2 returns an observation o = (sensor, tlabel)
3 begin
4 SafeObs < FINDSAFEOBS(Obs, Examples, ActModel);
5 o <« ID3CHOOSETEST(SafelObs, Examples);
6 return o;
7 end.
8  function FINDSAFEOBS (set Obs, te-set Examples, action model ActModel)
9 returns a set of observations SafeObs
10 begin
11 cost — ZsitEExamples Act(sit);
12 t_up < DI(Examples); t_low < min{t | (s,t) € Obs};
13 t_max < t_up; part < {(Examples,t_up)};
14 for every time label tx starting from t_up down to t_low do begin
15 part <« QUOTIENTSET(part, Obs, tx);
16 newcost «— EXPECTEDCOST(part);
17 if newcost < cost then begin
18 cost «— newcost; t_max « tx;
19 end;
20 end;
21 SafelObs «— {(s,t) | t < t_max};
22 return Safe0bs;
23  end.

24  function QUOTIENTSET (partition Initial, set Obs, time label tlabel)
25  returns a refined partition Final

26  begin

27 part < Initial;

28 for all (s, t) with t = tlabel do begin
29 part <« EXTPARTITION(part, (s, t));
30 ObsCurr « ObsCurr U {(s,t)};

31 end;

32 Final «— O;

33 while part # @ do

34 tmp_part «— J;

35 for each (block,ty) € part do begin
36 newdl < DI(block);

37 single « {(block,ty)};

38 if newdl > ty then begin

39 for each (s,t) with ty < t < newdl do
40 single «— EXTPARTITION(single, (s, t));
41 tmp_part < tmp_part U single;
42 end else Final < Final U start;
43 end;

44 part < tmp_part;

45 end;

46 return Final;

47  end.

Figure 12: ID3CHOOSESAFEOBS is an implementation of CHOOSEOBS yielding a tree with
minimum expected cost
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Notice that QUOTIENTSET needs the whole set of observations (and not only valid ones)
to properly compute the result; therefore when BUILDTEMPORALTREE calls ID3CHOOSESAFEOBS
it must pass as first argument UsefulObs instead of VALIDOBS.

FINDSAFEOBS exploits QUOTIENTSET to find all quotient sets for all E;, but does so
using an efficient approach which we call backward strategy.

First of all, we can notice that the order in which observations are considered does not
matter while building a quotient set. Moreover, if ¢ < t/, E;/~ is a refinement of Ey /~; in
other words we can obtain it from Ey/~ by simply refining the partition with additional
observations.

Thus, we can compute all quotient sets at the same time as we compute E/~.

FINDSAFEOBS does exactly so: it computes all quotient sets and their expected cost
starting from the last time label t,p. Each quotient set is not built from scratch, but as a
refinement of the previous one. This is the reason why QUOTIENTSET (and EXTPARTITION
as well) takes as first argument not a single set, but a partition. In this way, all quotient sets
are computed with the same operations® needed to build E/~. The next section analyzes
in further detail complexity issues.

6.3 Complexity

In this section we aim at showing that the additional computations needed in building
temporal decision trees do not lead to a higher asymptotical complexity than that we
would get by using the standard ID3 algorithm on the same set of examples (we discussed
in section 5.1 the circumstances that could make such an approach feasible).

Essentially the difference between the two cases lies in the presence of FINDSAFE-
OBs function. Wherever BUILDTREE calls ID3CHOOSETEST, BUILDTEMPORALTREE calls
ID3CHOOSESAFEOBS, which in turn calls both FINDSAFEOBS and ID3CHOOSETEST.

Let us compare FINDSAFEOBS and ID3CHOOSETEST, which are similar in many ways.
The former repeatedly partitions the input te-set with respect to every available observation;
then it computes entropy for each partition built in such a way. FINDSAFEOBS builds
just one partition by exploiting all available observations; in other words instead of using
each observation to partition the initial te-set, it exploits it in order to refine an existing
partition of the same te-set. Moreover, at each time label it computes the expected cost
of the partition built so far. Essentially, if we denote by Ng the number of sensors and
with Np the number of time labels in the initial partition, we have roughly the following
comparison:

e Ng x Np (number of observations) entropy computations for IDSCHOOSETEST vs.
Np expected cost computations for FINDSAFEOBS.

e Ng x N partitions of the initial te-set for ID3CHOOSETEST vs. Ng X Np refinements
of existing partitions of the initial te-set for FINDSAFEOBS.

