
Journal of Artificial Intelligence Research 18 (2003) 263-313 Submitted 08/02; published 04/03

Exploiting Contextual Independence In Probabilistic Inference

David Poole poole@cs.ubc.ca
Department of Computer Science,
University of British Columbia,
2366 Main Mall, Vancouver, B.C., Canada V6T 1Z4
http://www.cs.ubc.ca/spider/

Nevin Lianwen Zhang lzhang@cs.ust.hk

Department of Computer Science,
Hong Kong University of Science and Technology, Hong Kong,
http://www.cs.ust.hk/˜lzhang/

Abstract

Bayesian belief networks have grown to prominence because they provide compact representa-
tions for many problems for which probabilistic inference is appropriate, and there are algorithms
to exploit this compactness. The next step is to allow compact representations of the conditional
probabilities of a variable given its parents. In this paper we present such a representation that
exploits contextual independence in terms of parent contexts; which variables act as parents may
depend on the value of other variables. The internal representation is in terms of contextual fac-
tors (confactors) that is simply a pair of a context and a table. The algorithm, contextual variable
elimination, is based on the standard variable elimination algorithm that eliminates the non-query
variables in turn, but when eliminating a variable, the tables that need to be multiplied can depend
on the context. This algorithm reduces to standard variable elimination when there is no contextual
independence structure to exploit. We show how this can be much more efficient than variable
elimination when there is structure to exploit. We explain why this new method can exploit more
structure than previous methods for structured belief network inference and an analogous algorithm
that uses trees.

1. Introduction

Probabilistic inference is important for many applications in diagnosis, perception, user modelling,
and anywhere there is uncertainty about the state of the world from observations. Unfortunately
general probabilistic inference is difficult both computationally and in terms of the number of prob-
abilities that need to be specified. Belief (Bayesian) networks (Pearl, 1988) are a representation of
independence amongst random variables. They are of interest because the independence is useful
in many domains, they allow for compact representations for many practical problems, and there
are algorithms to exploit the compact representations. Note that even approximate inference is
computationally difficult in the worst case (Dagum and Luby, 1993).

Recently there has been work to extend belief networks by allowing more structured representa-
tions of the conditional probability of a variable given its parents (D’Ambrosio, 1995). This has been
in terms of either causal independencies (Heckerman and Breese, 1994; Zhang and Poole, 1996), para-
metric forms such as sigmoidal Bayesian networks (Neal, 1992; Saul, Jaakkola and Jordan, 1996), or
by exploiting contextual independencies inherent in stating the conditional probabilities in terms of
rules (Poole, 1993) or trees (Smith, Holtzman and Matheson, 1993; Boutilier, Friedman, Goldszmidt
and Koller, 1996). In this paper we show how an algorithm that exploits conditional independence
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for efficient inference in belief networks can be extended to also exploit contextual independence.
Poole (1997) provides an earlier, less efficient, version in terms of rules. Zhang and Poole (1999)
give an abstract mathematical analysis of how contextual independence can be exploited in inference.

Section 2 introduces belief networks and an algorithm, variable elimination (VE) (Zhang and
Poole, 1994) or Bucket Elimination for belief assessment (Dechter, 1996), for computing posterior
probabilities in belief that is based on nonlinear dynamic programming (Bertelè and Brioschi, 1972).
Section 3 presents a representation for conditional probabilities that lets us state contextual inde-
pendence in terms of confactors. Section 4 shows how the VE algorithm can be extended to exploit
the contextual independence in confactors. Section 5 shows how we can improve efficiency by
reducing the amount of splitting. Section 6 gives some empirical results on standard and random
networks. The details of the experiments are given in Appendix A. Section 7 gives comparisons to
other proposals for exploiting contextual independencies. Section 8 presents conclusions and future
work.

2. Background

In this section we present belief networks and an algorithm, variable elimination, to compute the
posterior probability of a set of query variables given some evidence.

2.1 Belief Networks

We treat random variables as primitive. We use upper case letters to denote random variables. The
domain of a random variable X, written dom(X), is a set of values. If X is a random variable and
v ∈ dom(X), we write X=v to mean the proposition that X has value v. The function dom can be
extended to tuples of variables. We write tuples of variables in upper-case bold font. If X is a tuple
of variables, 〈X1, . . . , Xk〉, then dom(X) is the cross product of the domains of the variables. We
write 〈X1, . . . , Xk〉 = 〈v1, . . . , vk〉 as X1 = v1 ∧ . . . ∧ Xk = vk . This is called an instantiation of X.
For this paper we assume there is a finite number of random variables, and that each domain is finite.

We start with a total ordering X1, . . . , Xn of the random variables.

Definition 1 The parents of random variable Xi, written πXi , are a minimal1 set of the predecessors
of Xi in the total ordering such that the other predecessors of Xi are independent of Xi given πXi . That
is πXi ⊆ {X1, . . . , Xi−1} such that P(Xi|Xi−1 . . . X1) = P(Xi|πXi).

A belief network (Pearl, 1988) is an acyclic directed graph, where the nodes are random vari-
ables2. We use the terms node and random variable interchangeably. There is an arc from each
element of πXi into Xi. Associated with the belief network is a set of probabilities of the form
P(X|πX), the conditional probability of each variable given its parents (this includes the prior prob-
abilities of those variables with no parents).

By the chain rule for conjunctions and the independence assumption:

P(X1, . . . , Xn) =
n∏

i=1

P(Xi|Xi−1 . . . X1)

1. If there is more than one minimal set, any minimal set can be chosen to be the parents. There is more than one minimal
set only when some of the predecessors are deterministic functions of others.

2. Some people like to say the nodes are labelled with random variables. In the definition of a graph, the set of nodes
can be any set, in particular, they can be a set of random variables. The set of arcs is a set of ordered pairs of random
variables.
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Y Z

A B C D

E

A B C D P(e|ABCD)

a b c d 0.55
a b c d 0.55
a b c d 0.55
a b c d 0.55
a b c d 0.3
a b c d 0.3
a b c d 0.3
a b c d 0.3
a b c d 0.08
a b c d 0.08
a b c d 0.025
a b c d 0.5
a b c d 0.08
a b c d 0.08
a b c d 0.85
a b c d 0.5

Figure 1: A simple belief network and a conditional probability table for E.

=
n∏

i=1

P(Xi|πXi) (1)

This factorization of the joint probability distribution is often given as the formal definition of a
belief network.

Example 1 Consider the belief network of Figure 1. This represents a factorization of the joint
probability distribution:

P(A, B, C, D, E, Y , Z)

= P(E|ABCD)P(A|YZ)P(B|YZ)P(C|YZ)P(D|YZ)P(Y)P(Z)

If the variables are binary3, the first term, P(E|ABCD), requires the probability of E for all 16 cases
of assignments of values to A, B, C, D. One such table is given in Figure 1.

2.2 Belief Network Inference

The task of probabilistic inference is to determine the posterior probability of a variable or variables
given some observations. In this section we outline a simple algorithm for belief net inference called
variable elimination (VE) (Zhang and Poole, 1994; Zhang and Poole, 1996) or bucket elimination
for belief assessment (BEBA) (Dechter, 1996), that is based on the ideas of nonlinear dynamic
programming (Bertelè and Brioschi, 1972)4 and is closely related to SPI (Shachter, D’Ambrosio and

3. In this and subsequent examples, we assume that variables are Boolean (i.e., with domain {true, false}). If X is a
variable, X=true is written as x and X=false is written as x, and similarly for other variables. The theory and the
implementations are not restricted to binary variables.

4. Bertelè and Brioschi (1972) give essentially the same algorithm, but for the optimization problem of finding a mini-
mization of sums. In VE, we use the algorithm for finding the sum of products. VE is named because of the links to
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Del Favero, 1990). This is a query oriented algorithm that exploits the conditional independence
inherent in the network structure for efficient inference, similar to how clique tree propagation
exploits the structure (Lauritzen and Spiegelhalter, 1988; Jensen, Lauritzen and Olesen, 1990).

Suppose we observe variables E1, . . . , Es have corresponding values o1 . . . os. We want to deter-
mine the posterior probability of variable X, the query variable, given evidence E1=o1∧ . . .∧Es=os:

P(X|E1=o1 ∧ . . . ∧ Es=os) = P(X ∧ E1=o1 ∧ . . . ∧ Es=os)

P(E1=o1 ∧ . . . ∧ Es=os)

The denominator, P(E1=o1 ∧ . . . ∧ Es=os), is a normalizing factor:

P(E1=o1 ∧ . . . ∧ Es=os) =
∑

v∈dom(X)

P(X=v ∧ E1=o1 ∧ . . . ∧ Es=os)

The problem of probabilistic inference can thus be reduced to the problem of computing the proba-
bility of conjunctions.

Let Y = {Y1, . . . , Yk} be the non-query, non-observed variables (i.e., Y = {X1, . . . , Xn} − {X} −
{E1, . . . , Es}). To compute the marginal distribution, we sum out the Yi’s:

P(X ∧ E1=o1 ∧ . . . ∧ Es=os)

=
∑

Yk

· · ·
∑

Y1

P(X1, . . . , Xn){E1=o1∧...∧Es=os}

=
∑

Yk

· · ·
∑

Y1

n∏
i=1

P(Xi|πXi){E1=o1∧...∧Es=os}

where the subscripted probabilities mean that the associated variables are assigned the corresponding
values.

Thus probabilistic inference reduces to the problem of summing out variables from a product
of functions. To solve this efficiently we use the distribution law that we learned in high school:
to compute a sum of products such as xy + xz efficiently, we distribute out the common factors
(which here is x) which results in x(y + z). This is the essence of the VE algorithm. We call the
elements multiplied together “factors” because of the use of the term in mathematics. Initially the
factors represent the conditional probability tables, but the intermediate factors are just functions on
variables that are created by adding and multiplying factors.

A factor on variables V1, . . . , Vd is a representation of a function from dom(V1)× . . .×dom(Vd)

into the real numbers.
Suppose that the Yi’s are ordered according to some elimination ordering. We sum out the

variables one at at time.
To sum out a variable Yi from a product, we distribute all of the factors that don’t involve Yi

out of the sum. Suppose f1, . . . , fk are some functions of the variables that are multiplied together
(initially these are the conditional probabilities), then∑

Yi

f1 . . . fk = f1 . . . fm
∑

Yi

fm+1 . . . fk

the algorithm of Bertelè and Brioschi (1972); they refer to their basic algorithm as The elimination of variables one
by one, which is exactly what we do. Bertelè and Brioschi (1972) also describe good elimination ordering heuristics
and refinements such as eliminating variables in blocks and forms of conditioning which we don’t consider here.

The only difference between VE and BEBA is that BEBA requires an a priori elimination ordering (and exploits
the prior ordering for efficiency), whereas the VE allows for dynamic selection of which variable to eliminate next.
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To compute P(X|E1=o1 ∧ . . . ∧ Es=os)

Let F be the factors obtained from the original conditional probabilities.
1. Replace each f ∈ F that involves some Ei with f{E1=o1,...,Es=os}.
2. While there is a factor involving a non-query variable

Select non-query variable Y to eliminate
Set F = eliminate(Y , F).

3. Return renormalize(F)

Procedure eliminate(Y, F):
Partition F into

{f1, . . . , fm} that don’t contain Y and
{fm+1, . . . , fr} that do contain Y

Compute f =∑
Y fm+1 ⊗t . . .⊗t fr

Return {f1, . . . , fm, f }
Procedure renormalize({f1, . . . , fr}):

Compute f = f1 ⊗t . . .⊗t fr
Compute c =∑

X f % c is normalizing constant
Return f /c % divide each element of f by c

Figure 2: The tabular VE algorithm

where f1 . . . fm are those functions that don’t involve Yi, and fm+1 . . . fk are those that do involve Yi.
We explicitly construct a representation for the new function

∑
Yi

fm+1 . . . fk , and continue summing
out the remaining variables. After all the Yi’s have been summed out, the result is a function on X
that is proportional to X’s posterior distribution.

In the tabular implementation of the VE algorithm (Figure 2), a function of d discrete variables
V1, . . . , Vd , is represented as a d-dimensional table (which can be implemented, for example, as a
d-dimensional array, as a tree of depth d, or, as in our implementation, as a 1-dimensional array based
on a lexicographic ordering on the variables). If f is such a table, let variables(f ) = {V1, . . . , Vd}.
We sometimes write f as f [V1, . . . , Vd] to make the variables explicit. f is said to involve Vi if
Vi ∈ variables(f ).

There are three primitive operations on tables: setting variables, forming the product of tables,
and summing a variable from a table.

Definition 2 Suppose C is a set of variables, c is an assignment C = v, and f is a factor on variables
X. Let Y = X − C, let Z = X ∩ C, and let Z = v′ be the assignment of values to Z that assigns the
same values to elements of Z as c does. Define set(f , c) be the factor on Y given by:

set(f , c)(Y) = f (Y, Z=v′).

That is, set(f , c) is a function of Y , the variables of f that are not in c, that is like f , but with some
values already assigned. Note that, as a special case of this, if c doesn’t involve any variable in f
then set(f , c) = f .

Example 2 Consider the factor f (A, B, C, D, E) defined by the table of Figure 1. Some examples
of the value of this function are f (a, b, c, d, e) = 0.55, and f (a, b, c, d, e) = 1 − 0.08 = 0.92.
set(f , a ∧ b ∧ e) is a function of C and D defined by the table:
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C D value
c d 0.08
c d 0.08
c d 0.025
c d 0.5

Definition 3 The product of tables f1 and f2, written f1 ⊗t f2 is a table on the union of the variables
in f1 and f2 (i.e., variables(f1 ⊗t f2) = variables(f1) ∪ variables(f2)) defined by:

(f1 ⊗t f2)(X, Y, Z) = f1(X, Y)f2(Y, Z)

where Y is variables(f1)∩ variables(f2), X is variables(f1)− variables(f2), and Z is variables(f2)−
variables(f1).

