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Abstract

The proliferation of online information sources has led to an increased use of wrappers
for extracting data from Web sources. While most of the previous research has focused
on quick and efficient generation of wrappers, the development of tools for wrapper main-
tenance has received less attention. This is an important research problem because Web
sources often change in ways that prevent the wrappers from extracting data correctly. We
present an efficient algorithm that learns structural information about data from positive
examples alone. We describe how this information can be used for two wrapper mainte-
nance applications: wrapper verification and reinduction. The wrapper verification system
detects when a wrapper is not extracting correct data, usually because the Web source has
changed its format. The reinduction algorithm automatically recovers from changes in the
Web source by identifying data on Web pages so that a new wrapper may be generated for
this source. To validate our approach, we monitored 27 wrappers over a period of a year.
The verification algorithm correctly discovered 35 of the 37 wrapper changes, and made
16 mistakes, resulting in precision of 0.73 and recall of 0.95. We validated the reinduc-
tion algorithm on ten Web sources. We were able to successfully reinduce the wrappers,
obtaining precision and recall values of 0.90 and 0.80 on the data extraction task.

1. Introduction

There is a tremendous amount of information available online, but much of this information
is formatted to be easily read by human users, not computer applications. Extracting
information from semi-structured Web pages is an increasingly important capability for
Web-based software applications that perform information management functions, such as
shopping agents (Doorenbos, Etzioni, &Weld, 1997) and virtual travel assistants (Knoblock,
Minton, Ambite, Muslea, Oh, & Frank, 2001b; Ambite, Barish, Knoblock, Muslea, Oh, &
Minton, 2002), among others. These applications, often referred to as agents, rely on
Web wrappers that extract information from semi-structured sources and convert it to
a structured format. Semi-structured sources are those that have no explicitly specified
grammar or schema, but have an implicit grammar that can be used to identify relevant
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information on the page. Even text sources such as email messages have some structure in
the heading that can be exploited to extract the date, sender, addressee, title, and body
of the messages. Other sources, such as online catalogs, have a very regular structure that
can be exploited to extract all the data automatically.

Wrappers rely on extraction rules to identify the data field to be extracted. Semi-
automatic creation of extraction rules, or wrapper induction, has been an active area of
research in recent years (Knoblock, Lerman, Minton, & Muslea, 2001a; Kushmerick, Weld,
& Doorenbos, 1997). The most advanced of these wrapper generation systems use machine
learning techniques to learn the extraction rules by example. For instance, the wrapper
induction tool developed at USC (Knoblock et al., 2001a; Muslea, Minton, & Knoblock,
1998) and commercialized by Fetch Technologies, allows the user to mark up data to be
extracted on several example pages from an online source using a graphical user interface.
The system then generates “landmark”-based extraction rules for these data that rely on
the page layout. The USC wrapper tool is able to efficiently create extraction rules from
a small number of examples; moreover, it can extract data from pages that contain lists,
nested structures, and other complicated formatting layouts.

In comparison to wrapper induction, wrapper maintenance has received less attention.
This is an important problem, because even slight changes in the Web page layout can break
a wrapper that uses landmark-based rules and prevent it from extracting data correctly. In
this paper we discuss our approach to the wrapper maintenance problem, which consists of
two parts: wrapper verification and reinduction. A wrapper verification system monitors
the validity of data returned by the wrapper. If the site changes, the wrapper may extract
nothing at all or some data that is not correct. The verification system will detect data
inconsistency and notify the operator or automatically launch a wrapper repair process.
A wrapper reinduction system repairs the extraction rules so that the wrapper works on
changed pages.
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Figure 1: Life cycle of a wrapper

Figure 1 graphically illustrates the entire life cycle of a wrapper. As shown in the figure,
the wrapper induction system takes a set of web pages labeled with examples of the data to
be extracted. The output of the wrapper induction system is a wrapper, consisting of a set
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of extraction rules that describe how to locate the desired information on a Web page. The
wrapper verification system uses the functioning wrapper to collect extracted data. It then
learns patterns describing the structure of data. These patterns are used to verify that the
wrapper is correctly extracting data at a later date. If a change is detected, the system can
automatically repair a wrapper by using this structural information to locate examples of
data on the new pages and re-running the wrapper induction system with these examples.
At the core of these wrapper maintenance applications is a machine learning algorithm that
learns structural information about common data fields. In this paper we introduce the
algorithm, DataProG, and describe its application to the wrapper maintenance tasks in
detail. Though we focus on web applications, the learning technique is not web-specific,
and can be used for data validation in general.

Note that we distinguish two types of extraction rules: landmark-based rules that ex-
tract data by exploiting the structure of the Web page, and content-based rules, which we
refer to as content patterns or simply patterns, that exploit the structure of the field itself.
Our previous work focused on learning landmark rules for information extraction (Muslea,
Minton, & Knoblock, 2001). The current work shows that augmenting these rules with
content-based patterns provides a foundation for sophisticated wrapper maintenance appli-
cations.

2. Learning Content Patterns

The goal of our research is to extract information from semi-structured information sources.
This typically involves identifying small chunks of highly informative data on formatted
pages (as opposed to parsing natural language text). Either by convention or design, these
fields are usually structured: phone numbers, prices, dates, street addresses, names, sched-
ules, etc. Several examples of street addresses are given in Fig. 2. Clearly, these strings
are not arbitrary, but share some similarities. The objective of our work is to learn the
structure of such fields.

4676 Admiralty Way
10924 Pico Boulevard

512 Oak Street
2431 Main Street

5257 Adams Boulevard

Figure 2: Examples of a street address field

2.1 Data Representation

In previous work, researchers described the fields extracted from Web pages by a character-
level grammar (Goan, Benson, & Etzioni, 1996) or a collection of global features, such as the
number of words and the density of numeric characters (Kushmerick, 1999). We employ an
intermediate word-level representation that balances the descriptive power and specificity
of the character-level representation with the compactness and computational efficiency of
the global representation. Words, or more accurately tokens, are strings generated from
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an alphabet containing different types of characters: alphabetic, numeric, punctuation,
etc. We use the token’s character types to assign it to one or more syntactic categories:
alphabetic, numeric, etc. These categories form a hierarchy depicted in Fig. 3, where the
arrows point from more general to less general categories. A unique specific token type is
created for every string that appears in at least k examples, as determined in a preprocessing
step. The hierarchical representation allows for multi-level generalization. Thus, the token
“Boulevard” belongs to the general token types Alphanum (alphanumeric strings), Alpha
(alphabetic strings), Upper (capitalized words), as well as to the specific type representing
the string “Boulevard”. This representation is flexible and may be expanded to include
domain specific information. For example, the numeric type is divided into categories
that include range information about the number — Large (larger than 1000), Medium

(medium numbers, between 10 and 1000) and Small (smaller than 10)— and number of
digits: 1−, 2−, and 3−digit. Likewise, we may explicitly include knowledge about the type
of information being parsed, e.g., some 5-digit numbers could be represented as zipcode.

TOKEN

PUNCT ALPHANUM HTML

ALPHA NUMBER

LOWER

ALLCAPS

CA Boulevard

UPPER SMALL MEDIUM LARGE

1Digit 2Digit 3Digit

310

Figure 3: Portion of the token type syntactic hierarchy

We have found that a sequence of specific and general token types is more useful for
describing the content of information than the character-level finite state representations
used in previous work (Carrasco & Oncina, 1994; Goan et al., 1996). The character-level
description is far too fine grained to compactly describe data and, therefore, leads to poor
generality. The coarse-grained token-level representation is more appropriate for most Web
data types. In addition, the data representation schemes used in previous work attempt
to describe the entire data field, while we use only the starting and ending sequences,
or patterns, of tokens to capture the structure of the data fields. The reason for this is
similar to the one above: using the starting and ending patterns allows us to generalize
the structural information for many complex fields which have a lot of variability. Such
fields, e.g., addresses, usually have some regularity in how they start and end that we
can exploit. We call the starting and ending patterns collectively a data prototype. As
an example, consider a set of street addresses in Fig. 2. All of the examples start with a
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pattern <Number Upper> and end with a specific type <Boulevard> or more generally
<Upper>. Note that the pattern language does not allow loops or recursion. We believe
that recursive expressions are not useful representations of the types of data we are trying
to learn, because they are harder to learn and lead to over-generalization.