Entropy and expected cost can be computed with roughly the same effort: both require
retrieving some information for each element of each partition block, and to combine this
information in some quite straightforward way. The complexity of this task depends only
on the overall number of elements, and not on how they are distributed between different

8. There is a slight overhead due to the need to find which observations should be used at each step.

498



TEMPORAL DECISION TREES: MODEL-BASED DIAGNOSIS OF DYNAMIC SYSTEMS ON-BOARD

block of the partition. So even if expected cost is computed most of the times on finer
partitions than entropy, the only thing that matters is that both are partitions of the same
set, thus involving the same elements.

Now let us examine the problem of creating a partition. This involves retrieving a value
for each element of each block of the initial partition (which again depends only on the
number of elements, and not on the number of blocks of the initial partition) and to properly
assign the element to a new partition block depending on the original block and on the new
value. The main difference in this case between starting with the whole te-set (creation) or
with an initial partition (refinement), is the size of the new blocks that are being created,
which are smaller in the second case. Dependent on how we implement the partition data
type, this may make no difference, or may take less time for the refinement case. However,
it never happens that refinement (corresponding to FINDSAFEOBS function) requires more
time than the creation (corresponding to ID3CHOOSETEST function) of a partition.

Therefore we can claim that FINDSAFEOBS function has the same asymptotic complex-
ity as function ID3CHOOSETEST. Thus also ID3CHOOSESAFEOBS has the same asymp-
totic complexity as ID3SCHOOSETEST, and we can conclude that BUILDTREE has the same
asymptotic complexity as BUILDTEMPORALTREE.

6.4 An Example

In this section we shall show how our algorithm operates on the te-set in Figure 1 with
respect to the action model in Figure 7.

Let us summarize the information the algorithm receives. Eight fault situations are
involved; moreover we can exploit three sensors, each of which can show five different
qualitative values: h - high, n - normal, | - low, v - very low, z - zero. Time labels
correspond to natural numbers ranging from 0 to 7, and we assume they correspond to
times measured by an internal clock which is started at the time of fault detection. There
are four basic recovery actions a,b,c,d, such that d < b < a and d < ¢ < a. The set of
compound recovery actions is thus A = {{a}, {b}, {c}, {b, ¢}, {d}}; the ordering relation is
pictured in 7, together with action costs.

BUILDTEMPORALTREE is first called on the whole te-set. None of the two terminat-
ing conditions is met (notice however that there are two observations that are not use-
ful, since they do not discriminate: (s3,0) and (s3,1)). Then the main function calls
ID3CHOOSESAFEOBS and consequently FINDSAFEOBS. Since the global deadline is 2 we
must check time labels 0,1 and 2, starting from the last one.

Exploiting only observations with time label 2 we obtain the following partition:

{{sity, sitg }, {sito, sits, sit7, sitg}, {sits}, {sit4}}

However in order to find the expected cost we still have to check if for some partition block
the deadline has changed; this happens for {sity,sits} as well as for {sit3} and {sit4}. For
the last two blocks it does not change anything - they already contain only one element. As
to the first block, the deadline is now 5 and thus it is possible to further split the partition.
Therefore we obtain that the partition for time label 2 is:

Pi—o = {{sity }, {sitg}, {sito, sits, sit7, sits }, {sits}, {sit4}}
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After finding the partition, the algorithm computes the expected cost, which turns out
to be:

1 1 1
Xgi—2 = x(Act(sit;))- g x(Act(sitg)) - st X(Act({sito,sits, sit7,sitg})) - )
1 1
+ X(Act(sits)) - o + x(Act(sits)) - ¢
1 1 1 1 1
= 100-=+10-=4+70-=+20-=+50-=
g T10 g+ 7054200 2450 2

= 97.5

Then the algorithm moves to time label 1; starting from P;—s it adds observations with
time label 1, obtaining a new partition:

Py = {{Sitl}, {Sitﬁ}, {Sitg, Sit5}, {Sit7}, {Sitg}, {Sit3}, {Sit4}}

Deadlines move for {sit7} and {sitg}, but since these are singletons the new observations
cannot further split the partition. The expected cost is now:

| =

Xeior = x(Act(sit:)) - % v (Act(sitg)) - % + v(Act({sits, sits})) - i + v (Act(sits)) -

+  x(Act(sitg)) - % + x(Act(sit3)) - % + X (Act(sity)) - %

1 1 1 1 1 1
= 100 £+ 100 g+ 70 5 +20- o 450 2 +20- 2 +50-

= 48.75

| =

Since Xg =1 < Xg (=2 we can conclude that observations with time label 2 are not safe. We
now move to time label 0, and we immediately realize that the new observations do not
change the partition. Thus Xg ;-0 = Xg =1, and safe observations are those with time label
equal either to 0 or to 1.

The algorithm now calls function ID3CHOOSETEST which selects the observation with
minimum entropy. Figure 13 shows the entropies of the different observations at this stage,
from which we deduce that the best choice is (s2,1).

| Entropies for {Sit1, sita, sits, sity, sits, sitg, sit7, Sitg} |
(5,,0)| L5 GLD L5
(s2,0) [ 1.451 (s2,1) ] 0.844

Figure 13: Entropies for safe observations at the initial call

Figure 15.(a) shows the tree at this point; function BUILDTEMPORALTREE recursively
invokes itself four times, yielding:

e acall ¢; on E, = {sity, sits};

e a call ¢y on E, = {sity, sit5};

e a call c3 on Ej = {sits, sity, sit7};

e acall ¢4 on E, = {sitg}.
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Let us focus on call ¢1: again, none of the terminating conditions is met, therefore the
algorithm invokes ID3CHOOSESAFEOBS and thus FINDSAFEOBS. Notice however that on
this subset only a few observations are in UsefulObs: (si,3), (s2,3), (s2,4), (s2,5) and
(s3,5). The global deadline is 5.

First we find the partition (and the expected cost) for time label 5:

Pi—s = {{Sitl},{Sitﬁ}}

Xg, t=5 = x(Act(sity)) - % + x(Act(sitg)) - % =100 - % +10- % =55
No additional observations can split further this partition and lower the cost; therefore we
find that all valid observations are also safe. It is moreover obvious that all these observa-
tions have the same entropy, which is 0. Therefore the algorithm can non-deterministically
select one of them; a reasonable criterion would be to select any of the earliest ones, for
example (s1,3).

Since the initial te-set for call ¢; is now split in two, there are two more recursive calls.
However we can notice that if BUILDTEMPORALTREE is called on a te-set with a single
element, the first terminating condition is trivially met (all the fault situations have the
same recovery action). The function simply returns a tree leaf with the name of the proper
recovery action. Figure 15.(b) shows the tree after ¢; has been completed.

Now let us examine cy: the algorithm eliminates non-discriminating observations, and
finds out that the set of useful observations is empty. Thus it builds a leaf with recovery
action {b,c}. Let us pass to call cs. In this case none of the terminating conditions is met:

| Entropies for {sits, sit4, sit; } |

(s1,1)]0.667 [[ (s1,2) [0.667 ][ (s1,3) | 0.667
(s2,2)]0.667 || (s2,3) [0.667 || (s2,4) | 0.667
<82, 5> 0 <83, 1> 0 <83, 2> 0
(s3,3)| O (s3,4)| 0

Figure 14: Entropies for safe observations at call c3

the algorithm must then look for safe observations. The global deadline is 5, so we start
examining time label 5, and we find:

Pi—s = {{Sitg}, {Sit4}, {Sit7}}
Xg =5 = Xx(Act(sitz)) - % + x(Act(sity)) - % + x(Act(sit7)) -

Wl

1 1 1
= 20-3+50-3+2O-3 =30
Much as happened for ¢, no additional observation can further split the partition, so we
can conclude that all valid observations are also safe. Figure 14 shows entropy for all valid
observations; the earliest one with minimum entropy is (ss,2) and this the algorithm selects.
The two recursive sub-calls that are generated immediately terminate: {sity} is a singleton,
and in {sits, sit7} both fault situations correspond to the same recovery action.
The last recursive call, ¢4, has in input a singleton and thus immediately terminates.
The final decision tree T is pictured in Figure 15.(c).
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b,c c

sit,,sit; sitg
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Figure 15: The output tree at different stages. (c) shows the final tree.

