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Abstract

Independence — the study of what is relevant to a given problem of reasoning — has
received an increasing attention from the AI community. In this paper, we consider two
basic forms of independence, namely, a syntactic one and a semantic one. We show features
and drawbacks of them. In particular, while the syntactic form of independence is compu-
tationally easy to check, there are cases in which things that intuitively are not relevant
are not recognized as such. We also consider the problem of forgetting, i.e., distilling from
a knowledge base only the part that is relevant to the set of queries constructed from a
subset of the alphabet. While such process is computationally hard, it allows for a simplifi-
cation of subsequent reasoning, and can thus be viewed as a form of compilation: once the
relevant part of a knowledge base has been extracted, all reasoning tasks to be performed
can be simplified.

1. Introduction

We successively present some motivations, the scope of the paper, and the contribution and
the organization of the paper.

1.1 Motivations

In many situations of everyday life, we are confronted with the problem of determining what
is relevant. Especially, as a preliminary step to various intelligent tasks (e.g., planning, de-
cision making, reasoning), it is natural and reasonable to discard everything but what is
relevant to achieve them efficiently. For instance, before starting to write this paper, we had
to consider the relevant literature on the topic, and only it; gathering on our desks all the
papers about relevance that we have at hand led us to set away our favourite cook books,
because they are of no help to the task of writing this paper. The ability to focus on what
is relevant (or dually to discard what is not) can be considered as a central, characteristic
feature of intelligence; it is believed that over 90% of the neuronal connections of our brains
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are inhibitory and serve to give up sensorial inputs (Subramanian, Greiner, & Pearl, 1997).
This explains why irrelevance, under various names as independence, irredundancy, influ-
enceability, novelty, separability, is nowadays considered as an important notion in many
fields of artificial intelligence (see a survey for more details, e.g., Greiner & Subramanian,
1995; Subramanian et al., 1997).

In the following, we are concerned with relevance for reasoning. In this framework,
the task is typically that of determining whether some piece of knowledge (a query) ¢
can be derived from a knowledge base ¥. Several reasoning schemes can be taken into
account here, from the classical one (inference is classical entailment) to more sophisticated
ones (common-sense inference). When dealing with such reasoning tasks, relevance is often
exploited so as to make inference more efficient from a computational point of view. In other
reasoning problems, the purpose is to explicitly derive some intensionally-characterized
pieces of knowledge (e.g., tell me all what you know about Tweety). For such problems
(that are not reducible to decision problems), relevance also has a role to play, for instance
by allowing us to characterize the pieces of information we are interested in by forgetting
the other ones.

To what extent is the goal of improving inference reachable? In order to address this
point, a key issue is the computational complezity one. Indeed, assume that we know that
the resolution of some reasoning problems can be sped up once relevant information has been
elicited. In the situation where it is computationally harder to point out such information
from the input than to reason directly from the input, computational benefits are hard to
be expected. If so, alternative uses of relevance for reasoning are to be investigated. For
instance, searching for relevance information can be limited by considering only pieces of
knowledge that can be generated in a tractable way. If such information depend only on the
knowledge base, another possible approach is to (tentatively) compensate the computational
resources spent in deriving the relevance information through many queries (computing
pieces of relevant information can then be viewed as a form of compilation).

1.2 Scope of the Paper

Little is known about the computational complexity of relevance. This paper contributes
to fill this gap. The complexity of several logic-based relevance relations is identified in a
propositional setting. By logic-based we mean that the notions of relevance we focus on
are not extra-logical but built inside the logic: they are defined using the standard logical
notions of (classical) formula, model, logical deduction, etc. The stress is laid on notions of
relevance that can prove helpful for improving inference and, in particular, the most basic
form of it, classical entailment. Relevance is captured by relations in the metalanguage of
the logic, that is, we formalize relevance as a relation between objects of the propositional
language (formulas or sets of literals/variables) thus expressing the fact that some object is
relevant to some other one.

Two notions play a central role in this paper. The first one, (semantical) formula-
variable independence (FV-independence for short) tells that a propositional formula ¥ is
independent from a given set V' of variables if and only if it can be rewritten equivalently
as a formula in which none of the variables in V' appears. The second one is the notion
of forgetting a given set V' of variables in a formula . It is intimately linked to the
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notion of formula-variable independence because, as we show, the result of forgetting the
set of variables V' in a formula ¥ can be defined as the strongest consequence of ¥ being
independent from V. Both notions have appeared in the literature under various names
and with several different (but equivalent) definitions, and are highly useful for many tasks
in automated reasoning and many problems in artificial intelligence:

1. automated deduction and consequence finding. Formula-variable independence can be
useful for checking (un)satisfiability or for consequence finding. Indeed, structuring
the knowledge base by finding useful independencies may be worth doing before run-
ning any search algorithm. This principle is at work in (Amir & Mcllraith, 2000). In
optimal cases, for example, a satisfiability problem will be decomposed into a small
number of satisfiability problems on easier knowledge bases (with less variables) as
shown by Park and Gelder (1996). As to improving inference, this can be particu-
larly helpful in the situation where the set of queries under consideration is limited
to formulas ¢ that are (syntactically or semantically) independent from a set V' of
variables.

2. query answering (see in particular Amir & Mcllraith, 2000), diagnosis (see the work
by Darwiche, 1998). Rendering a formula ¥ independent from a set V' of variables
through variable forgetting gives rise to a formula that is query-equivalent to X w.r.t.
V in the sense that every logical consequence ¢ of ¥ that is independent from V'
also is a logical consequence of 3 once made independent from V', and the converse
holds as well. Interestingly, the set of all the formulas independent from a set of
variables is a stable production field (Siegel, 1987; Inoue, 1992), and focusing on
such a production field is valuable for several reasoning schemes. For instance, in the
consistency-based framework for diagnosis (Reiter, 1987), the queries we are interested
in are the conflicts of the system to be diagnosed, i.e., the clauses that are independent
from every variable used to represent the system, except the abnormality propositions
used to encode the component failures.

3. knowledge base structuring, topic-based reasoning. Formula-variable independence is
a key notion for decomposing a propositional knowledge base (KB for short), i.e.,
a finite set of propositional formulas, into smaller subbases. Such a decomposition
is all the more valuable as the number of variables the subbases depends on is low.
Optimally, a knowledge base ¥ = {1, ..., ¢, } is fully decomposable if it can be written
as ¥ = ¥; U ... UX, where 3; and 3; depend on disjoint sets of variables for all
i # j. Such decompositions were considered in several papers (Parikh, 1996; Amir
& Mcllraith, 2000; Marquis & Porquet, 2000) with somewhat different motivations.
The most intuitive motivation for searching such decompositions is that it gives a
better understanding of the knowledge base, by structuring it with respect to (possible
disjoint but not necessarily) sets of topics (Marquis & Porquet, 2000).

4. belief revision and inconsistency-tolerant reasoning. Decomposing a propositional
knowledge base ¥ into subbases {¥i,...,%,} proves also to be relevant for defin-
ing inconsistency-tolerant relations as well as belief revision operators. The approach
proposed by Chopra and Parikh (1999) proceeds as follows: the knowledge base %
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is first partitioned into {¥i,...,%,} such that the intersection of the languages of
the subbases (i.e., the sets DepVar(%;) of variables the subbases depend on) are as
small as possible; then ¢ is inferred from ¥ w.r.t. the given partition if and only if
the conjunction of all ¥; such that DepVar(X;) N DepVar(p) # 0 is consistent and
entails ¢. In a revision situation, this approach also ensures that the only old beliefs
that may be thrown away are about the variables relevant to the input formula. Fi-
nally, as recently shown by some of the authors of the present paper, forgetting can be
advantageously exploited as a weakening mechanism for recovering consistency from
an inconsistent KB (Lang & Marquis, 2002).

5. belief update. A belief update operator maps a knowledge base ¥ and an input formula
© expressing some explicit evolution of the world to a new knowledge base Yo ¢; 3 and
3o respectively represent the agent’s knowledge before and after the evolution of the
world expressed by the update. Several authors argued that an update operator should
preserve the part of the knowledge base not concerned by the update. This leads to the
following three-stage process, proposed independently by Doherty, Lukaszewicz, and
Madalinska-Bugaj (1998) and by Herzig and Rifi (1998) (and named MPMA and wss/,
respectively): (i) determine the variables relevant to the update, namely, DepVar(y);
(ii) forget these variables in ¥ to obtain a new formula ForgetVar(X, DepVar(y));
(iii) expand by ¢. In more compact terms, this update operator is expressed by
Yo = ForgetVar(%Z, DepVar(p)) A p. Thus, both our results on FV-independence
and variable forgetting are relevant to the computational issues pertaining to this kind
of belief updates.

6. reasoning about action, decision making, planning. Logical languages for reasoning
about action express the effects (deterministic or not, conditional or not) of actions by
means of propositional formulas (Gelfond & Lifschitz, 1993; Sandewall, 1995; Fargier,
Lang, & Marquis, 2000; Herzig, Lang, Marquis, & Polacsek, 2001); finding the vari-
ables the effects are dependent on enables to identify the variables whose truth value
may be changed by the action; moreover, formula-literal independence — a refinement
of FV-independence that we introduce — also tells us in which direction (from false
to true and/or from true to false) the possible change may occur. This is especially
useful for filtering out irrelevant actions in a decision making or planning problem.

7. preference representation. Logical languages for representing preference write elemen-
tary goals as propositional formulas and it is crucial to identify those variables that
have no influence on the agent’s preference. Therefore, formula-variable independence
has an important role to play; for instance, the framework of so-called ceteris paribus
preference statements of Tan and Pearl (1994) interprets a preference item ¢ : 9 > —p
by: for any pair of worlds (w,w’) such that (i) w | %, (ii) ' | =t and (iii) w and
w' coincide on all variables ¢ and 1 are independent from, then we have a strict
preference of w over w'.

1.3 Contribution and Organization of the Paper

The rest of the paper is structured as follows. After some formal preliminaries given in Sec-
tion 2, the key notion of formula-variable independence is presented in Section 3. Because it

394



PROPOSITIONAL INDEPENDENCE

captures a very basic form of logic-based independence, this relation has already been intro-
duced in the literature under several names, like influenceability (Boutilier, 1994), relevance
to a subject matter (Lakemeyer, 1997), or redundancy (Doherty et al., 1998). Although it
is conceptually and technically simple, this notion has not been studied in a systematic way,
and our very first contribution aims at filling this gap, first by giving several equivalent char-
acterizations of this notion (this is useful, as several papers introduced and used the same
concepts under different names), and second by investigating carefully its computational
complexity. In particular, we show that, in the general case, checking whether a formula is
independent from a set of variables is coNP-complete. Then, we go beyond this very simple
notion by introducing the more fine-grained notion of formula/literal independence in order
to discriminate the situation where a formula ¥ conveys some information about a literal
but no information about its negation. This refinement is helpful whenever the polarity
of information is significant, which is the case in many AI fields (including closed-world
reasoning and reasoning about actions). We also study several interesting notions derived
from formula-variable and formula-literal independence, such as the notion of simplified for-
mula (X is Lit- (Var-) simplified if it depends on every literal (variable) occurring in it) and
the corresponding process of simplifying a formula. Despite this complexity and because
the size of a simplified formula can never be larger than the size of the original formula,
simplification can prove a valuable relevance-based preprocessing for improving many forms
of inference.

In Section 4, we turn to the second key notion, namely forgetting a given set of variables
in a formula (Lin & Reiter, 1994). The forgetting process plays an important role in many
AT tasks and has been studied in the literature under various other names, such as vari-
able elimination, or marginalization (Kohlas, Moral, & Haenni, 1999). Several semantical
characterizations and metatheoretic properties of forgetting are presented. Based on this
notion, we introduce an additional notion of dependence between two formulas given a set
of variables: we state that X is equivalent to ® w.r.t. V if and only if both formulas are log-
ically equivalent once made independent from every variable except those of V. Here again,
it is important to make a distinction between a variable and its negation (for instance, one
can be interested in the positive conflicts of a system, only). For this purpose, we introduce
a notion of literal forgetting that refines the corresponding notion of variable forgetting. We
show how closed-world inference can be simply characterized from the corresponding equiv-
alence relation. Finally, we identify the complexity of both notions of equivalence and show
them to be hard (IT5-complete). As a consequence, forgetting variables or literals within a
formula cannot be achieved in polynomial time in the general case (unless the polynomial
hierarchy collapses at the first level). We also show that a polysize propositional represen-
tation of forgetting is very unlikely to exist in the general case. We nevertheless present
some restricted situations where forgetting is tractable.

Section 5 shows FV-independence closely related to notions of irrelevance already in-
troduced in the literature by various authors. Section 6 discusses other related work and
sketches further extensions of some notions and results studied in the paper. Finally, Sec-
tion 7 concludes the paper. Proofs of the main propositions are reported in an appendix.
A glossary of the notations is at the end of this paper, right before the bibliography.
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2. Preliminaries

We first recall some basic notions from propositional logic, and from complexity theory.

2.1 Propositional Logic

Let PS be a finite set of propositional variables. PROPpg is the propositional language
built up from PS, the connectives and the Boolean constants true and false in the usual
way. For every V' C PS, PROPy denotes the sublanguage of PROPpg generated from the
variables of V' only. A literal of PROPy is either a variable of V' (positive literal) or the
negation of a variable of V' (negative literal). Their set is denoted Ly, while L7, (resp. Lj;)
denotes the set of positive (resp. negative) literals built up from V. A clause § (resp. a
term 7) of PROPy is a (possibly empty) finite disjunction (resp. conjunction) of literals of
PROPy. A CNF (resp. a DNF) formula of PROPy is a finite conjunction of clauses (resp.
disjunction of terms) of PROPy. As usual, every finite set of formulas from PROPpg is
identified with the formula that is the conjunction of its elements.

From now on, ¥ denotes a propositional formula, i.e., a member of PROPpg. Var(X) is
the set of propositional variables appearing in . If L C Lpg, Var(L) is the set of variables
from PS upon which literals of L are built. Elements of PS are denoted v, z, y etc.
Elements of Lpg are denoted [, I, I3 etc. Subsets of PS are denoted V, X, Y etc. In order
to simplify notations, we assimilate every singleton V' = {v} with its unique element v. The
size of a formula ¥, denoted by |X|, is the number of occurrences of variables it contains. A
propositional formula ¥ is said to be in Negation Normal Form (NNF) if and only if only
propositional symbols are in the scope of an occurrence of — in X. Tt is well-known that
every propositional formula 3 built up from the connectives A, V, =, = only, can be turned
in linear time into an equivalent NNF formula by “pushing down” every occurrence of — in
it (i.e., exploiting De Morgan’s law) and removing double negations (since — is involutive).
Slightly abusing words, we call the formula resulting from this normalization process the
NNF of ¥ and we note Lit(X) the set of literals from Lpg occurring in the NNF of . For
instance, the NNF of ¥ = —((—aAb)Vc) is (aV—b) A—c; hence, we have Lit(X) = {a, —b, =c}.
Note that the NNF of a formula depends on its syntactical structure, i.e., two formulae that
are synctatically different may have different NNFs even if they are equivalent.