2.2 Learning from Positive Examples

The problem of learning the data prototype from a set of examples that are labeled as
belonging (or not) to a class may be stated in one of two related ways: as a classification
or as a conservation task. In the classification task, both positive and negative instances of
the class are used to learn a rule that will correctly classify new examples. Classification
algorithms, like FOIL (Quinlan, 1990), use negative examples to guide the specialization
of the rule. They construct discriminating descriptions — those that are satisfied by the
positive examples and not the negative examples. The conservation task, on the other hand,
attempts to find a characteristic description (Dietterich & Michalski, 1981) or conserved
patterns (Brazma, Jonassen, Eidhammer, & Gilbert, 1995), in a set of positive examples of a
class. Unlike the discriminating description, the characteristic description will often include
redundant features. For example, when learning a description of street addresses, with city
names serving as negative examples, a classification algorithm will learn that <Number> is
a good description, because all the street addresses start with it and none of the city names
do. The capitalized word that follows the number in addresses is a redundant feature,
because it does not add to the discriminating power of the learned description. However, if
an application using this description encounters a zipcode in the future, it will incorrectly
classify it as a street address. This problem could have been avoided if <Number Upper>
was learned as a description of street addresses. Therefore, when negative examples are
not available to the learning algorithm, the description has to capture all the regularity
of data, including the redundant features, in order to correctly identify new instances of
the class and differentiate them from other classes. Ideally, the characteristic description
learned from positive examples alone is the same as the discriminating description learned by
the classification algorithm from positive and negative examples, where negative examples
are drawn from infinitely many classes. While most of the widely used machine learning
algorithms (e.g., decision trees (Quinlan, 1993), inductive logic programming (Muggleton,
1991)) solve the classification task, there are fewer algorithms that learn characteristic
descriptions.

In our applications, an appropriate source of negative examples is problematic; therefore,
we chose to frame the learning problem as a conservation task. We introduce an algorithm
that learns data prototypes from positive examples of the data field alone. The algorithm
finds statistically significant sequences of tokens. A sequence of token types is significant
if it occurs more frequently than would be expected if the tokens were generated randomly
and independently of one another. In other words, each such sequence constitutes a pattern
that describes many of the positive examples of data and is highly unlikely to have been
generated by chance.

The algorithm estimates the baseline probability of a token type’s occurrence from the
proportion of all types in the examples of the data field that are of that type. Suppose we
are learning a description of the set of street addresses in Fig. 2, and have already found

153



Lerman, Minton & Knoblock

a significant token sequence — e.g., the pattern consisting of the single token <Number>
— and want to determine whether the more specific pattern, <Number Upper>, is also
a significant pattern. Knowing the probability of occurrence of the type Upper, we can
compute how many times Upper can be expected to follow Number completely by chance.
If we observe a considerably greater number of these sequences, we conclude that the longer
pattern is also significant.

We use hypothesis testing (Papoulis, 1990) to decide whether a pattern is significant.
The null hypothesis is that observed instances of this pattern were generated by chance,
via the random, independent generation of the individual token types. Hypothesis testing
decides, at a given confidence level, whether the data supports rejecting the null hypothesis.
Suppose n identical sequences have been generated by a random source. The probability
that a token type T (whose overall probability of occurrence is p) will be the next type in
k of these sequences has a binomial distribution. For a large n, the binomial distribution
approaches a normal distribution P (x, µ, σ) with µ = np and σ2 = np(1−p). The cumulative
probability is the probability of observing at least n1 events:

P (k ≥ n1) =
∫ ∞

n1

P (x, µ, σ)dx (1)

We use polynomial approximation formulas (Abramowitz & Stegun, 1964) to compute the
value of the integral.

The significance level of the test, α, is the probability that the null hypothesis is rejected
even though it is true, and it is given by the cumulative probability above. Suppose we set
α = 0.05. This means that we expect to observe at least n1 events 5% of the time under the
null hypothesis. If the number of observed events is greater, we reject the null hypothesis
(at the given significance level), i.e., decide that the observation is significant. Note that
the hypothesis we test is derived from observation (data). This constraint reduces the
number of degrees of freedom of the test; therefore, we must subtract one from the number
of observed events. This also prevents the anomalous case when a single occurrence of a
rare event is judged to be significant.

2.3 DataProG Algorithm

We now describe DataProG, the algorithm that finds statistically significant patterns in a
set of token sequences. During the preprocessing step the text is tokenized, and the tokens
are assigned one or more syntactic types (see Figure 3). The patterns are encoded in a
type of prefix tree, where each node corresponds to a token type. DataProG relies on
significance judgements to grow the tree and prune the nodes. Every path through the
resulting tree starting at the root node corresponds to a significant pattern found by the
algorithm. In this section, we focus the discussion on the version of the algorithm that
learns starting patterns. The algorithm is easily adapted to learn ending patterns.

We present the pseudocode of the DataProG algorithm in Table 1. DataProG grows
the pattern tree incrementally by (1) finding all significant specializations (i.e., longer pat-
terns) of a pattern and (2) pruning the less significant of the generalizations (or special-
izations) among patterns of the same length. As the last step, DataProG extracts all
significant patterns from the pattern tree, including those generalizations (i.e., shorter pat-
terns) found to be significant given the more specific (i.e., longer) patterns.
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DATAPROG MAIN LOOP
Create root node of tree;
For next node Q of tree

Create children of Q;
Prune nodes;

Extract patterns from tree;

CREATE CHILDREN OF Q
For each token type T at next position in examples

Let C = NewNode;
Let C.token = T;
Let C.examples = Q.examples that are followed by T;
Let C.count = |C.examples|;
Let C.pattern = concat(Q.pattern T );
If Significant(C.count, Q.count, T.probability)

AddChildToTree(C, Q);
End If

End T loop

PRUNE NODES
For each child C of Q

For each sibling S of C s.t. S.pattern ⊂ C.pattern
Let N = C.count− S.count
If Not(Significant(N,Q.count, C.token.probability))

Delete C;
break;

Else
Delete S;

End If
End S loop

End C loop

EXTRACT PATTERNS FROM TREE
Create empty list;
For every node Q of tree

For every child C of Q
Let N = C.count− ∑

i(Si.count|Si ∈ Children(C))
If Significant( N,Q.count, C.token.probability)

Add C.pattern to the list;
Return (list of patterns);

Table 1: Pseudocode of the DataProG algorithm
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The tree is empty initially, and children are added to the root node. The children
represent all tokens that occur in the first position in the training examples more often
than expected by chance. For example, when learning addresses from the examples in
Fig. 2, the root will have two child nodes: Alphanum and Number. The tree is extended
incrementally at each node Q. A new child is added to Q for every significant specialization
of the pattern ending at Q. As explained previously, a child node is judged to be significant
with respect to its parent node if the number of occurrences of the pattern ending at the
child node is sufficiently large, given the number of occurrences of the pattern ending at the
parent node and the baseline probability of the token type used to extend the pattern. To
illustrate on our addresses example, suppose we have already found that a pattern <Number
Upper> is significant. There are five ways to extend the tree (see Fig. 4) given the data:
<Number Upper Alphanum>, <Number Upper Alpha>, <Number Upper Upper>,
<Number Upper Street>, <Number Upper Boulevard>, and <Number Upper Way>.
All but the last of these patterns are judged to be significant at α = 0.05. For example,
<Number Upper Upper> is significant, because Upper follows the pattern <Number
Upper> five out of five times,1 and the probability of observing at least that many longer
sequences purely by chance is 0.0002.2 Since this probability is less than α, we judge this
sequence to be significant.

ROOT

NUMBER

UPPER

ALPHANUM ALPHA UPPER Boulevard Street

Figure 4: Pattern tree that describes the structure of addresses. Dashed lines link to nodes
that are deleted during the pruning step.