Let us check if the expected cost of T is really equal to the expected cost for E. Figure 16
shows for each tree leaf [ the corresponding set of fault situations examples(l), its probability
P(examples(l); E) and its cost x(L£(1)). Leaves are numbered from 1 to 6 going left to right
in Figure 15.(c).

|leaf[examples| P [ x ]

l1 |sity 1/8 100
lo |sitg 1/8 10
I3 |sits s sits 1/4 70
l4 |sitg 1/8 50
I Sit3, sit; 1/4 20
le |sita 1/8 50

Figure 16: Fault situations, probabilities and costs for the leaves of the tree in Figure 15.(c)
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Thus the expected cost of the tree is:

6
Xga(T) = > x(L(L))- P(examples(l); E)

=1
1 1 1 1 1 1
= —.1 —.1 —. Z. —.92 _.
3 OO—i—8 0+4 7O+8 50+4 O—i—8 50
= 48.75

If we look back at example 8 we see that XE, A = 48.75, thus T has the minimum possible
expected cost. Moreover, we can compare T with the tree T of example 5. Also Ty has
the minimum possible expected cost, but T is more compact.

7. Conclusions

In this paper we introduced a new notion of diagnostic decision tree that takes into account
temporal information on the observations and temporal constraints on the recovery actions
to be performed. In this way we can take advantage of the discriminatory power that is
available in the model of a dynamic system. We presented an algorithm that generates
temporal diagnostic decision trees from a set of examples, discussing also how an optimal
tree can be generated.

The automatic compilation of decision trees seems to be a promising approach for recon-
ciling the advantages of model-based reasoning and the constraints imposed by the on-board
hardware and software environment. It is worth noting that this is not only true in the
automotive domain and indeed the idea of compiling diagnostic rules from a model has been
investigated also in other approaches (see e.g., Darwiche, 1999; Dvorak & Kuipers, 1989).
Darwiche (1999), in particular, discusses how rules can be generated for those platforms
where constrained resources do not allow a direct use of a model-based diagnostic system.

What is new in our approach is the possibility of compiling also information concerning
the system temporal behaviour, obtaining in this way more accurate decision procedures.

To the best of our knowledge, temporal decision trees are a new notion in the diagnostic
literature. However, there are works in other fields that have some relation to ours, since
they are aimed at learnig rules or associations that take into account time.

Geurts and Whenkel (1998) propose a notion of temporal tree to be used for early
prediction of faults. This topic is closely related to diagnosis, albeit different in some
ways: the idea is that the device under examination has not failed yet, but by observing
its behaviour it is possible to predict that a fault is about to occur. Geurts and Wehenkel
propose to learn the relation between observed behavioural patterns and consequent failures
by inducing a temporal tree.

The notion of temporal tree introduced by Geurts and Wehenkel is different than our
temporal decision trees, reflecting the different purpose it has been introduced for. Rather
than sensor readings, it consider a more general notion of test, and the tree does not
specifies the time to wait before performing the tests, but rather the agent running the tree
is supposed to wait until one of the tests associated to a tree node becomes true.

Also the notion of optimality is quite different: in the situation described by Geurts and
Wehenkel the size of the resulting tree is not a concern. The tree-building algorithms aims
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then at minimizing the time at which the final decision is taken. In our algorithm, size is
the primary concern, while from the point of view of time it suffices that diagnosis is carried
out within certain deadlines. From the point of view of time alone, the apporach by Geurts
and Wehenkel is probably more general than ours; the problem of considering the trade-off
between diagnostic capability and time needed for diagnosis is one of the major extensions
we are considering for future work on this topic (see below).

Finally, the algorithm proposed by Geurts and Wehenkel works in a quite different
way than ours: it first builds the tree greedily, using an evaluation function that weighs
discriminability power agains time needed to reach a result, and selecting at each step the
texts that optimizes such function. Then it prunes the tree in order to avoid overfitting. On
the other hand, our approach aim at optimizing the tree from the point of view of cost, and
at the same time tries to keep the tree small with the entropy heuristic. We think that, since
optimization can be carried out at no additional cost? with respect to the minimization of
entropy, our approach can obtain better results, at least in those cases where one can define
a notion of deadline.