Note that ⊗t is associative and commutative.
To construct the product of tables, fm+1⊗t · · ·⊗t fk , we union all of the variables in fm+1 . . . fk , say

these are X1, . . . , Xr . Then we construct an r-dimensional table so there is an entry in the table for
each combination v1, . . . , vr where vi ∈ dom(Xi). The value for the entry corresponding to v1, . . . , vr

is obtained by multiplying the values obtained from each fi applied to the projection of v1, . . . , vr

onto the variables of fi.

Definition 4 The summing out of variable Y from table f , written
∑

Y f is the table with variables
Z = variables(f )− {Y} such that5

(
∑

Y

f )(Z) =
∑

vi∈dom(Y)

f (Z ∧ Y=vi)

where dom(Y) = {v1, . . . , vs}.
Thus, to sum out Y , we reduce the dimensionality of the table by one (removing the Y dimension),
the values in the resulting table are obtained by adding the values of the table for each value of Y .

Example 3 Consider eliminating B from the factors of Example 1 (representing the belief network
of Figure 1), where all of the variables are Boolean. The factors that contain B, namely those factors
that represent P(E|ABCD) and P(B|YZ), are removed from the set of factors. We construct a factor
f1(A, B, C, D, E, Y , Z) = P(E|A, B, C, D)⊗t P(B|Y , Z), thus, for example,

f1(a, b, c, d, e, y, z) = P(e|a ∧ b ∧ c ∧ d)P(b|y ∧ z)

f1(a, b, c, d, e, y, z) = P(e|a ∧ b ∧ c ∧ d)P(b|y ∧ z)

f1(a, b, c, d, e, y, z) = P(e|a ∧ b ∧ c ∧ d)P(b|y ∧ z)

f1(a, b, c, d, e, y, z) = P(e|a ∧ b ∧ c ∧ d)P(b|y ∧ z)

and similarly for the other values of A . . . Z . We then need to sum out B from f1, producing
f2(A, C, D, E, Y , Z) where, for example,

f2(a, c, d, e, y, z) = f1(a, b, c, d, e, y, z)+ f1(a, b, c, d, e, y, z).

f2 is then added to the set of factors. Note that the construction of f1 is for exposition only; we don’t
necessarily have to construct a table for it explicitly.

5. This may look like a circular definition, but the left side defines the summing tables, whereas on the right side we are
summing numbers.
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3. Contextual Independence

In this section we give a formalization of contextual independence. This notion was first introduced
into the influence diagram literature (Smith et al., 1993). We base our definitions on the work of
Boutilier et al. (1996).

Definition 5 Given a set of variables C, a context on C is an assignment of one value to each variable
in C. Usually C is left implicit, and we simply talk about a context. We would say that C are the
variables of the context. Two contexts are incompatible if there exists a variable that is assigned
different values in the contexts; otherwise they are compatible. We write the empty context as true.

Definition 6 (Boutilier et al., 1996) Suppose X, Y , Z and C are sets of variables. X and Y are
contextually independent given Z and context C=c, where c ∈ dom(C), if

P(X|Y=y1 ∧ Z=z1 ∧ C=c) = P(X|Y=y2 ∧ Z=z1 ∧ C=c)

for all y1, y2 ∈ dom(Y) for all z1 ∈ dom(Z) such that P(Y=y1 ∧ Z=z1 ∧ C=c) > 0 and P(Y=y2 ∧
Z=z1 ∧ C=c) > 0.

We also say that X is contextually independent of Y given Z and context C=c. Often we will
refer to the simpler case when the set of variables Z is empty; in this case we say that X and Y are
contextually independent given context C=c.

Example 4 Given the belief network and conditional probability table of Figure 1,

• E is contextually independent of {C, D, Y , Z} given context a ∧ b.

• E is contextually independent of {C, D, Y , Z} given {B} and context a.

• E is not contextually independent of {C, D, Y , Z} given {A, B} and the empty context true.

• E is contextually independent of {B, D, Y , Z} given context a ∧ c.

• E is contextually independent of {A, B, C, D, Y , Z} given B and context a ∧ c ∧ d.

3.1 Where Does Contextual Independence Arise?

Most of the examples in this paper are abstract as they are designed to show off the various features
of the algorithms or to show pathological cases. In this section we will give some examples to show
natural examples. We are not claiming that contextual independence is always present or able to
be exploited. Exploiting contextual independence should be seen as one of the tools to solve large
probabilistic reasoning tasks.

Example 5 When a child goes into an emergency ward the staff may want to determine if they are
a likely carrier of chicken pox (in order to keep them away from other children). If they haven’t
been exposed to chicken pox within the previous few weeks, they are unlikely to be a carrier. Thus
whether they are a carrier is independent of the other background conditions given they haven’t been
exposed. If they have been exposed, but have not had chicken pox before they are likely to be a
carrier. Thus whether they are a carrier is independent of the other background conditions given
they have been exposed and haven’t had chicken pox before. The other case can involve many other
variables (e.g., the severity and the age of the last time they had chicken pox) to determine how likely
the child is to be a carrier.
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Example 6 Many engineered systems are designed to insulate something from other conditions. The
classic example is central air conditioning (heating and/or cooling in a house). The temperature inside
a house depends on the outside temperature if the air conditioning is off. If the air conditioning is on,
the temperature depends on the setting of the thermostat and not on the outside temperature. Thus the
inside temperature is contextually independent of the outside temperature given the air conditioning
is on and is contextually independent of the thermostat setting given the air conditioning is off.

Example 7 Consider a case where someone is to make a decision based on a questionnaire and the
questions asked depend on previous answers. In this case the decision6 is contextually independent
of the answers to the questions that are not asked given the context of the questions asked. For
example, consider a questionnaire to determine if a bank customer should get a loan that starts
asking the customer if they rent or own their current home. If they own, they are asked a number of
questions about the value of the house which are not asked if they rent. The probability that they get
a loan is contextually independent of the value of the home (and the other information that was not
available to the decision maker) given that the applicant rents their home.

Example 8 When learning a decision network from data, it is often advantageous to build a decision
tree for each variable given its parents (Friedman and Goldszmidt, 1996; Chickering, Heckerman
and Meek, 1997). These decision trees provide contextual independence (a variable is independent
of it’s predecessors given the context along a path to a leaf in the tree). The reason that this is a
good representation to learn is because there are fewer parameters and more fine control over adding
parameters; splitting a leaf adds many fewer parameters than adding a new parent (adding a new
variable to every context).

3.2 Parent Contexts and Contextual Belief Networks

We use the notion of contextual independence for a representation that looks like a belief network, but
with finer-grain independence that can be exploited for efficient inference in the contextual variable
elimination algorithm.

As in the definition of a belief network, let’s assume that we have a total ordering of the variables,
X1, . . . , Xn.

Definition 7 Given variable Xi, we say that C=c, where C ⊆ {Xi−1 . . . X1} and c ∈ dom(C), is a
parent context for Xi if Xi is contextually independent of the predecessors of Xi (namely {Xi−1 . . . X1})
given C=c.

What is the relationship to a belief network? In a belief network, the rows of a conditional probability
table for a variables form a set of parent contexts for the variable. However, there is often a much
smaller set of smaller parent contexts that covers all of the cases.

Example 9 Consider the belief network and conditional probability table of Figure 1. The prede-
cessors of variable E are A, B, C, D, Y , Z . A set of minimal parent contexts for E is {{a, b}, {a, b},
{a, c}, {a, c, d, b}, {a, c, d, b}, {a, c, d}}. This is a mutually exclusive and exhaustive set of parent
contexts. The probability of E given values for its predecessors can be reduced to the probability of

6. To make this a probabilistic problem, and not a decision problem, consider that the probability is for a third party
to determine the probability distribution over the possible decisions. A similar analysis can be carried out to exploit
contextual independence for decisions (Poole, 1995). The decision maker’s decisions can’t depend on information
she doesn’t have.
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A

B C

D

B

A=true A=false

0.55 0.3 0.08

0.025

0.5

0.85

P(e)

Y

Z

Y=true Y=false

0.77 0.17

0.27

Z

0.29 Y

Z=true Z=false

0.590.79

P(b)

P(d)

Figure 3: Tree-structured representations of the conditional probabilities for E, B, and D given their
parents. Left branches correspond to true and right branches to false. Thus, for example,
P(e|a ∧ b) = 0.55, P(e|a ∧ b) = 0.3, P(e|a ∧ c ∧ d ∧ b) = 0.025 etc.

E given a parent context. For example:

P(e|a, b, c, d, y, z) = P(e|a, b)

P(e|a, b, c, d, y, z) = P(e|a, c)

P(e|a, b, c, d, y, z) = P(e|a, c).

In the belief network, the parents of E are A, B, C, D. To specify the conditional probability of E
given its parents, the traditional tabular representation (as in Figure 1) require 24 = 16 numbers
instead of the 6 needed if we were to use the parent contexts above. Adding an extra variable as a
parent to E doubles the size of the tabular representation, but if it is only relevant in a single context
it may only increase the number of parent contexts by one.

We can often (but not always) represent contextual independence in terms of trees. The left side
of Figure 3 gives a tree-based representation for the conditional probability of E given its parents. In
this tree, internal nodes are labelled with parents of E in the belief network. The left child of a node
corresponds to the variable labelling the node being true, and the right child to the variable being
false. The leaves are labelled with the probability that E is true. For example P(e|a ∧ b) = 0.3,
irrespectively of the value for C or D. In the tree-based representation the variable (E in this case)
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is contextually independent of its predecessors given the context defined by a path through the tree.
The paths through the tree correspond to parent contexts.

Before showing how the structure of parent contexts can be exploited in inference, there are a
few properties to note:

• The elements of a mutually exclusive and exhaustive set of parent contexts are not always the
minimal parent contexts. For example, suppose we have a variable A with parents B and C,
all of which are Boolean. Suppose probability of a is p1 when both B and C are true and
probability p2 otherwise. One mutually exclusive and exhaustive set of parent contexts for
A is {b ∧ c, b ∧ c, b}. b ∧ c is not minimal as c is also a parent context. Another mutually
exclusive and exhaustive set of parent contexts for this example is {b ∧ c, b ∧ c, c}. The set
of minimal parent contexts, {b ∧ c, b, c}, isn’t a mutually exclusive and exhaustive set as the
elements are not pairwise incompatible.

One could imagine using arbitrary Boolean formulae in the contexts. This was not done as it
would entail using theorem proving (or a more sophisticated subsumption algorithm) during
inference. We doubt that this would be worth the extra overhead for the limited savings.

• A compact decision tree representation of conditional probability tables (Boutilier et al., 1996)
always corresponds to a compact set of parent contexts (one context for each path through the
tree). However, a mutually exclusive and exhaustive set of parent contexts cannot always be
directly represented as a decision tree (as there isn’t always a single variable to split on). For ex-
ample, the mutually exclusive and exhaustive set of contexts {{a, b}, {a, c}, {b, c}, {a, b, c}, {a, b, c}}
doesn’t directly translate into a decision tree. More importantly, the operations we perform
don’t necessarily preserve the tree structure. Section 4.12 shows how we can do much better
than an analogous tree-based formulation of our inference algorithm.

Definition 8 A contextual belief network is an acyclic directed graph where the nodes are random
variables. Associated with each node Xi is a mutually exclusive and exhaustive set of parent contexts,
�i, and, for each π ∈ �i, a probability distribution P(Xi|π) on Xi. Thus a contextual belief network
is like a belief network, but we only specify the probabilities for the parent contexts.

For each variable Xi and for each assignment Xi−1=vi−1, . . . , X1=v1 of values to its preceding
variables, there is a compatible parent context π

vi−1...v1
Xi

. The probability of a complete context (an
assignment of a value to each variable) is given by:

P(X1=v1, . . . , Xn=vn)

=
n∏

i=1

P(Xi=vn|Xi−1=vi−1, . . . , X1=v1)

=
n∏

i=1

P(Xi=vi|π vi−1...v1
Xi

) (2)

This looks like the definition of a belief network (equation (1)), but which variables act as the parents
depends on the values. The numbers required are the probability of each variable for each element
of the mutually exclusive and exhaustive set of parent contexts. There can be many fewer of these
than the number of assignments to parents in a belief network. At one extreme, there are the same
number; at the other extreme there can be exponentially many more assignments of values to parents
than the number of elements of a mutually exclusive and exhaustive set of parent contexts.
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3.3 Parent Skeletons

Although the definition of a contextual belief network specifies the contextual independence we
want, it doesn’t give us a way to organize the parent contexts (in much the same way as a belief
network doesn’t specify the representation of a conditional probability table). We use the concept
of a parent skeleton as a way to organize the parent contexts; we want to use the indexing provided
by tables while still allowing for the ability to express context-specific independence.

The notion of a parent context is more fine-grained than that of a parent (the set of parents
corresponds to many parent contexts). When there is no context-specific independence, we would
like to not have to consider the parent contexts explicitly, but consider just the parents. We will use a
parent skeleton to cover both parents and parent contexts as special cases, and to interpolate between
them, when the independence depends on some context as well as all values of some other variables.