Full instantiations of variables of V' C PS are called V-worlds'; they are denoted by
wy and their set is denoted €2yy. When A and B are two disjoint subsets of PS, wa A wp
denotes the AU B-world that coincides with w4 on A and with wg on B. An interpretation
w over PROPpg is just a PS-world, and w is said to be a model of 3 whenever it makes 2
true. We denote Mod(X) the set of models of .

For every formula 3 and every variable z, ¥, o (resp. ¥, 1) is the formula obtained
by replacing every occurrence of z in ¥ by the constant false (resp. true). ¥ (resp.
Y1) is an abbreviation for ¥,, 1 (resp. ¥;.0) when [ is a positive literal z and for ¥,
(resp. ¥z« 1) when [ is a negative literal —z.

Given an interpretation w and a literal I, we let Force(w,!) denote the interpretation
that gives the same truth value as w to all variables except the variable of [, and such
that Force(w,l) = I. In other words, Force(w,l) is the interpretation satisfying [ that is

1. The V-worlds are also called partial models over V.
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the closest to w. For instance, provided that PS = {a,b} and w(a) = w(b) = 1, we have
Force(w,—b)(a) = 1 and Force(w,—b)(b) = 0. Clearly, if w = [ then Force(w,l) = w. If
L={lL,...,l,} is a consistent set of literals, then Force(w, L) is defined as

Force(...(Force(w,l),...),1l,).

Lastly, given an interpretation w and a variable z, we let Switch(w,z) denote the interpre-
tation that gives the same truth value as w to all variables except x, and that gives to z
the value opposite to that given by w.

Two formulas ¥ and @ are said to be equivalent modulo a formula ¥ if and only if
AT =X AD.

In this paper we use the concepts of prime implicates and prime implicants. The set of
prime implicates of a formula ¥, denoted by I P(X), is defined as:

IP(X) = {0 clause | ¥ =d and Ad clause s.t. ¥ |= ¢ and &' =0 and 6} §'}.

Among all the implicates of ¥ (i.e., the clauses entailed by X), the prime implicates
of ¥ are the minimal ones w.r.t. = (i.e., the logically strongest ones). The set of prime
implicants of a formula ¥, denoted by PI(X), is defined dually as:

PI(X)={yterm |yEX and Ay terms.t. ' E X and v E ' and v £ v}

Among all the implicants of ¥ (i.e., the terms implying ¥), the prime implicants of ¥
are the maximal ones w.r.t. |= (i.e., the logically weakest ones).

Of course, the set of prime implicants/ates may contain equivalent terms/clauses. We
can restrict our attemption to one term/clause for each set of equivalent terms/clauses.
Stated otherwise, in PI(X) and IP(X), only one representative per equivalence class is
kept.

Example 1 Let ¥ = {a Vb,~a Ac = e, d < e}. The set of prime implicates of ¥ is, by
definition,

IP(X)={aVbaV-cVe,~dVe,dV-eaV-cVd}.

2.2 Computational Complexity

The complexity results we give in this paper refer to some complexity classes which deserve
some recalls. More details can be found in Papadimitriou’s (1994) textbook. Given a
problem A, we denote by A the complementary problem of A. We assume that the classes
P, NP and coNP are known to the reader. The following classes will also be considered:

e BH (also known as DP) is the class of all languages L such that L = L; N Ly, where
Ly is in NP and Ly in coNP. The canonical BHe-complete problem is SAT-UNSAT: a
pair of formulas (p,) is in SAT-UNSAT if and only if ¢ is satisfiable and % is not.
The complementary class coBHs is the class of all languages L such that L = L; U Lo,
where L; is in NP and Ly in coNP. The canonical coBHs-complete problem is SAT-
OR-UNSAT: a pair of formulas (¢, ) is in SAT-OR-UNSAT if and only if ¢ is satisfiable
or 1) is not.
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o Al = PNP is the class of all languages recognizable in polynomial time by a deter-
ministic Turing machine equipped with an NP oracle, i.e., a device able to solve any
instance of an NP or a coNP problem in unit time. FA is the corresponding class of
function problems.

o 30 = NPNP is the class of all languages recognizable in polynomial time by a nonde-
terministic Turing machine equipped with an NP oracle. The canonical %5-complete
problem 2-QBF is the set of all triples (A = {a1,...,am},B = {b1,...,bn}, ) where
A and B are two disjoint sets of propositional variables and @ is a formula from
PROP4uB. A positive instance of this problem is a triple (A4, B, ®) for which there
exists a A-world wy such that for all B-world wp we have wy A wp = ®.

o ITH = coXt = coNPNP. The canonical II5-complete problem 2-QBF is the set of all
triples (A = {a1,...,am}, B = {b1,...,bp }, @) where A and B are two disjoint sets of
propositional variables and @ is a formula from PROP4yup. A positive instance of this
problem is a triple (A, B, ®) such that for every A-world w4 there exists a B-world
wp for which wg Awp = .

32 and TI} are complexity classes located at the so-called second level of the polynomial
hierarchy, which plays a prominent role in knowledge representation and reasoning.

3. Formula-Literal and Formula-Variable Independence

Formula-literal and formula-variable independence capture some forms of independence
between the truth values of variables and the possible truth values of a formula. Roughly
speaking, ¥ is dependent on [ because it tells one something positive about [: more precisely,
there is a contest, i.e., a conjunction of literals, that, added to to ¥ enables one to infer
I. For instance, ¥ = (a = b) is dependent on b, since b can be inferred from ¥ under the
assumption that a is true. Of course, we cannot assume contexts that are inconsistent with
3, and we cannot assume [ itself. A formula ¥ will be considered as independent from
variable z if and only if it is both independent from z and independent from —z. Dually,
we can interpret both forms of dependence as aboutness relations; when ¥ is dependent on
a literal [, it tells one something about I/, and when ¥ is dependent on a variable z, it tells
something about z or about —z.

3.1 Syntactical Independence

The easiest way to define dependence between a formula ¥ and a literal [ is by assuming
that ¥, when put into NNF, contains /. Reminding that Lit(X) is the set of literals that
occur in the NNF of 3, this can be formally expressed by the following definition:

Definition 1 (syntactical FL-independence) Let ¥ be a formula from PROPpg, | a
literal of Lpg, and L a subset of Lpg.

e X is said to be syntactically Lit-dependent on [ (resp. syntactically Lit-independent
from 1) if and only if | € Lit(X) (resp. | ¢ Lit(X)).
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e 3 is said to be syntactically Lit-dependent on L if and only if there is a l € L such
that 3 is syntactically Lit-dependent on [. Otherwise, 3 is said to be syntactically
Lit-independent from L.

From this definition it follows immediately that 3 is syntactically Lit-independent from
L if and only if Lit(X) N L = (. Thus, in order to determine whether a formula ¥ is
syntactically Lit-dependent on a set L of literals, it suffices to check whether there exists a
literal in L that occurs in the NNF of 3.

Example 2 Let ® = =(a A b). The NNF of ® is (maV —b); therefore, ® is syntactically
Lit-dependent on both —a and —b, while it is syntactically Lit-independent from a and b.

As this example illustrates, a propositional formula can easily be syntactically Lit-
independent from a literal while syntactically Lit-dependent on its negation. This is as
expected, since ¥ may imply / in some context, while it may be always impossible to derive
=l. In other words, the set of literals ¥ is syntactically Lit-independent from is not closed
under negation. Interestingly, a notion of syntactical formula-variable independence can be
defined from the more basic notion of syntactical FL-independence.

Definition 2 (syntactical FV-independence) Let ¥ be a formula from PROPpg, v a
variable of PS, and V a subset of PS.

e ¥ is said to be syntactically Var-dependent on v (resp. syntactically Var-independent
from v) if and only if v € Var(X) (resp. v & Var(X2)).

e X is said to be syntactically Var-dependent on V if and only if there is a variable v
inV s.t. ¥ is Var-dependent on it, i.e., if and only if Var(X) NV # 0. Otherwise, 3
is said to be syntactically Var-independent from V.

Example 3 Let ¥ = (a A—b). X is syntactically Var-dependent on a and on b and syntac-
tically Var-independent from c.

Syntactical FV-independence can be easily expressed as syntactical FL-independence:
Y. is syntactically Var-independent from V if and only if it is syntactically Lit-independent
from VU {-z | z € V'}. Clearly enough, both syntactical formula-literal independence and
syntactical formula-variable independence can be checked in linear time.

However, these basic forms of independence suffer from two important drawbacks. First,
they do not satisfy the principle of irrelevance of syntax: two equivalent formulas are
not always syntactically independent from the same literals/variables. Second, syntacti-
cal dependence does not always capture the intuitive meaning of dependence: for instance,
¥ = (aA-bA(aVb)) is syntactically Lit-dependent on a, —b, b; since —b can be derived
from 3, ¥ is about —b in some sense. Contrastingly, there is no way to derive b from X,
unless producing an inconsistency.

Handling such a separation requires a more robust notion of independence, to be intro-
duced in the following section.
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3.2 Semantical Independence

We now give a semantical definition of independence, which does not suffer from the afore-
mentioned drawbacks, i.e., a definition that does not depend on the syntactical form in
which formulas are expressed. We will prove that this semantical definition of indepen-
dence does not suffer from the second drawback of syntax independence, i.e., a formula
that is semantically dependent on a literal always enables one to derive the literal in some
context.

Definition 3 ((semantical) FL-independence) Let X be a formula from PROPpg, | €
Lpg, and L a subset of Lpg.

e X is said to be Lit-independent? from I, denoted | &> 2, if and only if there exists a
formula @ s.t. ® =X and @ is syntactically Lit-independent from l. Otherwise, 3 is
said to be Lit-dependent on I, denoted | — X. The set of all literals of Lpg such that
[ — ¥ is denoted by DepLit(X).

e 3 is said to be Lit-independent from L, denoted L w5 %, if and only if LN DepLit(X) =
(. Otherwise, X is said to be Lit-dependent on L, denoted L +— X.

Simply rewriting the definition, ¥ is Lit-independent from L if and only if there exists a
formula @ s.t. ® = ¥ and @ is syntactically Lit-independent from L. Thus, FL-independence
is not affected by the syntactic form in which a formula is expressed, that is, replacing 3 with
any of its equivalent formulas does not modify the relation +. Since ¥ is Lit-independent
from L if and only if ¥ can be made syntactically Lit-independent from L while preserving
logical equivalence, it follows that syntactical Lit-independence implies Lit-independence,
but the converse does not hold in the general case.

Example 4 Let ¥ = (a A =b A (a Vb)). We have DepLit(X) = {a,—b}. Note that ¥ is
Lit-independent from b because it is equivalent to ® = (a A —b), in which b does not appear
positively.

As in the case of syntactical independence, we can formalize the fact that a formula %
has some effects on the truth value of a variable v. Indeed, we define a notion of (semantical)
formula-variable independence, which can also be easily defined from the (semantical) notion
of FL-independence.

Definition 4 ((semantical) FV independence) Let ¥ be a formula from PROPpg, v €
PS, and V a subset of PS.

e ¥ is said to be Var-independent from v, denoted v &+ 2, if and only if there exists a
formula @ s.t. ® =X and ® is syntactically Var-independent from v. Otherwise, X is
said to be Var-dependent on v, denoted v ' . We denote by DepVar(X) the set
of all variables v such that v —7T X.

2. In order to avoid any ambiguity, we will refer to the syntactical forms of independence explicitly from
now on; in other words, independence must be taken as semantical by default in the rest of the paper.
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e ¥ is said to be Var-independent from V, denoted V AT 3, if and only if V N
DepVar(X) = 0. Otherwise, ¥ is said to be Var-dependent on V', denoted V 71 .

Clearly, . is Var-independent from V if and only if there exists a formula ® s.t. & = X
and @ is syntactically Var-independent from V. Moreover, Var-independence is to Lit-
independence as syntactical Var-independence is to syntactical Lit-independence; indeed, %
is Var-independent from V if and only if 3. is Lit-independent from Ly .

Example 5 Let ¥ = (a A—-bA (aV ¢)). We have DepVar(X) = {a,b}. Note that ¥ is
Var-independent from c.

The definition of semantical FL-independence is based on the set of literals of formulas
equivalent to Y. Intuitively, this is the easiest way to define a notion of independence that
is not dependent on the syntax. However, proving theorems directly from this definition
is not so easy. For instance, we will prove that determining whether a formula ¥ is Lit-
dependent on literal [ is in NP, but this result cannot be directly proved from Definition
3, since checking all possible formulas equivalent to ¥ cannot be done with a polynomial
non-deterministic guessing. We give now a semantical characterization of FL-independence.

Proposition 1 A formula X is Lit-independent from literal | if and only if, for any inter-
pretation w € Qpg, if w = X then Force(w,l) = .

As a direct corollary, we get that ¥ is Lit-independent from L if and only if for any
literal | € L and any interpretation w € Qpg, if w = X then Force(w,-l) = .

This property gives an idea of how FL-dependence works. Indeed, if ¥ is Lit-dependent
on a literal [, then there exists an interpretation w such that w = ¥ and Force(w, —l) [~ X,
which means that (a) w =1 and (b) the literal / in w is “really needed” to make w a model
of 3, that is, the partial interpretation obtained by removing [ in w does not satisfy .

This property also explains why FL-dependence formalizes the concept of “true in some
context”, as explained at the beginning of this section. Indeed, . is Lit-dependent on [ if
and only if there is some context (consistent with ¥, and that does not imply [), in which
Y. implies [. This can be proved from the above proposition: if w is an interpretation such
that w = 3 but Force(w,—l) = X, then the term:

7:/\({$€P5|w|:23/\:(;}u{—|$|$EPSandw|:E/\—|:(;})\{l}

is consistent with ¥ (by construction, - is equivalent to the disjunction of a term equivalent
to w with a term equivalent to Force(w, —l)); it also holds that y A ¥ |= [, while «y }= [, that
is, 7y is a context in which ¥ implies /.

Moreover, Proposition 1 shows that our notion of Lit-independence coincides with the
notion of (anti- )monotonicity (Ryan, 1991, 1992). To be more precise, a (consistent) formula
is said to be monotonic (resp. antimonotonic) in variable v if and only if it is Lit-independent
from —w (resp. from v). Interestingly, a subclassical® inference relation, called natural
inference, has been defined on this ground (Ryan, 1991, 1992). Basically, a formula ¢
is considered as a consequence of a formula ¥ if and only if it is a logical consequence

3. That is, a restriction of classical entailment |=.

401



LANG, LIBERATORE, & MARQUIS

of it, and ¥ Lit-independence of a literal implies its ¢ Lit-independence. Accordingly,
natural inference prevents us from considering p V ¢ as a consequence of p (it is a relevant
implication). All our characterization results about Lit-independence, including complexity
results, have an immediate impact on such a natural inference relation (especially, they
directly show that the complexity of natural inference is in Ab).

Proposition 1 is easily extended to formula-variable independence:

Corollary 1 A formula ¥ is Var-independent from wvariable v if and only if, for any
interpretation w € Qpg, we have w = X if and only if Switch(w,v) E 2.

The following metatheoretic properties of FL-independence are used in the rest of this
section.

Proposition 2

(1) DepLit(X) C Lit(X);

(2) If ¥ = @, then DepLit(X) = DepLit(®);

(8a) DepLit(X A ®) C DepLit(X) U DepLit(®);
(8b) DepLit(XV ®) C DepLit(X) U DepLit(®);
(4) | € DepLit(Y) if and only if -l € DepLit(—X).