The process of learning association rules involving time has also been studied in other
areas, such as machine learning (see for example Bischof & Caelli, 2001, where the authors
propose a technique to learn movements) and data mining. While the specific diagnostic
tailoring of our approach makes it difficult to compare it with more generic learning al-
gorithms, the connections with data mining may be stronger. Our proposal in fact aims
essentially at extracting from series of observations those patterns in time that allow to
correctly diagnose a fault: this process can be regarded as a form of temporal classification.
A preliminary investigation of papers in this area (see Antunes & Oliveira, 2001 for an
overview) seems to suggest that, whereas the analysis of temporal sequences of data has
received much interest in the last years, not much work has been done in the direction of
data classification, where temporal decision trees could be exploited.

This suggests an interesting development for our work, in particular as concerns its
applicability in other areas. However, we believe that the algorithm we presented needs to
be extended in order to be exploited in other contexts. In particular we are investigating
the following extensions:

e Deadlines could be turned from hard to soft. Soft deadlines do not have to be met,
but rather define a cost associated to not meeting them. Thus not meeting a deadline
becomes an option that can be taken into account when it is less expensive than
performing a recovery action when the diagnosis is not complete. One could even
define a cost that increases as the time passes from the expiration of the deadline.
Such an extension would allow to model also the trade-off between discriminability
power and time needed by the decision process, which we believe is the key to making
our work applicable in other areas.

e Actions could be assumed to have a different cost depending on the fault situation; for
example the action associated to a fault could become dangerous and thus extremely
expensive if performed in presence of another fault.

9. From the point of view of asymptotical complexity.
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On the long term, future work on this topic will be aimed at widening its areas of
applicability, and investigating in deeper details its connections with other fields, such as
fault prevention and data mining.
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Appendix A. Proofs

This section contains the proofs of all propositions, lemmas and theorems in the paper.

Proposition 12. Let T = (r,N,E,L,T) be a temporal decision tree compatible with
a te-set E. Let ly,...,ly € N denote the leaves of T'. Then examples(l,),...,examples(i)
s a partition of E.

Proof. Follows immediately by the definition of examples (10), by noticing that if
ni,...,ng are the children of p then {examples(n,),...,examples(ny)} is a partition of
examples(p). o

Proposition 15 Let T = (r,N,E,L,T) denote a temporal decision tree, and let
li,...,l, be its leaves. Then

X a(T) =Y x(L(L)) - P(examples(]); E)
=1

Proof. By induction on the depth of T. If T has depth 0 then it consists of a single
leaf [ and 10 holds trivially since examples(!) must be equal to E and P(E;E) = 1.

If T has depth > 0 then let T1,..., Ty denote its direct subtrees and ¢y, ..., ¢, denote
their roots. We can regard each T; as an autonomous temporal decision tree compatible
with te-set E; = examples(c;). By induction hypothesis we have that:

(13)
Mg, a(T) = > x(£()- Plexamples(l);E;) = > x(L(I))- P(eX;TH;J)-IéI;()Z);E)
l leaf of T; l leaf of T; v

Moreover by definition of expected cost:

k

(14) AXga(T)=> P(L(r) — L((r,c))) - X, a(T;)  with
=1
P(L(r) — L((r,¢;))) = P(examples(c;); examples(r)) = P(E;; E).
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From (13) and (14) we thus obtain:

k .
15) Xea(M=>, ), P(EaE)-xw(mP(GX;Tﬁlfﬁgl)’E)

i=1 1 leaf of T;

:Z Y X(£(1)) - P(examples(l); E)

Since the leaves of T are all and only the leaves of T1,..., T, (15) is equivalent to the
thesis. o
Proposition 16 Let T = (rp, Ny, Er,Lr,T7), U = (ru, Nu, Fu, Lu, Tu) be two
temporal decision trees compatible with the same te-set E and the same actions model A. If
T is more discriminating than U then Xg a(T) < X a(U).
Proof. Rewriting equation (10) we obtain:

(16) Ag a(T) = ZX(ET(ZZ-)) - P(examples(l); E) = Z X (Lr(leafr(sit)))P(sit; E)
i=1

siteE

(17) X2 a(U) = > x(Lu(leafy(sit)))P(sit; E).