The next step is to prune the tree. The algorithm examines each pair of sibling nodes,
one of which is more general than the other, and eliminates the less significant of the pair.
More precisely, the algorithm iterates through the newly created children of Q, from the
most to least general, and for every pair of children Ci and Cj , such that Ci.pattern ⊂
Cj .pattern (i.e., Cj .pattern is strictly more general than Ci.pattern), the algorithm keeps
only Cj if it explains significantly more data; otherwise, it keeps only Ci. 3

1. Such small numbers are used for illustrative purposes only — the typical data sets from which the
patterns are learned are much larger.

2. The calculation of this cumulative probability depends on the occurrence probability of Upper. We count
the occurrence of each token type independently of the others. In our example, occurrence probability
(relative fraction) of type Upper is 0.18.

3. DataProG is based on an earlier version of the algorithm, DataPro, described in the conference pa-
per (Lerman & Minton, 2000). Note that in the original version of the algorithm, the specific patterns
were always kept, regardless of whether the more general patterns were found to be significant or not.
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Let us illustrate the pruning step with the example pattern tree in Fig. 4. We can elimi-
nate the node AlphaNum, because all the examples that match the pattern <Number Up-
per Alphanum> also match the pattern <Number Upper Alpha>— thus, Alphanum is
not significant given its specialization Alpha. We can eliminate node Alpha for a similar
reason. Next, we check whether <Number Upper Upper> is significant given the patterns
<Number Upper Boulevard> and <Number Upper Street>. There are 2 instances of the
address field that match the pattern <Number Upper Boulevard>, and 2 addresses that
match <Number Upper Street>. If <Number Upper Upper> matches significantly more
than 4 addresses, it will be retained and the more specific patterns will be pruned from the
tree; otherwise, it will be deleted and the more specific ones kept. Because every example
is described by at most one pattern of a given length, the pruning step ensures that the size
of the tree remains polynomial in the number of tokens, thereby, guaranteeing a reasonable
performance of the algorithm.

Once the entire tree has been expanded, the final step is to extract all significant patterns
from the tree. Here, the algorithm judges whether the shorter (more general) pattern, e.g.,
<Number Upper>, is significant given the longer specializations of it, e.g., <Number
Upper Boulevard> and <Number Upper Street>. This amounts to testing whether the
excess number of examples that are explained by the shorter pattern, and not by the longer
patterns, is significant. Any pattern that ends at a terminal node of the tree is significant.
Note that the set of significant patterns may not cover all the examples in the data set, just
a fraction of them that occur more frequently than expected by chance (at some significance
level). Tables 2–4 show examples of several data fields from a yellow pages source (Bigbook)
and a stock quote source (Y ahoo Quote), as well as the starting patterns learned for each
field.

3. Applications of Pattern Learning

As we explained in the introduction, wrapper induction systems use information from the
layout of Web pages to create data extraction rules and are therefore vulnerable to changes
in the layout, which occur frequently when the site is redesigned. In some cases the wrapper
continues to extract, but the data is no longer correct. The output of the wrapper may also
change because the format of the source data itself has changed: e.g., when “$” is dropped
from the price field (“9.95” instead of “$9.95”), or book availability changes from “Ships
immediately” to “In Stock: ships immediately.” Because other applications, such as Web
agents (Ambite et al., 2002; Chalupsky et al., 2001), rely on data extracted by wrappers,
wrapper maintenance is an important research problem. We divide the wrapper mainte-
nance problem into two parts, each described separately in the paper. Wrapper verification
automatically detects when a wrapper is not extracting data correctly from a Web source,
while wrapper reinduction automatically fixes broken wrappers. Both applications learn a
description of data, of which patterns learned by DataProG are a significant part.

This introduced a strong bias for specific patterns into the results, which led to a high proportion of
false positives during the wrapper verification experiments. Eliminating the specificity bias, improved
the performance of the algorithm on the verification task.
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BUSINESS NAME ADDRESS
Chado Tea House 8422 West 1st Street
Saladang 363 South Fair Oaks Avenue
Information Sciences Institute 4676 Admiralty Way
Chaya Venice 110 Navy Street
Acorda Therapeutics 330 West 58th Street
Cajun Kitchen 420 South Fairview Avenue
Advanced Medical Billing Services 9478 River Road
Vega 1 Electrical Corporation 1723 East 8th Street
21st Century Foundation 100 East 85th Street
TIS the Season Gift Shop 15 Lincoln Road
Hide Sushi Japanese Restaurant 2040 Sawtelle Boulevard
Afloat Sushi 87 East Colorado Boulevard
Prebica Coffee & Cafe 4325 Glencoe Avenue
L ’ Orangerie 903 North La Cienega Boulevard
Emils Hardware 2525 South Robertson Boulevard
Natalee Thai Restaurant 998 South Robertson Boulevard
Casablanca 220 Lincoln Boulevard
Antica Pizzeria 13455 Maxella Avenue
NOBU Photographic Studio 236 West 27th Street
Lotus Eaters 182 5th Avenue
Essex On Coney 1359 Coney Island Avenue
National Restaurant 273 Brighton Beach Avenue
Siam Corner Cafe 10438 National Boulevard
Grand Casino French Bakery 3826 Main Street
Alejo ’ s Presto Trattoria 4002 Lincoln Boulevard
Titos Tacos Mexican Restaurant Inc 11222 Washington Place
Killer Shrimp 523 Washington Boulevard
Manhattan Wonton CO 8475 Melrose Place
Starting patterns
<Alpha Upper> <Number Upper Upper>
<Alpha Upper Upper Restaurant> <Number Upper Upper Avenue>
<Alpha ’> <Number Upper Upper Boulevard>

Table 2: Examples of the business name and address fields from the Bigbook source, and
the patterns learned from them
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CITY STATE PHONE
Los Angeles CA ( 323 ) 655 - 2056
Pasadena CA ( 626 ) 793 - 8123
Marina Del Rey CA ( 310 ) 822 - 1511
Venice CA ( 310 ) 396 - 1179
New York NY ( 212 ) 376 - 7552
Goleta CA ( 805 ) 683 - 8864
Marcy NY ( 315 ) 793 - 1871
Brooklyn NY ( 718 ) 998 - 2550
New York NY ( 212 ) 249 - 3612
Buffalo NY ( 716 ) 839 - 5090
Los Angeles CA ( 310 ) 477 - 7242
Pasadena CA ( 626 ) 792 - 9779
Marina Del Rey CA ( 310 ) 823 - 4446
West Hollywood CA ( 310 ) 652 - 9770
Los Angeles CA ( 310 ) 839 - 8571
Los Angeles CA ( 310 ) 855 - 9380
Venice CA ( 310 ) 392 - 5751
Marina Del Rey CA ( 310 ) 577 - 8182
New York NY ( 212 ) 924 - 7840
New York NY ( 212 ) 929 - 4800
Brooklyn NY ( 718 ) 253 - 1002
Brooklyn NY ( 718 ) 646 - 1225
Los Angeles CA ( 310 ) 559 - 1357
Culver City CA ( 310 ) 202 - 6969
Marina Del Rey CA ( 310 ) 822 - 0095
Culver City CA ( 310 ) 391 - 5780
Marina Del Rey CA ( 310 ) 578 - 2293
West Hollywood CA ( 323 ) 655 - 6030
Starting patterns
<Upper Upper> <AllCaps> <( 3digit ) 3digit - Large>
<Upper Upper Rey>

Table 3: Examples of the city, state and phone number fields from the Bigbook source, and
the patterns learned from them
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PRICE CHANGE TICKER VOLUME PRICE
+ 0 . 51 INTC 17 , 610 , 300 122 3 / 4
+ 1 . 51 IBM 4 , 922 , 400 109 5 / 16
+ 4 . 08 AOL 24 , 257 , 300 63 13 / 16
+ 0 . 83 T 8 , 504 , 000 53 1 / 16
+ 2 . 35 LU 9 , 789 , 300 68