FV-independence exhibits similar properties, plus negation stability (point (4) below),
which is not satisfied by FL-independence.

Proposition 3

(1) DepVar(X) C Var(X);

(2) If £ = @, then DepVar(X) = DepVar(®);
(8a) DepVar(3X A ®) C DepLit(X) U DepLit(®);
(3b) DepVar(X V ®) C DepLit(X) U DepLit(®);
(4) DepVar(—X) = DepVar(%).

Beyond these properties, FL-independence and FV-independence do not exhibit any
particularly interesting structure. In particular, FL-independence and FV-independence
neither are monotonic nor anti-monotonic w.r.t. expansion of ¥ (strengthening or weakening
¥ can easily make it no longer independent from a set of literals or variables).

Recall that L — X if and only if LNDepLit(X) # (. This means that the Lit-dependence
of ¥ on L only implies the Lit-dependence on a literal of L, not a “full” Lit-dependence on
any literal of L. In other words, if we want to check whether a formula ¥ is Lit-dependent on
any literal of L, we need a notion stronger than FL-dependence, called full FL-dependence.
The same can be said for FV-dependence.

Definition 5 (full FL/FV-dependence) Let X be a formula from PROPpg, L be a sub-
set of Lps and V' be a subset of PS.

e Y is fully Lit-dependent on L if and only if L C DepLit(X).

e Y is fully Var-dependent on V' if and only if V C DepVar(X).
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Example 6 X = (aA-bA(bV b)) is fully Lit-dependent on {a,-b} and fully Var-dependent
on {a,b}. Contrastingly, ¥ is not fully Lit-dependent on {a,b}.

Clearly enough, whenever ¥ is fully Lit-dependent on L, it is also fully Var-dependent
on Var(L). However, the converse does not hold, as the previous example shows.

While full FL-dependence (resp. full FV-dependence) can be checked in linear time
once DepLit(X) (resp. DepVar(X)) is known, at the end of the section we prove that
determining these sets is NP-hard, and that deciding full FL-dependence (as well as full
FV-dependence) is NP-complete.

Let us now consider the particular case of full FL-dependence when L = Lit(X), or the
full FV-dependence when V' = Var(X). If full dependence holds in these cases, we say
that 3 is Lit-simplified, or Var-simplified, respectively. Var-simplification is achieved when
3} contains no occurrence of any variable it is Var-independent from. Lit-simplification
corresponds to the more restricted situation where the NNF of ¥ does not contain any
occurrence of a literal it is Lit-independent from.

If a formula ¥ is not Lit-simplified (resp. Var-simplified), then there is some literal (resp.
variable) that occurs in the NNF of X, but ¥ is not Lit-dependent (resp. Var-dependent) on
it. This means that the syntactic form in which X is expressed contains a literal or variable
that is indeed useless.

Definition 6 (simplified formula) Let ¥ be a formula from PROPpg.
e Y 4s Lit-simplified if and only if Lit(X) = DepLit(X).
e Y is Var-simplified if and only if Var(X) = DepVar(X).

As the following example illustrates, every formula that is Lit-simplified also is Var-
simplified but the converse does not hold in the general case.

Example 7 ¥ = (aA—bA(bV—=b)A(aVc)) neither is Lit-simplified nor Var-simplified. The
equivalent formula (a A —b A (bV b)) is Var-simplified but it is not Lit-simplified. Finally,
the equivalent formula (a A —b) is both Lit-simplified and Var-simplified.

Simplified formulas do not incorporate any useless literals or variables. As the next
proposition shows it, the notion of simplified formula actually is the point where syntactical
independence and (semantical) independence coincide.

Proposition 4 Let X be a formula from PROPpg.

e X is Lit-simplified if and only if the following equivalence holds: for every L C Lpg,
Y is syntactically Lit-independent from L if and only if L v ¥ holds.

o X is Var-simplified if and only if the following equivalence holds: for every V C PS,
¥ is syntactically Var-independent from V if and only if V T 2 holds.

Thus, while a formula can easily be Lit-independent from a set of literals without be-

ing syntactically Lit-independent from it, simplification is a way to join Lit-independence
with its syntactical restriction (which is easier to grasp, and as we will see soon, easier
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to check in the general case): Lit-independence and syntactical Lit-independence coincide
on Lit-simplified formulas. The same holds for Var-independence and syntactical Var-
independence.

The strength of the notion of simplification lies in the fact that every formula can be
simplified preserving its models. This is useful, as simplified formulas can be shorter and
easier to understand than formulas containing useless literals.

Proposition 5 For every ¥ from PROPpg, there exists a Lit-simplified formula @ s.t.
X =90.

Since Lit-simplified KBs are also Var-simplified, this proposition also shows that every
KB can be Var-simplified without modifying its set of models.

Interestingly, both FL-independence and FV-independence can be characterized with-
out considering the corresponding syntactic notions of independence, just by comparing
formulas obtained by setting the truth value of literals we want to check the dependence.

Proposition 6 Let X be a formula from PROPps and [ be a literal of Lps. The next four
statements are equivalent:

(1) 14 %

(2) Y ): Y05

(3) T = Sico;

(4} i ): X

The above properties can be used to check whether a formula is Lit-dependent on a
literal, as the following example shows.

Example 8 ¥ = (a A =b A (bV —b)) is Lit-independent from b since replacing b by true
within X gives rise to an inconsistent formula. Contrastingly, > is Lit-dependent on —b
since replacing b by false within X gives Xy o = a, which is not at least as logically strong
as the inconsistent formula obtained by replacing b by true within X.

A similar proposition holds for FV-independence, characterizing the variables a formula
3. depends on, using the formulas 3;, o and ¥, 1.

Proposition 7 Let 3 be a formula from PROPpg and x be a variable of PS. The next
four statements are equivalent:

(1) z ot %;

(2) Bpeo = Bpe1;

(8) £ =%,c0;

(4) Y= Ew(—l-

As in the case of literal dependence, the above property can be used to find out whether
a formula is Var-dependent on a variable.

Example 9 ¥ = (a A (bV —b)) is Var-independent from b since we have Xp o = Xpe1 = a.
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Interestingly, FL-independence and FV-independence can be determined in an effi-
cient way when ¥ is given in some specific normal forms, namely, prime implicate nor-
mal form or prime implicant normal form. For such normal forms, Lit-independence and
Var-independence come down to their corresponding syntactical forms.

Proposition 8 Let X be a formula from PROPpg and L be a subset of Lpg. The next
statements are equivalent:

(1) L/ X;
(2) PI(X) C {v | v is a term that does not contain any literal from L};
(8) IP(X) C{d | d is a clause that does not contain any literal from L}.

Proposition 9 Let X be a formula from PROPps and V be a subset of PS. The next
statements are equivalent:

(1) Vipt s,

(2) PI(X) C {vy | 7v is a term that does not contain any variable from V'};

(8) IP(X) C{d | ¢ is a clause that does not contain any variable from V}.

Example 10 Let ¥ = (aA—-bA(bV—b)). We have PI(X) = {(aA—b)} and IP(X) = {a, b}
(up to logical equivalence). We can easily observe that ¥ is Lit-independent from b looking
at PI(X) (or IP(X)). We can also easily state that ¥ is Lit-dependent on —b and Var-
independent from c by considering any of these normal forms.

Proposition 7 shows that a KB can be easily Var-simplified (i.e., in polynomial time)
as soon as the variables it is Var-independent from have been determined. Indeed, we can
easily design a greedy algorithm for simplifying KBs. This algorithm consists in considering
every variable z of Var(X) in a successive way, while replacing ¥ by ¥, o whenever ¥ is
Var-independent from z. This algorithm runs in time polynomial in the size of ¥ once the
variables 3 is Var-independent from have been computed. At the end, the resulting KB is
Var-simplified.

Lit-simplifying a KB is not so easy if no assumptions are made about its syntax, due
to the fact that literals signs are crucial here. Indeed, looking only at the occurrence of a
variable inside a formula is not sufficient to state whether or not this is a positive occurrence
(or a negative one). Fortunately, turning a formula into its NNF is computationally easy (as
long as it does not contain any occurrence of connectives like < or @) and it proves sufficient
to design a greedy algorithm for Lit-simplifying a KB when the literals it is Lit-independent
from have been identified. Indeed, within an NNF formula, every literal can be considered
easily as an atomic object. This algorithm consists in considering every literal [ of Lit(X)
in a successive way, while replacing every occurrence of [ in ¥ by false considering every
literal of Lit(X) as an atom. Stated otherwise, when [ is a positive (resp. negative) literal
z (resp. —z), replacing [ by false does not mean replacing -z (resp. z) by true: only the
occurrences of [ with the right sign are considered. This algorithm runs in time polynomial
in the size of X once the literals ¥ is Lit-independent from have been computed. At the
end, the resulting KB is Lit-simplified.

405



LANG, LIBERATORE, & MARQUIS

3.3 Complexity Results

While syntactical FL. and FV-dependence can be easily checked in linear time in the
size of the input, this is far from being expected for (semantical) FL-dependence and FV-
dependence in the general case:

Proposition 10 (complexity of FL/FV-dependence) FL DEPENDENCE, FV DEPEN-
DENCE, FULL FL. DEPENDENCE and FULL F'V DEPENDENCE are NP-complete.

Thus, although they look simple, the problems of determining whether a formula is
independent from a literal or a variable are as hard as checking propositional entailment.
Interestingly, the complexity of both decision problems fall down to P whenever checking
(in)dependence becomes tractable. Apart from the case of syntactical independence, some
other restrictions on ¥ makes (in)dependence testable in polynomial time. Especially, we
get:

Proposition 11 Whenever ¥ belongs to a class C of CNF formulas that is tractable for
clausal query answering (i.e., there exists a polytime algorithm to determine whether ¥ |= -y
for any CNF formula ) and stable for variable instantiation (i.e., replacing in ¥ € C any
variable by true or by false gives a formula that still belongs to C) then FL. DEPENDENCE,
FV DEPENDENCE, FULL FLL DEPENDENCE and FULL FV DEPENDENCE are in P.

In particular, when 3 is restricted to a renamable Horn CNF formula or to binary
clauses (Krom formula), all four decision problems above belong to P.

We have also investigated the complexity of checking whether a formula is Lit-simplified
(and Var-simplified):

Proposition 12 LIT-SIMPLIFIED FORMULA and VAR-SIMPLIFIED FORMULA are NP-complete.

All these complexity results have some impact on the approaches that explicitly need
computing DepVar(X) as a preprocessing task. Namely, we have the following result:

Proposition 13

1. Determining whether DepLit(X) = L (where L is a set of literals), and determining
whether DepVar(X) = X (where X is a set of variables) is BHa-complete.

2. The search problem consisting in computing DepLit(X) (respectively DepVar(X)) is
in FAL and is both NP-hard and coNP-hard.

3.4 Discussion

The previous characterizations and complexity results lead to several questions: when is
it worthwhile to preprocess a knowledge base by computing independence relations? How
should these independence relations be computed? What is the level of generality of the
definitions and results we gave in this section?
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Many equivalent characterizations of formula-variable independence have been given in
the literature, each of which could serve as a definition (Definition 4, Corollary 1, each of the
statements (2), (3) and (4) in Proposition 7 and of the statements (2), (3) in Proposition 9),
so one may wonder which one has to be used in practice.

In many papers referring explicitly to formula-variable independence, the prime impli-
cant/cate characterization (Proposition 9) is used as a definition (Boutilier, 1994; Doherty
et al., 1998). Generally speaking, this is not the cheapest way to compute the set of vari-
ables a formula depends on, since the size of PI(X) is exponential in the size of ¥ in the
worst case. This characterization is to be used in practice only if the syntactical form of
Y. is such that its prime implicants or prime implicates can be computed easily from it
(this is the case for instance whenever ¥ is a Krom formula). Clearly, the cheapest way to
compute formula-variable independence consists in using any of the equivalent formulations
of Proposition 7, which all consist of validity tests.

Checking whether a formula 3 is Var-independent from a variable x is coNP-complete,
which implies that simplifying a knowledge base by getting rid of redundant variables needs
|Var(X)| calls to an NP oracle, and is thus in FA) and not below (unless NP = coNP). This
may look paradoxical (and sometimes useless) to preliminarily compute several instances
of a NP or coNP-hard independence problem to help solving a (single) instance of a NP
or coNP-complete problem. However, this negative comment has a general scope only,
and in many particular cases, this can prove quite efficient (indeed, even when ¥ has no
particular syntactical form, the satisfiability or the unsatisfiability of 3, g A =¥, 1 may
be particularly easy to check). Furthermore, if the knowledge base X is to be queried many
times, then the preprocessing phase consisting in Var-simplifying 3 by ignoring useless
variables is likely to be worthwhile.

4. Forgetting

In this section, we define what forgetting is, present some of its properties, and finally give
some complexity results.

4.1 Definitions and Properties

A basic way to simplify a KB w.r.t. a set of literals or a set of variables consists in forgetting
literals/variables in it. Beyond the simplification task, forgetting is a way to make a formula
independent from literals/variables. Let us first start with literal forgetting:

Definition 7 (literal forgetting) Let X be a formula from PROPpg and L be a subset
of Lpg. ForgetLit(X, L) is the formula inductively defined as follows:

1. ForgetLit(%,0) = %,
2. ForgetLit(3,{l}) = X1 V(RIAY),

3. ForgetLit(X,{l} U L) = ForgetLit(ForgetLit(X, L), {l}).
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This definition is sound since the ordering in which literals of L are considered does
not matter*. We can also prove that the definition above is equivalent to the one in which
Point 2. is replaced by

ForgetLit(X,{l}) = Zi1 V (0l A o)

just because ¥ and ¥, g are equivalent modulo —.

Let us now give a semantical characterization of literal forgetting. If L = {l}, that is, L
is composed of a single literal, then forgetting [ from a formula ¥ amounts to introducing
the model Force(w, 1) for each model w of ¥ such that w = I.

Proposition 14 The set of models of ForgetLit(3,{l}) can be expressed as:

Mod(ForgetLit(¥,{l})) = Mod(X)U {Force(w,l) | w = X}
= {w | Force(w,l) =X}

A similar statement can be given for the case in which L is composed of more than one
literal. In this case, for each model w of ¥, we can force any subset of literals L; C L such
that w |= L1 to assume the value false.

Proposition 15 The set of models of ForgetLit(X, L) can be expressed as:
Mod(ForgetLit(%,L)) = {w | Force(w, L) E % where Ly C L}
As a corollary, we obtain the following properties of literal forgetting:

Corollary 2 Let %, @ be formulas from PROPpg and Li,Ls C Lpg.
e Y = ForgetLit(X, Ly) holds.
o If S = ® holds, then ForgetLit(S, L) |= ForgetLit(®, L) holds as well
e If Ly C Ly holds, then ForgetLit(X, L1) = ForgetLit(X, La) holds as well.
Let now consider an example.
Example 11 Let ¥ = (—a Vb) A(aV c). We have ForgetLit(3,{-a}) = (aVc)A(bVc).