siteE

Since T is more discriminating than U, we have that for all sit € E:
Lr(leafr(sit)) < Ly(leafy(sit)) or Lr(leafr(sit)) = Ly (leafy(sit))
with at least one sit satisfying the first relation. By definition of x it follows that for all sit:
X (Lt (leafp(sit))) < x(Lu(leafy(sit)))
and for at least one sit:
x(Lr(leafy(sit))) = x(Ly(leafy(sit)))

Therefore if we compare the individual elements of the two sums in (16) and (17) we observe
there exists at least one sit for which:

X (Lr(leafr(sit)))P(sit; E) < x(Lu(leafy(sit)))P(sit; E)
and for all other sit
x(Lr(leafy(sit)))P(sit; E) < x(Lu(leafy(sit)))P(sit; E)

which concludes the proof. o
Theorem 20 Let E be a te-set with actions model A. We have that:

(i) There exists a decision tree T compatible with E such that Xz a(T) = Xg.A.

(i) For every temporal decision tree T compatible with E, ?E,A < Xpa(T). o

506



TEMPORAL DECISION TREES: MODEL-BASED DIAGNOSIS OF DYNAMIC SYSTEMS ON-BOARD

In order to prove this theorem we introduce some lemmas.

Lemma 26 Let T be a temporal decision tree compatible with a te-set E. Then sit; ~ sit;
implies leafr (sit;) = leafr(sit;).

Proof. = We prove that sit; ~ sit; implies leafr(sit;) = leafy(sit;), from which the
lemma easily follows. Let us suppose that leafp(sit;) # leafy(sit;). This means that
there is a common ancestor n of the two leaves such that sit;,sit; € examples(n) and
Val(sit;, (£(n), 7 (n))) # Val(sit;, (L(n), T (n))). Since sit; ~ sit; this is possible only if
7 (n) > min{DI(sit;), DI(sit;)}. But since T is compatible with E it must hold that 7 (n) <
Dl(examples(n)) < min{DI(sit;), DI(sit;)}, which contradicts the previous statement. ¢

Lemma 27 Let E be a te-set with sensors Si,...,Sm, time labels tq, ..., tlast and actions
model A. There exists a temporal decision tree T = (7, N,E,L,T) such that Xg Ao(T) =

X]E,A-

Proof. In order to prove the thesis we construct a tree T with the same expected cost
as the te-set.

Let us define a total order on observations in E as follows: (s,t) < (s/,t') if either ¢t < ¢/
or t =t and s precedes s’ in a lexicographic ordering. Let us denote by o01,...,0max the
ordered sequence of observations thus obtained. We shall define T level by level (starting
from the root, at level 1) giving the value of £ and 7 for nodes at level h.

T has a maximum of max + 1 levels, where max is the number of observations. New
levels are added until all nodes in a level are leaves (which as we shall see happens at most
at level max + 1). Let thus n be a node at level h , and let (s;, ,t;, ) = op, if h < max. We
have:

) a leaf if h = max + 1, or Dl(examples(n)) < t;, ;
is
an internal node otherwise.
£(n) merge({Act(sit | sit € examples(n)}) if n is a leaf;
n o
i), if n is an internal node.
T(n) = t;, ifnisan internal node.

A decision-making agent running such a tree would essentially take into account all sensor
measurement at all time labels until either there are no more available observations or it
must perform a recovery action because a deadline is about to expire.

Now we need to show that g A(T) = XEA.

Let ly,...,l, denote the leaves of T. We shall first of all prove that sit; ~ sit; if and
only if leaf(sit;) = leafy(sit;), or equivalently that

{examples(ly),...,examples(l,)} = E/~.

This, together with equations (10) and (11) yields the thesis.
We already know from lemma 26 that sit; ~ sit; implies leafy(sit;) = leafg(sit;); we
need to show that the opposite is also true. Let us thus assume that sit;, sit; € examples(l)
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for some [ € {ly,...,l,}. Let r = ny,no,...,ng,ngy1 = I be the path from the root to
I. We know from the definition of T that for all h < H, (£L(ny),7 (ny)) = op, and that
01,...,0p are all observations (s,t) of E such that ¢ < Dl(examples(l)). Moreover since
sit;, sit; € examples(l) we have that for all h =1,..., H, Val(sit;, oy) = Val(sit;, 0).