ATHM 5 , 646 , 400 29 7 / 8
- 10 . 84 COMS 15 , 388 , 200 57 11 / 32
- 1 . 24 CSCO 19 , 135 , 900 134 1 / 2
- 1 . 59 GTE 1 , 414 , 900 65 15 / 16
- 2 . 94 AAPL 2 , 291 , 800 117 3 / 4
+ 1 . 04 MOT 3 , 599 , 600 169 1 / 4
- 0 . 81 HWP 2 , 147 , 700 145 5 / 16
+ 4 . 45 DELL 40 , 292 , 100 57 3 / 16
+ 0 . 16 GM 1 , 398 , 100 77 15 / 16
- 3 . 48 CIEN 4 , 120 , 200 142
+ 0 . 49 EGRP 7 , 007 , 400 25 7 / 8
- 3 . 38 HLIT 543 , 400 128 13 / 16
+ 1 . 15 RIMM 307 , 500 132 1 / 4

C 6 , 145 , 400 49 15 / 16
- 2 . 86 GPS 1 , 023 , 600 44 5 / 8
- 6 . 46 CFLO 157 , 700 103 1 / 4
- 0 . 82 DCLK 1 , 368 , 100 106
+ 2 . 00 NT 4 , 579 , 900 124 1 / 8
+ 0 . 13 BFRE 149 , 000 46 9 / 16
- 1 . 63 QCOM 7 , 928 , 900 128 1 / 16
Starting patterns
<Punct 1digit . 2digit> <AllCaps> <Number , 3digit , 3digit> <Medium 1digit / Number>

<Medium 15 / 16 >

Table 4: Data examples from the Y ahoo Quote source, and the patterns learned from them
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3.1 Wrapper Verification

If the data extracted by the wrapper changes significantly, this is an indication that the
Web source may have changed its format. Our wrapper verification system uses examples
of data extracted by the wrapper in the past that are known to be correct in order to
acquire a description of the data. The learned description contains features of two types:
patterns learned by DataProG and global numeric features, such as the density of tokens
of a particular type. The application then checks that this description still applies to the
new data extracted by the wrapper. Thus, wrapper verification is a specific instance of the
data validation task.

The verification algorithm works in the following way. A set of queries is used to retrieve
HTML pages from which the wrapper extracts (correct) training examples. The algorithm
then computes the values of a vector of features, "k, that describes each field of the training
examples. These features include the patterns that describe the common beginnings (or
endings) of the field. During the verification phase, the wrapper generates a set of (new)
test examples from pages retrieved using the same set of queries, and computes the feature
vector "r associated with each field of the test examples. If the two distributions, "k and "r
(see Fig. 5), are statistically the same (at some significance level), the wrapper is judged to
be extracting correctly; otherwise, it is judged to have failed.
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Figure 5: A hypothetical distribution of features over the training and test examples

Each field is described by a vector, whose ith component is the value of the ith feature,
such as the number of examples that match pattern j. In addition to patterns, we use the
following numeric features to describe the sets of training and test examples: the average
number of tuples-per-page, mean number of tokens in the examples, mean token length, and
the density of alphabetic, numeric, HTML-tag and punctuation types. We use goodness of
fit method (Papoulis 1990) to decide whether the two distributions are the same. To use
the goodness of fit method, we must first compute Pearson’s test statistic for the data. The
Pearson’s test statistic is defined as:
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q =
m∑

i=1

(ti − ei)2

ei
(2)

where ti is the observed value of the ith feature in the test data, and ei is the expected
value for that feature, and m is the number of features. For the patterns ei = nri/N ,
where ri is the number of training examples explained by the ith patter, N is the number
of examples in the training set and n is the number of examples in the test set. For numeric
features ei is simply the value of that feature for the training set. The test statistic q has
a chi-squared distribution with m− 1 independent degrees of freedom. If q < χ2(m− 1;α),
we conclude that at significance level α the two distributions are the same; otherwise, we
conclude that they are different. Values of χ2 for different values of α and m can be looked
up in a statistics table or calculated using an approximation formula.

In order to use the test statistic reliably, it helps to use as many independent features as
possible. In the series of verification experiments reported in (Lerman & Minton, 2000), we
used the starting and ending patterns and the average number of tuples-per-page feature
when computing the value of q. We found that this method tended to overestimate the
test statistic, because the features (starting and ending patterns) were not independent. In
the experiments reported in this paper, we use only the starting patterns, but in order to
increase the number of features, we added numeric features to the description of data.

3.1.1 Results

We monitored 27 wrappers (representing 23 distinct Web sources) over a period of ten
months, from May 1999 to March 2000. The sources are listed in Table 5. For each wrapper,
the results of 15–30 queries were stored periodically, every 7–10 days. We used the same
query set for each source, except for the hotel source, because it accepted dated queries,
and we had to change the dates periodically to get valid results. Each set of new results
(test examples) was compared with the last correct wrapper output (training examples).

The verification algorithm used DataProG to learn the starting patterns and numeric
features for each field of the training examples and made a decision at a high significance
level (corresponding to α = 0.001) about whether the test set was statistically similar to the
training set. If none of the starting patterns matched the test examples or if the data was
found to have changed significantly for any data field, we concluded that the wrapper failed
to extract correctly from the source; otherwise, if all the data fields returned statistically
similar data, we concluded that the wrapper was working correctly.

A manual check of the 438 comparisons revealed 37 wrapper changes attributable to
changes in the source layout and data format.4 The verification algorithm correctly discov-
ered 35 of these changes and made 15 mistakes. Of these mistakes, 13 were false positives,
which means that the verification program decided that the wrapper failed when in reality
it was working correctly. Only two of the errors were the more important false negatives,
meaning that the algorithm did not detect a change in the data source. The numbers above

4. Seven of these were, in fact, internal to the wrapper itself, as when the wrapper was modified to extract
“$22.00” instead of “22.00” for the price field. Because these actions were mostly outside of our control,
we chose to classify them as wrapper changes.
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Source Type Data Fields
airport tuple/list airport code, name
altavista list url, title
Amazon tuple book author, title, price, availability, isbn
arrowlist list part number, manufacturer, price, status,

description, url
Bigbook tuple business name, address, city, state, phone
Barnes&Noble tuple book author, title, price, availability, isbn
borders list book author, title, price, availability
cuisinenet list restaurant name, cuisine, address, city, state,

phone, link
geocoder tuple latitude, longitude, street, city, state
hotel list name, price, distance, url
mapquest tuple hours, minutes, distance, url
northernlight list url, title
parking list lotname, dailyrate
Quote tuple stock ticker, price, pricechange, volume
Smartpages tuple name, address, city, state, phone
showtimes list movie, showtimes
theatre list theater name, url, address
Washington Post tuple taxi price
whitepages list business name, address, city, state, phone
yahoo people list name, address, city, state, phone
Y ahoo Quote tuple stock ticker, price, pricechange, volume
yahoo weather tuple temperature, forecast
cia factbook tuple country area, borders, population, etc.

Table 5: List of sources used in the experiments and data fields extracted from them. Source
type refers to how much data a source returns in response to a query — a single
tuple or a list of tuples. For airport source, the type changed from a single tuple
to a list over time.
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result in the following precision, recall and accuracy values:

P =
true positives

true positives+ false positives
= 0.73 ,

R =
true positives

true positives+ false negatives
= 0.95 ,

A =
true positives+ true negatives

positives + negatives
= 0.97 .

These results are an improvement over those reported in (Lerman & Minton, 2000),
which produced P = 0.47, R = 0.95, A = 0.91. The poor precision value reported in that
work was due to 40 false positives obtained on the same data set. We attribute the im-
provements both to eliminating the specificity bias in the patterns learned by DataProG
and to changing the feature set to include only the starting patterns and additional numeric
features. Note that this improvement does not result simply from adding numeric features.
To check this, we ran the verification experiments on a subset of data (the last 278 compar-
isons) using only the global numeric features and obtained P = 0.92 and R = 0.55, whereas
using both patterns and numeric features results in values of P = 0.71 and R = 1.00 for
the same data set.

3.1.2 Discussion of Results

Though we have succeeded in significantly reducing the number of false positives, we have
not managed to eliminate them altogether. There are a number of reasons for their presence,
some of which point to limitations in our approach.