Definition 9 A parent skeletal pair for variable X is a pair 〈c, V〉 where c is a context on the
predecessors of X and V is a set of predecessors of X such that X is contextually independent of its
predecessors given V and context c. Note that a parent context is c ∧ V = v. A parent skeleton for
variable X is a set of parent skeletal pairs, {〈cj, Vj

〉 : 0 < j ≤ k}, where the cj are mutually exclusive

and exhaustive (i.e., ci and cj are incompatible if i 
= j, and
∧k

j=1 cj ≡ true).

Example 10 A parent skeleton for E from Example 9 is {〈a, {B}〉, 〈a ∧ c, {}〉, 〈a ∧ c ∧ d, {B}〉,〈
a ∧ c ∧ d, {}〉.

Parent skeletons form the basis of a representation for contextual belief networks. For each
variable, X, you select a parent skeleton such that for each parent skeleton pair

〈
cj, Vj

〉
in the parent

context, cj ∧ Vj = vj is a parent context for X. For each such parent context pair we specify a
probability distribution P(X|cj ∧ Vj = vj).

3.4 Contextual Factors

Whereas the VE algorithm uses tables both as a representation for conditional probabilities and for
the intermediate representations, the contextual variable elimination algorithm defined below uses
a hybrid of tables and rules (Poole, 1997) that we call contextual factors or confactors. Confactors
cover both tables and rules as special cases.

Definition 10 A contextual factor or confactor is a pair of the form:

〈c, t〉
where c is a context, say X1=vk ∧ . . .∧Xk=vk , and t is a table that represents a function on variables
Xk+1, . . . , Xm, where {X1, . . . , Xk} and {Xk+1, . . . , Xm} are disjoint sets of variables. c is called the
body of the confactor and t is called the table of the confactor.

A confactor represents a partial function (Zhang and Poole, 1999) from the union of the variables.
The function only has a value when the context is true, and the value of the function is obtained by
looking up the value in the table.

Just as tables can be used to represent conditional probabilities, confactors can be used to represent
conditional probabilities when there is context-specific independence. In particular, a set of parent
contexts can be represented as a set of confactors with mutually exclusive and exhaustive bodies.
Given a parent skeleton for variable X we can construct a set of confactors for X as follows: for each
〈c, V〉 in the parent skeleton for X, we construct a confactor 〈c, t({X} ∪ V)〉 where t({X = x} ∧V =
v) = P(X = x|V = v ∧ c).
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Definition 11 A confactor is applicable on a context if the body of the confactor is compatible with
the context.

Definition 12 Given a confactor r = 〈X1=vk ∧ . . . ∧ Xk=vk, t[Xk+1, . . . , Xm]〉 and a context c that
assigns at least the variables X1 . . . Xm, if r is applicable in c, the value of the context c with respect
to the confactor r is the value of t[Xk+1 = vk+1, . . . , Xm = vm] where vk+1, . . . , vm are the values
assigned to Xk+1, . . . , Xm in c.

Definition 13 A set R of confactors represents a conditional probability P(Xi|X1 . . . Xi−1) if the
bodies of the confactors are mutually exclusive and exhaustive, and if P(Xi = vi|X1 = v1 ∧ . . . ∧
Xi−1 = vi−1) is equal to the value of the context X1 = v1 ∧ . . .∧ Xi−1 = vi−1 ∧ Xi = vi with respect
to the (unique) confactor in R that is applicable in that context.

Intuitively, the confactors that represent a contextual belief network are a way to organize the
parent contexts. The idea is to represent the parent contexts in tables when there is no context-specific
independence, and when some variables are independent of their predecessors in some context, then
that context can be made a body of the confactors.

Example 11 Consider the conditional probabilities represented in Figure 3. E is independent of its
predecessors given {B} and context a. This leads to the confactor:

〈a, t1[B, E]〉 (3)

E is independent of its predecessors given context a ∧ c. This leads to the confactor:

〈a ∧ c, t2[E]〉 (4)

E is independent of its predecessors given {B} and context a ∧ c ∧ D. This leads to the confactor:

〈a ∧ c ∧ d, t3[B, E]〉 (5)

E is independent of its predecessors given context a ∧ c ∧ d. This leads to the confactor:

〈a ∧ c ∧ d, t4[E]〉 (6)

The full multiset of confactors corresponding to the trees of Figure 3 are given in Figure 4. The
fifth and sixth confactors give the conditional probability for B, and the last two confactors give the
conditional probability for D.

We can now rewrite the definition of a contextual belief network in terms of confactors:

If every conditional probability is represented by a set of confactors, the probability of
a complete context, c is the product of the values of c with respect to the confactors
that are applicable in c. For each complete context and for each variable there is one
confactor containing that variable that is applicable in that context.

4. Contextual Variable Elimination

The general idea of contextual variable elimination (CVE) is to represent conditional probabilities
in terms of confactors, and use the VE algorithm with the confactor representation rather than with
tables. The units of manipulation are thus finer grained than the factors in VE or the members of
the buckets of BEBA; what is analogous to a factor or a member of a bucket consists of multisets of
confactors. Given a variable to eliminate, we can ignore (distribute out) all of the confactors that don’t
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P(E|A, B, C, D)




〈
a,

B E Value
true true 0.55
true false 0.45
false true 0.3
false false 0.7

〉 〈
a ∧ c,

E Value
true 0.08
false 0.92

〉

〈
a ∧ c ∧ d,

B E Value
true true 0.025
true false 0.975
false true 0.85
false false 0.15

〉 〈
a ∧ c ∧ d,

E Value
true 0.5
false 0.5

〉

P(B|Y , Z)




〈
y,

B Z Value
true true 0.77
true false 0.17
false true 0.23
false false 0.83

〉 〈
y,

B Value
true 0.27
false 0.73

〉

P(D|Y , Z)




〈
z,

D Value
true 0.29
false 0.71

〉 〈
z,

D Y Value
true true 0.79
true false 0.59
false true 0.21
false false 0.41

〉

Figure 4: The confactors corresponding to the trees of Figure 3
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involve this variable. Where there is some contextual independence that goes beyond conditional
independence of variables, the savings can be substantial. If there is no contextual independence, all
of the confactors have empty contexts, and this algorithm reduces to VE.

This section introduces an abstract nondeterministic version of CVE. Section 5 presents a more
concrete version where we explain how to resolve much of the nondeterminism.

The input to CVE is:

• a multiset of confactors that consists of the union of the confactors that represent the conditional
probability distribution of each variable given its predecessors

• a set of query variables

• an observation that is a conjunction of assignments of values to some of the variables

We first consider the case with no observations. Observations are considered in Section 4.7.
Initially and after the elimination of each variable, we maintain a multiset of confactors with the

following program invariant:

The probability of a context c on the non-eliminated variables can be obtained by multi-
plying the values of context c associated with confactors that are applicable in context c.
For each complete context on the non-eliminated variables and for each variable there
is at least one confactor containing that variable that is applicable in that context7.

The algorithm will not sum out a variable in all contexts in one step. Rather it will sum out a variable
in different contexts separately. Intermediate to being fully summed out, a variable will be summed
out in some contexts and not in others. The remaining variables should be interpreted relative to
whether the variable has been summed out in context c.

Like VE, the abstract algorithm is made up of the primitive operations of summing out a variable
and multiplying confactors, and also includes a primitive operation of confactor splitting that enables
the other two operations. All of these operations locally preserve this program invariant. They are
described in the next subsections.

4.1 Multiplying Contextual Factors

If we have two confactors with the same context:

〈b, t1〉
〈b, t2〉

we can replace them with their product:

〈b, t1 ⊗t t2〉.
7. This second part of the invariant may not be so intuitive, but is important. For example, in Example 11, one may be

tempted to reduce confactor (6) to 〈a∧c∧d, 0.5〉 (i.e., where the table is a function of no variables) as the contribution
of the confactors is the same independent of the value of E (the table t4[E] has value 0.5 for each value of E in
confactor (6)). The first part of the invariant isn’t violated. However, if there were no other confactors containing
E that are applicable when a ∧ c ∧ d is true, after summing out E, we want the confactor 〈a ∧ c ∧ d, 1〉, but before
summing out E we want the confactor 〈a ∧ c ∧ d, 0.5〉 in order to maintain the first part of the invariant. We would
like to maintain the property that we only consider confactors containing E when eliminating E. The second part of
the invariant allows us to do this without treating this as a special case in our algorithm.
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The program invariant is maintained, as any context incompatible with b isn’t affected by this
operation. Any context that is compatible with b, the product of the values of t1 and t2 on that context
is the same as the value of t1 ⊗t t2 on that context. The completeness part of the invariant isn’t
affected by multiplying.

4.2 Summing Out A Variable That Appears In The Table

Suppose we are eliminating Y , and have a confactor:

〈b, t〉
such that table t involves Y , and no other confactor that is compatible with b contains Y , we can
replace this confactor with

〈b,
∑

Y

t〉

Note that after this operation Y is summed out in context b.

Correctness: To see why this is correct, consider a context c on the remaining variables (c doesn’t
give a value for Y ). If c isn’t compatible with b, it isn’t affected by this operation. If it is compatible
with b, by elementary probability theory:

P(c) =
∑

i

P(c ∧ Y=vi)

By the program invariant, and because there are no other confactors containing Y that are compatible
with c, P(c ∧ Y=vi) = pip, for some product p of contributions of confactors that don’t involve Y .
Exactly the same confactors will be used for the different values of Y . Thus we have P(c) = p(

∑
i pi),

and so we have maintained the first part of the program invariant. The second part of the program
invariant is trivially maintained.

4.3 Summing Out A Variable In The Body Of Confactors

Suppose we are eliminating Y , with domain {v1, . . . , vk}, and have confactors:

〈b ∧ Y=v1, T1〉
. . .

〈b ∧ Y=vk, Tk〉
such that there are no other confactors that contain Y whose context is compatible with b. We can
replace these confactors with the confactor:

〈b, T1 ⊕t . . .⊕t Tk〉
Where ⊕t is the additive analogue of ⊗t . That is, it follows definition 3, but using addition of the
values instead of multiplication.

Note that after this operation Y is summed out in context b.

Correctness: To see why this is correct, consider a context c on the remaining variables (c doesn’t
give a value for Y ). If c isn’t compatible with b, it isn’t affected by this operation. If it is compatible
with b, by elementary probability theory:

P(c) =
∑

i

P(c ∧ Y=vi)
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we can distribute out all of the other confactors from the product and thus the first part of the invariant
is maintained. Note that the ⊕t operation is equivalent to enlarging each table to include the union
of all of the variables in the tables, but not changing any of the values, and then pointwise adding
the values of the resulting tables. The second part is trivially maintained.

The second part of the program invariant implies that we cannot have a confactor of the form
〈b ∧ Y=vi, pi〉 without a corresponding confactor for Y=vj, where i 
= j.

4.4 Confactor Splitting

In order to satisfy the prerequisites to be able to multiply confactors and sum out variables, sometimes
we need to split confactors.

If we have a confactor

〈b, t〉
we can replace it by the result of splitting it on a non-eliminated variable Y , with domain {v1, . . . , vk}.
If Y doesn’t appear in t, splitting t on T results in the set of confactors:

〈b ∧ Y=v1, t〉
. . .

〈b ∧ Y=vk, t〉
If Y does appear in t, the result is the set of confactors:

〈b ∧ Y=v1, set(t, Y=v1)〉
. . .

〈b ∧ Y=vk, set(t, Y=vk)〉
where set was defined in Definition 2.

Correctness: The program invariant is maintained as one of the new confactors is used for any
complete context instead of the original confactor. They both give the same contribution.

Example 12 Splitting the first confactor for P(E|A, B, C, D) in Figure 4 on Y gives two confactors:

〈
a ∧ y,

B E Value
true true 0.55
true false 0.45
false true 0.3
false false 0.7

〉
(7)

〈
a ∧ y,

B E Value
true true 0.55
true false 0.45
false true 0.3
false false 0.7

〉
(8)
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Example 13 Splitting the first confactor for P(B|Y , Z) in Figure 4 on A gives two confactors:

〈
a ∧ y,

B Z Value
true true 0.77
true false 0.17
false true 0.23
false false 0.83

〉
(9)

〈
a ∧ y,

B Z Value
true true 0.77
true false 0.17
false true 0.23
false false 0.83

〉
(10)

The reason that we may want to do these two splits is that now we can multiply confactors (7) and
(9).

4.5 Examples of Eliminating Variables

The four operations above are all that is needed to eliminate a variable. A variable is eliminated
when it is summed out of all contexts.

Example 14 When we eliminate B from the confactors of Figure 4, we only need to consider the
four confactors that contain B. The preconditions for summing out B or for multiplying are not
satisfied, so we need to split. If we split the first confactor for P(E|A, B, C, D) on Y (as in Example
12) and split the first confactor for P(B|Y , Z) on A (as in Example 13), we produce two confactors,
(7) and (9), that can be multiplied producing:

〈
a ∧ y,

B E Z Value
true true true 0.4235
true true false 0.0935
true false true 0.3465
true false false 0.0765
false true true 0.069
false true false 0.249
false false true 0.161
false false false 0.581

〉
(11)

This is the only confactor that contains B and is applicable in the context a ∧ y, so we can sum out
B from the table, producing the confactor:

〈
a ∧ y,

E Z Value
true true 0.4925
true false 0.3425
false true 0.5075
false false 0.6575

〉
(12)

The other nontrivial confactors produced when summing out B are:〈
a ∧ y,

E Value
true 0.3675
false 0.6325

〉
(13)
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〈
a ∧ c ∧ d ∧ y,

E Z Value
true true 0.21475
true false 0.70975
false true 0.78525
false false 0.29025

〉
(14)

〈
a ∧ c ∧ d ∧ y,

E Value
true 0.62725
false 0.37275

〉
(15)

See Example 19 below for some trivial confactors produced and how to avoid them.
These confactors should be contrasted with the factor on A, C, D, E, Y , Z (of size 32) that is

produced by eliminating B in VE.

