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Abstract

This paper focuses on a system, Wolfie (WOrd Learning From Interpreted Exam-
ples), that acquires a semantic lexicon from a corpus of sentences paired with semantic
representations. The lexicon learned consists of phrases paired with meaning represen-
tations. Wolfie is part of an integrated system that learns to transform sentences into
representations such as logical database queries.

Experimental results are presented demonstrating Wolfie’s ability to learn useful
lexicons for a database interface in four different natural languages. The usefulness of
the lexicons learned by Wolfie are compared to those acquired by a similar system, with
results favorable to Wolfie. A second set of experiments demonstrates Wolfie’s ability
to scale to larger and more difficult, albeit artificially generated, corpora.

In natural language acquisition, it is difficult to gather the annotated data needed
for supervised learning; however, unannotated data is fairly plentiful. Active learning
methods attempt to select for annotation and training only the most informative examples,
and therefore are potentially very useful in natural language applications. However, most
results to date for active learning have only considered standard classification tasks. To
reduce annotation effort while maintaining accuracy, we apply active learning to semantic
lexicons. We show that active learning can significantly reduce the number of annotated
examples required to achieve a given level of performance.

1. Introduction and Overview

A long-standing goal for the field of artificial intelligence is to enable computer understand-
ing of human languages. Much progress has been made in reaching this goal, but much also
remains to be done. Before artificial intelligence systems can meet this goal, they first need
the ability to parse sentences, or transform them into a representation that is more easily
manipulated by computers. Several knowledge sources are required for parsing, such as a
grammar, lexicon, and parsing mechanism.

Natural language processing (NLP) researchers have traditionally attempted to build
these knowledge sources by hand, often resulting in brittle, inefficient systems that take
a significant effort to build. Our goal here is to overcome this “knowledge acquisition
bottleneck” by applying methods from machine learning. We develop and apply methods
from empirical or corpus-based NLP to learn semantic lexicons, and from active learning to
reduce the annotation effort required to learn them.
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The semantic lexicon is one NLP component that is typically challenging and time con-
suming to construct and update by hand. Our notion of semantic lexicon, formally defined
in Section 3, is that of a list of phrase-meaning pairs, where the meaning representation is
determined by the language understanding task at hand, and where we are taking a com-
positional view of sentence meaning (Partee, Meulen, & Wall, 1990). This paper describes
a system, Wolfie (WOrd Learning From Interpreted Examples), that acquires a semantic
lexicon of phrase-meaning pairs from a corpus of sentences paired with semantic represen-
tations. The goal is to automate lexicon construction for an integrated NLP system that
acquires both semantic lexicons and parsers for natural language interfaces from a single
training set of annotated sentences.

Although many others (Sébillot, Bouillon, & Fabre, 2000; Riloff & Jones, 1999; Siskind,
1996; Hastings, 1996; Grefenstette, 1994; Brent, 1991) have presented systems for learning
information about lexical semantics, we present here a system for learning lexicons of phrase-
meaning pairs. Further, our work is unique in its combination of several features, though
prior work has included some of these aspects. First, its output can be used by a system,
Chill (Zelle & Mooney, 1996; Zelle, 1995), that learns to parse sentences into semantic
representations. Second, it uses a fairly straightforward batch, greedy, heuristic learning
algorithm that requires only a small number of examples to generalize well. Third, it is
easily extendible to new representation formalisms. Fourth, it requires no prior knowledge
although it can exploit an initial lexicon if provided. Finally, it simplifies the learning
problem by making several assumptions about the training data, as described further in
Section 3.2.

We test Wolfie’s ability to acquire a semantic lexicon for a natural language interface
to a geographical database using a corpus of queries collected from human subjects and
annotated with their logical form. In this test, Wolfie is integrated with Chill, which
learns parsers but requires a semantic lexicon (previously built manually). The results
demonstrate that the final acquired parser performs nearly as accurately at answering novel
questions when using a learned lexicon as when using a hand-built lexicon. Wolfie is
also compared to an alternative lexicon acquisition system developed by Siskind (1996),
demonstrating superior performance on this task. Finally, the corpus is translated into
Spanish, Japanese, and Turkish, and experiments are conducted demonstrating an ability
to learn successful lexicons and parsers for a variety of languages.

A second set of experiments demonstrates Wolfie’s ability to scale to larger and more
difficult, albeit artificially generated, corpora. Overall, the results demonstrate a robust
ability to acquire accurate lexicons directly usable for semantic parsing. With such an
integrated system, the task of building a semantic parser for a new domain is simplified. A
single representative corpus of sentence-representation pairs allows the acquisition of both
a semantic lexicon and parser that generalizes well to novel sentences.

While building an annotated corpus is arguably less work than building an entire NLP
system, it is still not a simple task. Redundancies and errors may occur in the training data.
A goal should be to also minimize the annotation effort, yet still achieve a reasonable level
of generalization performance. In the case of natural language, there is frequently a large
amount of unannotated text available. We would like to automatically, but intelligently,
choose which of the available sentences to annotate.

2



Acquiring Word-Meaning Mappings

We do this here using a technique called active learning. Active learning is a research
area in machine learning that features systems that automatically select the most informa-
tive examples for annotation and training (Cohn, Atlas, & Ladner, 1994). The primary goal
of active learning is to reduce the number of examples that the system is trained on, thereby
reducing the example annotation cost, while maintaining the accuracy of the acquired in-
formation. To demonstrate the usefulness of our active learning techniques, we compared
the accuracy of parsers and lexicons learned using examples chosen by active learning for
lexicon acquisition, to those learned using randomly chosen examples, finding that active
learning saved significant annotation cost over training on randomly chosen examples. This
savings is demonstrated in the geography query domain.

In summary, this paper provides a new statement of the lexicon acquisition problem
and demonstrates a machine learning technique for solving this problem. Next, by com-
bining this with previous research, we show that an entire natural language interface can
be acquired from one training corpus. Further, we demonstrate the application of active
learning techniques to minimize the number of sentences to annotate as training input for
the integrated learning system.

The remainder of the paper is organized as follows. Section 2 gives more background
information on Chill and introduces Siskind’s lexicon acquisition system, which we will
compare to Wolfie in Section 5. Sections 3 and 4 formally define the learning problem and
describe the Wolfie algorithm in detail. In Section 5 we present and discuss experiments
evaluating Wolfie’s performance in learning lexicons in a database query domain and for
an artificial corpus. Next, Section 6 describes and evaluates our use of active learning
techniques for Wolfie. Sections 7 and 8 discuss related research and future directions,
respectively. Finally, Section 9 summarizes our research and results.

2. Background

In this section we give an overview of Chill, the system that our research adds to. We also
describe Jeff Siskind’s lexicon acquisition system.

2.1 Chill

The output produced by Wolfie can be used to assist a larger language acquisition system;
in particular, it is currently used as part of the input to a parser acquisition system called
Chill (Constructive Heuristics Induction for Language Learning). Chill uses inductive
logic programming (Muggleton, 1992; Lavrac̆ & Dz̆eroski, 1994) to learn a deterministic
shift-reduce parser (Tomita, 1986) written in Prolog. The input to Chill is a corpus of
sentences paired with semantic representations, the same input required by Wolfie. The
parser learned is capable of mapping the sentences into their correct representations, as well
as generalizing well to novel sentences. In this paper, we limit our discussion to Chill’s
ability to acquire parsers that map natural language questions directly into Prolog queries
that can be executed to produce an answer (Zelle & Mooney, 1996). Following are two
sample queries for a database on U.S. geography, paired with their corresponding Prolog
query:
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<Sentence, Representation>

<Phrase, Meaning>

Prolog
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Examples WOLFIE
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Final
Parser

Figure 1: The Integrated System

What is the capital of the state with the biggest population?
answer(C, (capital(S,C), largest(P, (state(S), population(S,P))))).

What state is Texarkana located in?
answer(S, (state(S), eq(C,cityid(texarkana, )), loc(C,S))).

Chill treats parser induction as the problem of learning rules to control the actions of
a shift-reduce parser. During parsing, the current context is maintained in a stack and a
buffer containing the remaining input. When parsing is complete, the stack contains the
representation of the input sentence. There are three types of operators that the parser uses
to construct logical queries. One is the introduction onto the stack of a predicate needed in
the sentence representation due to a phrase’s appearance at the front of the input buffer.
These operators require a semantic lexicon as background knowledge. For details on this
and the other two parsing operators, see Zelle and Mooney (1996). By using Wolfie, the
lexicon is provided automatically. Figure 1 illustrates the complete system.

2.2 Jeff Siskind’s Lexicon Learning Research

The most closely related previous research into automated lexicon acquisition is that of
Siskind (1996), itself inspired by work by Rayner, Hugosson, and Hagert (1988). As we
will be comparing our system to his in Section 5, we describe the main features of his
research in this section. His goal is one of cognitive modeling of children’s acquisition of the
lexicon, where that lexicon can be used for both comprehension and generation. Our goal
is a machine learning and engineering one, and focuses on a lexicon for comprehension and
use in parsing, using a learning process that does not claim any cognitive plausibility, and
with the goal of learning a lexicon that generalizes well from a small number of training
examples.