The key proposition for the notion of forgetting is the following one:

4. The proof of this statement is almost straightforward: let l1, l> be two literals;

1. if Iy # Iy and I # -la then ForgetLit(ForgetLit(X,11),l2) = Xy 1,51 V (0l1 AX)ipe1 V (Rl2 A
211<_1) \Y (ﬁll A=la A 2) =Y e1,00¢1V (—lll A 212<_1) V (—|l2 A 211<_1) \% (ﬂll A=ly A E) is symmetric
in /1 and lo;

2. if Iy = =ly = -l then ForgetLit(ForgetLit(2,1),=l) = (Z1c1 V (mL A Z10))ico V (IA (Zrer V (LA
Y10))i0) = Zi1 V o is symmetric in ! and —;

3. the case Iy = [» is trivial.
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Proposition 16 Let & be a formula from PROPpg and L C Lpg. ForgetLit(3, L) is the
logically strongest consequence of ¥ that is Lit-independent from L (up to logical equiva-
lence).

The following immediate consequence of Proposition 16 establishes strong relationships
between literal forgetting and Lit-independence:

Corollary 3 Let X be a formula from PROPpg and L C Lpg. X is Lit-independent from
L if and only if ¥ = ForgetLit(X, L) holds.

The following one gives an immediate application of literal forgetting:

Corollary 4 If a formula ¢ is Lit-independent from L, then ¥ |= ¢ holds if and only if
ForgetLit(X,L) = ¢.

This result proves that forgetting literals from L does not affect entailment of formulas
that are Lit-independent from L. This is in some sense analogous to the concept of filtration
in modal logics (Goldblatt, 1987); indeed, if we are interested in knowing whether ¥ |= ¢
only for formulas ¢ that are Lit-independent from L, then the literals of L can be forgotten
in X.

Let us now investigate the computation of ForgetLit(X, L). Let us first consider DNF
formulas Y. Forgetting literals within DNF formulas is a computationally easy task. On the
one hand, forgetting literals within a disjunctive formula comes down to forgetting them in
every disjunct:

Proposition 17 Let X, ® be two formulas from PROPpg and L C Lpg.
ForgetLit(¥ V @, L) = ForgetLit(X, L) V ForgetLit(®, L).

On the other hand, forgetting literals within a consistent term simply consists in remov-
ing them from the term:

Proposition 18 Lety be a consistent term from PROPpg (viewed as the set of its literals)
and L C Lpg. ForgetLit(y,L) = N\jep 1, !-

Combining the two previous propositions shows how literals can be forgotten from a
DNF formula ¥ in polynomial time. It is sufficient to delete every literal of L from each
disjunct of ¥ (if one of the disjuncts becomes empty then ForgetLit(X, L) = true).

Things are more complicated for conjunctive formulas ¥A®. Especially, there is no result
similar to Proposition 17 for conjunctive formulas. While ForgetLit(X, L)AForget Lit(®, L)
is a logical consequence of ForgetLit(2 A®, L) (see Corollary 2), the converse does not hold
in the general case.

Example 12 Let ¥ = a, ® = —a, and L = {a}. Since a v&» @, we have ForgetLit(®,L) =

®. Since ForgetLit(X, L) is valid, we have (ForgetLit(3,L) A ForgetLit(®,L)) = —a.
Since ¥ A ® is inconsistent, ForgetLit(¥ A ®, L) is inconsistent as well.
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Clearly enough, any non-valid clause ¢ is Lit-independent from L if and only if Lit(d) N
L = (. Since the conjunction of two formulas that are Lit-independent from L is Lit-
independent from L (see Proposition 2), and since every formula is equivalent to a CNF
formula, Proposition 16 shows ForgetLit(X, L) equivalent to the set of all clauses § that are
entailed by ¥ and are from {§ clause | Lit(6) N L = (}. Because {6 clause | Lit(6)NL = 0} is
closed under subsumption (i.e., it is a stable production field), it is possible to take advantage
of consequence finding algorithms (see Marquis, 2000), to derive a CNF representation
of ForgetLit(X,L). Especially, in the case where ¥ is a CNF formula, resolution-based
consequence finding algorithms like those reported in (Inoue, 1992) or (del Val, 1999) can
be used; this is not very surprising since resolution is nothing but variable elimination.

In contrast to the disjunctive formulas situation, there is no guarantee that such consequence-
finding algorithms run in time polynomial in the input size when the input is a conjunctive
formula (otherwise, as explained in the following, we would have P = NP). Nevertheless,
forgetting literals within a conjunctive formula ¥ can be easy in some restricted cases, es-
pecially when ¥ is given by the set of its prime implicates; in this situation, it is sufficient
to give up those clauses containing a literal from L.

Proposition 19 Let X be a formula from PROPpg and L C Lpg.
IP(ForgetLit(X,L)) = {6 | § € IP(X) and Lit(6) N L = (}.

The notion of literal forgetting generalizes the notion of variable elimination from propo-
sitional logic (that was already known by Boole as elimination of middle terms and has been
generalized to the first-order case in a more recent past by Lin & Reiter, 1994). Indeed,
variable elimination is about wvariable forgetting, i.e., the one achieved not considering the
literals signs:

Definition 8 (variable forgetting) Let ¥ be a formula from PROPps and let V be a
subset of PS. ForgetVar(X,V) is the formula inductively defined as follows:

e ForgetVar(%,0) =X,
o ForgetVar(Z,{z}) = 2,1V Zsco,
e ForgetVar(3,{z} UV) = ForgetVar(ForgetVar(3,V),{z}).
Example 13 Let ¥ = (-a Vb) A (aV c). We have ForgetVar(3,{a}) = (b V c).

As a direct consequence of the definition, ForgetVar(3, {z1,...,x,}) is equivalent to the
quantified boolean formula (usually with free variables!) denoted 3z ... 3z, 3.

Clearly enough, forgetting a variable z amounts to forgetting both the literals x and
.

Proposition 20 Let 3 be a formula from PROPpg and V C PS. We have
ForgetVar(2,V) = ForgetLit(X, Ly)

This result, together with the previous results on literal forgetting, gives us the following
corollaries for variable forgetting:
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Corollary 5
Mod(ForgetVar(Z,{z})) = Mod(X)U {Switch(w,z) | w = X}.

Corollary 6 Let ¥ be a formula and V C PS. ForgetVar(X,V) is the logically strongest
consequence of ¥ that is Var-independent from V' (up to logical equivalence).

Corollary 7 If a formula ¢ is Var-independent from V, then ¥ = ¢ if and only if
ForgetVar(Z,V) = ¢.

A consequence of the latter result is that forgetting variables is useful when only a subset
of variables are really used in the queries. Thus, if ¥ represents some pieces of knowledge
about a scenario of interest, and we are interested in knowing whether a fact ¢ is true in the
scenario, the logical operation to do is to query whether ¥ |= . Now, if the possible facts ¢
we are interested in do not involve some variables V', then these variables can be forgotten
from ¥, as querying whether ¢ is implied can be done on ForgetVar(%,V) instead of X.

Through the previous proposition, some algorithms for forgetting variables can be easily
derived from algorithms for forgetting literals (some of them have been sketched before).
Specifically, polynomial time algorithms for forgetting variables within a DNF formula or a
formula given by the set of its prime implicates can be obtained. Other tractable classes of
propositional formulas for variable forgetting exist. For instance, taking advantage of the
fact that ForgetVar(SA®,V) = ForgetVar(X,V)A ForgetVar(®,V) whenever Var(X)N
Var(®) = () holds, Darwiche (1999) showed that variable forgetting in a formula ¥ can
be done in linear time as soon as ¥ is in Decomposable Negation Normal Form (DNNF),
i.e.,, a (DAG)NNF formula in which the conjuncts of any conjunctive subformula do not
share any variable. Interestingly, the DNNF fragment of propositional logic is strictly more
succinct than the DNF one (especially, some DNNF formulas only admit exponentially-large
equivalent DNF formulas) (Darwiche & Marquis, 1999).

In the general case, just as for the literal situation, there is no way to forget efficiently
(i.e., in polynomial time) a set of variables within a formula (unless P = NP). Nevertheless,
the following decomposition property can be helpful in some situations (actually, it is heavily
exploited in Kohlas et al., 1999).

Proposition 21 Let X, ® be two formulas from PROPpg, and V be a subset of PS. If
V 4T 8, then ForgetVar(S A ®,V) = S A ForgetVar(®,V).

Note that the corresponding property for literal forgetting does not hold (as a previous
example shows).

Forgetting literals or variables proves helpful in various settings (we already sketched
some of them in the introduction). For instance, minimal model inference (or circum-
scription McCarthy, 1986) can be expressed using literal forgetting (but not directly using
variable forgetting, which shows the interest of the more general form we introduced). In-
deed, it is well-known that closed world inference from a knowledge base ¥ can be logically
characterized as classical entailment from ¥ completed with some assumptions. In the
circumscription framework (McCarthy, 1986), given a partition (P, @, Z) of PS, such as-
sumptions are the negations of the formulas « s.t. a does not contain any variable from
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Z and for every clause <y containing only positive literals built up from P and literals built
up from @, if ¥ [~ « holds, then ¥ [~ v V a holds as well. Equivalently, -« is considered a
reasonable assumption whenever it is (syntactically) Var-independent from Z and expand-
ing ¥ with it does not modify what is already known about L; U Lg. Clearly enough, the
signs of literals from Lp really matter here. Using our previous notations, -« is assumed
if and only if Z A1 —a and ¥ = LiuLg 3 A ma. As a consequence, we derive the following

characterization of circumscription:

Proposition 22 Let 3, ® be two formulas from PROPpg, and P, @), Z be three disjoint
sets of variables from PS (such that Var(X) U Var(®) CPUQU Z). It holds:

e If ® does not contain any variable from Z

CIRC(S, (P,Q, 7)) |- @
if and only if
Y | ForgetLit(X A ®,Lp U Ly)

e In the general case:

CIRC(S,(P,Q, 7)) - @
if and only if
Y = ForgetLit(X A ~ForgetLit(8 AN—~®,L; U Ly),Lz; ULp)

where CIRC is circumscription as defined in (McCarthy, 1986).

Similar characterizations can be derived for the other forms of closed world reasoning
pointed out so far.

Forgetting also is a central concept when we are concerned with query answering w.r.t.
a restricted target language. Indeed, in many problems, there is a set of variables for which
we are not interested in their truth value (so we can forget them). For instance, in the
SATPLAN framework by Kautz, McAllester, and Selman (1996), compiling away fluents or
actions amounts to forgetting variables. Since the only variables we are really interested in
within a given set of clauses representing a planning problem instance are those representing
the plans, we can compile away any other variable, if this does not introduce an increase
of size of the resulting formula. Another situation where such a forgetting naturally occurs
is model-based diagnosis (Reiter, 1987); compiling away every variable except the abnor-
mality ones does not remove any piece of information required to compute the conflicts
and the diagnoses of a system. Thus, Darwiche (1998) shows how both the set of conflicts
and the set of consistency-based diagnoses of a system is characterized by the formula ob-
tained by forgetting every variable except the abnormality ones in the conjunction of the
system description and the available observations. Provided that the system description
has first been turned into DNNF, forgetting can be achieved in linear time and diagnoses
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containing a minimal number of faulty components can be enumerated in (output) poly-
nomial time. Interestingly, this work shows that the diagnosis task does not require the
(usually expensive) computation of prime implicates/implicants to be achieved (actually,
computing prime implicates/implicants is just a way to achieve variable forgetting and not
a goal in consistency-based diagnosis). Forgetting every variable from a formula allows for
consistency checking since ¥ is consistent if and only if ForgetVar(X, Var(X)) is consistent.
The well-known Davis and Putnam algorithm for satisfiability testing (Davis & Putnam,
1960) (recently revisited by Dechter and Rish (1994)under the name directional resolution)
basically consists in computing a clausal representation of ForgetVar(X,Var(X)) from a
CNF X using resolution; if the empty clause is not generated, then ¥ is consistent and the
converse also holds.

Forgetting can also be used as a key concept in order to organize knowledge so as
to replace one global inference into a number of local inferences as shown (among oth-
ers) by Kohlas et al. (1999) and Amir and Mcllraith (2000), Mcllraith and Amir (2001).
Loosely speaking, such approaches rely on the idea that exploiting all the pieces of infor-
mation given in a knowledge base is typically not required for query answering. Focusing
on what is relevant to the query is sufficient. While such techniques do not lower the
complexity of inference from the theoretical side, they can lead to significant practical
improvements. For instance, assume that 3 consists of three formulas ®;, ®5, and Ps.
For any query ¥, let Vy = (U?:1 Var(®;)) \ Var(¥). We have ¥ = ¥ if and only if
ForgeltVar(/\?:1 S, Vo) E 0. If Var(®3)N (U?:1 Var(®;)) = 0, this amounts to test inde-
pendently whether ForgetVar(/\?:1 ®,;,Vy) = T holds or ForgetVar(®s,Vy) = ¥ holds.
This way, one global inference is replaced by two local inferences. Now, ForgetVar(®1 A
®y, V) is equivalent to ForgetVar(®1 A ForgetVar(®y, Vg N (Var(®s) \ Var(®y))), V).
Accordingly, every variable from ®; that is not a variable of ®; or a variable of ¥ can be
forgotten first within ®5 because it gives no information relevant to the query; thus, only a
few pieces of knowledge have to be “propagated” from ®9 to ®; before answering the query,
and forgetting allows for characterizing them exactly.

As evoked in the introduction, another scenario in which forgetting is useful is that of
belief update. Indeed, there are many formalizations of belief update that are based on a
form of variable forgetting. The basic scenario is the following one: we have a formula 3
that represents our knowledge; there are some changes in the world, and what we know is
that after them a formula ¢ becomes true. The simplest way to deal with the update is
to assume that ¢ represents all we know about the truth value of the variables in ¢. As a
result, we have to “forget” from 3 the value of the variables in Var(y). There are different
formalizations of this schema, based on whether formula ¢ is considered to carry information
about variables it mentions (Winslett, 1990) or only on the variables it depends on (Hegner,
1987), or also on variables related to dependent variables via a dependence function (Herzig,
1996). This kind of update schema, while less known than the Possible Models Approach by
Winslett (1990), has proved to be suited for reasoning about actions (Doherty et al., 1998;
Herzig & Rifi, 1999). Furthermore, the possibility to forget literals (and not variables) is
also valuable in this framework to take account for persistent information, as shown recently
by some of us (Herzig et al., 2001), since the polarity of information is often significant.
For instance, while forgetting the fluent alive from a knowledge base is not problematic,
forgetting the persistent fluent —alive would surely be inadequate.
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Forgetting can also be used to characterize a dependence relation called definability
(Lang & Marquis, 1998b) as well as the strongest necessary (resp. weakest sufficient)
conditions of a propositional variable on a set V of variables given a theory ¥ (Lin, 2000;
Doherty, Lukaszewicz, & Szalas, 2001). As shown in (Lang & Marquis, 1998b; Lin, 2000;
Doherty et al., 2001), all these notions have many applications in various Al fields, including
hypothesis discrimination, agent communication, theory approximation and abduction.

Finally, based on literal and variable forgetting, valuable equivalence relations over for-
mulas can also be defined:

Definition 9 (Lit-equivalence, Var-equivalence) Let %, ® be two formulas from PROPpg,
L be a subset of Lpg, and V' be a subset of PS.

e X and ® are said to be Lit-equivalent given L, denoted ¥ =1, @, if and only if
ForgetLit(¥, Lit(X) \ L) = ForgetLit(®, Lit(®) \ L).

e X and ® are said to be Var-equivalent given V', denoted ¥ =y @, if and only if
ForgetVar(2,Var(X)\ V) = ForgetVar(®,Var(®)\ V).