Example 15 Suppose that instead we were to eliminate D from the confactors of Figure 4. This
example differs from the previous example as D appear in the bodies as well as in the tables.

The two confactors for P(E|A, B, C, D) that contain D, namely 〈a ∧ c ∧ d, t3[B, E]〉 (confactor
(5)), and 〈a ∧ c ∧ d, t4[E]〉 (confactor (6)) are both compatible with both confactors for P(D|Y , Z).
So we cannot sum out the variable or multiply any confactors.

In order to be able to multiply confactors, we can split confactor (5) on Z producing:

〈a ∧ c ∧ d ∧ z, t3[B, E]〉 (16)

〈a ∧ c ∧ d ∧ z, t3[B, E]〉 (17)

The confactors for P(D|Y , Z) are 〈z, t7[D]〉 and 〈z, t8[D, Y ]〉. We can split the first of these on A
producing

〈a ∧ z, t7[D]〉 (18)

〈a ∧ z, t7[D]〉 (19)

There are no other confactors containing D with context compatible with confactor (18). The
prerequisite required to sum out D in the context a ∧ z is satisfied. This results in the confactor
〈a ∧ z, 1〉 where 1 is the factor of no variables that has value 1. This can be removed as the product
of 1 doesn’t change anything. Intuitively this can be justified because in the context when A is true
D has no children. We can detect this case to improve efficiency (see Section 4.10).

The confactor (19) can be split on C, producing

〈a ∧ c ∧ z, t7[D]〉 (20)

〈a ∧ c ∧ z, t7[D]〉 (21)

We can sum out D from confactor (20), producing 〈a ∧ c ∧ z, 1〉, as in the previous case.
We can split confactor (21) on D producing:

〈a ∧ c ∧ d ∧ z, 0.29〉 (22)

〈a ∧ c ∧ d ∧ z, 0.71〉 (23)

where 0.29 and 0.71 are the corresponding values from t7[D]. These are functions of no variables,
and so are just numbers.

We can now multiply confactor (22) and (16), producing:

〈a ∧ c ∧ d ∧ z, 0.29t3[B, E]〉 (24)

where 0.29t3[B, E] is the table obtained by multiplying each element of t3[B, E] by 0.29.
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We can also split confactor (6) on Z , producing:

〈a ∧ c ∧ d ∧ z, t4[E]〉 (25)

〈a ∧ c ∧ d ∧ z, t4[E]〉 (26)

We can multiply confactors (23) and (25), producing:

〈a ∧ c ∧ d ∧ z, 0.71t4[E]〉 (27)

We now have only complementary confactors for D in the context a ∧ c ∧ z, namely confactors
(24) and (27) so we can sum-out D in this context resulting in

〈a ∧ c ∧ z, t9[B, E]〉 (28)

where t9[B, E] is 0.29t3[B, E] ⊕t 0.71t4[E]. In full form this is:

〈
a ∧ c ∧ z,

B E Value
true true 0.36225
true false 0.63775
false true 0.6015
false false 0.3985

〉
(29)

The other confactor produced when summing out D is:

〈
a ∧ c ∧ z,

B E Y Value
true true true 0.12475
true true false 0.21975
true false true 0.87525
true false false 0.78025
false true true 0.7765
false true false 0.7065
false false true 0.2235
false false false 0.2935

〉
(30)

4.6 When to Split

Confactor splitting makes the multiset of confactors more complicated, so we have to be careful to
apply this operation judiciously. We need to carry out confactor splitting in order to make identical or
complementary contexts so we can carry out the operations of summing out a variable or multiplying
confactors. These are the only cases we need to split.

Definition 14 Given confactor r1 = 〈c1, T1〉 and context c, such that c1 and c are compatible, to
split r1 on c means to split r1 sequentially on each of the variables that are assigned in c that aren’t
assigned in c1.

When we split r1 on c, we end up with a single confactor with a context that is compatible with
c; the contexts of all of the other confactors that are produced by the splitting are incompatible with
c. These confactors that are incompatible with c are called residual confactors.

More formally, we can recursively define residual(r1, c), where r1 = 〈c1, t1〉 and c and c1 are
compatible, by:

• residual(r1, c) = {} if c ⊆ c1
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• Else if c 
⊆ c1, select a variable X that is assigned in c but not in c1.

residual(r1, c) = {〈c1 ∧ X=vi, set(t1, X=vi)〉 : vi ∈ dom(X)&vi 
= cX}
∪residual(〈c1 ∧ X=cX, set(t1, X=cX)〉, c)

where cX is the value assigned to X in context c. Recall (Definition 2) that set(t, X=vi) is t
if t doesn’t involve X and is the selection of the X=vi values from the table, followed by the
projection onto the remaining variables, if t does involve X.

The results of splitting a confactor on a context is a set of confactors:

split(〈c1, t1〉, c) = residual(〈c1, t1〉, c) ∪ {〈c1 ∪ c, t1〉}.
Example 16 Consider residual(〈a ∧ b, t1[C, D]〉, c ∧ e). Suppose we split on C first, then on E.
This results in two residual confactors: 〈a∧ b∧ c, t2[D]〉 and 〈a∧ b∧ c∧ e, t3[D]〉. Note that t2[D]
is the projection of t1[C, D] onto C=false and t3[D] is the projection of t1[C, D] onto C=true. The
non-residual confactor that we want from the split is 〈a ∧ b ∧ c ∧ e, t3[D]〉.

If instead we split on E then C, we get the residual confactors: 〈a ∧ b ∧ e, t1[C, D]〉 and
〈a ∧ b ∧ c ∧ e, t2[D]〉, with the same non-residual confactor.

Note that the result can depend on the order in which variables are selected (see below for some
useful splitting heuristics). The algorithms that use the split will be correct no matter which order the
variables are selected, however some orderings may result in more splitting in subsequent operations.

Example 16 highlights one heuristic that seems generally applicable. When we have to split
a confactor on variables that appear in its body and on variables in its table, it’s better to split on
variables in the table first, as these simplify the confactors that need to be subsequently split.

We can use the notion of a residual to split two rules that are compatible, and need to be multiplied.
Suppose we have confactors r1 = 〈c1, t1〉 and r2 = 〈c2, t2〉, that both contain the variable being
eliminated and where c1 and c2 are compatible contexts. If we split r1 on c2, and split r2 on c1, we
end up with two confactors whose contexts are identical. Thus we have the prerequisite needed for
multiplying.

Example 17 Suppose we have confactors r1 = 〈a∧ b∧ c, t1〉 and r2 = 〈a∧ d, t2〉 that both contain
the variable being eliminated. We can split r1 on the body of r2, namely a ∧ d, producing the
confactors

〈a ∧ b ∧ c ∧ d, t1〉 (31)

〈a ∧ b ∧ c ∧ d, t1〉
Only the first of these is compatible with r2. The second confactor is a residual confactor.

We can split r2 on the body of r1, namely a∧b∧c, by first splitting r2 on B, then on C, producing
the confactors:

〈a ∧ b ∧ c ∧ d, t2〉
〈a ∧ b ∧ c ∧ d, t2〉 (32)

〈a ∧ b ∧ d, t2〉
Only the second confactor (confactor (32))is compatible with r1 or any of the residual confactors
produced by splitting r1. Confactors (31) and (32) have identical contexts and so can be multiplied.
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Suppose we have confactors r1 = 〈c1 ∧ Y=vi, t1〉 and r2 = 〈c2 ∧ Y=vj, t2〉, where c1 and c2

are compatible contexts, and vi 
= vj. If we split r1 on c2, and split r2 on c1, we end up with two
confactors whose contexts are identical except for the complementary values for Y . This is exactly
what we need for summing out Y .

If Y is binary with domain {vi, vj}, and there are confactors r1 = 〈c1 ∧ Y=vi, t1〉 and r2 =
〈c2∧Y=vj, t2〉, where c1 and c2 are compatible contexts, and there is no other confactor that contains
Y that is compatible with c1 and c2, summing out Y in the context c1 ∪ c2 results in the confactors:

residual(r1, c2) ∪ residual(r2, c1) ∪ {〈c1 ∪ c2, t1 ⊕t t2〉}.
If there are more than two values in the domain, we may need to split each pair of confactors, always
using the results of previous splits for subsequent splits.

Proposition 1 Splitting confactor 〈c1, t1〉 on c creates∑
X∈vars(c)−vars(c1)

(|dom(X)| − 1)

extra confactors, independently of the order in which the variables are selected to be split, where
vars(c) is the set of variables assigned in context c.

When we have to split, there is a choice as to which variable to split on first. While this choice
does not influence the number of confactors created for the single split, it can influence the number of
confactors created in total because of subsequent splitting. One heuristic was given above. Another
useful heuristic seems to be: given a confactor with multiple possible splits, look at all of the
confactors that need to be combined with this confactor to enable multiplication or addition, and
split on the variable that appears most. For those cases where the conditional probability forms a
tree structure, this will tend to split on the root of the tree first.

4.7 Evidence

As in VE, evidence simplifies the knowledge base. Suppose E1=o1∧ . . .∧Es=os is observed. There
are three steps in absorbing evidence:

• Remove any confactor whose context contains Ei=o′i, where oi 
= o′i.

• Remove any term Ei=oi in the context of a confactor.

• Replace each table t with set(t, E1=o1 ∧ . . . ∧ Es=os) (as in the tabular VE algorithm).

Again note that incorporating evidence only simplifies the confactor base.
Once evidence has been incorporated into the confactor-base, the program invariant becomes:

The probability of the evidence conjoined with a context c on the non-eliminated, non-
observed variables is equal to the product of the probabilities of the confactors that
are applicable in context c. For each context c on the non-eliminated, non-observed
variables and for each variable X there is at least one confactor containing X that is
applicable in context c.

For probabilistic inference, where we will normalise at the end, we can remove any confactor that
doesn’t involve any variable (i.e., with an empty context and single number as the table) as a result
of the second or third cases. That is, we remove any confactor that only has observed variables. We
then need to replace “equal” with “proportional” in the program invariant.

283



POOLE & ZHANG

Example 18 Suppose d∧z is observed given the confactors of Figure 4. The first two confactors for
P(E|A, B, C, D) don’t involve D or Z and so are not affected by the observation. The third confactor
is removed as its body is incompatible with the observation. The fourth confactor is replaced by:〈

a ∧ c,
E Value
true 0.5
false 0.5

〉

The first confactor for P(B|Y , Z) is replaced by〈
y,

B Value
true 0.17
false 0.83

〉

The first confactor for P(D|Y , Z) is removed and the second is replaced by〈
true,

Y Value
true 0.21
false 0.41

〉

where true represents the empty context.

4.8 Extracting the Answer

Suppose we had a single query variable X. After setting the evidence variables, and eliminating the
remaining variables, we end up with confactors of the form:

〈{X=vi}, pi〉
and of the form

〈{}, ti[X]〉
If e is the evidence the probability of X=vi ∧ e is proportional to the product contributions of the

confactors with context X=vi and the selection for the X=vi value for the table. Thus

P(X=vi ∧ e) ∝
∏

〈X=vi,pi〉
pi

∏
〈{},ti[X]〉

ti[vi].

Then we have:

P(X=vi|e) = P(X=vi ∧ e)∑
vj

P(X=vj ∧ e)
.

Notice that constants of proportionality of the evidence or by removing constants (confactors with
no variables) cancel in the division.

If we had multiple query variables (i.e., we wanted the marginal of the posterior), then we still
multiply the remaining confactors and renormalise.

4.9 The Abstract Contextual Variable Elimination Algorithm

The contextual variable elimination algorithm, is given in Figure 5. A more refined version that does
less splitting is given in Section 5.

The elimination procedure is called once for each non-query, non-observed variable. The order
in which the variables are selected is called the elimination ordering. This algorithm does not imply
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To compute P(X|E1=o1 ∧ . . . ∧ Es=os)

Given multiset R of confactors
1. Incorporate evidence as in Section 4.7.
2. while there is a non-query variable to be eliminated

{
Select non-query variable Y to eliminate;
Call R := eliminate(Y , R);

}
3. Compute posterior probability for X as in Section 4.8

Procedure eliminate(Y, R):
partition R into:

R− = those confactors in R that don’t involve Y ;
R∗ = {r ∈ R : r involves Y};

while there is {〈b1, T1〉, 〈b2, T2〉} ⊆ R∗ where b1 and b2 are compatible,
{

remove 〈b1, T1〉 and 〈b2, T2〉 from R∗;
split 〈b1, T1〉 on b2 putting residual confactors in R∗;
split 〈b2, T2〉 on b1, putting residual confactors in R∗;
add 〈b1 ∧ b2, T1 ⊗t T2〉 to R∗;

}
for every 〈b, t〉 ∈ R∗ such that Y appears in t

{
remove 〈b, t〉 from R∗;
add 〈b,

∑
Y t〉 to R−;

}
while R∗ is not empty

{
if {〈b ∧ Y=v1, T1〉, . . . , 〈b ∧ Y=vk, Tk〉} ⊆ R∗

{
remove 〈b ∧ Y=v1, T1〉, . . . , 〈b ∧ Y=vk, Tk〉 from R∗;
add 〈b, T1 ⊕t . . .⊕t Tk〉 to R−;

}
else if {〈b1 ∧ Y=vi, T1〉, 〈b2 ∧ Y=vj, T2〉} ⊆ R∗ where b1 and b2 are compatible and b1 
= b2

{
remove 〈b1 ∧ Y=vi, T1〉 and 〈b2 ∧ Y=vj, T2〉 from R∗;
split 〈b1 ∧ Y=vi, T1〉 on b2, putting all created confactors in R∗;
split 〈b2 ∧ Y=vj, T2〉 on b1, putting all created confactors in R∗;

}
}

Return R−.