His system takes an incremental approach to acquiring a lexicon. Learning proceeds in
two stages. The first stage learns which symbols in the representation are to be used in the
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(‘‘capital’’, capital(_,_)), (‘‘state’’, state(_)),
(‘‘biggest’’, largest(_,_)), (‘‘in’’, loc(_,_)),
(‘‘highest point’’, high_point(_,_)), (‘‘long’’, len(_,_)),
(‘‘through’’, traverse(_,_)), (‘‘capital’’, capital(_)),
(‘‘has’’, loc(_,_))

Figure 2: Sample Semantic Lexicon

final “conceptual expression” that represents the meaning of a word, by using a version-
space approach. The second stage learns how these symbols are put together to form the
final representation. For example, when learning the meaning of the word “raise”, the
algorithm may learn the set {CAUSE, GO, UP} during the first stage and put them together
to form the expression CAUSE(x, GO(y, UP)) during the second stage.

Siskind (1996) shows the effectiveness of his approach on a series of artificial corpora.
The system handles noise, lexical ambiguity, referential uncertainty, and very large cor-
pora, but the usefulness of lexicons learned is only compared to the “correct,” artificial
lexicon. The goal of the experiments presented there was to evaluate the correctness and
completeness of learned lexicons. Earlier work (Siskind, 1992) also evaluated versions of his
technique on a quite small corpus of real English and Japanese sentences. We extend that
evaluation to a demonstration of the system’s usefulness in performing real world natural
language processing tasks, using a larger corpus of real sentences.

3. The Lexicon Acquisition Problem

Although in the end our goal is to acquire an entire natural language interface, we currently
divide the task into two parts, the lexicon acquisition component and the parser acquisition
component. In this section, we discuss the problem of acquiring semantic lexicons that
assist parsing and the acquisition of parsers. The training input consists of natural language
sentences paired with their meaning representations. From these pairs we extract a lexicon
consisting of phrases paired with their meaning representations. Some training pairs were
given in the previous section, and a sample lexicon is shown in Figure 2.

3.1 Formal Definition

To present the learning problem more formally, some definitions are needed. While in the
following we use the terms “string” and “substring,” these extend straight-forwardly to
natural language sentences and phrases, respectively. We also refer to labeled trees, making
the assumption that the semantic meanings of interest can be represented as such. Most
common representations can be recast as labeled trees or forests, and our formalism extends
easily to the latter.

Definition: Let ΣV , ΣE be finite alphabets of vertex labels and edge labels, respectively.
Let V be a finite nonempty set of vertices, l a total function l : V → ΣV , E a set of unordered
pairs of distinct vertices called edges, and a a total function a : E → ΣE. G = (V, l, E, a) is
a labeled graph.
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Figure 3: Labeled Trees and Interpretations

Definition: A labeled tree is a connected, acyclic labeled graph.

Figure 3 shows the labeled tree t1 (with vertices 1-8) on the left, with associated vertex
and edge labels on the right. The function l is:1

{ (1, ingest), (2, person), (3, food), (4, female), (5, child), (6, pasta),
(7, food), (8, cheese) }.

The tree t1 is a semantic representation of the sentence s1: “The girl ate the pasta with the
cheese.” Using a conceptual dependency (Schank, 1975) representation in Prolog list form,
the meaning is:

[ingest, agent:[person, sex:female, age:child],
patient:[food, type:pasta, accomp:[food, type:cheese]]].

Definition: A u-v path in a graph G is a finite alternating sequence of vertices and edges
of G, in which no vertex is repeated, that begins with vertex u and ends with vertex v, and
in which each edge in the sequence connects the vertex that precedes it in the sequence to
the vertex that follows it in the sequence.

Definition: A directed, labeled tree T = (V, l, E, a) is a labeled tree whose edges consist of
ordered pairs of vertices, with a distinguished vertex r, called the root, with the property
that for every v ∈ V , there is a directed r-v path in T , and such that the underlying
undirected unlabeled graph induced by (V,E) is a connected, acyclic graph.

Definition: An interpretation f from a finite string s to a directed, labeled tree t is a
one-to-one function mapping a subset s′ of the substrings of s, such that no two strings in
s′ overlap, into the vertices of t such that the root of t is in the range of f .
1. We omit enumeration of the function e but it could be given in a similar manner, for example ((1,2),

agent) is an element of e.
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The interpretation provides information about what parts of the meaning of a sentence
originate from which of its phrases. In Figure 3, we show an interpretation, f1, of s1 to t1.
Note that “with” is not in the domain of f1, since s′ is a subset of the substrings of s, thus
allowing some words in s to have no meaning. Because we disallow overlapping substrings
in the domain, both “cheese” and “the cheese” could not map to vertices in t1.

Definition: Given an interpretation f of string s to tree t, and an element p of the domain
of f , the meaning of p relative to s, t, f is the connected subgraph of t whose vertices
include f(p) and all its descendents except any other vertices in the range of f and their
descendents.

Meanings in this sense concern the “lowest level” of phrasal meanings, occurring at the
terminal nodes of a semantic grammar, namely the entries in the semantic lexicon. The
grammar can then be used to construct the meanings of longer phrases and entire sentences.
This is our motivation for the previously stated constraint that the root must be included
in the range of f : we want all vertices in the sentence representation to be included in the
meaning of some phrase. Note that the meaning of p is also a directed tree with f(p) as its
root. Figure 4 shows the meanings of each phrase in the domain of interpretation function
f1 shown in Figure 3. We show only the labels on the vertices and edges for readability.

Definition: Given a finite set STF of triples < s1, t1, f1 >, . . . , < sn, tn, fn >, where each
si is a finite string, each ti is a directed, labeled tree, and each fi is an interpretation function
from si to ti, let the language LSTF = {p1, . . . , pk} of STF be the union of all substrings2

that occur in the domain of some fi. For each pj ∈ LSTF , the meaning set of pj, denoted
MSTF (pj),3 is the set of all meanings of pj relative to si, ti, fi for some < si, ti, fi >∈ STF .
We consider two meanings to be the same if they are isomorphic trees taking labels into
account.

For example, given sentence s2: “The man ate the cheese,” the labeled tree t2 pictured
in Figure 5, and f2 defined as: f2(“ate”) = 1, f2(“man”) = 2, f2(“the cheese”) = 3; the

2. We consider two substrings to be the same string if they contain the same characters in the same order,
irrespective of their positions within the larger string in which they occur.

3. We omit the subscript on M when the set STF is obvious from context.
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meaning set of “the cheese” with respect to STF = {< s1, t1, f1 >,< s2, t2, f2 >} is {[food,
type:cheese]}, just one meaning though f1 and f2 map “the cheese” to different vertices
in the two trees, because the subgraphs denoting the meaning of “the cheese” for the two
functions are isomorphic.

Definition: Given a finite set STF of triples < s1, t1, f1 >, . . . , < sn, tn, fn >, where each
si is a finite string, each ti is a directed, labeled tree, and each fi is an interpretation
function from si to ti, the covering lexicon expressed by STF is

{(p,m) : p ∈ LSTF ,m ∈ M(p)}.

The covering lexicon L expressed by STF = {< s1, t1, f1 >,< s2, t2, f2 >} is:

{ (“girl”, [person, sex:female, age:child]),
(“man”, [person, sex:male, age:adult]),
(“ate”, [ingest]),
(“pasta”, [food, type:pasta]),
(“the cheese”, [food, type:cheese]) }.

The idea of a covering lexicon is that it provides, for each string (sentence) si, a meaning
for some of the phrases in that sentence. Further, these meanings are trees whose labeled
vertices together include each of the labeled vertices in the tree ti representing the meaning
of si, with no vertices duplicated, and containing no vertices not in ti. Edge labels may
or may not be included, since the idea is that some of them are due to syntax, which the
parser will provide; those edges capturing lexical semantics are in the lexicon. Note that
because we only include in the covering lexicon phrases (substrings) that are in the domains
of the fi’s, words with the empty tree as meaning are not included in the covering lexicon.
Note also that we will in general use “phrase” to mean substrings of sentences, whether
they consist of one word, or more than one. Finally the strings in the covering lexicon may
contain overlapping words even though those in the domain of an individual interpretation
function must not, since those overlapping words could have occurred in different sentences.

Finally, we are ready to define the learning problem at hand.
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The Lexicon Acquisition Problem:
Given: a multiset of strings S = {s1, . . . , sn} and a multiset of labeled trees T = {t1, . . . , tn},
Find: a multiset of interpretation functions, F = {f1, . . . , fn}, such that the cardinality of
the covering lexicon expressed by STF = {< s1, t1, f1 >, . . . , < sn, tn, fn >} is minimized.
If such a set is found, we say we have found a minimal set of interpretations (or a minimal
covering lexicon). 2

Less formally, a learner is presented with a multiset of sentences (S) paired with their
meanings (T ); the goal of learning is to find the smallest lexicon consistent with this data.
This lexicon is the paired listing of all phrases occurring in the domain of some fi ∈ F
(where F is the multiset of interpretation functions found) with each of the elements in
their meaning sets. The motivation for finding a lexicon of minimal size is the usual bias
towards simplicity of representation and generalization beyond the training data. While
this definition allows for phrases of any length, we will usually want to limit the length
of phrases to be considered for inclusion in the domain of the interpretation functions, for
efficiency purposes.