Example 14 Let ¥ = (a = b)A(b=¢c) and ® = (a = d) A (d = ¢). Let L = {—a,c}. &
and ® are Lit-equivalent given L.

Such equivalence relations capture some forms of dependence between formulas. They
are useful in the various situations where it is required to formally characterize the fact that
two knowledge bases share some theorems. Thus, two formulas are Lit-equivalent given L
whenever every clause containing literals from L only is a logical consequence of the first
formula if and only if it is a logical consequence of the second formula. In the same vein,
two Var-equivalent formulas given V have the same clausal consequences built up from V.
Clearly, Lit-equivalence is more fine-grained than Var-equivalence in the sense that two
formulas Var-equivalent given V are also Lit-equivalent given L = Ly, the set of literals
built upon V, but the converse does not hold in the general case. Some applications are
related to knowledge approximation (® is a correct approximation of ¥ over L if and only
if ® and ¥ are Lit-equivalent given L), normalization (turning a formula ¥ into a CNF &
by introducing new symbols is acceptable as long as the two formulas are equivalent over
the original language, i.e., 3 and ® are Var-equivalent given V = Var(X)), and so on.

4.2 Complexity Results

It is quite easy to prove that forgetting is a computationally expensive operation in the
general case. Indeed, since a formula ¥ is consistent if and only if ForgetLit(X, Lit(X))
is consistent and since the latter formula is Lit-independent from every literal (i.e., it is
equivalent to true or equivalent to false), there is no way to compute a formula ® equivalent
to ForgetLit(3, L) in polynomial time, unless P = NP. Actually, we can derive the more
constraining result, showing that the size of any formula equivalent to ForgetLit(X, L) may
be superpolynomially larger than the size of 3.

Proposition 23 Let X be a formula from PROPpg and let L be a finite subset of Lpg.
In the general case, there is no propositional formula ® equivalent to ForgetLit(X, L) s.t.
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the size of ® is polynomially bounded in |3| + |L|, unless NP N coNP C P/poly (which is
considered unlikely in complexity theory).

This result shows that computing an explicit representation of ForgetLit(%, L) under
the form of a propositional formula is hard, even in a compilation-based approach where
the time needed to derive such a formula is neglected.

Finally, we have also derived:

Proposition 24 (complexity of Lit/Var-equivalence)
LIT-EQUIVALENCE and VAR-EQUIVALENCE are Hg-complete.

5. Influenceability, Relevance, and Strict Relevance

In this section, we show that several notions of dependence introduced in the literature are
equivalent to, or can be expressed in terms of, semantical independence. In particular, we
show that Boutilier’s definition of influenceability (Boutilier, 1994) is in fact equivalent to
(semantical) FV-dependence. The definition of relevance as given by Lakemeyer (1997) can
also be proved to be equivalent to FV-dependence. One of the two definitions given by Lake-
meyer (1997) for strict relevance can also be expressed in terms of FV-dependence. These
results allow for finding the complexity of all these forms of dependence as a direct corollary
to the complexity results reported in the previous section. For the sake of completeness,
we also give the complexity of the original definition of strict relevance (Lakemeyer, 1995)
(which is not directly related to FV-dependence), which turns out to be computationally
simpler than the subsequent definition given by Lakemeyer (1997).

5.1 Influenceability

Boutilier (1994) introduces a notion of influenceability. Roughly speaking, a formula ¥ is
influenceable from a set of variables V if there exists a scenario in which the truth value of
Y. depends on the value of the variables in V. This idea can be formalized as follows.

Definition 10 (influenceability) Let ¥ be a formula from PROPpgs and V a subset of
PS. ¥ is influenceable from V if and only if there exists a PS \ V-world w, and two
V-worlds w1 and wy s.t. wAw; EX and w A we = % hold.

In other words, there is a scenario w in which the formula ¥ can be true or false,
depending on the value of the variables in V. While influenceability looks different from
the definitions given in this paper, it can be shown that in fact influenceability coincides
with FV-dependence.

Proposition 25 Let X be a formula from PROPpg and V' a subset of PS. X is influ-
enceable from V if and only if 32 is Var-dependent on V.

As a consequence, a model-theoretic characterization of influenceability can be easily

derived from the one for FV-independence. The complexity of influenceability is an easy
corollary to this property: INFLUENCEABILITY is NP-complete.
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5.2 Relevance

Lakemeyer (1995, 1997) introduces several forms of relevance. We show how these forms of
relevance are strongly related to FV-independence. We also complete the results given in
(Lakemeyer, 1997), by exhibiting the computational complexity of each form of relevance
introduced in (Lakemeyer, 1997).

5.2.1 RELEVANCE OF A FORMULA TO A SUBJECT MATTER

Lakemeyer’s notion of relevance of a formula to a subject matter can be defined in terms of
prime implicates of the formula, as follows (see Definition 9 in Lakemeyer, 1997):

Definition 11 (relevance to a subject matter) Let ¥ be a formula from PROPpg and
V' a subset of PS. X is relevant to V if and only if there exists a prime implicate of %
mentioning a variable from V.

Example 15 Let ¥ = (aAc) and V = {a,b}. T is relevant to V.

As a consequence, Lakemeyer’s notion of irrelevance of a formula to a subject matter
coincides with FV-independence.

Proposition 26 Let X be a formula from PROPpg and V a subset of PS. % is relevant
to V if and only if ¥ is Var-dependent on V.

Thus, the model-theoretic characterization of FV-independence also applies to irrele-
vance of a formula to a subject matter. We also have that the irrelevance of a formula to
a subject matter coincides with Boutilier’s definition of influenceability. Finally, the above
proposition allows for an easy proof of complexity for relevance, namely, RELEVANCE OF A
FORMULA TO A SUBJECT MATTER is NP-complete.

5.2.2 STRICT RELEVANCE OF A FORMULA TO A SUBJECT MATTER

Lakemeyer has introduced two forms of strict relevance. The (chronologically) first one has
been given in (Lakemeyer, 1995), as follows.

Definition 12 (strict relevance to a subject matter, Lakemeyer, 1995) Let X be a
formula from PROPps and V a subset of PS. ¥ is strictly relevant to V' if and only if
every prime implicate of ¥ contains a variable from V.

Lakemeyer has also introduced another notion of strict relevance (Lakemeyer, 1997),
more demanding than the original one. Here we consider an equivalent definition.

Definition 13 (strict relevance to a subject matter, Lakemeyer, 1997) Let X be a
formula from PROPpg and V a subset of PS. X is strictly relevant to V if and only if
there exists a prime implicate of ¥ mentioning a variable from V, and every prime implicate
of ¥ mentions only variables from V.
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Both definitions prevent tautologies and contradictory formulas from being strictly rele-
vant to any set of variables. The basic difference between these two definitions is that in the
first one we want that every prime implicate of ¥ contains at least a variable from V', while
in the second case we impose that every prime implicate of 3 must contain only variables
from V5. As the following example shows, there are formulas for which the two definitions
of strict relevance do not coincide.

Example 16 Let ¥ = (a Vb) and V = {a}. There is only one prime implicate of %,
namely a VvV b. Since it contains at least a variable of V, it follows that ¥ is strictly relevant
to V w.r.t. (Lakemeyer, 1995). However, since the prime implicate a V b is not composed
only of variables of V' (because b ¢ V'), it follows that ¥ is not strictly relevant to V. w.r.t.
(Lakemeyer, 1997).

Through FV-independence, we can derive an alternative characterization of the notion of
strict relevance introduced by Lakemeyer (1997). Indeed, as a straightforward consequence
of the definition, we have:

Proposition 27 Let X be a formula from PROPpg and V a subset of PS. X is strictly
relevant to V if and only if ¥ is Var-dependent on V and Var-independent from Var(X)\V.

We have identified the complexity of both definitions of strict relevance, and they turn
out to be different: the first definition is harder than the second one.

Proposition 28 (complexity of strict relevance)

(1) STRICT RELEVANCE OF A FORMULA TO A SUBJECT MATTER (Lakemeyer, 1995) is

15 -complete.

(2) STRICT RELEVANCE OF A FORMULA TO A SUBJECT MATTER (Lakemeyer, 1997) is
BHs-complete.

These complexity results improve Theorem 50 from (Lakemeyer, 1997), which only
points out the NP-hardness of irrelevance and strict irrelevance as defined in (Lakemeyer,
1997).

6. Other Related Work and Further Extensions

In this section, we first discuss other related work, then some possible extensions of the
notions and results we have presented before.

6.1 Other Related Work

As already evoked, independence has been considered under various forms in various Al
fields.

5. Strict relevance as in (Lakemeyer, 1997) could also be shown to be strongly related to controllability
(Boutilier, 1994; Lang & Marquis, 1998b).
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6.1.1 INDEPENDENCE IN PROPOSITIONAL LOGIC

There are other forms of independence in propositional logic that we have not considered
in this article, especially, definability, controllability (Lang & Marquis, 1998b) as well as
conditional independence (Darwiche, 1997). If X, Y and Z are three disjoint sets of variables
and ¥ is a knowledge base then X and Y are conditionally independent w.r.t. Z knowing
¥ if and only if for any Z-world wz, once we know wz (and ¥), learning something about
X cannot make us learn anything new about Y (and wvice versa). The computational
issues pertaining to conditional independence and to stronger notions as well as related
notions such as relevance between subject matters (Lakemeyer, 1997) and novelty (Greiner
& Genesereth, 1983), have been extensively studied in a companion paper (Lang, Liberatore,
& Marquis, 2002).

6.1.2 IMPLICIT AND EXPLICIT DEPENDENCE

Several approaches to belief change make use of a explicit dependence relation, which means
that it is part of the input (while ours is implicit, i.e., derived from the input). Thus, com-
puting independence relations from a knowledge base can be seen as an upstream task
enabling us to specify the “core” (minimal) independence relation upon which the belief
change operator is based; this core independence relation can then be completed by spec-
ifying explicitly some additional dependencies using knowledge about the domain. Such
an approach has been proposed for belief revision in (Farifias del Cerro & Herzig, 1996),
for belief update in (Marquis, 1994) and (Herzig, 1996) and for reasoning about action in
(Herzig & Rifi, 1999).

6.1.3 INDEPENDENCE AND CONTEXTS

Contextual reasoning (Ghidini & Giunchiglia, 2001) has been introduced for formalizing
domains in which knowledge can naturally be divided into parts (contexts). Each context is
characterized by its own language and alphabet. The knowledge base of a context contains
what is relevant to a part of the domain. However, it is not guaranteed that the different
parts of the domain do not interact, so inference in one context may be affected by the
knowledge of some other context.

The main difference between contextual reasoning and independence is that the lat-
ter is a study of the relevance relation that can be drawn from a “flat” (i.e., not divided
into contexts) knowledge base; whereas contextual reasoning is on knowledge about specific
contexts, that is, knowledge is expressed by specifying which context it refers to. In other
words, the relevance relation is a result of reasoning about knowledge in studying depen-
dency; on the other hand, it is one of the data that has to be provided for reasoning about
contexts.

6.1.4 THE DEFINITION OF IRRELEVANCE BY LEVY ET AL.

The definition of irrelevance given by Levy, Fikes, and Sagiv (1997) aims at establishing
which facts of a knowledge base are irrelevant to the derivation of a query. In particular,
they consider a first-order logic with no function symbols and a set of inference rules. A
knowledge base is a set of closed formulas (formulas with no free variables). Derivation of a
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query (another closed formula) is obtained by applying the inference rules to the knowledge
base and the logical axioms of the theory.

A formula ¢ of the knowledge base is irrelevant to the derivation of another formula
1 if ¢ does not “participate” to the process of inferring 1 from the knowledge base. For
example, in the knowledge base {A(1), C(2), A(X) = B(X)}, it is clear that A(1) is relevant
to B(1), while C(2) is not.

This definition becomes complicated when more complex scenarios are considered. Namely,
Levy et al. consider three different “coordinates”: first, whether all derivations are consid-
ered or just one; second, whether we consider all derivations or just minimal ones; third,
whether we consider membership to the proof or just derivability from the formulas that
compose the proof (in this case, we have four possible choices).

Besides the fact that this notion of irrelevance is based on first-order logic, there are
other, more substantial, differences between it and the ideas investigated in this paper.
First, it is a relation between two formulas, given a background knowledge base. As such,
it is more related to other notions of relevance in the literature (Lang & Marquis, 1998a).
Second, it is based on the concept of proof, which is something not completely dependent on
the semantics. For example, replacing the usual modus ponens with the strange inference
rule a, 8, = v — v, which does not change the semantics of the logics, then the formula
C(2) of the knowledge base above becomes magically relevant to B(1). This is perfectly
reasonable in the approach by Levy et al., where improving efficiency using a specific proof
theory is the aim.

6.2 Extending our Notions and Results

The notions and results presented in this paper can be extended in several directions.

6.2.1 NUMERICAL AND ORDINAL NOTIONS OF FORMULA-VARIABLE INDEPENDENCE;
FORGETTING IN MORE GENERAL STRUCTURES

It may be worth wondering about how the notions of FL-independence and FV-independence
can be generalized to the case where the knowledge base is not a mere propositional for-
mula but a probability distribution over Qpg, or an incomplete probability (or equivalently
a set of probability distributions), or a stratified knowledge base, or any other ordinal or
numerical structure.

First, let us notice that some of our characterizations lead to quite intuitive and general
ideas. To take the case of FV-independence, we have shown that the following three state-
ments are equivalent when 3 is a propositional knowledge base:

(a) ¥ does not tell anything about z, in any context;

(b) X can be rewritten equivalently in a formula ¥’ in which z does not appear
(Definition 4);

(c) for any two interpretations w and w' that differ only in the value given to z, the status
of w with respect to X (i.e., model or countermodel) is the same as that of ' (Corollary 1).

As to variable forgetting:

(d) ForgetVar(%,V) is the most general consequence of ¥ that is Var-independent from V'
(Corollary 16).
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Now, these definitions have a sufficient level of generality to be extended to the case where
the knowledge base 3. is replaced by another structure.

Thus, some of us have extended the notion of Var-independence (characterized using
(b)) and variable forgetting to ordinal conditional functions (represented as stratified bases)
(Lang, Marquis, & Williams, 2001). The basic purpose was to extend the “forget and
expand” approach at work for updating “flat” knowledge bases (as briefly discussed in
Section 4) to updating more sophisticated epistemic states.

The case of incomplete probabilities is also interesting since generalizing (a), (b) and (c)
will lead to the same intuitive notion 6. As to variable forgetting, it is not hard to notice
that it corresponds to the well-known notion of marginalization.