⊗t is defined in Section 2.2.
⊕t is defined in Section 4.3.
All set operations are assumed to be on multisets.

Figure 5: Contextual Variable Elimination
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that the elimination ordering has to be given a priori. The other choice points are the order in which
to do multiplication, and the splitting ordering.

Note that in the eliminate algorithm, all set operations are assumed to be on multisets. It is
possible, and not uncommon, to get multiple copies of the same confactor. One example where
this happens is when there is a naive Bayes model with variable C with no parents, and variables
Y1, . . . , Yn each with only C as a parent. Often the conditional probabilities of some of the Yi’s are
the same as they represent repeated identical sensors. If these identical sensors observe the same
value, then we will get identical confactors, none of which can be removed without affecting the
answer.

To see the correctness of the procedure, note that all of the local operations preserve the program
invariants; we still need to check that the algorithm halts. After the first while-loop of eliminate, the
contexts of the confactors in R∗ are mutually exclusive and covering by the second part of the loop
invariant. For all complete contexts on the variables that remain after Y is eliminated, there is either
a compatible confactor with Y in the table, or there is a compatible confactor with Y = vi for every
value vi. The splitting of the second while loop of eliminate preserves the mutual exclusiveness of
the bodies of the confactors in R∗ and when splitting a confactor, the set of created confactors covers
the same context as the original confactor. If there are confactors in R∗, and the if-condition does
not hold, then there must be a pair of confactors where the else-if condition holds. Thus, each time
through the second while-loop, the number of confactors in R− increases or the number of confactors
in R∗ increases and these are both bounded in size by the size of the corresponding factor. Thus
eliminate must stop, and when it does Y is eliminated in all contexts.

4.10 Ones

In a Bayesian network we can remove a non-observed, non-query node with no children without
changing the conditional probability of the query variable. This can be carried out recursively. In
VE, if we were to eliminate such variables, we create factors that are all ones (as

∑
X P(X|Y) = 1).

In contextual VE, we can have a more subtle version when a variable may have no children in
some contexts, even if it has children in another context.

Example 19 Consider eliminating B as in Example 14 where the belief network is given in Figure
1 and the structured conditional probabilities are given in Figure 3). In the context a ∧ c, the only
confactors that are applicable are those that define P(B|YZ). As stated, the contextual VE algorithm,
the following three confactors are created:

〈a ∧ c ∧ y, 1[Z]〉
〈a ∧ c ∧ y, 1〉

where 1[Z] is a function of Z that has value 1 everywhere and 1 is the function of no variables that
has value 1.

Confactors that have contribution 1 can be removed without affecting the correctness of the
algorithms (as long as these confactors aren’t the only confactors that contain a variable in some
context). It is easy to show that the first part of the program invariant is maintained as multiplying by
1 doesn’t affect any number. The second part of the invariant is also maintained, as there are always
the confactors for the child (E in this case) that don’t depend on the variable being eliminated, as
well as the confactors for the parents of the variable being eliminated.
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FT FB OT MB MT

FH MH

S

...

...

... ......

... ...

Figure 6: A fragment of a belief network: OT to eliminate.

It is however probably better to never construct such confactors rather than to construct them
and then throw them away. We show how this can be done in Section 5.1.

4.11 Multi-Valued Variables

We have presented an algorithm that allows for multi-valued variables, where the splitting operation
creates the same number of confactors as there are values in the domain of the variable being split.

There is an alternate method for using multi-valued variables. This is to extend the notion of a
context to allow for membership in a set of values. That is, a context could be a conjunction of terms
of the form X ∈ S where S is a set of values. The original version of equality of the form X=v is the
same as X ∈ {v}. Splitting can be done more efficiently as there is only one residual confactor for
each split. Effectively we treat a multiset of confactors as a unit.

There are examples where this representation can be much more efficient, but it makes the
algorithm much more complicated to explain. There are also examples where the binary splitting is
less efficient as it needs more splits to get the same result.

4.12 Why CVE Does More Than Representing Factors As Trees

It may seem that CVE is a confactor based representation for factors, in much the same way as the
trees in the structured policy iteration (Boutilier, Dearden and Goldszmidt, 1995) for solving MDPs.
In this section we present a detailed example that explains why CVE can be much more efficient
than a tree-based representation of the VE factors.

Example 20 Figure 6 shows a fragment of a belief network. This is an elaboration of Example 6,
where what affects the inside temperature depends on whether the air conditioning is broken or is
working. All the variables are Boolean. We use the following interpretation:
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FB

OT FT

p
1 p

2 p
3

p
4

P(fh)

MB

OT MT

p
5 p

6 p
7

p
8

P(mh)

true false

Figure 7: Tree-structured conditional probability tables for A and for B. Left branches correspond
to true and right branches to false. Thus p1 = P(a|d ∧ e), p2 = P(a|d ∧ e), etc.

FB Fred’s air conditioning is broken

FT Fred’s thermostat setting is high

OT Outside temperature is hot

FH Fred’s house is hot

MB Mary’s air conditioning is broken

MT Mary’s thermostat setting is high

MH Mary’s house is hot

S Season, that is true if it is Summer

The ancestors of FT , FB, S, MB, and MT are not shown. They can be multiply connected.
Similarly, the descendants of FH and MH are not shown. They can be multiply connected.

The outside temperature (OT ) is only relevant to Fred’s house being hot (FH) when Fred’s air
conditioner is broken (FB is true) in which case Fred’s thermostat setting (FT ) is not relevant. Fred’s
thermostat setting (FT ) is only relevant to Fred’s house being hot (FH) when Fred’s air conditioner
is working (FB is false), in which case the outside (OT ) is not relevant. And similarly for Mary’s
house. See Figure 7. What is important to note is that FH and MH are dependent, but only if both
air conditioners are broken, in which case the thermostat settings are irrelevant.

Suppose we were to sum out OT in VE. Once OT is eliminated, FH and MH become depen-
dent. In VE and bucket elimination we form a factor f (FH, MH, FT , FB, MB, MT , S) containing
all the remaining variables. This factor represents P(FH, MH|FT , FB, MB, MT , S) (unless there is
a pathological case such as if MT or MB is a descendent of FH, or if FT or FB is a descendent of
MH). One could imagine a version of VE that builds a tree-based representation for this factor. We
show here how the confactor-based version is exploiting more structure than this.
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If we are to take the contextual independence into account, we need to consider the dependence
between FH and MH when both FB and MB are true (in which case FT and MT are irrelevant). For
all of the other contexts, we can treat FH and MH as independent. The algorithm CVE does this
automatically.

The conditional probabilities of Figures 6 and 7 can be represented as the following confactors:

〈
fb,

FH OT Value
true true p1

true false p2

false true 1− p1

false false 1− p2

〉
(33)

〈
fb,

FH FT Value
true true p3

true false p4

false true 1− p3

false false 1− p4

〉
(34)

〈
mb,

MH OT Value
true true p5

true false p6

false true 1− p5

false false 1− p6

〉
(35)

〈
mb,

MH MT Value
true true p7

true false p8

false true 1− p7

false false 1− p8

〉
(36)

OT S Value
true true p9

true false p10

false true 1− p9

false false 1− p10

(37)

Eliminating OT from these confactors results in six confactors:

〈
fb ∧ mb,

FH MH S Value
true true true p9 ∗ (p5 ∗ p1)+ (1− p9) ∗ (p6 ∗ p2)

true true false p10 ∗ (p5 ∗ p1)+ (1− p10) ∗ (p6 ∗ p2)

true mbalse true p9 ∗ ((1− p5) ∗ p1)+ (1− p9) ∗ ((1− p6) ∗ p2)

true mbalse false p10 ∗ ((1− p5) ∗ p1)+ (1− p10) ∗ ((1− p6) ∗ p2)

false true true p9 ∗ (p5 ∗ (1− p1))+ (1− p9) ∗ (p6 ∗ (1− p2))

false true false p10 ∗ (p5 ∗ (1− p1))+ (1− p10) ∗ (p6 ∗ (1− p2))

false false true p9 ∗ ((1− p5) ∗ (1− p1))+ (1− p9) ∗ ((1− p6) ∗ (1− p2))

false false false p10 ∗ ((1− p5) ∗ (1− p1))+ (1− p10) ∗ ((1− p6) ∗ (1− p2))

〉
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〈
fb ∧ mb,

FH S Value
true true p9 ∗ p1 + (1− p9) ∗ p2

true false p10 ∗ p1 + (1− p10) ∗ p2

false true p9 ∗ (1− p1)+ (1− p9) ∗ (1− p2)

false false p10 ∗ (1− p1)+ (1− p10) ∗ (1− p2)

〉

〈
fb,

FH FT Value
true true p3

true false p4

false true 1− p3

false false 1− p4

〉

〈
fb ∧ mb,

MH S Value
true true p9 ∗ p5 + (1− p9) ∗ p6

true false p10 ∗ p5 + (1− p10) ∗ p6

false true p9 ∗ (1− p5)+ (1− p9) ∗ (1− p6)

false false p10 ∗ (1− p5)+ (1− p10) ∗ (1− p6)

〉

〈
fb ∧ mb,

S Value
true p9 + (1− p9)

false p10 + (1− p10)

〉

〈
mb,

MH MT Value
true true p7

true false p8

false true 1− p7

false false 1− p8

〉

Note that the third and the sixth confactors were there originally and were not affected by
eliminating OT .

The resultant confactors encode the probabilities of {FH, MH} in the context fb ∧ mb. For all
other contexts, CVE considers FH and MH separately. The total table size of the confactors after
OT is eliminated is 24.

UnlikeVE or BEBA, we need the combined effect on FH and MH only for the contexts where OT
is relevant to both FH and MH. For all other contexts, we don’t need to combine the confactors for
FH and MH. This is important, as combining the confactors is the primary source of combinatorial
explosion. By avoiding combining confactors, we can have a potentially huge saving when the
variable to be summed out appears in few contexts.

4.13 CVE Compared To VE

It is interesting to see the relationship between the confactors generated and the factors of VE for
the same belief network, with the same query and observations and the same elimination ordering.
There are two aspects to the comparison, first the exploitation of contexts, and second the idea of
not multiplying confactors unless you need to. In this section, we introduce a tree-based variable
elimination algorithm (TVE) that uses confactors but doesn’t have the property of the example above
where there are confactors that are not multiplied whenVE would multiply the corresponding factors.

In order to understand the relationship between VE and CVE for the same query and the same
elimination order, we can consider the VE derivation tree of the final answer. The tree contains all
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initial and intermediate factors created in VE. The parents in the tree of any factor are those factors
that were multiplied or had a variable summed out to produce this factor. Note that this is a tree
(each factor has only one child) as each factor is only used once in VE; once it is multiplied or a
variable is summed from it, it is removed.

For each node in this tree that is created by multiplying two other factors, the number of multi-
plications in VE is equal to the table size of the resulting factor. For each factor created by summing
out a variable, the number of additions is equal to the size of its parent minus its size.

We can define tree-based variable elimination (TVE) to be a composite of VE and CVE. It uses
confactors as in CVE. Associated with each factor in the VE derivation tree is a set of confactors.
WhenVE multiplies two factors, TVE multiplies (and does the requisite splitting) all of the compatible
confactors associated with the factors being multiplied. TVE is essentially the same as the tree-based
merging of Boutilier (1997) (but Boutilier also does maximization at decisions).

Whenever VE multiplies two factors, TVE multiplies all of the confactors associated with the
factors. The TVE confactors associated with the VE factors will always have a total table size that is
less than or equal to the VE factor size. TVE maintains a set of confactors with mutually exclusive
and covering contexts. The number of multiplications is equal to the resulting table size for each
pairwise multiplication (as each entry is computed by multiplying two numbers). It is easy to see
that TVE always does fewer or an equal number of multiplications than VE.

CVE is like TVE except that CVE doesn’t multiply some of the confactors when VE multiplies
two factors. It delays the multiplications until they need to be done. It relies on the hope that
the confactors can be separately simplified before they need to be multiplied. This hope is not
unjustified because if eliminating a variable means that both of the factors need to be multiplied by
other confactors, then they need to be multiplied by each other.

Example 21 If we were to use TVE for Example 20, once OT is eliminated, TVE builds a tree
representing the probability on both FH and MH. This entails multiplying out the confactors that
were not combined in CVE, for example multiplying the third, fifth and sixth factors of the result of
Example 20, which produces the confactor of the form

〈
f b ∧ mb, t(FH, FT , MH, MT , S)

〉
. Elimi-

nating OT results in a set of confactors with total table size 72, compared to 24 for VE. Without any
contextual structure, VE builds a table with 27 = 128 values.

It is possible that not multiplying compatible confactors earlier means that we will eventually
have to do more multiplications. The following example is the simplest example we could find where
CVE does more multiplications than VE or TVE. Slight variations in the structure of this example,
however result in CVE doing fewer multiplications.