Once we determine a set of interpretation functions for a set of strings and trees, there
is only one unique covering lexicon expressed by STF . However, this might not be the
only set of interpretation functions possible, and may not result in the lexicon with smallest
cardinality. For example, the covering lexicon given with the previous example is not a
minimal covering lexicon. For the two sentences given, we could find minimal, though
rather degenerate, lexicons such as:

{ (“girl”, [ingest, agent:[person, sex:female, age:child],
patient:[food, type:pasta, accomp:[food, type:cheese]]]),

(“man”, [ingest, agent:[person, sex:male, age:adult],
patient:[food, type:cheese]]) }

This type of lexicon becomes less likely as the size of the corpus grows.

3.2 Implications of the Definition

This definition of the lexicon acquisition problem differs from that given by other authors,
including Riloff and Jones (1999), Siskind (1996), Manning (1993), Brent (1991) and others,
as further discussed in Section 7. Our definition of the problem makes some assumptions
about the training input. First, by making f a function instead of a relation, the definition
assumes that the meaning for each phrase in a sentence appears once in the representation
of that sentence, the single-use assumption. Second, by making f one-to-one, it assumes
exclusivity, that each vertex in a sentence’s representation is due to only one phrase in the
sentence. Third, it assumes that a phrase’s meaning is a connected subgraph of a sentence’s
representation, not a more distributed representation, the connectedness assumption. While
the first assumption may not hold for some representation languages, it does not present a
problem in the domains we have considered. The second and third assumptions are perhaps
less problematic with respect to general language use.

Our definition also assumes compositionality: that the meaning of a sentence is derived
from the meanings of the phrases it contains, in addition, perhaps to some “connecting”
information specific to the representation at hand, but is not derived from external sources
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such as noise. In other words, all the vertices of a sentence’s representation are included
within the meaning of some word or phrase in that sentence. This assumption is similar
to the linking rules of Jackendoff (1990), and has been used in previous work on grammar
and language acquisition (e.g., Haas and Jayaraman, 1997; Siskind, 19964) While there is
some debate in the linguistics community about the ability of compositional techniques to
handle all phenomena (Fillmore, 1988; Goldberg, 1995), making this assumption simplifies
the learning process and works reasonably for the domains of interest here. Also, since we
allow multi-word phrases in the lexicon (e.g., (“kick the bucket”, die( ))), one objection
to compositionality can be addressed.

This definition also allows training input in which:

1. Words and phrases have multiple meanings. That is, homonymy might occur in the
lexicon.

2. Several phrases map to the same meaning. That is, synonymy might occur in the
lexicon.

3. Some words in a sentence do not map to any meanings, leaving them unused in the
assignment of words to meanings.5

4. Phrases of contiguous words map to parts of a sentence’s meaning representation.

Of particular note is lexical ambiguity (1 above). Note that we could have also derived an
ambiguous lexicon such as:

{ (“girl”, [person, sex:female, age:child]),
(“ate”, [ingest]),
(“ate”, [ingest, agent:[person, sex:male, age:adult]]),
(“pasta”, [food, type:pasta]),
(“the cheese”, [food, type:cheese]) }.

from our sample corpus. In this lexicon, “ate” is an ambiguous word. The earlier example
minimizes ambiguity resulting in an alternative, more intuitively pleasing lexicon. While
our problem definition first minimizes the number of entries in the lexicon, our learning
algorithm will also exploit a preference for minimizing ambiguity.

Also note that our definition allows training input in which sentences themselves are
ambiguous (paired with more than one meaning), since a given sentence in S (a multiset)
might appear multiple times appear with more than one meaning. In fact, the training data
that we consider in Section 5 does have some ambiguous sentences.

Our definition of the lexicon acquisition problem does not fit cleanly into the traditional
definition of learning for classification. Each training example contains a sentence and its
semantic parse, and we are trying to extract semantic information about some of the phrases
in that sentence. So each example potentially contains information about multiple target
concepts (phrases), and we are trying to pick out the relevant “features,” or vertices of the

4. In fact, all of these assumptions except for single-use were made by Siskind (1996); see Section 7 for
details.

5. These words may, however, serve as cues to a parser on how to assemble sentence meanings from word
meanings.
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representation, corresponding to the correct meaning of each phrase. Of course, our as-
sumptions of single-use, exclusivity, connectedness, and compositionality impose additional
constraints. In addition to this “multiple examples in one” learning scenario, we do not
have access to negative examples, nor can we derive any implicit negatives, because of the
possibility of ambiguous and synonymous phrases.

In some ways the problem is related to clustering, which is also capable of learning
multiple, potentially non-disjoint categories. However, it is not clear how a clustering
system could be made to learn the phrase-meaning mappings needed for parsing. Finally,
current systems that learn multiple concepts commonly use examples for other concepts as
negative examples of the concept currently being learned. The implicit assumption made
by doing this is that concepts are disjoint, an unwarranted assumption in the presence of
synonymy.

4. The Wolfie Algorithm and an Example

In this section, we first discuss some issues we considered in the design of our algorithm,
then describe it fully in Section 4.2.

4.1 Solving the Lexicon Acquisition Problem

A first attempt to solve the Lexicon Acquisition Problem might be to examine all interpre-
tation functions across the corpus, then choose the one(s) with minimal lexicon size. The
number of possible interpretation functions for a given input pair is dependent on both the
size of the sentence and its representation. In a sentence with w words, there are Θ(w2)
possible phrases, not a particular challenge.

However, the number of possible interpretation functions grows extremely quickly with
the size of the input. For a sentence with p phrases and an associated tree with n vertices,
the number of possible interpretation functions is:

c!(n − 1)!
c∑

i=1

1
(i− 1)!(n − i)!(c − i)!

. (1)

where c is min(p, n). The derivation of the above formula is as follows. We must choose
which phrases to use in the domain of f , and we can choose one phrase, or two, or any
number up to min(p, n) (if n < p we can only assign n phrases since f is one-to-one), or(

p
i

)
=

p!
i!(p − i)!

where i is the number of phrases chosen. But we can also permute these phrases, so that
the “order” in which they are assigned to the vertices is different. There are i! such permu-
tations. We must also choose which vertices to include in the range of the interpretation
function. We have to choose the root each time, so if we are choosing i vertices, we have
n− 1 choose i− 1 vertices left after choosing the root, or(

n− 1
i− 1

)
=

(n− 1)!
(i− 1)!(n − i)!

.
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The full number of possible interpretation functions is then:

min(p,n)∑
i=1

p!
i!(p − i)!

× i!× (n− 1)!
(i− 1)!(n − i)!

,

which simplifies to Equation 1. When n = p, the largest term of this equation is c! =
p!, which grows at least exponentially with p, so in general the number of interpretation
functions is too large to allow enumeration. Therefore, finding a lexicon by examining all
interpretations across the corpus, then choosing the lexicon(s) of minimum size, is clearly
not tractable.

Instead of finding all interpretations, one could find a set of candidate meanings for
each phrase, from which the final meaning(s) for that phrase could be chosen in a way that
minimizes lexicon size. One way to find candidate meanings is to fracture the meanings
of sentences in which a phrase appears. Siskind (1993) defined fracturing (he also calls
it the Unlink* operation) over terms such that the result includes all subterms of an
expression plus ⊥. In our representation formalism, this corresponds to finding all possible
connected subgraphs of a meaning, and adding the empty graph. Like the interpretation
function technique just discussed, fracturing would also lead to an exponential blowup in
the number of candidate meanings for a phrase: A lower bound on the number of connected
subgraphs for a full binary tree with n vertices is obtained by noting that any subset of
the (n + 1)/2 leaves may be deleted and still maintain connectivity of the remaining tree.
Thus, counting all of the ways that leaves can be deleted gives us a lower bound of 2(n+1)/2

fractures.6 This does not completely rule out fracturing as part of a technique for lexicon
learning since trees do not tend to get very large, and indeed Siskind uses it in many of his
systems, with other constraints to help control the search. However, we wish to avoid any
chance of exponential blowup to preserve the generality of our approach for other tasks.

Another option is to force Chill to essentially induce a lexicon on its own. In this
model, we would provide to Chill an ambiguous lexicon in which each phrase is paired
with every fracture of every sentence in which it appears. Chill would then have to decide
which set of fractures leads to the correct parse for each training sentence, and would only
include those in a final learned parser-lexicon combination. Thus the search would again
become exponential. Furthermore, even with small representations, it would likely lead
to a system with poor generalization ability. While some of Siskind’s work (e.g., Siskind,
1992) took syntactic constraints into account and did not encounter such difficulties, those
versions did not handle lexical ambiguity.