6.2.2 FORMULA-VARIABLE INDEPENDENCE IN NONCLASSICAL (PROPOSITIONAL) LOGICS

The definition of FL- and FV-independence (¥ can be rewritten equivalently in a formula
Y in which [ (resp. z) does not appear) is quite general, in the sense that the logical
language and/or the consequence relation (and thus the notion of logical equivalence) may
vary, which enables us to draw from this principle notions of FL.- and FV-independence
(and from then on, notions of literal and variable forgetting) for nonclassical logics. This
is what has been done (at least partly) in (Lakemeyer, 1997). Here we briefly consider two
cases:

(1) subclassical logics. These logics are built on a classical language but have a weaker con-
sequence relation than classical logic. For instance, in most multivalued logics, due to the
fact that the excluded middle (a V —a) is not a theorem, a formula such as a V (=b A b)
will depend both on a and on b (whereas it depends only on a in classical logic), because it
cannot be rewritten equivalently into a formula in which b does not appear (in particular, a
is not always equivalent to aV (-=bAb) in such logics); on the contrary, the formula aV (a Ab)
is equivalent to a in usual multivalued logics and thus depends on a only.

(ii) modal logics. Now, the language is obtained by extending a classical propositional lan-
guage with one or more modalities, while the consequence relation extends that of classical
logic (in the sense that a modality-free formula is a theorem if and only if it is a theorem
of classical logic). Therefore, results such as Propositions 6 and 7 still make sense and we
conjecture that they are still valid. To take an example, in the logic §5 where (0¥ = QX is
a theorem, a formula such as OX A ¢(X V @) is independent from & while 0X A O(X V @)
is not.

6.2.3 RESTRICTED QUERIES AND CHARACTERISTIC MODELS

Forgetting a set of variables modifies a knowledge base while preserving some of the con-
sequences, namely, those built on variables that are not forgotten. Other frameworks are

6. This is not the case for single probability distributions: when the knowledge base is represented by a prob-
ability distribution pr, (a) does not lead to an acceptable definition (because a full probability distribution
on Qpgs always tell something about z); (c) suggests the definition Yw € Qps, pr(Switch(w,z)) = pr(w),
which leads to the decomposability of pr w.r.t. x: pr is a joint probability distribution obtained from
a probability distribution prpg\(z} on Qpgs\(»} and the probability distribution pr, on {x} defined by
pra(z) = (= pro(—z)). (b) would lead to the same definition, noticing that a full probability dis-
tribution can be expressed more compactly by a “partial” probability distribution (here, a probability
distribution on Qpg\(}) from which pr is induced by the maximum entropy principle.
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based on restricting the possible queries in other ways, i.e., considering only queries in Horn
form (Kautz, Kearns, & Selman, 1995).

Reasoning with characteristic models (Kautz, Kearns, & Selman, 1993) is based on using
only a subset of models of the original formula. As for forgetting, this may increase the
size of the representation of a knowledge base exponentially. Khardon and Roth (1996)
have shown that characteristic models can be used for efficient reasoning on some sets of
restricted queries.

7. Concluding Remarks

We have investigated several ways of answering the key question of determining what a
propositional knowledge base tells about the (in)dependencies between variables and for-
mulas. For each of the notions studied, we have related it to other previously known notions
and we have studied it from a computational point of view, giving both complexity results
and characterization results to be used for practical computation. In the light of our results,
it appears that the various forms of logical independence are closely connected. Especially,
several of them had been proposed by different authors without being explicitely related.
Boutilier’s influenceability and Lakemeyer’s relevance of a formula to a subject matter are
identical to FV-independence (Propositions 25 and 26). We also discussed much related
work, and suggest some extensions to more general framework than mere propositional
logic.

The following table gives a synthetic view of many notions addressed in this paper and
the corresponding complexity results.

Problem Notation Definition Complexity
Synt. Lit-independence Lit(X)NL=10 P
Lit-independence LAY 30 . =%, Lit(P)NL =0 coNP-complete
Dependent literals DepLit(¥) {l| {l} — =} BHa-complete
FullLit-independence L C DepLit(%) coNP-complete
Lit-simplified Vi . {l} A Y el ¢ Lit(%) NP-complete
Lit-equivalence X=, 9 ForgetLit(X, Lit(X) \ L) =

)
ForgetLit(®, Lit(®) \ L) II5-complete

Problems on literals and their complexity.

Problem Notation Definition Complexity
Synt. Var-independence Var(Z)NV =10 P
Var-independence Vst s A9 .9=3%, Var(®)NX =0 coNP-complete
Dependent variables DepVar(Z) {v|v—T %} BH2-complete
FullVar-independence V C DepVar(%) coNP-complete
Var-simplified Vo . {v} AT S e v g Var(S) NP-complete
Var-equivalence Y=y @ ForgetVar(3,Var(L)\V) =

ForgetVar(®,Var(®)\V) I15-complete

Problems on variables and their complexity.
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The fact that both notions of formula-variable independence and forgetting have been
used as key concepts in many Al fields (including automated reasoning, belief revision and
update, diagnosis, reasoning about actions etc.) has been discussed before (Sections 1 and
4), so we will refrain from repeating it here. The gain of generality offered by the corre-
sponding literal-oriented notions introduced in this paper has also been established (e.g.,
Proposition 20), and their application to several AI problems (like closed-world reasoning
and belief update) has been sketched.

Primarily, one of the main motivations for the notions of formula-variable independence
and forgetting was to improve inference from a computational side, by enabling to focus on
relevant pieces of knowledge. The extent to which this goal can be reached can be discussed
at the light of our complexity results:

e Most (in)dependence relations have a high complezity. The notions connected to FV-
dependence (FL-dependence, full FV- and FL-dependence, influenceability, relevance
to a subject matter and strict relevance second form) have a complexity at the first
level of the polynomial hierarchy, which means that they can be checked by a satis-
fiability or/and an unsatisfiability solver. They become “tractable” when syntactical
restrictions are made (Proposition 11). Forgetting (literals or variables) also is com-
putationally expensive. The remaining notions are in complexity classes located at
the second level of the polynomial hierarchy. Worse, under the standard assumptions
of complexity theory, the explicit computation of literal or variable forgetting cannot
be achieved in polynomial space in the general case (Proposition 23). This pushes
towards the negative conclusion that all these notions are hard to be computed (at
least in the worst case) except if the size or the syntactical form of the input enables it.
The fact that these problems fall in the second level of the polynomial hierarchy are
not that surprising since this is where a large part (if not the majority) of important
problems in knowledge representation’ fall.

e But a high worst-case complezity does not necessarily prevent from practical algo-
rithms! Thus, Amir and Mcllraith have shown the computational benefits that can
be achieved by structuring a KB (through the forgetting operation) so as to achieve
inference and consequence finding more efficiently (Amir & Mcllraith, 2000; McIlraith
& Amir, 2001). A similar discrepancy between the worst case situation and the practi-
cal ones can be observed in other domains; especially, satisfiability-based checkers for
quantified boolean formulas (Biere, Cimatti, Clarke, Fujita, & Zhu, 1999; Williams,
Biere, Clarke, & Gupta, 2000) used for formal verification purposes (bounded model
checking) exhibit interesting computational behaviours (actually, they typically per-
form better than specialized algorithms, as shown in Rintanen, 2001), despite the
fact that they are confronted to the problem of variable forgetting (i.e., elimination
of existentially quantified variables).

o Moreover, preprocessing may play an important role. What we mean with “prepro-
cessing” refers to the task of computing (in)dependence relations and forgetting before

7. Such as abduction, nonmonotonic inference, belief revision, belief update, some forms of planning and
decision making.
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performing more problem-oriented tasks such as consequence finding, diagnosis, ac-
tion/update, decision making etc. Thus, Lit-simplifying (or Var(simplifying) a KB
during a preliminary off-line phase can prove helpful for improving on-line inference
since simplification never increases the size of a KB. As shown by Proposition 23, a
similar conclusion cannot be drawn to what concerns forgetting. This seems to be the
price to be paid to benefit from the power of forgetting. However, this negative conclu-
sion must be tempered by the two following comments. On the one hand, forgetting is
interesting per se; it is not only a tool that can help improving inference in some cases
but also a goal in several AT applications. On the other hand, our complexity results
relate to the worst case situation, only, and, as evoked before, forgetting is feasible in
many practical cases. Finally, let us note that there are several complete propositional
fragments for which forgetting is easy. Especially, as advocated by Darwiche (1999),
compiling a KB into a DNNF formula during an off-line step can prove practically
valuable to achieve forgetting in an efficient way, provided that the size of the compiled
form remains small enough (which cannot be guaranteed in the worst case). Since it
is not known whether the DNNF fragment is strictly more succinct than the prime
implicates one (Darwiche & Marquis, 1999), the prime implicates fragment can also be
targeted with profit as a compilation language for some knowledge bases; especially,
some recent approaches to the implicit representation of prime implicates (Simon &
del Val, 2001) exhibit very significant empirical performances (they enable the com-
putation of sets of prime implicates containing up to 1070 clauses). Accordingly, they
can prove valuable for the practical computing of independence and forgetting.
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Appendix A: Proofs

Proposition 1 A formula ¥ is Lit-independent from [ if and only if, for any interpretation
w € Qpg, if w = X then Force(w,l) = 2.

Proof: Assume that 3 is Lit-independent from [. Then, there exists a formula ® in NNF
that is equivalent to X, and does not contain /. Then, for any w € Qpg such that w &= &
we have Force(w,—l) = ®. Since @ is equivalent to X, we conclude that the same property
holds for X.

Assume that, for any interpretation w € Qpg, w = X implies Force(w,—l) = L. We
prove that ¥ is Lit-independent from [. Indeed, let 7y, be the term whose only model is w.
The following equivalence holds:

2 = \Viwlwks)
= V{'yw|w|=2andw|7él}u{'yw|w|=2andw|=l}
= V{'Yw | w IZE and w %Z}U{’YwV’YForce(w,—'l) | w |:E and w |: l}

The latter step can be done because w |= ¥ implies that Force(w,—l) is also a model
of ¥. Now, if w [~ [ then 7, does not contain [. On the other hand, if w = [, then
Yo V YForce(w,~1) €an be rewritten as a conjunction of literals not containing neither / nor
its negation. As a result, the above formula (which is in NNF) does not contain [, which
means that X is Lit-independent from /. °

Proposition 2

(1) DepLit(X) C Lit(X);

(2) If ¥ = ®, then DepLit(X) = DepLit(®);

(8a) DepLit(X A ®) C DepLit(X) U DepLit(®);
(8b) DepLit(X V ®) C DepLit(X) U DepLit(®);
(4) 1 € DepLit(%) if and only if =l € DepLit(—=X).

Proof:
1. Trivial.

2. L — X if and only if there exists a formula ¥ that is equivalent to X, and such that
V¥ is syntactically Lit-independent from L. Since ¥ = @, it follows that ® = V.

3. Let ¥ (resp. II) be a NNF formula equivalent to ¥ (resp. ®) s.t. no literal of L occurs
in it. Then U AII (resp. ¥ VII) is a formula equivalent to 3 A ® (resp. XV @), which
is in NNF, and no literal of L occurs in it.

4. Straightforward from the fact that [ appears in a NNF formula ¥ if and only if =l
appears in the NNF form of —3..
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Proposition 3

(1) DepVar(X) C Var(%);

(2) If £ = @, then DepVar(X) = DepVar(®);
(3a) DepVar(X A ®) C DepLit(X) U DepLit(®);
(8b) DepVar(XV @) C DepLit(X) U DepLit(®);
(4) DepVar(—%) = DepVar(X%).

Proof: (1) is trivial; (2) and (3) are similar to the proof of points (2) and (3) of Propo-
sition 2, replacing “literal” by “variable”, [ by v, and DepLit by DepVar. As to (4): if
z & DepVar(X) then there exists a formula ® equivalent to ¥ in which = does not appear;
since = does not appear in —=® either, =@ is a formula equivalent to =¥ in which z does not
appear. o

Proposition 4 Let 3 be a formula from PROPpg.

o X is Lit-simplified if and only if the following equivalence holds: for every L C Lpg,
¥ is syntactically Lit-independent from L if and only if L v % holds.

o 3 is Var-simplified if and only if the following equivalence holds: for every V. C PS,
¥ is syntactically Var-independent from V if and only if V T % holds.

Proof:
e Lit-simplification

— =: Assume ¥ is Lit-simplified (thus Lit(¥X) = DepLit(X)) and let L C Lpg.
If ¥ is syntactically Lit-independent from L, then L N Lit(X) = (), thus L N
DepLit(X) =0, ie., LA X.

— < Assume that ¥ is not Lit-simplified. Then there exists [ € Lit(X2) s.t. X
is Lit-independent from I. With L = {l}, it is clear that ¥ is syntactically
Lit-dependent on L, while Lit-independent from it, contradiction.

e Var-simplification. The proof is similar to the Lit-simplification case, replacing “Lit-
independent” by “Var-independent”, L by V', Lpgs by PS, [ by z, Lit(X) by Var(X).

<

Proposition 5 For every X from PROPpg, there exists a Lit-simplified formula ® s.t.
¥ =9.

Proof: Since ¥ is Lit-independent from L \ DepLit(X) we know that there exists a
NNF formula ® equivalent to ¥ such that Lit(®) N (L \ DepLit(X)) = 0, i.e., such that
Lit(®) C DepLit(X). By point (2) of Proposition 2 we have DepLit(®) = DepLit(X).
Thus, DepLit(®) C Lit(®)) C DepLit(X) = DepLit(®), from which we conclude that
DepLit(®) = Lit(®), i.e., ® is Lit-simplified. o

Proposition 6 Let X be a formula from PROPpg and l be a literal of Lps. The next
four statements are equivalent:
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(1) 1h %;

(2) T FE Bico;
(3) T Zio;
(4} 2“_1 ): X

Proof:

(1) = (2): Let v the variable of [ and assume that ¥; 1 & £, ¢, which means that there is
a PS\ {v}-world w such that w = ¥ 1 A =% o; since ¥ is equivalent to (I A Xy 1)V
(=l A3y0), we have w A {l} = Ej1 Al = E and Force(w A {l},-l) = w A {-l} E
Y1 A —Xo; hence, Force(w A {l},l) = £ and therefore [ — ¥ by Proposition 1.

(2) = (3): Assume ¥j, ;1 = X 9. We have the following chain of implications:

Y o= (IAY1) V(R AYSe)
Y (IAY0) V(2 A Y 0)
L E Yo

(3) = (1): Let us assume that ¥ = ¥, and prove that [ 4 ¥. Indeed, the assumption
can be rewritten as:
Yw € Qpg . (w |:E :>U.}IZE[<_0)

Now, w |= X is equivalent to say that changing the truth value of [ to false, w is
still a model of X. In formulas,

Yw e Qps . (wEY = Force(w,l) E %)

This is exactly the definition of [ v X.
(2) = (4): Same as the proof of (2) = (3).

(4) = (1): Similar to the proof of (3) = (1).

Proposition 7 Let % be a formula from PROPpg and x be a variable of PS. The next
four statements are equivalent:

(1) z ALS;

(2) Bzeo=Bpe1;

(3} Y= Ez<_0,'

(4} Y= Ew(—l-

Proof: Easy consequence of the definition of FV-independence (X is Var-independent from
z if and only if it is Lit-independent from {z,-z}), and Proposition 6). o

Proposition 8 Let 3 be a formula from PROPpg and L be a subset of Lpg. The next
statements are equivalent:
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(1) L X;
(2) PI(X) C{vy | v is a term that does not contain any literal from L};
(8) IP(X) C{d | d is a clause that does not contain any literal from L}.
Proof:

e (1) & (2):

— =: If ¥ is Lit-independent from L, then there exists a NNF formula & equivalent
to 3 s.t. Lit(®) N L = (. Clearly enough, the property Lit(®) N L = ) is still
satisfied if ® is turned into DNF, especially when ® is turned into its prime
implicant normal form. Since two equivalent formulas have the same prime
implicants, no term of PI(X) contains a literal from L.