Example 22 Consider the belief network shown in Figure 8(a). First we will sum out a variable, A,
to create two confactors that are not multiplied in CVE but are multiplied in TVE. We then multiply
one of these confactors by another factor when summing out the second variable, B. We then force
the multiplication when eliminating C.

Suppose that all of the variables are binary except for variable W that has domain size 1000. (The
counter example doesn’t rely on non-binary variables; you could just have B having 10 binary parents,
but this makes the arithmetic less clear). In the analysis below we only discuss the multiplications
that involve W , as the other multiplications sum up to less than a hundred, and are dominated by the
multiplications that involve W .

Suppose that we have the following confactors for S:

〈x, t1(A, B, C, S)〉 (38)
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Figure 8: Belief network for Example 22.

〈x, t2(B, C, S)〉 (39)

Suppose that we have the following confactors for T :

〈x, t3(A, B, C, T)〉 (40)

〈x, t4(C, T)〉 (41)

Suppose first that T is observed. Then the confactors for T are replaced by:

〈x, t5(A, B, C)〉 (42)

〈x, t6(C)〉 (43)

Let’s now eliminate A. In both CVE and TVE, confactors (38) and (42) and the prior on A are
multiplied together, and A is summed out resulting in:

〈x, t7(B, C, S)〉 (44)

In TVE, confactors (39) and (43) are also multiplied together resulting in:

〈x, t8(B, C, S)〉 (45)

Next we eliminate B. In both CVE and TVE, confactor (44) is multiplied by the factors representing
P(C|B) and P(B|W). We assume that the factor representing P(B|W) is multiplied last as this
minimises the number of multiplications. This involves 8008 multiplications (as the product has a
table size of 8000 and the intermediate table is of size 8). Then B is summed out resulting in the
factor:

〈x, t9(C, S, W)〉 (46)

In CVE, confactor (39) is multiplied by the factors representing P(C|B) and P(B|W). This also
involves 8008 multiplications. Then B is summed out from the product resulting in:

〈x, t10(C, S, W)〉 (47)

In TVE, confactor (45) is multiplied by the factors representing P(C|B) and P(B|W). This also
involves 8008 multiplications. Then B is summed out from the product resulting in:

〈x, t11(C, S, W)〉 (48)
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When C is eliminated, TVE requires no more multiplications. It just sums out C from the table of
confactor (48). However in CVE, we need to multiply confactors (43) and (47), which involves 4000
multiplications. The resulting confactors from CVE and TVE are identical.

Thus CVE requires about 20000 multiplications, TVE requires about 16000 multiplications. VE,
for the same elimination order, requires about 16000 multiplications.

This should not be surprising, particularly when you realise that VE is not optimal. For a given
elimination ordering, it is sometimes optimal to multiply factors before VE actually multiplies them,
as the following example shows:

Example 23 Consider the belief network in Figure 8(b), with the same domain sizes as in the
previous example. The factors represent P(W), P(B|W), P(C), P(S|BC). If we were to eliminate B
then C, it is more efficient to preemptively multiply P(C) by P(S|BC) than to delay the multiplication
till after summing out B (as VE does).

It may seem negative to show that CVE doesn’t always do fewer multiplications than VE but
has the overhead of maintaining contexts. However, there seems no reason why the preemptive
multiplication of TVE is optimal either. One possibility is to treat “when to multiply” and “when
to sum out variables” as a secondary optimisation problem (Bertelè and Brioschi, 1972; Shachter
et al., 1990; D’Ambrosio, 1995); unfortunately this optimization is also computationally difficult
(D’Ambrosio, 1995). This, however is beyond the scope of this paper.

5. Avoiding Splitting

5.1 Absorption

In this section we characterize a case when we don’t need to split during multiplication. Note that
the result of eliminating a variable is exactly the same as before; we are saving because we don’t
create the residuals, but rather use the original confactor.

Definition 15 A multiset of confactors R is complete if the contexts of the confactors are mutually
exclusive and covering.

If we have a multiset R of confactors that is complete, it means that we don’t have to split other
confactors r that may need to be multiplied by all of the confactors in R. For each residual of r, there
will be another element of R with which it will be compatible. Instead of splitting r, we can just
multiply it by each element of R. This is the intuition behind absorption. Note that we may need to
split elements of R during multiplication.

Suppose we have a complete multiset of confactors R and another confactor r1 = 〈c1, t1〉. Define

absorb(R, 〈c1, t1〉)
= {〈ci, pi〉 ∈ R : incompatible(ci, c1)}
∪

⋃
〈ci, ti〉 ∈ R

compatible(c1, ci)

(residual(〈ci, ti〉, c1) ∪ {〈c1 ∪ ci, set(t1, ci)⊗t set(ti, c1)〉})

where ⊗t is table multiplication (Definition 3).
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Correctness: We can replace R ∪ {r1} with absorb(R, r1) and the program invariant is preserved.
First note that the confactors in absorb(R, r1) are complete (and so the second part of the invariant
holds). To see why the first part of the invariant is preserved, consider a complete context c. If
c is compatible with c1, then in the original confactors, we use one confactor from R as well as
r1. In the revised confactor base we use the appropriate confactor with the product of the original
probabilities. If c is incompatible with c1 then it is compatible with one element 〈c2, p2〉 of R. If
c2 is incompatible with c1, the confactor to be used is the original confactor, and if c2 is compatible
with c1, then we use the residual confactor. In each case we get the same contributions from R∪{r1}
and from absorb(R, r1).

Example 24 If we were to eliminate B from the confactors of Figure 4 (as in example 14), we can
treat the two confactors for P(B|Y , Z) as the complete multiset of confactors. This means that we
don’t need to split the other confactors on Y .

Note that if we try to use the confactors for E as the complete set of confactors when eliminating
B, we don’t have to split the confactors on A, C or D, but we have to consider confactors that don’t
involve B when eliminating B, and we end up multiplying confactors that don’t need to be multiplied.

Note that if R cannot be represented as a decision tree (e.g., if R has confactors corresponding to
the contexts in {{a, b}, {a, c}, {b, c}, {a, b, c}, {a, b, c}}), it’s possible that there is no way to split r1

that results in as compact a representation as results from absorb(R, r1).
It seems as though it is very useful to have a multiset of confactors that is complete, but it is not

of much use if we cannot easily find such a set. First note that if we have a multiset R of confactors
that is complete, then absorb(R, r1) is also a multiset of confactors that is complete, which can, in
turn, be used to combine with another confactor.

Initially, for each variable X, the confactors that represent the conditional probability table
P(X|πX) are complete. Moreover they will all contain X and so need to be involved when eliminating
X. These can be used as the initial seed for absorbing other confactors. Unfortunately, after we have
eliminated some variables, the confactors that define the initial conditional probability tables for
some variable X don’t exist anymore; they have been split, multiplied by other confactors and added
to other confactors. However, for each variable X, we can still extract a useful multiset of confactors
that all contain X that are complete on the empty context (i.e., are mutually exclusive and covering).
These will be called the confactors for X, and correspond to the confactors with X in the head in an
earlier version of contextual variable elimination (Poole, 1997).

Definition 16 If X is a variable, the confactors for X are a subset of the confactor base defined by:

• Initially the confactors for X are the confactors that define the conditional probability P(X|πX).

• When we split a confactor for X, the confactors created are also confactors for X. Note that
this does not cover the case where we are splitting a confactor on a confactor for X.

• When we multiply a confactor for X with another confactor, the confactor created is a confactor
for X.

• When we add a confactor for X with another confactor (when eliminating another variable Y ,
for example), the resulting confactor is also a confactor for X.

Proposition 2 The confactors for X at any stage of contextual variable elimination are complete.
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To show this, we will show that the three basic operations preserve this property.

• splitting preserves this property, as the resulting confactors are exclusive and cover the context
of the confactor being split.

• multiplication preserves this property as, for any variable X, only one of the confactors involved
in a multiplication can be a confactor for X (as the confactors for X are mutually exclusive) and
the set of contexts covered by the confactors isn’t changed by multiplication. This argument
also holds for absorption.

• for addition, note that, for any variable X, either all of the confactors or none of the confactors
involved in an addition are confactors for X when summing out Y . To show this suppose we
have r1 = 〈c ∧ Y = v1, p1〉 and r2 = 〈c ∧ Y = v2, p2〉 where confactor r1 is a confactor for
X and confactor r2 isn’t. Because the confactors for X are mutually exclusive and covering,
there must be a confactor that is covered by X that is applicable in a context when c∧ Y = v2

is applicable. This confactor cannot mention Y , for otherwise addition isn’t applicable, and so
it must also be applicable when c∧ y = v1 is true, which contradicts the mutual exclusiveness
of the confactors for X. Now it is easy to see that addition preserves this property as the
confactors being summed cover the same contexts as the resulting confactor.

We can also use the idea of the confactors for X to recognise when summing out a variable will
create a table of 1’s that can be removed (see Section 4.10). First note that in the original confactors
for X, if, when eliminating X, we don’t have to multiply these by other confactors (i.e., they have
no children in this context), then we know that summing out X will produce a table of 1’s. We can
do better than this for recognising when we will produce ones. We will use one bit of information
to encode whether a confactor for X is pure for X. Initially all of the confactors for X are pure for
X. If a confactor for X is pure for X, and, when eliminating Y is absorbed into a confactors for Y
that is pure for Y , then the resulting confactor is pure for X. For every other case when a confactor
for X is multiplied by another confactor, the result is not pure for X. If we are summing out X, after
absorption, we can remove all confactors for X that are pure for X. This is correct because we have
maintained the invariant that if we sum out X from the table of a confactor for X that is pure for X we
create a table with only ones. Note that this procedure generalises the idea that we can recursively
remove variables with no children that are neither observed nor queried.

The idea of absorption into the rules for the variable being eliminated described in this section
should only be seen as a heuristic to avoid splitting. It does not necessarily reduce the amount
of work. First note that in variable elimination there is a choice in the order that we multiply
factors. Multiplication of factors is associative and commutative, however, the order in which the
multiplication is carried out affects efficiency, as the following example shows.

Example 25 Suppose variable B has one parent, A and two children C and D, who each only have
B as a parent. When eliminating B we have to multiply the factors representing P(B|A), P(C|B)

and P(D|B). Suppose that B, C and D are binary, and that A has domain size of 1000. When
multiplying two factors the number of multiplications required is equal to the size of the resulting
factor. If we save intermediate results, and multiply these in the order (P(B|A)⊗t P(C|B))⊗t P(D|B),
we will do 12000 multiplications. If we save intermediate results, and multiply these in the order
P(B|A) ⊗t (P(C|B) ⊗t P(D|B)), we will do 8008 multiplications. If we don’t save intermediate
tables, but instead recompute every product, we will do 16000 multiplications.
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If you need to multiply k > 1 factors, where m is the size of the resulting factor, the number of
multiplications is bounded below by k − 2+ m (as the final product requires m multiplications and
each other requires at least one multiplication) and bounded above by (k− 1) ∗m (as there are k− 1
factor multiplications and each of these requires at most m multiplications).

The associative ordering imposed by absorption into the rules for the variable being eliminated
(which for the example above implies absorbing P(C|B) and P(D|B) into P(B|A)) may not be the
optimal multiplication ordering. The absorption ordering (that saves because it reduced splitting)
should be seen as a heuristic; it may be worthwhile to do a meta-level analysis to determine what
order to multiply (Bertelè and Brioschi, 1972; Shachter et al., 1990; D’Ambrosio, 1995), but this is
beyond the scope of this paper.

5.2 Summing Out A Variable

Suppose we are eliminating Y , and we have absorbed all of the confactors that contain Y into the
confactors for Y . Then any two confactors in R that contain Y have incompatible contexts. The
contexts for the confactors that contain Y in the table are disjoint from the contexts of the confactors
that contain Y in the body.

Summing out Y from a confactor that contains Y in the table proceeds as before. We can use a
similar trick to absorption to avoid any more splitting when adding confactors that contain Y in the
body.

Suppose Y has domain {v1, . . . , vs}. The contexts of the confactors with Y=vi in the body are
exclusive and the disjunct is logically equivalent to the disjunct of confactors with Y=vj in the body
for any other value vj.

For each 1 ≤ i ≤ s, let Ri = {〈b, t〉 : 〈b ∧ Y=vi, t〉 ∈ R+}. Thus Ri is the confactor for Y = vi

in the context, but with Y = vi omitted from the context. We will combine the Ri’s using a binary
operation:

R1 ⊕g R2 = {〈c1 ∪ c2, set(t1, c2)⊕t set(t2, c1)〉 : 〈c1, t1〉 ∈ R1, 〈c2, t2〉 ∈ R2, compatible(c1, c2)}
where ⊕t is an addition operation defined on tables that is identical to the product ⊗t of Definition
3 except that it adds the values instead of multiplying them.

Then R1 ⊕g R2 ⊕g . . .⊕g Rs is the result from summing out Y from the confactors with Y in the
body.

5.3 Contextual Variable Elimination with Absorption

A version of contextual variable elimination that uses absorption, is given in Figure 9. This is the
algorithm used in the experimental results of Section 6.

The elimination procedure is called once for each non-query, non-observed variable. The order
in which the variables are selected is called the elimination ordering. This algorithm does not imply
that the elimination ordering has to be given a priori.

One of the main issues in implementing this algorithm is efficient indexing for the confactors. We
want to be able to quickly find the confactors for Y , the confactors that contain Y , and the compatible
confactors during addition and absorption. If we are given a prior elimination ordering, we can use
the idea of bucket elimination (Dechter, 1996), namely that a confactor can be placed in the bucket
of the earliest variable in the elimination ordering. When we eliminate Y , all of the confactors that
contain Y are in Y ’s bucket. If we don’t have a prior elimination ordering, we can keep an inverted
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To compute P(X|E1=o1 ∧ . . . ∧ Es=os)

Given multiset of contextual contribution confactors
1. Incorporate evidence as in Section 4.7.
2. While there is a factor involving a non-query variable

Select non-query variable Y to eliminate;
Call eliminate(Y).