If we could efficiently find some good candidates, a standard induction algorithm could
then attempt to use them as a source of training examples for each phrase. However,
any attempt to use the list of candidate meanings of one phrase as negative examples for
another phrase would be flawed. The learner could not know in advance which phrases
are possibly synonymous, and thus which phrase lists to use as negative examples of other
phrase meanings. Also, many representation components would be present in the lists of
more than one phrase. This is a source of conflicting evidence for a learner, even without
the presence of synonymy. Since only positive examples are available, one might think of
using most specific conjunctive learning, or finding the intersection of all the representations

6. Thanks to net-citizen Dan Hirshberg for help with this analysis.
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For each phrase, p (of at most two words):
1.1) Collect the training examples in which p appears
1.2) Calculate LICS from (sampled) pairs of these examples’ representations
1.3) For each l in the LICS, add (p, l) to the set of candidate lexicon entries

Until the input representations are covered, or no candidate lexicon entries remain do:
2.1) Add the best (phrase, meaning) pair from the candidate entries to the lexicon
2.2) Update candidate meanings of phrases in the same sentences as the phrase just learned

Return the lexicon of learned (phrase, meaning) pairs.

Figure 6: Wolfie Algorithm Overview

for each phrase, as proposed by Anderson (1977). However, the meanings of an ambiguous
phrase are disjunctive, and this intersection would be empty. A similar difficulty would be
expected with the positive-only compression of Muggleton (1995).

4.2 Our Solution: Wolfie

The above analysis leads us to believe that the Lexicon Acquisition Problem is computa-
tionally intractable. Therefore, we can not perform an efficient search for the best lexicon.
Nor can we use a standard induction algorithm. Therefore, we have implemented Wolfie

7,
outlined in Figure 6, which finds an approximate solution to the Lexicon Acquisition Prob-
lem. Our approach is to generate a set of candidate lexicon entries, from which the final
learned lexicon is derived by greedily choosing the “best” lexicon item at each point, in the
hopes of finding a final (minimal) covering lexicon. We do not actually learn interpretation
functions, so do not guarantee that we will find a covering lexicon.8 Even if we were to
search for interpretation functions, using a greedy search would also not guarantee covering
the input, and of course it also does not guarantee that a minimal lexicon is found. However,
we will later present experimental results demonstrating that our greedy approach performs
well.

Wolfie first derives an initial set of candidate meanings for each phrase. The algorithm
for generating candidates, LICS, attempts to find a “maximally common” meaning for each
phrase, which biases toward both finding a small lexicon by covering many vertices of a tree
at once, and finding a lexicon that actually does cover the input. Second, Wolfie chooses
final lexicon entries from this candidate set, one at a time, updating the candidate set as
it goes, taking into account our assumptions of single-use, connectedness, and exclusivity.
The basic scheme for choosing entries from the candidate set is to maximize the prediction
of meanings given phrases, but also to find general meanings. This adds a tension between
LICS, which cover many vertices, and generality, which biases towards fewer vertices. How-
ever, generality, like LICS, helps lead to a small lexicon since a general meaning will more
likely apply widely across a corpus.

7. The code is available upon request from the first author.
8. Though, of course, interpretation functions are not the only way to guarantee a covering lexicon – see

Siskind (1993) for an alternative.
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Figure 7: Tree with Variables

Let us explain the algorithm in further detail by way of an example, using Spanish
instead of English to illustrate the difficulty somewhat more clearly. Consider the following
corpus:

1. ¿ Cuál es el capital del estado con la población más grande?
answer(C, (capital(S,C), largest(P, (state(S), population(S,P))))).

2. ¿ Cuál es la punta más alta del estado con la area más grande?
answer(P, (high point(S,P), largest(A, (state(S), area(S,A))))).

3. ¿ En que estado se encuentra Texarkana?
answer(S, (state(S), eq(C,cityid(texarkana, )), loc(C,S))).

4. ¿ Qué capital es la más grande?
answer(A, largest(A, capital(A))).

5. ¿ Qué es la area de los estados unitos?
answer(A, (area(C,A), eq(C,countryid(usa)))).

6. ¿ Cuál es la población de un estado que bordean a Utah?
answer(P, (population(S,P), state(S), next to(S,M), eq(M,stateid(utah)))).

7. ¿ Qué es la punta más alta del estado con la capital Madison?
answer(C, (high point(B,C), loc(C,B), state(B),

capital(B,A), eq(A,cityid(madison, )))).

The sentence representations here are slightly different than the tree representations given in
the problem definition, with the main difference being the addition of existentially quantified
variables shared between some leaves of a representation tree. As mentioned in Section 2.1,
the representations are Prolog queries to a database. Given such a query, we can create
a tree that conforms to our formalism, but with this addition of quantified variables. An
example is shown in Figure 7 for the representation of the third sentence. Each vertex is
a predicate name and its arity, in the Prolog style, e.g., state/1, with quantified variables
at some of the leaves. For each outgoing edge (n,m) of a vertex n, the edge is labeled with
the argument position filled by the subtree rooted by m. If there is not an edge labeled
with a given argument position, the argument is a free variable. Each vertex labeled with a
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variable (which can occur only at leaves) is an existentially quantified variable whose scope
is the entire tree (or query). The learned lexicon, however, does not need to maintain the
identity between variables across distinct lexical entries.

Another representation difference is that we will strip the answer predicate from the
input to our learner,9 thus allowing a forest of directed trees as input rather than a single
tree. The definition of the problem easily extends such that the root of each tree in the
forest must be in the domain of some interpretation function.

Evaluation of our system using this representation is given in Section 5.1; evaluation
using a representation without variables or forests is presented in Section 5.2. We previously
(Thompson, 1995) presented results demonstrating learning representations of a different
form, that of a case-role representation (Fillmore, 1968) augmented with Conceptual De-
pendency (Schank, 1975) information. This last representation conforms directly to our
problem definition.

Now, continuing with the example of solving the Lexicon Acquisition Problem for this
corpus, let us also assume for simplification, although not required, that sentences are
stripped of phrases that we know have empty meanings (e.g., “qué”, “es”, “con”, and “la”).
We will similarly assume that it is known that some phrases refer directly to given database
constants (e.g., location names), and remove those phrases and their meaning from the
training input.

4.2.1 Candidate Generation Phase

Initial candidate meanings for a phrase are produced by computing the maximally common
substructure(s) between sampled pairs of representations of sentences that contain it. We
derive common substructure by computing the Largest Isomorphic Connected Subgraphs
(LICS) of two labeled trees, taking labels into account in the isomorphism. The analogous
Largest Common Subgraph problem (Garey & Johnson, 1979) is solvable in polynomial
time if, as we assume, both inputs are trees and if K, the number of edges to include, is
given. Thus, we start with K set equal to the largest number of edges in the two trees being
compared, test for common subgraph(s), and iterate down to K = 1, stopping when one or
more subgraphs are found for a given K.

For the Prolog query representation, the algorithm is complicated a bit by variables.
Therefore, we use LICS with an addition similar to computing the Least General Gener-
alization of first-order clauses (Plotkin, 1970). The LGG of two sets of literals is the least
general set of literals that subsumes both sets of literals. We add to this by allowing that
when a term in the argument of a literal is a conjunction, the algorithm tries all orderings
in its matching of the terms in the conjunction. Overall, our algorithm for finding the LICS
between two trees in the Prolog representation first finds the common labeled edges and
vertices as usual in LICS, but treats all variables as equivalent. Then, it computes the
Least General Generalization, with conjunction taken into account, of the resulting trees as
converted back into literals. For example, given the two trees:

9. The predicate is omitted because Chill initializes the parse stack with the answer predicate, and thus
no word has to be mapped to it.
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Phrase LICS From Sentences
“capital”: largest( , ) 1,4

capital( , ) 1,7
state( ) 1,7

“grande”: largest( ,state( )) 1,2
largest( , ) 1,4; 2,4

“estado”: largest( ,state( )) 1,2
state( ) 1,3; 1,7; 2,3; 2,6; 2,7; 3,6; 6,7
(population(S, ), state(S)) 1,6
capital( , ) 1,7
high point( , ) 2,7
(state(S), loc( ,S)) 3,7

“punta mas”: high point( , ) 2,7
state( ) 2,7

“encuentra”: (state(S), loc( ,S)) 3

Table 1: Sample Candidate Lexical Entries and their Derivation

answer(C, (largest(P, (state(S), population(S,P))), capital(S,C))).

answer(P, (high point(S,P), largest(A, (state(S), area(S,A))))).,

the common meaning is answer( ,largest( ,state( )). Note that the LICS of two trees
may not be unique: there may be multiple common subtrees that both contain the same
number of edges; in this case LICS returns multiple answers.

The sets of initial candidate meanings for some of the phrases in the sample corpus are
shown in Table 1. While in this example we show the LICS for all pairs that a phrase
appears in, in the actual algorithm we randomly sample a subset for efficiency reasons,
as in Golem (Muggleton & Feng, 1990). For phrases appearing in only one sentence
(e.g., “encuentra”), the entire sentence representation (excluding the database constant
given as background knowledge) is used as an initial candidate meaning. Such candidates
are typically generalized in step 2.2 of the algorithm to only the correct portion of the
representation before they are added to the lexicon; we will see an example of this below.