— «<: PI(Y) is a NNF formula that is equivalent to ¥ and syntactically Lit-
independent from L. Hence, ¥ is Lit-independent from L.

e (1) & (3): Similar to the prime implicant situation, using CNF instead of DNF.

Proposition 9 Let 3 be a formula from PROPpgs and V be a subset of PS. The next
statements are equivalent:

(1) Vs x;

(2) PI(X) C{v | v is a term that does not contain any variable from V'};

(8) IP(X) C{d | ¢ is a clause that does not contain any variable from V'}.

Proof: Easy consequence of the definition of FV-independence, plus Proposition 9 above. o

Proposition 10 FL DEPENDENCE, FV DEPENDENCE, FULL FL. DEPENDENCE and FULL
FV DEPENDENCE are NP-complete.

Proof:
e FL dependence

— Membership. In order to show that ¥ is Lit-dependent on L, it is sufficient to
guess a literal [ from L and a (Var(X) \ {Var(l)})-world w that is a model of
Y11 but not a model of 3;, 5. These tests can be achieved in time polynomial
in |X|.

— Hardness. Let us consider the mapping M s.t. M(X) = (£ A new, new), where
new is a propositional variable that does not occur in . Clearly enough, M (%)
can be computed in time polynomial in |3|. Moreover, ¥ is satisfiable if and only
if ¥ A new is Lit-dependent on {new}.

e FV dependence
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— Membership. In order to show that ¥ is Var-dependent on V, it is sufficient to
guess a variable z from V and a (Var(X) \ {z})-world w that is not a model of
the formula 33, o < ;1. This test can be achieved in time polynomial in |Z|.

— Hardness. Similar to the hardness proof of FL-dependence, replacing “Lit-
dependent” by “Var-dependent”.

e full FL dependence

— Membership. ¥ is fully Lit-dependent on L = {l1,...,l,} if and only if ¥;, . ; |~
Yo and ... and ¥, 1 £ ¥, 0 holds. Equivalently, ¥ is fully Lit-dependent
on L = {ly,...,l,} if and only if the formula rename; (2,1 A =X 0) A ... A
renamen (X, 1 A Xy, ) is satisfiable, where each rename; is a renaming that
maps variables to new symbols (in a uniform way). Since this formula can be
computed in time polynomial in |X| 4 V|, the membership of FULL FL. DEPEN-
DENCE to NP follows.

— Hardness. Full FL-dependence and FL-dependence coincide in the case in which
L is composed of a single literal. Since the NP-hardness of FL-dependence has
been proved using a set L composed of a single literal, the NP-hardness of full
FL dependence follows.

e full FV dependence

— Membership. ¥ is fully Var-dependent on V' = {z1,...,z,} if and only if ¥ #
Yzco0 and ... and ¥ # ¥, o holds. Equivalently, ¥ is fully Var-dependent on
V ={x1,...,x,} if and only if the formula rename; (XX, o) A...Arename, (X
Y1,«o0) is satisfiable, where each rename; is a renaming that maps variables to
new symbols (in a uniform way). Since this formula can be computed in time
polynomial in |¥|+ |V, the membership of FULL FV DEPENDENCE to NP follows.

— Hardness. Full FV-dependence and FV-dependence coincide if L is composed of
a single literal. Since the NP-hardness of FV-dependence has been proved using a
set L composed of a single literal, the NP-hardness of full FV-dependence follows.

Proposition 11  Whenever ¥ belongs to a class C of CNF formulas that is tractable for
clausal query answering (i.e., there exists a polytime algorithm to determine whether ¥ |=
for any CNF formula ) and stable for variable instantiation (i.e., replacing in ¥ € C any
variable by true or by false gives a formula that still belongs to C) then FL. DEPENDENCE,
FV DEPENDENCE, FULL FL. DEPENDENCE and FULL FV DEPENDENCE are in P.

Proof: This is a straightforward consequence of Propositions 6 and 7. When ¥ belongs to

a class C of formulas that is tractable for clausal query answering and stable for variable
instantiation, we can easily check whether ¥ = 3;, ¢ and ¥;. ¢ = X holds. o
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Proposition 12 LIT-SIMPLIFIED FORMULA and VAR-SIMPLIFIED FORMULA are NP-complete.

Proof:
e Lit-simplification

— Membership. Easy consequence of the fact that LIT-SIMPLIFIED FORMULA is
a restriction of FULL FL DEPENDENCE that is in NP (and NP is closed under
polynomial reductions).

— Hardness. We prove that a formula ®, built over an alphabet X = {z1,...,z,},
is satisfiable if and only if formula X is L-simplified, where

S =(@VOX/-X)A N zi ey
r;€X

where ®[X/-X] is the formula obtained by replacing in ® each occurrence of z;

(resp. —z;) with —z; (resp. z;).

First, if ® is not satisfiable, neither ®[X/-X] is, thus (® V ®[X/-X]) is not

satisfiable. As a result, % is not satisfiable, thus it is not Lit-simplified, because

DepLit(X) = () but 3 mentions variables z; and y;.

Assume @ satisfiable. Clearly, 3 is satisfiable as well: let w be a model of . We

prove that 3 is Lit-simplified by showing that it is Lit-dependent on each literal it

contains. We have Lit(X) = {Z1, ..., Zn, Y1y Yn, "1y« Ty YLy -5 Yn -

Let l; € Lit(%).

(1) Assume that w = l;. Then, Force(w,—l;) = X. Indeed, let Var(l;) = z;
(resp. y;): w satisfies x; < y; so changing the truth value of z; only (resp. y;
only) leads to a model that does not satisfy z; < ;.

(2) Otherwise, we have w |= —l;. Replacing I; by —l; in the proof of case (1)
enables deriving the expected conclusion.

— Var-simplification

* Membership. Easy consequence of the fact that VAR-SIMPLIFIED FORMULA
is a restriction of FULL F'V DEPENDENCE that is in NP (and NP is closed
under polynomial reduction).

* Hardness. The proofis similar to the proof of NP-hardness of LIT-SIMPLIFIED
FORMULA, replacing “Lit-simplified” with “Var-simplified”.

Proposition 13

1. Determining whether DepLit(X) = L (where L is a set of literals), and determining
whether DepVar(X) = X (where X is a set of variables) is BHa-complete.

2. The search problem consisting in computing DepLit(X) (respectively DepVar(X)) is
in FAY and is both NP and coNP-hard.
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e Determining whether DepLit(X) = L is BHa-complete.

— Membership.

DepLit(X) = L if and only if (i) [ — X holds for every | € L and (ii) | & 2
holds for every | € Lit(X) \ L; the set of instances (X, L) such that (i) holds is
the union of a linear number of problems in NP, thus it is in NP; similarly, the
set of instances (3, L) such that (ii) holds is a problem in coNP. This proves the
membership to BHy of the problem of determining whether DepLit(X) = L.

Hardness.

Let (®,T) be a pair of propositional formulas. Without loss of generality, we as-
sume that ® and I" do not share any variable and that X = Var(®) = {z1,...,z,},
Var(T') = {z1, ..., zp }. Furthermore we assume that X # { (if it were not the case
it would then be sufficient then to replace ® by ® A (¢ V —t) before performing
the reduction). We prove that (®,T') is a positive instance of SAT-UNSAT, i.e., ®
is satisfiable and I' is unsatisfiable, if and only if DepLit(® A —I') = Lit(3(®))
where 3(®) = (@ V [X/-X]) A A\, .cx Ti © y; as in a previous proof (note that
¥(®) and T" do not share any variables).

(i) if ® is satisfiable and I' is unsatisfiable, then ¥(®) is Lit-simplified ac-
cording to the previous proof and thus DepLit(X(®)) = Lit(3(P)) whereas
DepLit(—-T') = 0, which together entail that DepLit(3(®) A -T') = Lit(X(D)).
(ii) Assume that @ is unsatisfiable and DepLit(X(®) A —I') = Lit(3(®)). Then
3(®) is not simplified (recall that Var(®) is not empty and hence so is Lit(X(P))),
thus DepLit(X(®)) C Lit(3(®)). Now, DepLit(X(®) A —-I') = Lit(X(®P)) implies
DepLit(%(®) A =T') N Lit(T) = (), which is possible only if T is a tautology (be-
cause X(®) and I' do not share any variables); but in this case, 3(®) A =T is
inconsistent and thus DepLit(X(®) A -I') = 0, hence, Lit(3(®)) = (, which is
contradictory.

(iii) Assume that I' is satisfiable and DepLit(2(®) A -I') = Lit(Z(D)).

The second condition can hold only if ¥(®) is unsatisfiable, hence not Lit-
simplified (since Lit(X(®)) # 0), so ® is unsatisfiable as well; this takes us
back to the case (ii), which leads us to the same contradiction again.

e Computing DepLit(X) is in FAL since FL. DEPENDENCE is in NP and DepLit(X) C
Lit(X) (hence, it is sufficient to test for every [ € Lit(X) whether or not ¥ is Lit-
independent from it). It is also both NP-hard and coNP-hard. NP-hardness is showed
by the following polynomial reduction from SAT: A CNF formula F is satisfiable
if and only if F is valid or DepLit(F) # 0; clearly enough, valid CNF formulas
can be recognized in polynomial time. Thus, SAT can be solved if we know how to
compute DepLit(¥) for any ¥, which shows that computing DepLit(2) is NP-hard.
The proof of coNP-hardness is similar (F' is unsatisfiable if and only if F is not valid
and DepLit(F) = ().
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e Determining whether DepVar(X) = V is BHy-complete. Membership follows easily
from the membership of the corresponding problem for DepLit(3). Hardness is similar
to the hardness proof for DepLit(¥) = L.

e Computing DepVar(X) is in FA) and is both NP-hard and coNP-hard. Similar to the
corresponding result for DepLit(X).

Proposition 14 The set of models of ForgetLit(3,{l}) can be expressed as:

Mod(ForgetLit(¥,{l})) = Mod(X)U{Force(w,-l) | wkE X}
= {w | Force(w,l) X}

Proof: The proof is obtained immediately from the definition. o

Proposition 15 The set of models of ForgetLit(X, L) can be expressed as:
Mod(ForgetLit(¥,L)) = {w | Force(w, L1) = % where Ly C L}

Proof: By induction on |L|. The base case in which L is empty is trivial. Let now assume
that the property holds for any L composed of k elements, and prove that it holds as well
for L U {l}.

By definition,

w = ForgetLit(3, L U {l})
if and only if w |= ForgetLit(ForgetLit(2,L),{l}))
if and only if w |= ForgetLit(3, L) or Force(w,l) = ForgetLit(3, L)
if and only if Force(w,L') = ForgetLit(Z, L) where L' C {I}

Using the induction hypothesis, we can express the set of models of ForgetLit(3, L) as
the models w’ such that Force(w',L1) | X, where Ly is any subset of L. As a result,

w = ForgetLit(X, L U{l})
if and only if Force(w,L') = ' and Force(w',L;) E 3, where L' C {I} and L; C L
if and only if Force(w,L}) E X where L} C LU {l}

As a result, the models of ForgetLit(X,L) are the models that can be mapped into
models of ¥ by forcing a subset of literals in L to become true. o

Proposition 16 Let X be a formula from PROPpg and L C Lpg. ForgetLit(3, L) is
the logically strongest consequence of ¥ that is Lit-independent from L (up to logical equiv-

alence).

Proof: By induction on |L|. The base case |L| = 0 is trivial. Let us now assume that
the proposition holds for every |L| < k and show that it remains true when |L| = k + 1.
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Let L = L' U {i}. By the induction hypothesis, we can assume that ForgetLit(XZ,L')
is the most general consequence of ¥ that is Lit-independent from L'. For the sake
of simplicity, let 3’ denote this formula. It remains to show that ForgetLit(%,L) =
ForgetLit(ForgetLit(3, L'),{l}) = ForgetLit(¥',{l}) is the most general consequence of
Y that is Lit-independent from [. Two cases are to be considered:

e | =1z. ForgetLit(Y¥', z) is Lit-independent from z if and only if
ForgetLit(¥',z) = ForgetLit(¥', z)z«o holds. We have

(Elﬂ—l V(=z A EI))JN—O = (EI$<_1 \% 225(—0)

This formula clearly is a logical consequence of ForgetLit(¥',{z}). Hence ForgetLit(¥', z)
is Lit-independent from z. ForgetLit(¥X',z) is a logical consequence of ¥'. Indeed,
for every ¥’ € PROPpg, v € PS, we have ¥/ = (t AX),_ )V (~z A% ). It remains
to show that every logical consequence ® of ¥/ that is Lit-independent from z is a
logical consequence of ForgetLit(¥X',z). Let ® any formula s.t. ¥’ | & holds and
D =Py . Since X' = (zAX,,_ )V (-z AXL ) holds, we have ¥/ |= ® if and only
if both (z AX] ;) = ® and (-2 AX)_,) = @ hold. Thus, in order to show that
ForgetLit(¥',z) = ® holds, it is sufficient to prove that X! _, = ® holds. Suppose
that is not the case. Then, there exists an implicant y of ¥/, that is not an implicant
of ®. However, since (z A X, ;) E @ holds, we know that (z A7) is an implicant of
®. Since @ is equivalent to the conjunction of its prime implicates, there necessarily
exists a prime implicate m of ® s.t. (z Avy) =« and «y [= 7 hold. This imposes that z
belongs to m but no literal of v belongs to 7. By construction, 7. ¢ is an implicate of
b, 0 and 7y is strictly stronger than m. Since & = ®,, ¢ holds, & = 7, holds

as well. This contradicts the fact that « is a prime implicate of ®.

e | = —x. The demonstration is similar, mutatis mutandis.

Proposition 17 Let %, ® be two formulas from PROPpg and L C Lpg.

ForgetLit(X vV ®, L) = ForgetLit(Z, L) V ForgetLit(®, L).

Proof: The claim can be easily proved from Proposition 15. Indeed, the models of
ForgetLit(XV ®, L) are the models w such that Force(w, L) = 2V ®, where L; C L. Now,
Force(w,L;) = XV @ holds if and ouly if Force(w,L;) = X holds or Force(w,L;) | @
holds.

On the other hand, the models of ForgetLit(X, L) V ForgetLit(®, L) are those such that
Force(w,L1) = ¥ or Force(w, L) = ® for some L; C L. This is equivalent to the above
condition. o
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Proposition 18 Let v be a consistent term from PROPpg and L C Lpg.
FOTgetLZ‘t('Y, L) = /\lEVS.t.lQL L.

Proof: We first prove the following lemma:
Lemma 1 For any consistent term vy, we have ForgetLit(vy,l) = v\ {l}.

Proof (lemma):

case 1 [ €, e, y=1N7.
ForgetLit(v,l) = yie1 V (2l Vy) =" = v\ {I}.

case 2 -l €, i.e., y=-lN7.
ForgetLit(y,l) = LVy=~v=v\{l}.

case 3 [ ¢~y and -l ¢ 7.
ForgetLit(y,l) =y VvV (mlvy)=y=v\{l}.