3. Compute posterior probability for X as in Section 4.8

Procedure eliminate(Y):
partition the confactorbase R into:

R− those confactors that don’t involve Y
R+ = {r ∈ R : r is a confactor for Y}
R∗ = {r ∈ R : r involves Y and r is not a confactor for Y};

for each r ∈ R∗
do R+ ← absorb(R+, r);

partition R+ into:
Rt = {r ∈ R+ : Y in table of r}
Ri = {〈b, t〉 : 〈b ∧ Y=vi, t〉 ∈ R+} for each 1 ≤ i ≤ s, where dom(Y) = {v1, . . . , vs}.

Return confactorbase R− ∪ (R1 ⊕g · · · ⊕g Rs) ∪ {〈bi,
∑

Y ti〉 : 〈bi, ti〉 ∈ Rt}.
absorb(R, r) is defined in Section 5.1.
R1 ⊕g R2 is defined in Section 5.2.

Figure 9: Contextual Variable Elimination with Absorption
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list of the confactors (for each variable, we have a list of all of the confactors that are for that variable
and a list of the confactors that contain that variable). We then have to maintain these lists as we
create new confactors and delete old ones. We also want to be able to index the confactors so that
we can quickly find other confactors that contain the variable to be eliminated and have compatible
contexts. In our implementation, we compared all of the confactors that contain the variable to be
eliminated, and rejected those with incompatible contexts. Ideally, we should be able to do better
than this, but how to do it is an open question.

There are a number of choice points in this algorithm:

• the elimination ordering.

• the splitting ordering; when computing residuals, which order should the variables be split on.
This is discussed in Section 4.4.

• the order that the elements of R∗ are absorbed. This has an impact similar to the choice of
multiplication ordering for VE (when we have to multiply a number of factors, which order
should they be done); sometimes we can have smaller intermediate factors if the choice is
done appropriately.

6. Empirical Results

An interesting question is whether there are real examples where the advantage of exploiting con-
textual independence outweighs the overhead of maintaining confactors.

We can easily generate synthetic examples where VE is exponentially worse than contextual
variable elimination (for example, consider a single variable with n, otherwise unconnected, parents,
where the decision tree for the variable only has one instance of each parent variable, and we
eliminate from the leaves). At another extreme, where all contexts are empty, we get VE with very
little overhead. However, if there is a little bit of CSI, it is possible that we need to have the overhead
of reasoning about variables in the contexts, but get no additional savings. The role of the empirical
results is to investigate whether it is ever worthwhile trying to exploit context-specific independence,
and what features of the problem lead to more efficient inference.

6.1 A Pseudo-Natural Example

While it may seem that we should be able to test whether CVE is worthwhile for natural examples
by comparing it to VE for standard examples, it isn’t obvious that this is meaningful. With the table-
based representations, there is a huge overhead for adding a new parent to a variable, however there is
no overhead for making a complex function for how a variable depends on its existing parents. Thus,
without the availability of effective algorithms that exploit contextual independence where there is a
small overhead for adding a variable to restricted contexts, it is arguable that builders of models will
tend to be reluctant to add variables, but will tend to overfit the function for how a variable depends on
its parents. As all models are approximations it makes sense to consider approximations to standard
models. As we are not testing the approximations (Dearden and Boutilier, 1997; Poole, 1998), we
will pretend these are the real models.

In this section we produce evidence that there exists networks for which CVE is better than
VE. The sole purpose of this experiment it to demonstrate that there potentially are problems where
it is worthwhile using CVE. We use an instance of the water network (Jensen, Kjærulff, Olesen
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Figure 10: Scatterplot of runtimes (in msecs) of CVE (x-axis) andVE (y-axis) for the water network.
Full details are in Appendix A.

and Pedersen, 1989) from the Bayesian network repository8 where we approximated the conditional
probabilities to create contextual independencies. Full details of how the examples were constructed
are inAppendixA. We collapsed probabilities that were within 0.05 of each other to create confactors.
The water network has 32 variables and the tabular representation has a table size of 11018 (after
removing variables from tables that made a difference of less that 0.05). The contextual belief
network representation we constructed had 41 confactors and a total table size of 5834.

Figure 10 shows a scatter plot of 60 runs of random queries9. There were 20 runs each for 0,
5 and 10 observed variables. The raw data is presented in Appendix A. The first thing to notice
is that, as the number of observations increases, inference becomes much faster. CVE was often
significantly faster than VE. There are a few cases where CVE was much worse than VE; essentially,
given the elimination ordering, the context-specific independence didn’t save us anything in these
example, but we had to pay the overhead of having variables in the context.

8. http://www.cs.huji.ac.il/labs/compbio/Repository/
9. Note that all of these results are statistically significant to some degree. The least significant is with 10 observations,

that, using the matched-sample t-test (also known as the paired t-test), is significant to the 0.2 level for the logarithm
of the runtimes. The others are significant way below the 0.001 level. The logarithm is appropriate as the difference
in the logarithms corresponds to the multiplicative speedup.
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6.2 Randomised Networks

In order to see how the algorithm depends on the structure inherent in the network, we constructed
a number of parametrized classes of networks. We explicitly constructed networks that display
contextual independence, as if there is not contextual independence this algorithm degenerates to
VE.

We have the following parameters for building random networks:

n the number of variables

s the number of splits (so there will be n+ s confactors).

p the probability that a predecessor variable that isn’t in the context of a confactor will be in the
table of the confactor.

The exact algorithm for constructing the examples is given in Appendix A.
The variable s controls the number of confactors, and p controls (probabilistically) the size of

the tables. Figure 1110 shows a scatter plot comparing the runtimes of CVE and VE for n = 30 and
p = 0.2 and for three different values of s, 5, 10, and 15.

While this may look reasonable, it should be noticed that the number of splits and the number of
different variables in the splits is strongly correlated in these examples (see Appendix A for details).
However, one of the properties of CVE is that if a variable does not appear in the body of any
confactor, it is never added to the context of a constructed confactor. That is, a variable that only
appears in tables, always stays in tables. Thus it may be conjectured that having fewer variables
appearing in contexts may be good for efficiency.

We carried out another experiment to test this hypothesis. In this experiment, the networks were
generated as before, however, when we went to split a context we attempted to first split it using a
variable that appears in a different context before using a variable that didn’t appear in a context. The
full details of the algorithms to generate examples and some example data are given in Appendix A.
Figure 12 shows a scatter plot of comparing the run times for CVE and VE for each of the generated
examples. With this class of networks CVE is significantly faster than VE.

7. Comparison With Other Proposals

In this section we compare CVE with other proposals for exploiting context-specific information.
The belief network with the conditional probability table of Figure 1 (i.e., with the contextual

independence shown in Figure 4) is particularly illuminating because other algorithms do very badly
on it. Under the elimination ordering B, D, C, A, Y , Z , to find the marginal on E, the most complicated
confactor multiset created is the confactor multiset for E after eliminating B (see Example 14) with
a total table size of 16. Observations simplify the algorithm as they mean fewer partial evaluations.

In contrast, VE requires a factor with table size 64 after B is eliminated. Clique tree propagation
constructs two cliques, one containing Y , Z, A, B, C, D of size 26 = 64, and the other containing
A, B, C, D, E of size 32. Neither takes the structure of the conditional probabilities into account.

Note however, that VE and clique tree propagation manipulate tables which can be indexed much
faster than we can manipulate confactors. There are cases where the total size of the tables of the

10. Note that all of these results are statistically significant. The least significant is the s = 10 plot that, using the matched-
sample t-test (also known as the paired t-test), is significant to the 0.05 level for the logarithm of the runtimes. The
logarithm is appropriate as the difference in the logarithms corresponds to the multiplicative speedup.
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Figure 11: Scatterplot of runtimes (in seconds) of CVE (x-axis) and VE (y-axis) for randomised
networks
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Figure 12: Scatterplot of runtimes (in seconds) of CVE (x-axis) andVE (y-axis) for random networks
biased towards fewer different variables in the contexts.
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confactors is exponentially smaller than the tables (where added variables are only relevant in narrow
contexts). There are other cases where the table size for the confactors is the same as the table size
in VE, and where the overhead for manipulating contexts will not make CVE competitive with the
table-based methods.

Boutilier et al. (1996) present two algorithms to exploit structure. For the network transformation
and clustering method, the example of Figure 1 is the worst case; no structure can be exploited after
triangulation of the resulting graph. (The tree for E in Figure 3 is structurally identical to the tree
for X(1) in Figure 2 of (Boutilier et al., 1996)). The structured cutset conditioning algorithm does
well on this example. However, if the example is changed so that there are multiple (disconnected)
copies of the same graph, the cutset conditioning algorithm is exponential in the number of copies,
whereas the probabilistic partial evaluation algorithm is linear11.

This algorithm is most closely related to the tree-based algorithms for solving MDPs (Boutilier
et al., 1995), but these work with much more restricted networks and with stringent assumptions on
what is observable. CVE is simpler than the analogous algorithm by Boutilier (1997) for structured
MDP with correlated action effects that represents conditional probabilities as trees. Section 4.12
shows why we can do better than the tree-based algorithms.

Poole (1997) gave an earlier version of rule-based VE, but it is more complicated in that it
distinguished between the head and the body of rules as part of the inference (although the confactors
for X correspond to the rules with X in the head). CVE is much more efficient than the rule-based VE
as it allows for faster indexing of tables. The notion of absorption was introduced by Zhang (1998),
which motivated the work in a very different way. Zhang and Poole (1999) give a mathematical
analysis of how context-specific independence can be exploited in terms of partial functions. The
union-product is a formalization of the operation we are using between confactors. The current paper
extends all of these in giving a specific algorithm showing how to combine the confactors and tables,
gives a more general analysis of when we need to do confactor splitting and when we don’t need to,
gives a more sophisticated method to initialize absorption (maintaining the confactors for a variable)
and gives a much more detailed empirical evaluation (with a new implementation). The ability to
handle ones is also improved.

Finally the representation should be contrasted with that of Geiger and Heckerman (1996).
They use a similarity network that gives a global decomposition of a belief network; for different
contexts they allow for different belief networks. We allow for a local decomposition of conditional
probabilities. The algorithms are not very similar.

8. Conclusion

This paper has presented a method for computing posterior probabilities in belief networks that exhibit
context-specific independence. This algorithm is an instance of variable elimination, but when we
sum out a variable the tables produced may depend on different sets of variables in different contexts.

The main open problem is in finding good heuristics for elimination orderings (Bertelè and
Brioschi, 1972). Finding a good elimination ordering is related to finding good triangulations in
building compact junction trees, for which there are good heuristics (Kjærulff, 1990; Becker and
Geiger, 1996). These are not directly applicable to contextual variable elimination (although there

11. This does not mean that all conditioning algorithms need suffer from this. We conjecture that there is a conditioning
algorithm that can extend contextual VE but save space, as in other bucket elimination algorithms (Dechter, 1996) or
the relevant cutsets for probabilistic inference (Darwiche, 1995; Díez, 1996).
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are analogous heuristics that are applicable), as an important criteria in this case is the exact form
of the confactors, and not just the graphical structure of the belief network. This means that it is not
feasible to compute the elimination ordering a priori. We are also investigating anarchic orderings
where we eliminate a variable in some contexts, without eliminating it in every context before we
partially eliminate another variable. We believe that this opportunistic elimination of variables in
contexts has much potential to improve efficiency without affecting correctness.

One of the main potential benefits of this algorithm is in approximation algorithms, where the
confactors allow fine-grained control over distinctions. Complementary confactors with similar
probabilities can be collapsed into a simpler confactor. This can potentially lead to more compact
confactor bases, and reasonable posterior ranges (Dearden and Boutilier, 1997; Poole, 1998).

The work reported in this paper has been followed up by a number of researchers. Tung (2002)
has shown how to exploit context-specific independence in clique trees. Guestrin, Venkataraman and
Koller (2002) extended the contextual variable elimination to multi-agent coordination and planning.
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Appendix A. Details of the experiments

A.1 Water Network

In order to construct a pseudo-natural example, we used the water network from the Bayesian
network repository12 and modified it to let it exhibit context-specific independence. For each table,
a variable was declared redundant if the differences in the probabilities for the values of this variable
were less than a threshold of 0.05 from each other (thus, if we chose the midpoint of a reduced
table, the original probabilities were all less than 0.025 from this midpoint). In order to discover
context-specific independence, we carried out a greedy top-down algorithm to build a decision tree.
If we are building the conditional for variable Xi, we chose the variable Y to split on that results in the
maximum number of pairs of numbers where the values for Xi are within the threshold 0.05 of each
other. We then recursively remove redundant variables from each side, and keep splitting. Once we
have built a tree, for each node, we can decide whether to use the tabular representation or a factored
representation. In these experiments, we only committed to the context-based representation when
the total size of the context-based representation (obtained simply by summing the sizes of the tables)
was less than 51% of the tabular representation.

It should be noted that these thresholds were not chosen arbitrarily. If we used 0.03 instead
of 0.05, we didn’t find any context-specific independence. If we chose 0.07 instead of 0.05, then
the tabular representation collapses. If we chose 80% or 99% instead of 51% as the threshold for
accepting a change, we got smaller tables, but much larger run times.