4.2.2 Adding to the Final Lexicon

After deriving initial candidates, the greedy search begins. The heuristic used to evaluate
candidates attempts to help assure that a small but covering lexicon is learned. The heuristic
first looks at the weighted sum of two components, where p is the phrase and m its candidate
meaning:

1. P (m | p)× P (p | m)× P (m) = P (p)× P (m | p)2

2. The generality of m

Then, ties in this value are broken by preferring less ambiguous (those with fewer current
meanings) and shorter phrases. The first component is analogous the cluster evaluation
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heuristic used by Cobweb (Fisher, 1987), which measures the utility of clusters based on
attribute-value pairs and categories, instead of meanings and phrases. The probabilities
are estimated from the training data and then updated as learning progresses to account
for phrases and meanings already covered. We will see how this updating works as we
continue through our example of the algorithm. The goal of this part of the heuristic
is to maximize the probability of predicting the correct meaning for a randomly sampled
phrase. The equality holds by Bayes Theorem. Looking at the right side, P (m | p)2 is
the expected probability that meaning m is correctly guessed for a given phrase, p. This
assumes a strategy of probability matching, in which a meaning m is chosen for p with
probability P (m | p) and correct with the same probability. The other term, P (p), biases
the component by how common the phrase is. Interpreting the left side of the equation, the
first term biases towards lexicons with low ambiguity, the second towards low synonymy,
and the third towards frequent meanings.

The second component of the heuristic, generality, is computed as the negation of
the number of vertices in the meaning’s tree structure, and helps prefer smaller, more
general meanings. For example, in the candidate set above, if all else were equal, the
generality portion of the heuristic would prefer state( ), with generality value -1, over
largest( ,state( )) and (state(S),loc( ,S)), each with generality value -2, as the
meaning of “estado”. Learning a meaning with fewer terms helps evenly distribute the
vertices in a sentence’s representation among the meanings of the phrases in that sentence,
and thus leads to a lexicon that is more likely to be correct. To see this, we note that some
pairs of words tend to frequently co-occur (“grande” and “estado” in our example), and
so their joint representation (meaning) is likely to be in the set of candidate meanings for
both words. By preferring a more general meaning, we easily ignore these incorrect joint
meanings.

In this example and all experiments, we use a weight of 10 for the first component of
the heuristic, and a weight of 1 for the second. The first component has smaller absolute
values and is therefore given a higher weight. Modulo this consideration, results are not
overly-sensitive to the weights and automatically setting them using cross-validation on the
training set (Kohavi & John, 1995) had little effect on overall performance. In Table 2 we
illustrate the calculation of the heuristic measure for some of the above fourteen pairs, and
its value for all. The calculation shows the sum of multiplying 10 by the first component of
the heuristic and multiplying 1 by the second component. The first component is simplified
as follows:

P (p)× P (m | p)2 =
| p |
t
× | m ∩ p |2

| p |2 ≈ | m ∩ p |2
| p | ,

where | p | is the number of times phrase p appears in the corpus, t is the initial number
of candidate phrases, and | m ∩ p | is the number of times that meaning m is paired with
phrase p. We can ignore t since the number of phrases in the corpus is the same for each
pair, and has no effect on the ranking. The highest scoring pair is (“estado”, state( )), so
it is added to the lexicon.

Next is the candidate generalization step (2.2), described algorithmically in Figure 8.
One of the key ideas of the algorithm is that each phrase-meaning choice can constrain the
candidate meanings of phrases yet to be learned. Given the assumption that each portion of
the representation is due to at most one phrase in the sentence (exclusivity), once part of a
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Candidate Lexicon Entry Heuristic Value
(“capital”, largest( , )): 10(22/3) + 1(−1) = 12.33
(“capital”, capital( , )): 12.33
(“capital”, state( , )): 12.33
(“grande”, largest( ,state( ))): 10(22/3) + 1(−2) = 11.3
(“grande”, largest( , )): 29
(“estado”, largest( ,state( ))): 10(22/5) + 1(−2) = 6
(“estado”, state( )): 10(52/5) + 1(−1) = 49
(“estado”, (population(S, ), state(S)): 6
(“estado”, capital( , )): 7
(“estado”, high point( , )): 7
(“estado”, (state(S), loc( ,S))): 6
(“punta mas”, high point( , )): 19
(“punta mas”, state( )): 10(22/2) + 1(−1) = 19
(“encuentra”, (state(S), loc( ,S))): 10(12/1) + 1(−2) = 8

Table 2: Heuristic Value of Sample Candidate Lexical Entries

Given: A learned phrase-meaning pair (l, g)

For all sentence-representation pairs containing l and g, mark them as covered.
For each candidate phrase-meaning pair (p,m):

If p occurs in some training pairs with (l, g) then
If the vertices of m intersect the vertices of g then

If all occurrences of m are now covered then
Remove (p,m) from the set of candidate pairs.

Else
Adjust the heuristic value of (p,m) as needed to account

for newly covered nodes of the training representations.
Generalize m to remove covered nodes, obtaining m′, and
Calculate the heuristic value of the new candidate pair (p,m′).

If no candidate meanings remain for an uncovered phrase then
Derive new LICS from uncovered representations and

calculate their heuristic values.

Figure 8: The Candidate Generalization Phase
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representation is covered, no other phrase in the sentence can be paired with that meaning
(at least for that sentence). Therefore, in step 2.2 the candidate meanings for words in
the same sentences as the word just learned are generalized to exclude the representation
just learned. We use an operation analogous to set difference when finding the remaining
uncovered vertices of the representation when generalizing meanings to eliminate covered
vertices from candidate pairs. For example, if the meaning largest( , ) were learned
for a phrase in sentence 2, the meaning left behind would be a forest consisting of the
trees high point(S, ) and (state(S), area(S, )). Also, if the generalization results
in an empty tree, new LICS are calculated. In our example, since state( ) is covered
in sentences 1, 2, 3, 6, and 7, the candidates for several other words in those sentences
are generalized. For example, the meaning (state(S), loc( ,S)) for “encuentra”, is
generalized to loc( , ), with a new heuristic value of 10(12/1) + 1(−1) = 9. Also, our
single-use assumption allows us to remove all candidate pairs containing “estado” from the
set of candidate meanings, since the learned pair covers all occurrences of “estado” in that
set.

Note that the pairwise matchings to generate candidate items, together with this up-
dating of the candidate set, enable multiple meanings to be learned for ambiguous phrases,
and makes the algorithm less sensitive to the initial rate of sampling for LICS. For example,
note that “capital” is ambiguous in this data set, though its ambiguity is an artifact of
the way that the query language was designed, and one does not ordinarily think of it as
an ambiguous word. However, both meanings will be learned: The second pair added to
the final lexicon is (“grande”, largest( , )), which causes a generalization to the empty
meaning for the first candidate entry in Table 2, and since no new LICS from sentence 4
can be generated, its entire remaining meaning is added to the candidate meaning set for
both “capital” and “más.”

Subsequently, the greedy search continues until the resulting lexicon covers the training
corpus, or until no candidate phrase meanings remain. In rare cases, learning errors occur
that leave some portions of representations uncovered. In our example, the following lexicon
is learned:

(“estado”, state( )),
(“grande”, largest( )),
(“area”, area( )),
(“punta”, high point( , )),
(“población”, population( , )),
(“capital”, capital( , )),
(“encuentra”, loc( , )),
(“alta”, loc( , )),
(“bordean”, next to( )),
(“capital”, capital( )).

In the next section, we discuss the ability of Wolfie to learn lexicons that are useful for
parsers and parser acquisition.
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5. Evaluation of Wolfie

The following two sections discuss experiments testing Wolfie’s success in learning lexicons
for both real and artificial corpora, comparing it in several cases to a previously developed
lexicon learning system.

5.1 A Database Query Application

This section describes our experimental results on a database query application. The first
corpus discussed contains 250 questions about U.S. geography, paired with their Prolog
query to extract the answer to the question from a database. This domain was originally
chosen due to the availability of a hand-built natural language interface, Geobase, to
a database containing about 800 facts. Geobase was supplied with Turbo Prolog 2.0
(Borland International, 1988), and designed specifically for this domain. The questions in
the corpus were collected by asking undergraduate students to generate English questions for
this database, though they were given only cursory knowledge of the database without being
given a chance to use it. To broaden the test, we had the same 250 sentences translated into
Spanish, Turkish, and Japanese. The Japanese translations are in word-segmented Roman
orthography. Translated questions were paired with the appropriate logical queries from
the English corpus.

To evaluate the learned lexicons, we measured their utility as background knowledge
for Chill. This is performed by choosing a random set of 25 test examples and then
learning lexicons and parsers from increasingly larger subsets of the remaining 225 examples
(increasing by 50 examples each time). After training, the test examples are parsed using
the learned parser. We then submit the resulting queries to the database, compare the
answers to those generated by submitting the correct representation to the database, and
record the percentage of correct (matching) answers. By using the difficult “gold standard”
of retrieving a correct answer, we avoid measures of partial accuracy that we believe do not
adequately measure final utility. We repeated this process for ten different random training
and test sets and evaluated performance differences using a two-tailed, paired t-test with a
significance level of p ≤ 0.05.