We can split the types of errors into roughly three not entirely independent classes:
improper tokenization, incomplete data coverage, and data format changes. The URL field
(Table 6) accounted for a significant fraction of the false positives, in large part due to
the design of our tokenizer, which splits text strings on punctuation marks. If the URL
contains embedded punctuation (as part of the alphanumeric key associated with the user or
session id), it will be split into a varying number of tokens, so that it is hard to capture the
regularity of the field. The solution is to rewrite the tokenizer to recognize URLs for which
well defined specifications exist. We will address this problem in our ongoing work. Our
algorithm also failed sometimes (e.g., arrowlist, showtimes) when it learned very long and
specific descriptions. It is worth pointing out, however, that it performed correctly in over
two dozen comparisons for these sources. These types of errors are caused by incomplete
data coverage: a larger, more varied training data set would produce more general patterns,
which would perform better on the verification task. A striking example of the data coverage
problem occurred for the stock quotes source: the day the training data was collected, there
were many more down movements in the stock price than up, and the opposite was true on
the day the test data was collected. As a result, the price change fields for those two days
were dissimilar. Finally, because DataProG learns the format of data, false positives will
inevitably result from changes in the data format and do not indicate a problem with the
algorithm. This is the case for the factbook source, where the units of area changed from
“km2” to “sq km”.
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hotel, mapquest (5 cases): URL field contains alphanumeric keys, with embedded punc-
tuation symbols. The tokenizer splits the field into many tokens. The key or its
format changes from:

http://. . .&Stamp=Q4aaiEGSp68*itn/hot%3da11204,itn/agencies/newitn. . . to
http://. . .&Stamp=8∼bEgGEQrCo*itn/hot%3da11204,itn/agencies/newitn. . .
On one occasion, the server name inside the URL changed: from
http://enterprise.mapquest.com/mqmapgend?MQMapGenRequest=. . . to
http://sitemap.mapquest.com/mqmapgend?MQMapGenRequest=. . .

showtimes, arrowlist (5 cases ): Instance of the showtimes field and part number and
description fields (arrowlist) are very long. Many long, overly specific patterns are
learned for these fields: e.g.,
<( Number : 2digit AllCaps ) , ( Small : 2digit ) , ( Small : 2digit ) , ( 4 : 2digit
) , 6 : 2digit , 7 : 2digit , 9 : 2digit , 10 : 2digit >

altavista (1 case): Database of the search engine appears to have been updated. A different
set of results is returned for each query.

quote (1 case): Data changed — there were many more positive than negative price move-
ments in the test examples

factbook (1 case): Data format changed:
from <Number km2 >
to <Number sq km >

Table 6: List of sources of false positive results on the verification task
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3.2 Wrapper Reinduction

If the wrapper stops extracting correctly, the next challenge is to rebuild it automati-
cally (Cohen, 1999). The extraction rules for our wrappers (Muslea et al., 2001), as well as
many others (cf. (Kushmerick et al., 1997; Hsu & Dung, 1998)), are generated by a machine
learning algorithm, which takes as input several pages from a source and labeled examples
of data to extract from each page. It is assumed that the user labeled all examples cor-
rectly. If we label at least a few pages for which the wrapper fails by correctly identifying
examples of data on them, we can use these examples as input to the induction algorithm,
such as STALKER,5 to generate new extraction rules.6 Note that we do not need to iden-
tify the data on every page — depending on how regular the data layout is, Stalker can
learn extraction rules using a small number of correctly labeled pages. Our solution is to
bootstrap the wrapper induction process (which learns landmark-based rules) by learning
content-based rules. We want to re-learn the landmark-based rules, because for the types
of sites we use, these rules tend to be much more accurate and efficient than content-based
rules.

We employ a method that takes a set of training examples, extracted from the source
when the wrapper was known to be working correctly, and a set of pages from the same
source, and uses a mixture of supervised and unsupervised learning techniques to identify
examples of the data field on new pages. We assume that the format of data did not
change. Patterns learned by DataProG play a significant role in the reinduction task.
In addition to patterns, other features, such as the length of the training examples and
structural information about pages are used. In fact, because page structure is used during
a critical step of the algorithm, we discuss our approach to learning it in detail in the next
paragraph.

3.2.1 Page Template Algorithm

Many Web sources use templates, or page skeletons, to automatically generate pages and
fill them with results of a database query. This is evident in the example in Fig. 6. The
template consists of the heading “RESULTS”, followed by the number of results that match
the query, the phrase “Click links associated with businesses for more information,” then
the heading “ALL LISTINGS,” followed by the anchors “map,” “driving directions,” “add
to My Directory” and the bolded phrase “Appears in the Category.” Obviously, data is not
part of the template — rather, it appears in the slots between template elements.

Given two or more example pages from the same source, we can induce the template
used to generate them (Table 7). The template finding algorithm looks for all sequences
of tokens — both HTML tags and text — that appear exactly once on each page. The
algorithm works in the following way: we pick the smallest page in the set as the template
seed. Starting with the first token on this page, we grow a sequence by appending tokens

5. It does not matter, in fact, matter which wrapper induction system is used. We can easily replace
Stalker with HLRT (Kushmerick et al., 1997) to generate extraction rules.

6. In this paper we will only discuss wrapper reinduction for information sources that return a single tuple
of results per page, or a detail page. In order to create data extraction rules for sources that return lists
of tuples, the Stalker wrapper induction algorithm requires user to specify the first and last elements
of the list, as well as at least two consecutive elements. Therefore, we need to be able to identify these
data elements with a high degree of certainty.
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(a)

(b)

Figure 6: Fragments of two Web pages from the same source displaying restaurant infor-
mation.
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to it, subject to the condition that the sequence appears on every page. If we managed to
build a sequence that’s at least three tokens long7, and this sequence appears exactly once
on each page, it becomes part of the page template. Templates play an important role in
helping identify correct data examples on pages.

input:
P = set of N Web pages

output:
T = page template

begin
p = shortest(P )
T = null
s = null
for t = firsttoken(p) to lasttoken(p)

s′ = concat(s, t)
if ( s′ appears on every page in P )
s = s′

continue
else
n =

∑N
page=1 count(s, page)

if ( n = N AND length(s) ≥ 3 )
add-to-template(T, s)

end if
s = null

end if
end for

end
Table 7: Pseudocode of the template finding algorithm

3.2.2 Automatic Labeling Algorithm

Figure 7 is a schematic outline of the reinduction algorithm, which consists of automatic
data labeling and wrapper induction. Because the latter aspect is described in detail in
other work (Muslea et al., 2001), we focus the discussion below on the automatic data
labeling algorithm.

First, DataProG learns the starting and ending patterns that describe the set of train-
ing examples. These training examples have been collected during wrapper’s normal oper-
ation, while it was correctly extracting data from the Web source. The patterns are used
to identify possible examples of the data field on the new pages. In addition to patterns,
we also calculate the mean (and its variance) of the number-of-tokens in the training ex-
amples. Each new page is then scanned to identify all text segments that begin with one
of the starting patterns and end with one of the ending patterns. Text segments that con-

7. The best value for the minimum length for the page template element was determined empirically to be
three.
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Figure 7: Schematic outline of the reinduction algorithm

tain significantly more or fewer tokens than expected based on the old number-of-tokens
distribution, are eliminated from the set of candidate extracts. The learned patterns are
often too general and will match many, possibly hundreds, text segments on each page.
Among these spurious text segments is the correct example of the data field. The rest of
the discussion is concerned with identifying the correct examples of data on pages.

We exploit some simple a priori assumptions about the structure of Web pages to help
us separate interesting extracts from noise. We expect examples of the same data field to
appear roughly in the same position and in the same context on each page. For example,
Fig. 6 shows fragments of two Web pages from the same source displaying restaurant in-
formation. On both pages the relevant information about the restaurant appears after the
heading “ALL LISTINGS” and before the phrase “Appears in the Category:”. Thus, we
expect the same field, e.g., address, to appear in the same place, or slot, within the page
template. Moreover, the information we are trying to extract will not usually be part of
the page template; therefore, candidate extracts that are part of the page template can
be eliminated from consideration. Restaurant address always follows restaurant name (in
bold) and precedes the city and zip code, i.e., it appears in the same context on every page.
A given field is either visible to the user on every page, or it is invisible (part of an HTML
tag) on every page. In order to use this information to separate extracts, we describe each
candidate extract by a feature vector, which includes positional information, defined by the
(page template) slot number and context. The context is captured by the adjacent tokens:
one token immediately preceding the candidate extract and one token immediately follow-
ing it. We also use a binary feature which has the value one if the token is visible to the
user, and zero if it is part of an HTML tag. Once the candidate extracts have been assigned
feature vectors, we split them into groups, so that within each group, the candidate extracts
are described by the same feature vector.