A straightforward induction on L completes the proof.

Proposition 19 Let ¥ be a formula from PROPpgs and L C Lpg.
IP(ForgetLit(X,L)) ={6 | § € IP(X) and Lit(§) "L = 0}.

Proof:

o C: Let § € IP(ForgetLit(X,L)). Since ¥ = ForgetLit(X, L) and ForgetLit(X,L) |=
0 hold, § is an implicate of X.. Hence, there exists a prime implicate ¢’ of ¥ s.t. §' =4
holds. Since § does not contain any literal from L, this is also the case for §’. Thus,
8’ is a logical consequence of ¥ that is Lit-independent from L. As a consequence of
Proposition 16, it must be the case that ForgetLit(Z, L) |= §'. Hence, there exists a
prime implicate 6" of ForgetLit(X, L) s.t. §" = ¢’ holds. This implies that §" = &
holds as well, and since both clauses are prime implicates of the same formula, they
are equivalent. But this implies that ¢ = ¢’ holds, which completes the proof.

D: Let ¢ be a prime implicate of 3 that does not contain any literal from L. § is
Lit-independent from L. Since § is an implicate of X, it must also be an implicate of
ForgetLit(X, L). Subsequently, there exists a prime implicate &' of ForgetLit(X, L)
s.t. 0’ = 6 holds. Since ¥ = ForgetLit(3, L) and ForgetLit(3, L) |= ¢ both hold,
we have ¥ |= ¢’ as well. Hence, there exists a prime implicate §” of ¥ s.t. 6" = §'
holds. Therefore, 6" |= ¢ holds and since both clauses are prime implicates of the same
formula, they are equivalent. But this implies that § = ¢’ holds, which completes the
proof.
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Proposition 20 Let ¥ be a formula from PROPpg and V C PS. We have
ForgetVar(3,V) = ForgetLit(2, Ly)

Proof: By induction on |V|. The proposition trivially holds for |[V| = 0. Let us assume it
is true whenever |V| = k. Let V = {v1, ..., k41 }. By definition, we have

ForgetVar(X,V) = ForgetVar(ForgetVar(Z,{vi,...,ve}), {vk+1})

By the induction hypothesis, ForgetVar(X,V) is equivalent to ForgetVar(®, {vgi1}),
where @ is defined as:

® = ForgetLit(3,{z;z € {v1,...,v9}} U{~z;2 € {v1,...,0%}})
We have ForgetVar(X,V) = ForgetVar(®,{vg4+1}). By definition,
ForgetVar(®,vg41) = @y e 0V Py 1
We also have

ForgetLit(®, {vk+1, "vk+1})
= ForgetLit(ForgetLit(®,{vks1}), {-vk+1})
= ForgetLit((=vk+1 A Puyyy0) V Puyyy 1, {0k41})
= (vk+1 N ((_"Uk-kl A (I>Uk+1<—0) \% (ka+1<—1)vk+1<—1) v ((_"UIH-I A (I)Uk+1<—0) \% q)vk+1<—1)vk+1<—0'

This simplifies to (vgi1 A Py, ;1) V Py, .0 V Py, ., 1, Which is also equivalent to
P + k41 k41 k+1
D@y 10V Py, <1, hence equivalent to ForgetVar(®,{vk;1}). Consequently, we have

ForgetVar(%,V)
= ForgetLit(ForgetLit(X,{z;z € {vi,...,vp}} U{~z;2 € {v1,...,0}}),{Vk+1, Vks1})
= ForgetLit(X,V).

Proposition 21 Let X, ® be two formulas from PROPpg, and V be a subset of PS. If
V 4T 8, then ForgetVar(S A ®,V) = S A ForgetVar(®,V).

Proof: Let us consider the case where V = {v}. By definition, we have ForgetVar(X A
S, {v}) = (EANP)yeo V(EA P)yc1. Equivalently, ForgetVar(EZ A ®,{v}) = (Eyeo A
®yeo) V (Zpe1 A Pye1). When v 4T B, we have ¥ = B, ¢ = Zye1. Accordingly,
ForgetVar(Z A @,{v}) = LA (Pyo V Pye1) = T A Forget(®,{v}). A straightforward
induction completes the proof. o

Proposition 22 Let 3, ® be two formulas from PROPpg, and P, Q, Z be three disjoint
sets of variables from PS (such that Var(X) U Var(®) CPUQU Z). It holds:
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1. If ® does not contain any variable from Z

CIRC(S, (P,Q,2)) |- @
if and only if
Y = ForgetLit(X AN ®,L, U Ly)

2. In the general case:

CTRC(%, (P,Q, 7)) = @
if and only if
Y |= ForgetLit(X A —=ForgetLit(X AN —~®,L; U Ly,),L; U Lp)

where CIRC is circumscription as defined in (McCarthy, 1986).

Proof:

1. This is a consequence of Theorem 2.5 from (Przymusinski, 1989). This theorem
states that if ® does not contain literals from Z, then CIRC(X,(P,Q,Z)) E @
holds if and only if there is no clause v s.t.  does not contain any literal from
L,ULy and ¥ |= -® Vv but ¥ [£ 4. This is equivalent to state that, if ® does
not contain literals from Z, then CIRC(%, (P,Q,Z)) E ® holds if and only if, for
every clause 7 containing only literals from L; U Lg, we have ¥ A ® = v if and
only if ¥ = «. It is easy to see that the equivalence is preserved would any formula
7 Lit-independent from L, U Ly be considered (any formula can be turned into an
equivalent CNF formula). Thus, Theorem 2.5 can be rephrased in forgetting terms: if
® does not contain variables from Z, then CIRC(%, (P, Q, Z)) = @ holds if and only
ifXAD =LtuLo ¥ if and only if ¥ = ForgetLit(X A ®,L, U Ly).

2. This is a consequence of Theorem 2.6 from (Przymusinski, 1989). This theorem
states that CIRC(X,(P,Q,Z)) = ® holds if and only if ¥ = @ or there exists a
formula ¥ s.t. ¥ does not contain any literal from L, U Lz, ¥ = ® V ¥ holds and
CIRC(%,(P,Q,Z)) = ~¥. It is easy to see that such a formula ¥ exists if and only if
the conjunction « of all the formulas ¥ such that ¥ does not contain any literal from
LpULz and ¥ = @V holdsiss.t. CIRC(X, (P, Q, Z)) = —a. Since ¥ |= @V ¥ holds
if and only if ¥ A—® |= ¥ holds, « is equivalent to ForgetLit(XA—=®, L,ULy). Thus,
CIRC(%,(P,Q,Z)) = ® holds if and only if ¥ = @ holds or CIRC(%,(P,Q, Z)) =
~ForgetLit(X A ~®,L, U Lz) holds. In the case where ¥ |= @ holds, ¥ A =® is
inconsistent, so it is also the case of ForgetLit(¥ A ~®,L; U Lz). Thus, if ¥ = ®
holds, CIRC(%,(P,Q, Z)) = ~ForgetLit(XA—-®, L,ULz) holds as well. Accordingly,
CIRC(%,(P,Q,Z)) = ® holds if and only if CTRC(%,(P,Q, Z)) = ~ForgetLit(X A
—®, L, ULyz) holds. Since ForgetLit(% A —~®, L, U Lz) does not contain any literal
from Z, the point just above enables concluding the proof.
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Proposition 23  Let % be a formula from PROPpg and let L be a subset of Lpg. In the
general case, there is no propositional formula ® equivalent to ForgetLit(3, L) s.t. the size
of ® is polynomially bounded in |X| + |L|, unless NP N coNP C P/poly.

Proof: The justification is twofold:

(1) ForgetLit(3, L) is the logically strongest consequence of ¥ that is Lit-independent
from L. Consequently, for every formula v € PROPpg, we have ¥ | « if and only if
ForgetLit(X, L) = vy, where L = Lit(X) \ Lit(7y). Because ForgetLit(3, L) depends only
on literals of Lit(X) N Lit(7y), it is an interpolant of ¥ and -, i.e., a formula ¢ s.t. £ = ¢
and ¢ = 7 hold; thus we have ¥ |= ForgetLit(Z, Lit(2) \ Lit(y)) = v.

(2) the existence of a propositional formula, interpolant of ¥ and v, and of size polynomially
bounded in |¥| + |y| would imply that NP N coNP C P/poly (Boppana & Sipser, 1990),
which is considered very unlikely in complexity theory. o

Proposition 24 LIT-EQUIVALENCE and VAR-EQUIVALENCE are II5-complete.

Proof:

e Var-equivalence.

— Membership: In order to check the membership to the complementary problem,
guessing a clause <y built up from V, and checking that (X = v and ® [~ v) or
(¥ £ v and @ |= v) is sufficient. The check step can be easily accomplished
in polynomial time when an NP oracle is available. Hence, the complementary
problem belongs to ¥5.

— Hardness: Let M be the mapping that associates the triple (3, true, A) to the
quantified boolean formula VAIBY (where {4, B} is a partition of Var(X)).
Clearly enough, M is polytime. Moreover, we have:

VA3BY is valid if and only if =3B . X%
if and only if |= ForgetVar(%, B)
if and only if 3 =4 true

Since the validity problem for 2-QBF formulas is IT-complete, this proves the
Hg-hardness of VAR-EQUIVALENCE.

o Lit-equivalence.

— Membership: See the membership proof above, replacing “built up from V”by
“s.t. Lit(y) C L”.

— Hardness: Let M be the mapping that associates (3, ®,V) to (X, ®, Ly). Clearly
enough, M((2,®,V)) can be computed in time polynomial in |(3,®,V)|. We
have shown that ¥ and ® are Var-equivalent given V if and only if ¥ and ® are
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Lit-equivalent given Ly. Hence, M is a polynomial many-one reduction from
VAR-EQUIVALENCE to LIT-EQUIVALENCE. Since VAR-EQUIVALENCE is Hg-hard,
this is also the case for LIT-EQUIVALENCE.

Proposition 25  Let ¥ be a formula from PROPpg and V a subset of PS. ¥ is influ-
enceable from V if and only if ¥ is Var-dependent on V.

Proof: Proposition 4 from (Boutilier, 1994) states that ¥ is influenceable from V' if and
only if there exists a prime implicant of 3 that contains a variable from V', where V is the
set of controllable variables. Proposition 9 completes the proof. o

Proposition 26 Let X be a formula from PROPpg and V a subset of PS. ¥ is relevant
to V if and only if ¥ is Var-dependent on V.

Proof: The proof is trivial from Proposition 9. o

Proposition 27  Let X be a formula from PROPpg and V a subset of PS. 3 is strictly
relevant to V if and only if ¥ is Var-dependent on V' and Var-independent from Var(X)\V.

Proof: Easy from the definition of strict relevance, plus Proposition 9 (X is Var-dependent
from every variable occurring in a prime implicate of 3 and Var-independent from all the
remaining variables). o

Proposition 28

(1) STRICT RELEVANCE OF A FORMULA TO A SUBJECT MATTER (Lakemeyer, 1995) is II5-
complete.

(2) STRICT RELEVANCE OF A FORMULA TO A SUBJECT MATTER (Lakemeyer, 1997) is BHa-
complete.

Proof:
e strict relevance (Lakemeyer, 1995)

— Membership. Let us consider the complementary problem. Guess a clause 7,
check that it does not contain any variable from V' (this can be achieved in time
polynomial in |y| + |V, hence in time polynomial in |X| + |V| since no prime
implicate of ¥ can include a variable that does not occur in ). Then check that
it is an implicate of ¥ (one call to an NP oracle) and check that every subclause
of v obtained by removing from it one of its k literals is not an implicate of 3
(k calls to an NP oracle). Since only k + 1 calls to such an oracle are required
to check that v is a prime implicate of 3., the complementary problem of STRICT
RELEVANCE belongs to £f. Hence, STRICT RELEVANCE belongs to IT5.

— Hardness. Let {A, B} be a partition of Var(X) (for any formula ¥). VAIBY is
valid if and only if every prime implicate of ¥ that contains a variable from A
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also contains a variable from B if and only if every prime implicate of ¥ contains
a variable from B (since Var(X) = AU B) if and only if ¥ is strictly relevant to
B.

e strict relevance (Lakemeyer, 1997)

— Membership: Straightforward from Propositions 27 and 10.

— Hardness: By exhibiting a polynomial reduction from SAT-UNSAT to STRICT REL-
EVANCE OF A FORMULA TO A SUBJECT MATTER. To any pair (¢, ) of propo-
sitional formulas, let rename(v) be a formula obtained from 1 by renaming its
variables. Obviously,

(i) rename(1) is satisfiable if and only if ¥ is.
Now, let new be a new variable, let

Y = ¢ Anew A —rename())
and V = Var(¢) U {new}. By Proposition 8, ¥ is Var-dependent on V if and
only if there is a prime implicant of ¥ mentioning a variable from V, i.e., if and
only if ¢ A —rename(v)) is satisfiable, thus, using (i):
(ii) ¥ is Var-dependent on V if and only if both ¢ and —1) are satisfiable.
Then, again after Proposition 8, ¥ is Var-independent from Var(¥) \ V =
Var(rename(v)) if and only if no prime implicant of ¥ mentions a variable
from Var(rename(1)), i.e., if and only if rename(1)) is unsatisfiable, thus, using
(i):
(iii) ¥ is Var-independent from Var(X) \ V if and only if 1 is satisfiable.
Thus, from Proposition 27, (ii) and (iii), we get that ¥ is strictly relevant to V
if and only if ¢ is satisfiable and rename(1)) is not.
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Appendix B: Glossary

Here is a small glossary of useful terms with the place where their definition can be found.

PROPy propositional language generated by V Section 2.1
Ly set of literals built up from V Section 2.1
L‘J; set of positive literals built up from V' Section 2.1
Ly, set of negative literals built up from V Section 2.1
Var(%) set of propositional variables appearing in X Section 2.1
NNF negation normal form Section 2.1
Lit(%) set of literals occurring in the NNF of ¥ Section 2.1
wy a V-world (instantiations of all variables of V) Section 2.1
Qv set of all V-worlds Section 2.1
w world (full instanciation) Section 2.1
Mod(%) set of models of ¥ Section 2.1
for(S) formula such that Mod(X) = S Section 2.1
Yzeo Section 2.1
Y Section 2.1
e Section 2.1
Force(w,!) Section 2.1
IP(Y) set of prime implicates of ¥ Section 2.1
PI(Y%) set of prime implicants of ¥ Section 2.1
BHs, coBH, Section 2.2
AP, 38 T Section 2.2
syntactical Lit-dependence Definition 1
syntactical Var-dependence Definition 2
=X (semantical) Lit-dependence Definition 3
DepLit(X) literals such that [ — X Definition 3
vt D (semantical) Var-dependence Definition 4
DepLit(%) variables such that [ — X Definition 4

Lit-simplified
Var-simplified
ForgetLit(2, L)
ForgetVar(%, L)
pM = (0]

X =V P

literal forgetting
variable forgetting
Lit-equivalence
Var-equivalence

Definition 6
Definition 6
Definition 7
Definition 8
Definition 9
Definition 9

Definition 10
Definition 11
Definition 12

influenceability
relevance to a subject matter
strict relevance to a subject matter
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