We compared our system to an incremental (on-line) lexicon learner developed by Siskind
(1996). To make a more equitable comparison to our batch algorithm, we ran his in a “sim-
ulated” batch mode, by repeatedly presenting the corpus 500 times, analogous to running
500 epochs to train a neural network. While this does not actually add new kinds of data
over which to learn, it allows his algorithm to perform inter-sentential inference in both di-
rections over the corpus instead of just one. Our point here is to compare accuracy over the
same size training corpus, a metric not optimized for by Siskind. We are not worried about
the difference in execution time here,10 and the lexicons learned when running Siskind’s
system in incremental mode (presenting the corpus a single time) resulted in substantially
lower performance in preliminary experiments with this data. We also removed Wolfie’s
ability to learn phrases of more than one word, since the current version of Siskind’s system

10. The CPU times of the two system are not directly comparable since one is written in Prolog and the
other in Lisp. However, the learning time of the two systems is approximately the same if Siskind’s
system is run in incremental mode, just a few seconds with 225 training examples.
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Figure 9: Accuracy on English Geography Corpus

does not have this ability. Finally, we made comparisons to the parsers learned by Chill

when using a hand-coded lexicon as background knowledge.
In this and similar applications, there are many terms, such as state and city names,

whose meanings can be automatically extracted from the database. Therefore, all tests
below were run with such names given to the learner as an initial lexicon; this is helpful
but not required. Section 5.2 gives results for a different task with no such initial lexicon.
However, unless otherwise noted, for all tests within this Section (5.1) we did not strip
sentences of phrases known to have empty meanings, unlike in the example of Section 4.

5.1.1 Comparisons using English

The first experiment was a comparison on the original English corpus. Figure 9 shows
learning curves for Chill when using the lexicons learned by Wolfie (CHILL+Wolfie) and
by Siskind’s system (CHILL+Siskind). The uppermost curve (CHILL+handbuilt) shows
Chill’s performance when given the hand-built lexicon. CHILL-testlex shows the perfor-
mance when words that never appear in the training data (e.g., are only in the test sentences)
are deleted from the hand-built lexicon (since a learning algorithm has no chance of learning
these). Finally, the horizontal line shows the performance of the Geobase benchmark.

The results show that a lexicon learned by Wolfie led to parsers that were almost as
accurate as those generated using a hand-built lexicon. The best accuracy is achieved by
parsers using the hand-built lexicon, followed by the hand-built lexicon with words only in
the test set removed, followed by Wolfie, followed by Siskind’s system. All the systems
do as well or better than Geobase by the time they reach 125 training examples. The
differences between Wolfie and Siskind’s system are statistically significant at all training
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Lexicon Coverage Ambiguity Entries
hand-built 100% 1.2 88
Wolfie 100% 1.1 56.5
Siskind 94.4% 1.7 154.8

Table 3: Lexicon Comparison

example sizes. These results show that Wolfie can learn lexicons that support the learning
of successful parsers, and that are better from this perspective than those learned by a
competing system. Also, comparing to the CHILL-testlex curve, we see that most of the
drop in accuracy from a hand-built lexicon is due to words in the test set that the system
has not seen during training. In fact, none of the differences between CHILL+Wolfie and
CHILL-testlex are statistically significant.

One of the implicit hypotheses of our problem definition is that coverage of the training
data implies a good lexicon. The results show a coverage of 100% of the 225 training ex-
amples for Wolfie versus 94.4% for Siskind. In addition, the lexicons learned by Siskind’s
system were more ambiguous and larger than those learned by Wolfie. Wolfie’s lexi-
cons had an average of 1.1 meanings per word, and an average size of 56.5 entries (after
225 training examples) versus 1.7 meanings per word and 154.8 entries in Siskind’s lexi-
cons. For comparison, the hand-built lexicon had 1.2 meanings per word and 88 entries.
These differences, summarized in Table 3, undoubtedly contribute to the final performance
differences.

5.1.2 Performance for Other Natural Languages

Next, we examined the performance of the two systems on the Spanish version of the corpus.
Figure 10 shows the results. The differences between using Wolfie and Siskind’s learned
lexicons for Chill are again statistically significant at all training set sizes. We also again
show the performance with hand-built lexicons, both with and without phrases present only
in the testing set. The performance compared to the hand-built lexicon with test-set phrases
removed is still competitive, with the difference being significant only at 225 examples.

Figure 11 shows the accuracy of learned parsers with Wolfie’s learned lexicons for
all four languages. The performance differences among the four languages are quite small,
demonstrating that our methods are not language dependent.

5.1.3 A Larger Corpus

Next, we present results on a larger, more diverse corpus from the geography domain,
where the additional sentences were collected from computer science undergraduates in
an introductory AI course. The set of questions in the smaller corpus was collected from
students in a German class, with no special instructions on the complexity of queries desired.
The AI students tended to ask more complex and diverse queries: their task was to give five
interesting questions and the associated logical form for a homework assignment, though
again they did not have direct access to the database. They were requested to give at least
one sentence whose representation included a predicate containing embedded predicates, for
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Figure 10: Accuracy on Spanish
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23



Thompson & Mooney

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

A
cc

ur
ac

y

Training Examples

CHILL
WOLFIE
Geobase

Figure 12: Accuracy on the Larger Geography Corpus

example largest(S, state(S)), and we asked for variety in their sentences. There were
221 new sentences, for a total of 471 (including the original 250 sentences).

For these experiments, we split the data into 425 training sentences and 46 test sen-
tences, for 10 random splits, then trained Wolfie and then Chill as before. Our goal was
to see whether Wolfie was still effective for this more difficult corpus, since there were
approximately 40 novel words in the new sentences. Therefore, we tested against the perfor-
mance of Chill with an extended hand-built lexicon. For this test, we stripped sentences
of phrases known to have empty meanings, as in the example of Section 4.2. Again, we
did not use phrases of more than one word, since these do not seem to make a significant
difference in this domain. For these results, we compare Wolfie’s lexicons for Chill using
hand-built lexicons without phrases that only appear in the test set.

Figure 12 shows the resulting learning curves. The differences between Chill using
the hand-built and learned lexicons are statistically significant at 175, 225, 325, and 425
examples (four out of the nine data points). The more mixed results here indicate both the
difficulty of the domain and the more variable vocabulary. However, the improvement of
machine learning methods over the Geobase hand-built interface is much more dramatic
for this corpus.

5.1.4 LICS versus Fracturing

One component of the algorithm not yet evaluated explicitly is the candidate generation
method. As mentioned in Section 4.1, we could use fractures of representations of sentences
in which a phrase appears to generate the candidate meanings for that phrase, instead
of LICS. We used this approach and compared it to the previously described method of
using the largest isomorphic connected subgraphs of sampled pairs of representations as
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Figure 13: Fracturing vs. LICS: Accuracy

candidate meanings. To attempt a more fair comparison, we also sampled representations
for fracturing, using the same number of source representations as the number of pairs
sampled for LICS.

The accuracy of Chill when using the resulting learned lexicons as background knowl-
edge are shown in Figure 13. Using fracturing (fractWOLFIE) shows little or no advantage;
none of the differences between the two systems are statistically significant.

In addition, the number of initial candidate lexicon entries from which to choose is
much larger for fracturing than our LICS method, as shown in Figure 14. This is true even
though we sampled the same number of representations as pairs for LICS, because there
are a larger number of fractures for an arbitrary representation than the number of LICS
for an arbitrary pair. Finally, Wolfie’s learning time when using fracturing is greater than
that when using LICS, as shown in Figure 15, where the CPU time is shown in seconds.

In summary, these differences show the utility of LICS as a method for generating
candidates: a more thorough method does not result in better performance, and also results
in longer learning times. One could claim that we are handicapping fracturing since we are
only sampling representations for fracturing. This may indeed help the accuracy, but the
learning time and the number of candidates would likely suffer even further. In a domain
with larger representations, the differences in learning time would be even more dramatic.

5.2 Artificial Data

The previous section showed that Wolfie successfully learns lexicons for a natural corpus
and a realistic task. However, this demonstrates success on only a relatively small corpus
and with one representation formalism. We now show that our algorithm scales up well
with more lexicon items to learn, more ambiguity, and more synonymy. These factors are
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difficult to control when using real data as input. Also, there are no large corpora available
that are annotated with semantic parses. We therefore present experimental results on an
artificial corpus. In this corpus, both the sentences and their representations are completely
artificial, and the sentence representation is a variable-free representation, as suggested by
the work of Jackendoff (1990) and others.