12. http://www.cs.huji.ac.il/labs/compbio/Repository/
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CVE VE
Query Var Time Size Time Size
#11(CKND_12_15) 15039 1327104 25368 5308416
#13(CBODN_12_15) 620 16384 4552 442368
#27(CKND_12_45) 3808 186624 53965 15925248
#25(CKNI_12_45) 1708 36864 57414 7077888
#22(CKNN_12_30) 367 16128 3821 442368
#21(CBODN_12_30) 7953 193536 13997 1769472
#17(CKNI_12_30) 742 48384 3677 442368
#22(CKNN_12_30) 363 16128 3846 442368
#19(CKND_12_30) 7939 774144 26654 2359296
#15(CNON_12_15) 8177 193536 14599 1769472
#12(CNOD_12_15) 618 37044 4264 442368
#3(CKND_12_00) 419 29376 9414 1327104
#16(C_NI_12_30) 429 28224 3799 442368
#30(CKNN_12_45) 2902 112896 52648 15925248
#4(CNOD_12_00) 2496 110592 42270 5308416
#21(CBODN_12_30) 8042 193536 13619 1769472
#5(CBODN_12_00) 992 112320 3334 442368
#19(CKND_12_30) 7936 774144 25637 2359296
#11(CKND_12_15) 16290 1327104 24753 5308416
#23(CNON_12_30) 604 37044 3535 442368

Figure 13: Data for random queries with no observed variables for the water network

Figure 13 shows some of the details of some of the data with no observations. Figures 14 and 15
shows some of the details of some of the data with 5 and 10 observation respectively. These make up
the data shown in Figure 10 of the main paper. We show the index of the variable given the ordering
in the repository (we started counting at 0).

All of the times are in milliseconds for a Java implementation running on 700 MHz Pentium
running Linux with 768 megabytes of memory. In order to allow for the variation in run times due
to garbage collection each evaluation was run three times and the smallest time was returned. The
space is for the maximum table created in VE or the maximum size of the sum of all of the confactors
created during the elimination of one variable.

A.2 Randomised Experiments

The following procedure was used to generate the random networks. Given the n variables, we
impose a total ordering. We build a decision tree for each variable. The leaves of the decision trees
correspond to contexts and a variable that the tree is for. We start with the empty decision tree for
each variable. We randomly (with uniform probability) choose a leaf and a variable. If the variable
is a possible split (i.e., it is a predecessor in the total ordering of the variable the leaf is for and
the context corresponding to the leaf doesn’t commit a value to that variable), we split that leaf on
that variable. This is repeated until we have n + s leaves. Then for each leaf, we built a confactor
that has the same context and each predecessor of the variable that the leaf is for is included in the
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CVE VE
Observed Query Var Time Size Time Size
#1=2 #2=2 #26=2 #28=1 #30=1 #8(C_NI_12_15) 84 9216 579 36864
#6=2 #8=1 #11=2 #14=2 #24=1 #22(CKNN_12_30) 15 816 156 9216
#8=3 #14=0 #15=3 #18=3 #20=2 #6(CKNN_12_00) 9 336 26 2304
#5=1 #9=0 #12=2 #15=0 #16=3 #10(CBODD_12_15) 54 576 71 6912
#6=1 #7=0 #11=1 #13=3 #25=2 #27(CKND_12_45) 1184 28224 3210 147456
#2=1 #6=0 #13=0 #19=1 #25=0 #18(CBODD_12_30) 123 9216 224 12288
#0=3 #2=1 #18=2 #20=1 #23=1 #17(CKNI_12_30) 16 1728 87 5184
#4=3 #10=3 #12=3 #17=0 #28=2 #6(CKNN_12_00) 284 6912 162 20736
#3=1 #11=1 #19=1 #25=1 #31=3 #14(CKNN_12_15) 1450 36864 1041 147456
#10=3 #19=0 #21=0 #26=0 #27=0 #16(C_NI_12_30) 1076 49152 521 49152
#11=1 #13=0 #21=1 #25=2 #29=2 #24(C_NI_12_45) 353 28080 13928 1327104
#3=0 #23=1 #26=1 #27=0 #28=3 #15(CNON_12_15) 14258 193536 2600 442368
#9=2 #10=1 #13=1 #25=2 #26=1 #30(CKNN_12_45) 75 9216 2646 248832
#9=1 #11=0 #14=2 #15=1 #27=0 #25(CKNI_12_45) 65 4096 120 4096
#2=0 #10=2 #15=2 #17=1 #24=1 #8(C_NI_12_15) 12 576 767 110592
#2=0 #7=3 #15=1 #21=2 #27=2 #16(C_NI_12_30) 29 1008 531 82944
#0=3 #2=0 #6=0 #7=2 #16=2 #29(CBODN_12_45) 7 336 1304 147456
#2=2 #20=2 #24=2 #25=0 #30=0 #21(CBODN_12_30) 453 49152 877 49152
#8=2 #11=2 #19=2 #25=1 #29=3 #9(CKNI_12_15) 76 9216 216 9216
#9=1 #12=3 #13=0 #19=2 #21=3 #26(CBODD_12_45) 31 1024 440 49152

Figure 14: Data for random queries with 5 randomly observed variables for the water network
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CVE VE
Observed Query Time Size Time Size
#2=3 #3=0 #7=2 #12=1 #13=2
#19=1 #21=2 #22=2 #26=1 #30=1 #14 30 2304 40 2304
#0=0 #3=0 #8=3 #12=3 #13=0
#16=2 #18=2 #26=3 #27=2 #28=1 #7 14 256 17 768
#1=2 #6=0 #8=0 #11=2 #17=0
#20=3 #22=1 #23=1 #24=2 #26=2 #25 7 256 7 256
#2=2 #5=3 #8=0 #9=1 #10=1
#17=2 #18=1 #22=2 #28=0 #30=1 #23 4 192 4 192
#4=2 #7=1 #8=2 #12=1 #13=2
#15=3 #17=0 #19=0 #22=2 #31=2 #28 10 256 8 256
#1=1 #7=1 #9=1 #10=0 #11=0
#13=3 #14=1 #23=1 #24=1 #30=2 #22 9 336 10 768
#2=1 #4=0 #6=0 #15=0 #18=0
#22=2 #23=3 #24=2 #29=2 #30=1 #25 14 768 31 2304
#3=0 #10=0 #14=1 #16=3 #19=0
#24=1 #25=2 #28=3 #30=1 #31=1 #7 544 9216 121 9216
#1=2 #2=3 #3=1 #9=2 #10=0
#14=0 #16=3 #25=1 #28=3 #30=2 #8 10 1024 16 1024
#2=3 #5=1 #6=0 #11=2 #12=0
#17=1 #22=0 #24=3 #27=0 #28=1 #25 22 768 22 768
#8=3 #9=2 #10=0 #11=1 #12=1
#14=2 #15=3 #19=0 #22=2 #26=3 #5 3 84 4 192
#1=0 #7=2 #8=2 #13=0 #15=3
#17=2 #20=3 #26=1 #27=0 #31=3 #24 11 256 8 256
#4=2 #5=3 #6=1 #9=1 #10=0
#12=2 #17=0 #19=1 #25=0 #29=0 #23 6 256 23 1024
#0=0 #2=1 #11=1 #13=1 #17=2
#21=3 #22=1 #23=1 #24=2 #30=2 #27 10 576 18 768
#4=1 #9=0 #10=0 #11=1 #12=2
#23=1 #25=2 #29=1 #30=0 #31=2 #5 77 4096 141 12288
#1=2 #6=0 #7=1 #10=3 #12=1
#15=3 #16=1 #17=2 #23=2 #24=1 #27 3 64 4 144
#1=2 #2=2 #3=2 #5=2 #9=2
#13=1 #15=0 #22=1 #25=2 #30=0 #18 4 112 65 12288
#0=3 #1=1 #5=1 #6=0 #7=1
#8=2 #15=3 #17=0 #24=3 #25=0 #21 76 768 16 1024
#0=2 #6=1 #8=0 #9=2 #10=2
#16=0 #18=0 #19=0 #21=0 #26=0 #13 7 576 12 768
#1=1 #3=0 #4=2 #9=1 #10=3
#13=0 #14=2 #22=0 #23=0 #30=2 #6 37 768 17 768

Figure 15: Data for random queries with 10 randomly observed variables for the water network

307



POOLE & ZHANG

generate_random_CBN(n, s, p) :
create n Boolean variables X1, . . . , Xn

Let S = {〈{}, Xi〉 : i ≤ i ≤ n}
{S is a set of context-variable pairs}

repeat
choose random 〈c, Xi〉 ∈ S
choose random j such that 1 ≤ j < n
if j < i and Xj doesn’t appear in c:

replace 〈c, Xi〉 ∈ S with
〈
c ∧ Xj = true, Xi

〉
and

〈
c ∧ Xj = false, Xi

〉
until there are n+ s elements of S
for each 〈c, Xi〉 ∈ S

Let V = {Xi}
for each j < i

if Xj doesn’t appear in c
with probability p add Xj to V

create a random table T on the variables in V
add confactor 〈c, T〉 to the contextual belief network

Figure 16: Algorithm for constructing the randomised examples

confactor with probability p. The variable that the leaf is for is also in the confactor. We assign
random numbers the probabilities (these numbers won’t affect anything in the results assuming that
the times for operations on floating point numbers isn’t affected by the actual values of the numbers).

The algorithm to construct the random examples used in Section 6.2 is given in Figure 16. Note
that “choose random” means to choose randomly from a uniform distribution.

For the examples biased towards using fewer variables, we replaced the line:

replace 〈c, Xi〉 ∈ S with
〈
c ∧ Xj = true, Xi

〉
and

〈
c ∧ Xj = false, Xi

〉

with

if there is k < i such that Xk doesn’t appear in c and Xk is used in another context
then

replace 〈c, Xi〉 ∈ S with 〈c ∧ Xk = true, Xi〉 and 〈c ∧ Xk = false, Xi〉
else

replace 〈c, Xi〉 ∈ S with
〈
c ∧ Xj = true, Xi

〉
and

〈
c ∧ Xj = false, Xi

〉
where, if more than one such k exists, the k is chosen uniformly from all of the values that satisfy
the condition.

Figure 17 shows some of the details of some of the data shown in Figure 11. All of the times
are for a Java implementation running on a 700 MHz Pentium running Linux with 768 megabytes of
memory. In order to allow for the variation in run times due to garbage collection, each evaluation
was run three times and the smallest time was returned.

For each generated example, the table of Figure 17 shows

• n the number of variables
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n s p CBN BN CVE VE
Size Size Time MTS Time MTS

30 5 (5) 0.2 10922 8398266 31388 2097152 84801 4194304
30 5 (5) 0.2 1846 132692 9653 393216 12418 524288
30 5 (5) 0.2 1964 13456 2022 131072 3748 131072
30 5 (5) 0.2 1600 4908 3922 196608 5572 524288
30 5 (5) 0.2 1668 8292 60304 614400 61612 2097152
30 5 (5) 0.2 904 1906 637 32768 1005 65536
30 5 (5) 0.2 1738 10786 720 42048 1340 131072
30 5 (4) 0.2 1744 18538 2223 131072 2546 262144
30 5 (4) 0.2 3060 87292 11681 524288 12298 1048576
30 5 (3) 0.2 2692 69602 5325 262144 9530 524288
30 10 (9) 0.2 3842 530622 22288 524288 31835 2097152
30 10 (9) 0.2 1262 36070 4063 147456 11038 524288
30 10 (10) 0.2 3908 80704 112537 1966080 31214 4194304
30 10 (8) 0.2 4904 33568176 81450 5111808 203284 16777216
30 10 (7) 0.2 10456 314126 31627 589824 44079 2097152
30 10 (8) 0.2 1790 28758 1590 98304 2974 262144
30 10 (9) 0.2 2054 24452 13642 262144 5253 262144
30 10 (8) 0.2 3608 58352 24948 819200 18574 1048576
30 10 (9) 0.2 6392 1188654 403347 5767168 359992 33554432
30 10 (8) 0.2 6180 42344 10078 253952 17501 1048576
30 15 (10) 0.2 2724 2104338 56636 1572864 49316 2097152
30 15 (11) 0.2 5896 8425520 185925 6389760 260645 16777216
30 15 (11) 0.2 2096 2239982 27065 825344 42180 2097152
30 15 (12) 0.2 3674 39928 6393 360448 9631 524288
30 15 (11) 0.2 2388 552768 8623 425984 13641 524288
30 15 (11) 0.2 1938 49388 11299 438272 27303 2097152
30 15 (13) 0.2 4188 351374 18602 432776 38843 2097152
30 15 (12) 0.2 2806 111632 3213 138240 5463 1048576
30 15 (12) 0.2 3512 126464 16118 258048 11479 1048576
30 15 (10) 0.2 1700 541498 5986 172032 8414 524288

Figure 17: Comparisons of random networks that exhibit CSI.
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• s the number of splits and, in parentheses, the number of different variables on which the splits
occur (different leaves can be split on the same variable).

• p the probability of splitting on a variable it is possible to split on.

• CBN size: the total size (summing over the size of the tables) of the contextual belief network
representation.

• BN size: the total size of the factors for the corresponding belief network (i.e., assuming the
probabilities are stored in tables).

• CVE time is the runtime (in msecs) of contextual variable elimination and CVE MTS is the
maximum sum of the table sizes created for the elimination of a single variable.

• VE time: the runtime (in msecs) of variable elimination and VE MTS is the maximum table
size created for the elimination of a single variable.
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