Now there are two possibilities: either DI(examples(l)) = min{DlI(sit;), DI(sit;)}, or
Dl(examples(l)) < min{DI(sit;), DI(sit;)}.

In the first case we immediately obtain that sit; ~ sit; and thus sit; ~ sit;.

In the second case, there must be sit; € examples(/) such that Dl(examples(l)) =
DI(sit;,). Moreover, DI(sit;;) = min{DI(sit;), DI(sit;)} = min{DI(sit;), DI(sit;)}. Since all
considerations above apply also to sit;, we thus have that sit; ~ sit;, and sit;, ~ sit;; therefore
by transitivity sit; ~ sit;. o

Lemma 28 Let T = <£N,E,£,’T> be a decision tree compatible with a te-set E with
actions model A. Then Xg A < X a(T).

Proof. Let T be as defined in the proof of lemma 27. In order to prove the thesis it
suffices to show that T is either equally!® or more discriminating than T (see proposition
16). Actually we shall show that given sit € E either L(leafy(sit)) < L(leafr(sit)) or
L(leafx(sit)) = L(leafr(sit)).

We know that examples(leafy(sit)) C examples(leafyp(sit)). In fact, let sit’ be an
element of examples(leafg(sit)) different from sit itself: by construction of T we have that
sit ~ sit’, and by lemma 26 it follows that leafr(sit) = leafy(sit’).

Let:
A ={Act(s) | s € examples(leaf(sit))}, A = {Act(s) | s € examples(leafrp(sit))}.
Since A C A, by definition of merge:

merge(A) < merge(4) or merge(A) = merge(A)

Thus having L(leafy(sit)) = merge(A) and L(leafr(sit)) = merge(A) we obtain that either
the action selected by T is weaker than that selected by T, or it is the same. o
Now we can prove theorem 20.
Proof. Point (i) is proved by lemma 27, while point (4i) corresponds to lemma 28. ¢
Proposition 21 Let us consider an execution of BUILDTEMPORALTREE starting with
a main call cg. The initial te-set, which we want to build a tree over, is E = E., with
A = [ActModel].,. For any recursive call c, let us denote by E} the te-set determined by

[Examples]. and [Obs_Updatel.. Then:

(1) Xsa([Tle) > XE,a

(2) Xz A([T]e,) = Xr.a if and only if for every non terminal™ recursive call ¢ generated
by co it holds that Xg, A = XEx A

10. Rather intuitively, two trees are equally discriminating if they associate to each fault situation the same
recovery action.
11. We exclude terminal calls because they do not even compute Obs_Update.
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Proof. We shall prove (1) and (2) for every recursive call ¢ (rather than only for ¢).
The proof is by induction on the depth of the recursion starting from c.

depth = 0. Then c is terminal, and we only have to prove that X A ([T]].) = XE.a. There
are two reasons why ¢ may be terminal: either (i) all fault situations in [Examples].
are associated with the same recovery action A, or (i7) [ValidObs]. = @.

(i) From definition 19 we have:

Fea = O x(merge({Act(sit) |sit € n})) - P(1;E.)
nEE. /~
— Y w4 P(E)
nEE./~
= x(4) Y P(nE) = x(A).
nEE. /~

Since [[T]). is made of a single leaf [ with £(1) = A we also have that Xk, A ([T].) =
X(A), which proves the thesis.

(ii) If [ValidObs]. = @ then for all (s,t) € [Examples]., ¢t > DI([Examples].).
Let sit € E.; be such that DI(sit) = DI([Examples].). Then by definition of
indistinguishability for any sit’ € E. we have that sit ~ sit’. This proves that
E./~ is made of a single equivalence class which coincides with E. itself. Thus
XE,.a = x(merge({Act(sit) | sit € E.})). Since [T]. is made of a single leaf
with £(1) = merge({Act(sit) | sit € E.}), it follows that Xz, o ([T].) = XE..A-

depth > 0. Then ¢ is not terminal and CHOOSEOBS selects an observation o = (s,t).
Let vq,...,v; be the possible values for o: then ¢ has k inner recursive calls to
BUILDTEMPORALTREE, which we shall denote respectively by ci,...,c;. We have
that {E.,,...,E.} is a partition of E.