For each corpus discussed below, a random lexicon mapping words to simulated meanings
was first constructed.11 This original lexicon was then used to generate a corpus of random
utterances each paired with a meaning representation. After using this corpus as input to
Wolfie

12, the learned lexicon was compared to the original lexicon, and weighted precision
and weighted recall of the learned lexicon were measured. Precision measures the percentage
of the lexicon entries (i.e., word-meaning pairs) that the system learns that are correct.
Recall measures the percentage of the lexicon entries in the hand-built lexicon that are
correctly learned by the system:

precision =
# correct pairs
# pairs learned

recall =
# correct pairs

# pairs in hand-built lexicon
.

To get weighted precision and recall measures, we then weight the results for each pair
by the word’s frequency in the entire corpus (not just the training corpus). This models
how likely we are to have learned the correct meaning for an arbitrarily chosen word in the
corpus.

We generated several lexicons and associated corpora, varying the ambiguity rate (num-
ber of meanings per word) and synonymy rate (number of words per meaning), as in Siskind
(1996). Meaning representations were generated using a set of “conceptual symbols” that
combined to form the meaning for each word. The number of conceptual symbols used in
each lexicon will be noted when we describe each corpus below. In each lexicon, 47.5%
of the senses were variable-free to simulate noun-like meanings, and 47.5% contained from
one to three variables to denote open argument positions to simulate verb-like meanings.
The remainder of the words (the remaining 5%) had the empty meaning to simulate func-
tion words. In addition, the functors in each meaning could have a depth of up to two
and an arity of up to two. An example noun-like meaning is f23(f2(f14)), and a verb-
meaning f10(A,f15(B)); the conceptual symbols in this example are f23, f2, f14, f10,
and f15. By using these multi-level meaning representations we demonstrate the learning
of more complex representations than those in the geography database domain: none of the
hand-built meanings for phrases in that lexicon had functors embedded in arguments. We
used a grammar to generate utterances and their meanings from each original lexicon, with
terminal categories selected using a distribution based on Zipf’s Law (Zipf, 1949). Under
Zipf’s Law, the occurrence frequency of a word is inversely proportional to its ranking by
occurrence.

We started with a baseline corpus generated from a lexicon of 100 words using 25 concep-
tual symbols and no ambiguity or synonymy; 1949 sentence-meaning pairs were generated.

11. Thanks to Jeff Siskind for the initial corpus generation software, which we enhanced for these tests.
12. In these tests, we allowed Wolfie to learn phrases of up to length two.
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Figure 16: Baseline Artificial Corpus

We split this into five training sets of 1700 sentences each. Figure 16 shows the weighted
precision and recall curves for this initial test. This demonstrates good scalability to a
slightly larger corpus and lexicon than that of the U.S. geography query domain.

A second corpus was generated from a second lexicon, also of 100 words using 25 concep-
tual symbols, but increasing the ambiguity to 1.25 meanings per word. This time, 1937 pairs
were generated and the corpus split into five sets of 1700 training examples each. Weighted
precision at 1650 examples drops to 65.4% from the previous level of 99.3%, and weighted
recall to 58.9% from 99.3%. The full learning curve is shown in Figure 17. A quick compari-
son to Siskind’s performance on this corpus confirmed that his system achieved comparable
performance, showing that with current methods, this is close to the best performance that
we are able to obtain on this more difficult corpus. One possible explanation for the smaller
performance difference between the two systems on this corpus versus the geography do-
main is that in this domain, the correct meaning for a word is not necessarily the most
“general,” in terms of number of vertices, of all its candidate meanings. Therefore, the
generality portion of the heuristic may negatively influence the performance of Wolfie in
this domain.

Finally, we show the change in performance with increasing ambiguity and increasing
synonymy, holding the number of words and conceptual symbols constant. Figure 18 shows
the weighted precision and recall with 1050 training examples for increasing levels of am-
biguity, holding the synonymy level constant. Figure 19 shows the results at increasing
levels of synonymy, holding ambiguity constant. Increasing the level of synonymy does not
effect the results as much as increasing the level of ambiguity, which is as we expected.
Holding the corpus size constant but increasing the number of competing meanings for a
word increases the number of candidate meanings created by Wolfie while decreasing the
amount of evidence available for each meaning (e.g., the first component of the heuristic
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Figure 17: A More Ambiguous Artificial Corpus
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Figure 18: Increasing the Level of Ambiguity

measure) and makes the learning task more difficult. On the other hand, increasing the
level of synonymy does not have the potential to mislead the learner.

The number of training examples required to reach a certain level of accuracy is also
informative. In Table 4, we show the point at which a standard precision of 75% was first
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Ambiguity Level Number of Examples
1.0 150
1.25 450
2.0 1450

Table 4: Number of Examples to Reach 75% Precision

reached for each level of ambiguity. Note, however, that we only measured accuracy after
each set of 100 training examples, so the numbers in the table are approximate.

We performed a second test of scalability on two corpora generated from lexicons an
order of magnitude larger than those in the above tests. In these tests, we use a lexicon
containing 1000 words and using 250 conceptual symbols. We generated both a corpus with
no ambiguity, and one from a lexicon with ambiguity and synonymy similar to that found
in the WordNet database (Beckwith, Fellbaum, Gross, & Miller, 1991); the ambiguity there
is approximately 1.68 meanings per word and the synonymy 1.3 words per meaning. These
corpora contained 9904 (no ambiguity) and 9948 examples, respectively, and we split the
data into five sets of 9000 training examples each. For the easier large corpus, the maximum
average of weighted precision and recall was 85.6%, at 8100 training examples, while for the
harder corpus, the maximum average was 63.1% at 8600 training examples.

6. Active Learning

As indicated in the previous sections, we have built an integrated system for language
acquisition that is flexible and useful. However, a major difficulty remains: the construction
of training corpora. Though annotating sentences is still arguably less work than building
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Apply the learner to n bootstrap examples, creating a classifier.
Until no examples remain or the annotator is unwilling to label more examples, do:

Use most recently learned classifier to annotate each unlabeled instance.
Find the k instances with the lowest annotation certainty.
Annotate these instances.
Train the learner on the bootstrap examples and all examples annotated so far.

Figure 20: Selective Sampling Algorithm

an entire system by hand, the annotation task is also time-consuming and error-prone.
Further, the training pairs often contain redundant information. We would like to minimize
the amount of annotation required while still maintaining good generalization accuracy.

To do this, we turned to methods in active learning. Active learning is a research area
in machine learning that features systems that automatically select the most informative
examples for annotation and training (Angluin, 1988; Seung, Opper, & Sompolinsky, 1992),
rather than relying on a benevolent teacher or random sampling. The primary goal of
active learning is to reduce the number of examples that the system is trained on, while
maintaining the accuracy of the acquired information. Active learning systems may con-
struct their own examples, request certain types of examples, or determine which of a set
of unsupervised examples are most usefully labeled. The last approach, selective sampling
(Cohn et al., 1994), is particularly attractive in natural language learning, since there is an
abundance of text, and we would like to annotate only the most informative sentences. For
many language learning tasks, annotation is particularly time-consuming since it requires
specifying a complex output rather than just a category label, so reducing the number of
training examples required can greatly increase the utility of learning.

In this section, we explore the use of active learning, specifically selective sampling, for
lexicon acquisition, and demonstrate that with active learning, fewer examples are required
to achieve the same accuracy obtained by training on randomly chosen examples.

The basic algorithm for selective sampling is relatively simple. Learning begins with a
small pool of annotated examples and a large pool of unannotated examples, and the learner
attempts to choose the most informative additional examples for annotation. Existing work
in the area has emphasized two approaches, certainty-based methods (Lewis & Catlett,
1994), and committee-based methods (McCallum & Nigam, 1998; Freund, Seung, Shamir,
& Tishby, 1997; Liere & Tadepalli, 1997; Dagan & Engelson, 1995; Cohn et al., 1994); we
focus here on the former.

In the certainty-based paradigm, a system is trained on a small number of annotated
examples to learn an initial classifier. Next, the system examines unannotated examples,
and attaches certainties to the predicted annotation of those examples. The k examples with
the lowest certainties are then presented to the user for annotation and retraining. Many
methods for attaching certainties have been used, but they typically attempt to estimate
the probability that a classifier consistent with the prior training data will classify a new
example correctly.
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Learn a lexicon with the examples annotated so far
1) For each phrase in an unannotated sentence:

If it has entries in the learned lexicon then
its certainty is the average of the heuristic values of those entries

Else, if it is a one-word phrase then
its certainty is zero

2) To rank sentences use:
Total certainty of phrases from step 1

# of phrases counted in step 1

Figure 21: Active Learning for Wolfie

Figure 20 presents abstract pseudocode for certainty-based selective sampling. In an
ideal situation, the batch size, k, would be set to one to make the most intelligent decisions
in future choices, but for efficiency reasons in retraining batch learning algorithms, it is
frequently set higher. Results on a number of classification tasks have demonstrated that
this general approach is effective in reducing the need for labeled examples (see citations
above).

Applying certainty-based sample selection to Wolfie requires determining the certainty
of a complete annotation of a potential new training example, despite the fact that individual
learned lexical entries and parsing operators perform only part of the overall annotation task.
Therefore, our general approach is to compute certainties for pieces of an example, in our
case, phrases, and combine these to obtain an overall certainty for an example. Since lexicon
entries contain no explicit uncertainty parameters, we used Wolfie’s heuristic measure to
estimate uncertainty.