The next step is to score groups based on their similarity to the training examples. We
expect the highest scoring group to contain correct examples of the data field. One scoring
method involves assigning a rank to the groups based on how many extracts they have
in common with the training examples. This technique generally works well, because at
least some of the data usually remains the same when the Web page layout changes. Of
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course, this assumption does not apply to data that changes frequently, such as weather
information, flight arrival times, stock quotes, etc. However, we have found that even in
these sources, there is enough overlap in the data that our approach works. If the scoring
algorithm assigns zero to all groups, i.e., there exist no extracts in common with the training
examples, a second scoring algorithm is invoked. This scoring method follows the wrapper
verification procedure and finds the group that is most similar to the training examples
based on the patterns learned from the training examples.

The final step of the wrapper reinduction process is to provide the extracts in the top
ranking group to the Stalker wrapper induction algorithm (Muslea et al., 2001) along
with the new pages. Stalker learns data extraction rules for the changed pages. Note
that examples provided to Stalker are required to be the correct examples of the field. If
the set of automatically labeled examples includes false positives, Stalker will not learn
correct extraction rules for that field. False negatives are not a problem, however. If the
reinduction algorithm could not find the correct example of data on a page, that page is
simply not used in the wrapper induction stage.

3.2.3 Results

To evaluate the reinduction algorithm we used only the ten sources (listed in Table 5) that
returned a single tuple of results per page, a detail page.8 The method of data collection
was described in Sec. 3.1.1. Over the period between October 1999 and March 2000 there
were eight format changes in these sources. Since this set is much too small for evaluation
purposes, we created an artificial test set by considering all ten data sets collected for each
source during this period. We evaluated the algorithm by using it to extract data from
Web pages for which correct output is known. Specifically, we took ten tuples from a set
collected on one date, and used this information to extract data from ten pages (randomly
chosen) collected at a later date, regardless of whether the source had actually changed
or not. We reserved the remaining pages collected at a later date for testing the learned
Stalker rules.

The output of the reinduction algorithm is a list of tuples extracted from ten pages, as
well as extraction rules generated by Stalker for these pages. Though in most cases we
were not able to extract every field on every pages, we can still learn good extraction rules
with Stalker as long as few examples of each field are correctly labeled. We evaluated the
reinduction algorithm in two stages: first, we checked how many data fields for each source
were identified successfully; second, we checked the quality of the learned Stalker rules
by using them to extract data from test pages.

Extracting with content-based rules We judged a data field to be successfully ex-
tracted if the automatic labeling algorithm was able to identify it correctly on at least two
of the ten pages. This is the minimum number of examples Stalker needs to create ex-
traction rules. In practice, such a low success rate only occurred for one field each in two

8. We did not use the geocoder and cia factbook wrappers in the experiments. The geocoder wrapper
accessed the source through another application; therefore, the pages were not available to us for analysis.
The reason for excluding the factbook is that it is a plain text source, while our methods apply to Web
pages. Note also that in the verification experiments, we had two wrappers for the mapquest source,
each extracting different data. In the experiments described below, we used the one that contained more
data for this time period.
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of the sources: Quote and Y ahoo Quote. For all other sources, if a field was successfully
extracted, it was correctly identified in at least three, and in most cases almost all, of the
pages in the set. A false positive occurred when the reinduction algorithm incorrectly iden-
tified some text on a page as a correct example of a data field. In many cases, false positives
consisted of partial fields, e.g., “Cloudy” rather than “Mostly Cloudy” (yahoo weather).
A false negative occurred when the algorithm did not identify any examples of a data field.
We ran the reinduction experiment attempting to extract the fields listed in Table 8. The
second column of the table lists the fractions of data sets for which the field was successfully
extracted. We were able to correctly identify fields 277 times across all data sets making
61 mistakes, of which 31 were attributed to false positives and 30 to the false negatives.

There are several reasons the reinduction algorithm failed to operate perfectly. In many
cases the reason was the small training set.9 We can achieve better learning for the yellow-
pages-type sources Bigbook and Smartpages by using more training examples (see Fig. 8).
In two cases, the errors were attributable to changes in the format of data, which resulted
in the failure of patterns to capture the structure of data correctly: e.g., the airport source
changed airport names from capitalized words to allcaps, and in the Quote source in which
the patterns were not able to identify negative price changes because they were learned
for a data set in which most of the stocks had a positive price change. For two sources
the reinduction algorithm could not distinguish between correct examples of the field and
other examples of the same data type: for the Quote source, in some cases it extracted
opening price or high price for the stock price field, while for the yahoo weather source, it
extracted high or low temperature, rather than the current temperature. This problem was
also evident in the Smartpages source, where the city name appeared in several places on
the page. In these cases, user intervention or meta-analysis of the fields may be necessary
to improve results of data extraction.

Extracting with landmark-based rules The final validation experiment consisted of
using the automatically generated wrappers to extract data from test pages. The last three
columns in Table 8 list precision, recall and accuracy for extracting data from test pages.
The performance is very good for most fields, with the notable exception of the STATE field
of Bigbook source. For that field, the pattern <Allcaps> was overly general, and a wrong
group received the highest score during the scoring step of the reinduction algorithm. The
average precision and recall values were P = 0.90 and R = 0.80.

Within the data set we studied, five sources, listed in Table 9, experienced a total of seven
changes. In addition to these sources, the airport source changed the format of the data it
returned, but since it simultaneously changed the presentation of data from a detail page to
a list, we could not use this data to learn Stalker rules. Table 9 shows the performance of
the automatically reinduced wrappers for the changed sources. For most fields precision P ,
the more important of the performance measures, is close to its maximum value, indicating
that there were few false positives. However, small values of recall indicate that not all
examples of these fields were extracted. This result can be traced to a limitation of our
approach: if the same field appears in a different context, more than one rule is necessary

9. Limitations in the data collection procedure prevented us from accumulating large data sets for all
sources; therefore, in order to keep the methodology uniform across all sources, we decided to use
smaller training sets.
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source/field ex % p r
airport code 100 1.0 1.0
airport name 90 1.0 1.0
Amazon author 100 97.3 0.92
Amazon title 70 98.8 0.81
Amazon price 100 1.0 0.99
Amazon ISBN 100 1.0 0.91
Amazon availability 60 1.0 0.86
Barnes&Noble author 100 0.93 0.96
Barnes&Noble title 80 0.96 0.62
Barnes&Noble price 90 1.0 0.68
Barnes&Noble ISBN 100 1.0 0.95
Barnes&Noble availability 90 1.0 0.92
Bigbook name 70 1.0 0.76
Bigbook street 90 1.0 0.87
Bigbook city 70 0.91 0.98
Bigbook state 100 0.04 0.50
Bigbook phone 90 1.0 0.30
mapquest time 100 1.0 0.98
mapquest distance 100 1.0 0.98
Quote pricechange 50 0.38 0.36
Quote ticker 63 0.93 0.87
Quote volume 100 1.0 0.88
Quote shareprice 38 0.46 0.60
Smartpages name 80 1.0 0.82
Smartpages street 80 1.0 0.52
Smartpages city 0 0.68 0.58
Smartpages state 100 1.0 0.70
Smartpages phone 100 0.99 1.0
Y ahoo Quote pricechange 100 1.0 0.41
Y ahoo Quote ticker 100 1.0 0.98
Y ahoo Quote volume 100 1.0 0.99
Y ahoo Quote shareprice 80 1.0 0.59
Washington Post price 100 1.0 1.0
Weather temp 40 0.36 0.82
Weather outlook 90 0.83 1.0
average 83 0.90 0.80