By definition of expected cost (14) we have that:

k
X A([T]e) = D P(Ecloy, i Ee) - X, a([T]e)
=1

’E)
o—v;

E.l,_,, and E., differ only in the set of observations, which is [[0bs]. for the former
and [Obs_Update]. for the latter. However we have that:

o P(Ec|, ., ;Ec) = P(E;E.) since probabilities depend only on the fault situa-
tions in a te-set, and not on the observations.

o Xz, A([Tle;) = Ak, A([T]e;): expected cost depends also on the observa-
tions, but [T]., by construction can contain as labels only those observations in
E,,.

Moreover, since also E, and E} differ only in the observations P(E.;E.) = P(E.;E}).
Therefore we can write:
k

Ko a([T]e) = ) P(Ec;Ef) - X, a([T]e:)
=1
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In order to prove (1), we can apply the induction hypothesis Xg, A ([T]c;) > ?Ecw A)
and obtain:

k

(18) Ko a([T]e) 2 ) P(Ec;EY) - Xz, A

i=1
Now let us work on the right-hand side expression in 18:

k

k
D P(EEY) X, a = ) PEGE) Y x(Act(n) - P(n;Ee,)

i=1 i=1 nEE., /~

= 2 Z X(Act(n)) - P(1;E?)

Notice however that {E.,/~} is a partition of E}/~; in other words each n € E}/~
belongs to exactly one set E.,/~. In fact, splitting examples according to the value
of one observation cannot split a class of undistinguishable observations. Thus the
above equality becomes:

ZP(ECi;EZ) '?Eci,A = Z x(Act(n)) - P(n;EY) = Xg: A
i=1 nek: /~

This, together with 18, yields:
(19) X, ([T]e) = Xrz,a

As mentioned above, the only difference between E; and E. is that the former has
fewer observations. This implies that, if sit ~ sit’ in E., then sit ~ sit’ in E} as well.
This means that E./~ is a sub-partition'? of E*/~ in the following sense: we can
partition every ¢ € Ef/~ in n(0) = {my,...,m,} such that for each 7 there exists
exactly one 7; € E./~ containing exactly the same fault situations as 77;-. This yields:

Xe.a= Y X(Act(n)) - P(n;E.)
n€EE. /~

Since each 77;- has the same fault situations as the corresponding 7;, and necessarily
for each 7; there is a 6 containing it, we have:

Tea= > Y x(Act(i))- P(:EY)

0cE: /~n'e€n(0)

12. E./~ is not a sub-partition of E; /=~ in the ordinary sense because they do not have the same set of
observations.
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If ¥ € n(#) the fault situations in 7’ are a subset of those in 6; thus x(Act(n’)) <
X(Act(#)). Then we obtain:

Xe.a < ) > x(Act(9))- P(i;EZ)

0€lEs /~n'en(h)

= > x(Act(®)- > P(;E)

O€Es /= n'€n(0)
= > x(Act()) - P(6;E}) = Xz
0ckEs /~

Together with equation 19, this proves (1):

X, A([T]e) > Xe, A

Now let us prove (2). The induction hypothesis changes 18, and thus 19, into equali-
ties, thus yielding:

(20) Xe, A([T]e) = Xex A

Since by hypothesis in (2) we have that ?IEL A= IEC, A, we immediately obtain:

Xe. A ([T]e) = Xk, A

which concludes the proof. o

Proposition 22 Let ¢,d denote two independent calls to BUILDTEMPORALTREE
with the same input arguments but with different implementations of CHOOSEOBS. If
[t1abel]. < [tlabel]y then Xg: a < Xg: A

Proof. Follows immediately from [Obs_Update]. C [Obs_Updately. o

Proposition 23 Let ¢ be a call to BUILDTEMPORALTREE. If [[tlabel]. = tmin, =
min{¢ | (¢,s) € [ValidObs].} then Xgr A < Xg, A-

Proof. In this case [Obs_Update]. = [UsefulObs]., thus the only removed observa-
tions are non discriminating ones. o

Proposition 25 For any call ¢ to BUILDTEMPORALTREE there exist a time label tmax.
such that the safe time labels are all and only those t with tmin, <t < tmax., where tmin, @5
as in proposition 23.

Proof. Straightforward. o
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