Table 8: Reinduction results on ten Web sources. The first column lists the fraction of the
fields for each source that were correctly extracted by the pattern-based algorithm.
We judged the field to be extracted if the algorithm correctly identified at least
two examples of it. The last two columns list precision and recall on the data
extraction task using the reinduced wrappers.
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Figure 8: Performance of the reinduction algorithm for the fields in the Smartpages source
as the size of the training set is increased

source/field P R A source/field P R A
Amazon author 1.0 1.0 1.0 Smartpages name 1.0 0.9 0.9
Amazon title 1.0 0.7 0.7 Smartpages street N/A 0.0 0.0
Amazon price 0.9 0.9 0.9 Smartpages city 0.0 0.0 0.0
Amazon ISBN 1.0 0.9 0.9 Smartpages state 1.0 0.9 0.9
Amazon availability 1.0 0.9 0.9 Smartpages phone N/A 0.0 0.0
Barnes&Noble author 1.0 0.5 0.5 Y ahoo Quote pricechange 1.0 0.2 0.2
Barnes&Noble title 1.0 0.8 0.8 Y ahoo Quote ticker 1.0 0.5 0.5
Barnes&Noble price 1.0 1.0 1.0 Y ahoo Quote volume 1.0 0.7 0.7
Barnes&Noble ISBN 1.0 1.0 1.0 Y ahoo Quote shareprice 1.0 0.7 0.7
Barnes&Noble availability 1.0 1.0 1.0
Quote pricechange 0.0 0.0 0.0 Quote volume 1.0 1.0 1.0
Quote ticker 1.0 1.0 1.0 Quote shareprice 0.0 N/A 0.0

Table 9: Precision, recall, and accuracy of the learned STALKER rules for the changed
sources

to extract it from a source. In such cases, we extract only a subset of the examples that
share the same context, but ignore the rest of the examples.

As mentioned earlier, we believe we can achieve better performance for the yellow-pages-
type sources Bigbook and Smartpages by using more training examples. Figure 8 shows the
effect increasing the size of the training example set on the performance of the automatically
generated wrappers for the Smartpages source. As the number of training examples goes
up, the accuracy of most extracted fields goes up.
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3.2.4 Lists

We have also applied the reinduction algorithm to extract data from pages containing lists
of tuples, and, in many cases, have successfully extracted at least several examples of each
field from several pages. However, in order to learn the correct extraction rules for sources
returning lists of data, Stalker requires that the first, last and at least two consecutive
list elements be correctly specified. The methods presented here cannot guarantee that
the required list elements are extracted, unless all the list elements are extracted. We are
currently working on new approaches to data extraction from lists (Lerman, Knoblock, &
Minton, 2001) that will enable us to use Stalker to learn the correct data extraction rules.

4. Previous Work

There has been a significant amount of research activity in the area of pattern learning. In
the section below we discuss two approaches, grammar induction and relational learning,
and compare their performance to DataProG on tasks in the Web wrapper application
domain. In Section 4.2 we review previous work on topics related to wrapper maintenance,
and in Section 4.3 we discuss related work in information extraction and wrapper induction.

4.1 Pattern Learning

4.1.1 Grammar induction

Several researchers have addressed the problem of learning the structure, or patterns, de-
scribing text data. In particular, grammar induction algorithms have been used in the past
to learn the common structure of a set of strings. Carrasco and Oncina proposed ALER-
GIA (Carrasco & Oncina, 1994), a stochastic grammar induction algorithm that learns a
regular language from positive examples of the language. ALERGIA starts with a finite
state automaton (FSA) that is initialized to be a prefix tree that represents all the strings
of the language. ALERGIA uses a state-merging approach (Angluin, 1982; Stolcke & Omo-
hundro, 1994) in which the FSA is generalized by merging pairs of statistically similar (at
some significance level) subtrees. Similarity is based purely on the relative frequencies of
substrings encoded in the subtrees. The end result is a minimum FSA that is consistent
with the grammar.

Goan et al. (Goan et al., 1996) found that when applied to data domains commonly
found on the Web, such as addresses, phone numbers, etc., ALERGIA tended to merge
too many states, resulting in an over-general grammar. They proposed modifications to
ALERGIA, resulting in algorithmWIL, aimed at reducing the number of faulty merges. The
modifications were motivated by the observation that each symbol in a string belong to one
of the following syntactic categories: NUMBER, LOWER, UPPER and DELIM. When
viewed on the syntactic level, data strings contain additional structural information that can
be effectively exploited to reduce the number of faulty merges. WIL merges two subtrees if
they are similar (in the ALERGIA sense) and also if, at every level, they contain nodes that
are of the same syntactic type. WIL also adds a wildcard generalization step in which the
transitions corresponding to symbols of the same category that are approximately evenly
distributed over the range of that syntactic type (e.g., 0–9 for numerals) are replaced with
a single transition corresponding to the type (e.g., NUMBER). Goan et al. demonstrated
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that the grammars learned by WIL were more effective in recognizing new strings in several
relevant Web domains.

We compared the performance of WIL to DataProG on the wrapper verification task.
We used WIL to learn the grammar on the token level using data examples extracted by
the wrappers, not on the character level as was done by Goan et al.Another difference from
Goan et al. was that, whereas they needed on the order of 100 strings to arrive at a high
accuracy rate, we have on the order of 20–30 examples to work with. Note that we can
no longer apply the wildcard generalization step to the FSA because we would need many
more examples to decide whether the token is approximately evenly distributed over that
syntactic type. Instead, we compare DataProG against two versions of WIL: one without
wildcard generalization (WIL1), and one in which every token in the initial FSA is replaced
by its syntactic type (WIL2). In addition to the syntactic types used by Goan et al., we
also had to introduce another type ALNUM to be consistent with the patterns learned by
DataProG. Neither version of WIL allows for multi-level generalization.

The algorithms were tested on data extracted by wrappers from 26 Web sources on ten
different occasions over a period of several months (see Sec. 3.1). Results of 20–30 queries
were stored every time. For each wrapper, one data set was used as the training examples,
and the data set extracted on the very next date was used as test examples. We used WIL1
and WIL2 to learn the grammar of each field of the training examples and then used the
grammar to recognize the test examples. If the grammar recognized more than 80% of the
test examples of a data field, we concluded that it recognized the entire data field; otherwise,
we concluded that the grammar did not recognize the field, possibly because the data itself
has changed. This is the same procedure we used in the wrapper verification experiments,
and it is described in greater detail in Section 3.1.1. Over the period of time covered by
the data, there were 21 occasions on which a Web site changed, thereby causing the data
extracted by the wrapper to change as well. The precision and recall values for WIL1
(grammar induction on specific tokens) were P = 0.20, and R = 0.81; for WIL2 (grammar
induction on wildcards representing tokens’ syntactic categories) the values were P = 0.55
and R = 0.76. WIL1 learned an overly specific grammar, which resulted in a high rate
of false positives on the verification task, while WIL2 learned an overly general grammar,
resulting in slightly more false negatives. The recall and precision value of DataProG for
the same data were P = 0.73 and R = 1.0.

Recently Thollard et al. (Thollard, Dupont, & de la Higuera, 2000) introduced MDI, an
extension to ALERGIA. MDI has been shown to generate better grammars in at least one
domain by reducing the number of faulty merges between states . MDI replaces ALERGIA’s
state merging criterion with a more global measure that attempts to minimize the Kullback-
Leibler divergence between the learned automaton and the training sample while at the same
time keeping the size of the automaton as small as possible. It is not clear whether MDI
(or a combination of MDI/WIL) will lead to better grammars for common Web data types.
We suspect not, because regular grammars capture just a few of the multitude of data types
found on the Web. For example, business names, such as restaurant names shown in Table 2
may not have a well defined structure, yet many of them start with two capitalized words
and end with the word “Restaurant” — which constitute patterns learned by DataProG.
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4.1.2 Relational learning

As a sequence of n tokens, a pattern can also be viewed as a non-recursive n-ary predicate.
Therefore, we can use a relation-learning algorithm like FOIL (Quinlan, 1990) to learn them.
Given a set of positive and negative examples of a class, FOIL learns first order predicate
logic clauses defining the class. Specifically, it finds a discriminating description that covers
many positive and none of the negative examples.

We used Foil.6 with the no-negative-literals option to learn patterns describing several
different data fields. In all cases the closed world assumption was used to construct negative
examples from the known objects: thus, for the Bigbook source, names and addresses were
the negative examples for the phone number class. We used the following encoding to
translate the training examples to allow foil.6 to learn logical relations. For each data field,
FOIL learned clauses of the form

data field(A) := P (A) followed by(A,B) P (B) , (3)

as a definition of the field, where A and B are tokens, and the terms on the right hand side
are predicates. The predicate followed by(A,B) expresses the sequential relation between
the tokens. The predicate P (A) allows us to specify the token A as a specific token (e.g.,
John(A)) or a general type (e.g., Upper(A), Alpha(A)), thus, allowing FOIL the same
multi-level generalization capability as DataProG.

We ran Foil.6 on the examples associated with the Bigbook (see Tables 2–3). The
relational definitions learned by Foil.6 from these examples are shown in Table 10.

In many cases, there were similarities between the definitions learned by FOIL and
the patterns learned by DataProG, though clauses learned by FOIL tended to be overly
general. Another problem was when given examples of a class with little structure, such
as names and book titles, FOIL tended to create clauses that covered single examples, or it
failed to find any clauses. In general, the description learned by FOIL depended critically
on what we supplied as negative examples of that field. For example, if we were trying to
learn a definition for book titles in the presence of prices, FOIL would learn that something
that starts with a capitalized word is a title. If author names were supplied as negative
examples as well, the learned definition would have been different. Therefore, using FOIL
in situations where the complete set of negative examples is not known or available, is
problematic.

4.2 Wrapper Maintenance

Kushmerick (Kushmerick, 1999) addressed the problem of wrapper verification by proposing
an algorithm Rapture to verify that a wrapper correctly extracts data from a Web page.
In that work, each data field was described by a collection of global features, such as
word count, average word length, and density of types, i.e., proportion of characters in the
training examples that are of an HTML, alphabetic, or numeric type. Rapture calculated
the mean and variance of each feature’s distribution over the training examples. Given a
set of queries for which the wrapper output is known, Rapture generates a new result for
each query and calculates the probability of generating the observed value for every feature.
Individual feature probabilities are then combined to produce an overall probability that
the wrapper has extracted data correctly. If this probability exceeds a certain threshold,
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*** Warning: the following definition does not cover 23 tuples in the relation
NAME(A) := AllCaps(A), followed by(A,B)
NAME(A) := Upper(A), followed by(A,B), Number(B)
NAME(A) := followed by(A,B), Venice(B)

STREET(A) := Large(A), followed by(A,B)
STREET(A) := Medium(A), followed by(A,B), AlphaNum(B)

** Warning: the following definition does not cover 9 tuples in the relation
CITY(A) := Los(A)
CITY(A) := Marina(A)
CITY(A) := New(A)
CITY(A) := Brooklyn(A)
CITY(A) := West(A), followed by(A,B), Alpha(B)

STATE(A) := CA(A)
STATE(A) := NY(A)

PHONE(A) := ((A)

Table 10: Definitions learned by foil.6 for the Bigbook source

Rapture decides that the wrapper is correct; otherwise, that it has failed. Kushmerick
found that the HTML density alone can correctly identify almost all of the changes in
the sources he monitored. In fact, adding other features in the probability calculation
significantly reduced algorithm’s performance. We compared Rapture’s performance on
the verification task to our approach, and found that Rapture missed 17 wrapper changes
(false negatives) if it relied solely on the HTML density feature. 10

There has been relatively little prior work on the wrapper reinduction problem. Co-
hen (Cohen, 1999) adapted WHIRL, a “soft” logic that incorporates a notion of statistical
text similarity, to recognize page structure of a narrow class of pages: those containing
simple lists and simple hotlists (defined as anchor-URL pairs). Previously extracted data,
combined with page structure recognition heuristics, was used to reconstruct the wrapper
once the page structure changed. Cohen conducted wrapper maintenance experiments us-
ing original data and corrupted data as examples for WHIRL. However, his procedure for
corrupting data was neither realistic nor representative of how data on the Web changes.
Although we cannot at present guarantee good performance of our algorithm on the wrap-
per reinduction for sources containing lists, we handle the realistic data changes in Web
sources returning detail pages.

10. Although we use a different statistical test and cannot compare the performance of our algorithm to
Rapture directly, we doubt that it would outperform our algorithm on our data set if it used all global
numeric features, because, as we noted in Section 3.1.1, using patterns as well as global numeric features
in the verification task outperforms using numeric features only.
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4.3 Information Extraction

Our system, as used in the reinduction task, is related in spirit to the many information
extraction (IE) systems developed both by our group and others in that it uses a learned
representation of data to extract information from specific texts. Like wrapper induction
systems (see (Muslea et al., 2001; Kushmerick et al., 1997; Freitag & Kushmerick, 2000)),
it is domain independent and works best with semi-structured data, e.g., Web pages. It
does not handle free text as well as other systems, such as AutoSlog (Riloff, 1993) and
Whisk (Soderland, 1999), because free text has fewer non-trivial regularities the algorithm
can exploit. Unlike wrapper induction, it does not extract data based on the features that
appear near it in text, but rather based on the content of data itself. However, unlikeWhisk,
which also learns content rules, our reinduction system represents each field independently
of the other fields, which can be an advantage, for instance, when a web source changes the
order in which data fields appear. Another difference is that our system is designed to run
automatically, without requiring any user interaction to label informative examples. In the
main part because it is purely automatic, the reinduction system fails to achieve the accuracy
of other IE systems which rely on labeled examples to train the system; however, we do
not see it as a major limitation, since it was designed to complement existing extraction
tools, rather than supersede them. In other words, we consider the reinduction task to be
successful if it can accurately extract a sufficient number of examples to use in a wrapper
induction system. The system can then use the resulting wrapper to accurately extract the
rest of the data from the source.

There are many similarities between our approach and that used by the RoadRun-
ner system, developed concurrently with our system and reported recently in (Crescenzi,
Mecca, & Merialdo, 2001b, 2001a). The goal of that system is to automatically extract
data from Web sources by exploiting similarities in page structure across multiple pages.
RoadRunner works by inducing the grammar of Web pages by comparing several pages
containing long lists of data. The grammar is expressed at the HTML tag level, so it is
similar to the extraction rules generated by Stalker. The RoadRunner system has been
shown to successfully extract data from several Web sites. The two significant differences
between that work and ours are (i) they do not have a way of detecting changes to know
when the wrapper has to be rebuilt and (ii) our reinduction algorithm works on detail pages
only, while RoadRunner works only on lists. We believe that our data-centric approach is
more flexible and will allow us to extract data from more diverse information sources than
the RoadRunner approach that only looks at page structure.

5. Conclusion

In this paper we have described the DataProG algorithm, which learns structural infor-
mation about a data field from a set of examples of the field. We use these patterns in
two Web wrapper maintenance applications: (i) verification — detecting when a wrapper
stops extracting data correctly from a Web source, and (ii) reinduction — identifying new
examples of the data field in order to rebuild the wrapper if it stops working. The veri-
fication algorithm performed with an accuracy of 97%, much better than results reported
in our earlier work (Lerman & Minton, 2000). In the reinduction task, the patterns were
used to identify a large number of data fields on Web pages, which were in turn used to
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automatically learn Stalker rules for these Web sources. The new extraction rules were
validated by using them to successfully extract data from sets of test pages.

There remains work to be done on wrapper maintenance. Our current algorithms are not
sufficient to automatically re-generate Stalker rules for sources that return lists of tuples.
However, preliminary results indicate (Lerman et al., 2001) that it is feasible to combine
information about the structure of data with a priori expectations about the structure of
Web pages containing lists to automatically extract data from lists and assign it to rows and
columns. We believe that these techniques will eventually eliminate the need for the user to
mark up Web pages and enable us to automatically generate wrappers for Web sources. An-
other exciting direction for future work is using the DataProG algorithm to automatically
create wrappers for new sources in some domain given existing wrappers for other sources
in the same domain. For example, we can learn the author, title and price fields for the
AmazonBooks source, and use them to extract the same fields on the Barnes&NobleBooks
source. Preliminary results show that this is indeed feasible. Automatic wrapper generation
is an important cornerstone of information-based applications, including Web agents.
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