To choose the sentences to be annotated in each round, we first bootstrapped an initial
lexicon from a small corpus, keeping track of the heuristic values of the learned items.
Then, for each unannotated sentence, we took an average of the heuristic values of the
lexicon entries learned for phrases in that sentence, giving a value of zero to unknown
words but eliminating from consideration any words that we assume are known in advance,
such as database constants. Thus, longer sentences with only a few known phrases would
have a lower certainty than shorter sentences with the same number of known phrases; this
is desirable since longer sentences will be more informative from a lexicon learning point
of view. The sentences with the lowest values were chosen for annotation, added to the
bootstrap corpus, and a new lexicon learned. Our technique is summarized in Figure 21.

To evaluate our technique, we compared active learning to learning from randomly se-
lected examples, again measuring the effectiveness of learned lexicons as background knowl-
edge for Chill. We again used the (smaller) U.S. Geography corpus, as in the original
Wolfie tests, using the lexicons as background knowledge during parser acquisition (and
using the same examples for parser acquisition).

For each trial in the following experiments, we first randomly divide the data into a
training and test set. Then, n = 25 bootstrap examples are randomly selected from the
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Figure 22: Using Lexicon Certainty for Active Learning

training examples and in each step of active learning, the least certain k = 10 examples
of the remaining training examples are selected and added to the training set. The result
of learning on this set is evaluated after each step. The accuracy of the resulting learned
parsers was compared to the accuracy of those learned using randomly chosen examples to
learn lexicons and parsers, as in Section 5; in other words, we can think of the k examples
in each round as being chosen randomly.

Figure 22 shows the accuracy on unseen data of parsers learned using the lexicons learned
by Wolfie when examples are chosen randomly and actively. There is an annotation
savings of around 50 examples by using active learning: the maximum accuracy is reached
after 175 examples, versus 225 with random examples. The advantage of using active
learning is clear from the beginning, though the differences between the two curves are only
statistically significant at 175 training examples. Since we are learning both lexicons and
parsers, but only choosing examples based on Wolfie’s certainty measures, the boost could
be improved even further if Chill had a say in the examples chosen. See Thompson, Califf,
and Mooney (1999) for a description of active learning for Chill.

7. Related Work

In this section, we divide the previous research on related topics into the areas of lexicon
acquisition and active learning.

7.1 Lexicon Acquisition

Work on automated lexicon and language acquisition dates back to Siklossy (1972), who
demonstrated a system that learned transformation patterns from logic back to natural
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language. As already noted, the most closely related work is that of Jeff Siskind, which we
described briefly in Section 2 and whose system we ran comparisons to in Section 5. Our
definition of the learning problem can be compared to his “mapping problem” (Siskind,
1993). That formulation differs from ours in several respects. First, his sentence repre-
sentations are terms instead of trees. However, as shown in Figure 7, terms can also be
represented as trees that conform to our formalism with some minor additions. Next, his
notion of interpretation does involve a type of tree, but carries the entire representation of
a sentence up to the root. Also, it is not clear how he would handle quantified variables
in the representation of sentences. Skolemization is possible, but then generalization across
sentences would require special handling. We make the single-use assumption and he does
not. Another difference is our bias towards a minimal number of lexicon entries, while he
attempts to find a monosemous lexicon. His later work (Siskind, 2000) relaxes this to allow
ambiguity and noise, but still biases towards minimizing ambiguity. However, his formal
definition does not explicitly allow lexical ambiguity, but handles it in a heuristic manner.
This, though, may lead to more robustness than our method in the face of noise. Finally,
our definition allows phrasal lexicon entries.

Siskind’s work on this topic has explored many different variations along a continuum of
using many constraints but requiring more time to incorporate each new example (Siskind,
1993), versus few constraints but requiring more training data (Siskind, 1996). Thus, per-
haps his earlier systems would have been able to learn the lexicons of Section 5 more
quickly; but crucially those systems did not allow lexical ambiguity, and thus also may
not have learned as accurate a lexicon. More detailed comparisons to such versions of the
system are outside the scope of this paper. Our goal with Wolfie is to learn a possibly
ambiguous lexicon from as few examples as possible, and we thus made comparisons along
this dimension alone.

Siskind’s approach, like ours, takes into account constraints between word meanings
that are justified by the exclusivity and compositionality assumptions. His approach is
somewhat more general in that it handles noise and referential uncertainty (uncertainty
about the meaning of a sentence and thus multiple possible candidates), while ours is
specialized for applications where the meaning (or meanings) is known. The experimental
results in Section 5 demonstrate the advantage of our method for such an application. He has
demonstrated his system to be capable of learning reasonably accurate lexicons from large,
ambiguous, and noisy artificial corpora, but this accuracy is only assured if the learning
algorithm converges, which did not occur for our smaller corpus in the experiments we ran.
Also, as already noted, his system operates in an incremental or on-line fashion, discarding
each sentence as it processes it, while ours is batch. In addition, his search for word meanings
proceeds in two stages, as discussed in Section 2.2. By using common substructures, we
combine these two stages in Wolfie. Both systems do have greedy aspects, ours in the
choice of the next best lexical entry, his in the choice to discard utterances as noise or create
a homonymous lexical entry. Finally, his system does not compute statistical correlations
between words and their possible meanings, while ours does.

Besides Siskind’s work, there are others who approach the problem from a cognitive
perspective. For example, De Marcken (1994) also uses child language learning as a mo-
tivation, but approaches the segmentation problem instead of the learning of semantics.
For training input, he uses a flat list of tokens for semantic representations, but does not
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segment sentences into words. He uses a variant of expectation-maximization (Dempster,
Laird, & Rubin, 1977), together with a form of parsing and dictionary matching techniques,
to segment the sentences and associate the segments with their most likely meaning. On
the Childes corpus, the algorithm achieves very high precision, but recall is not provided.

Others taking the cognitive approach demonstrate language understanding by the ability
to carry out some task such as parsing. For example, Nenov and Dyer (1994) describe a
neural network model to map between visual and verbal-motor commands, and Colunga
and Gasser (1998) use neural network modeling techniques for learning spatial concepts.
Feldman and his colleagues at Berkeley (Feldman, Lakoff, & Shastri, 1995) are actively
pursuing cognitive models of the acquisition of semantic concepts. Another Berkeley effort,
the system by Regier (1996) is given examples of pictures paired with natural language
descriptions that apply to the picture, and learns to judge whether a new sentence is true
of a given picture.

Similar work by Suppes, Liang, and Böttner (1991) uses robots to demonstrate lexi-
con learning. A robot is trained on cognitive and perceptual concepts and their associated
actions, and learns to execute simple commands. Along similar lines, Tishby and Gorin
(1994) have a system that learns associations between words and actions, but they use a
statistical framework to learn these associations, and do not handle structured representa-
tions. Similarly, Oates, Eyler-Walker, and Cohen (1999) discuss the acquisition of lexical
hierarchies and their associated meaning as defined by the sensory environment of a robot.

The problem of automatic construction of translation lexicons (Smadja, McKeown, &
Hatzivassiloglou, 1996; Melamed, 1995; Wu & Xia, 1995; Kumano & Hirakawa, 1994; Cati-
zone, Russell, & Warwick, 1993; Gale & Church, 1991; Brown & et al., 1990) has a definition
similar to our own. While most of these methods also compute association scores between
pairs (in their case, word-word pairs) and use a greedy algorithm to choose the best trans-
lation(s) for each word, they do not take advantage of the constraints between pairs. One
exception is Melamed (2000); however, his approach does not allow for phrases in the lex-
icon or for synonymy within one text segment, while ours does. Also, Yamazaki, Pazzani,
and Merz (1995) learn both translation rules and semantic hierarchies from parsed parallel
sentences in Japanese and English. Of course, the main difference between this body of
work and this paper is that we map words to semantic structures, not to other words.

As mentioned in the introduction, there is also a large body of work on learning lexical
semantics but using different problem formulations than our own. For example, Collins and
Singer (1999), Riloff and Jones (1999), Roark and Charniak (1998), and Schneider (1998)
define semantic lexicons as a grouping of words into semantic categories, and in the latter
case, add relational information. The result is typically applied as a semantic lexicon for
information extraction or entity tagging. Pedersen and Chen (1995) describe a method
for acquiring syntactic and semantic features of an unknown word, assuming access to an
initial concept hierarchy, but they give no experimental results. Many systems (Fukumoto &
Tsujii, 1995; Haruno, 1995; Johnston, Boguraev, & Pustejovsky, 1995; Webster & Marcus,
1995) focus only on acquisition of verbs or nouns, rather than all types of words. Also, the
authors just named either do not experimentally evaluate their systems, or do not show the
usefulness of the learned lexicons for a specific application.

Several authors (Rooth, Riezler, Prescher, Carroll, & Beil, 1999; Collins, 1997; Ribas,
1994; Manning, 1993; Resnik, 1993; Brent, 1991) discuss the acquisition of subcategoriza-
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tion information for verbs, and others describe work on learning selectional restrictions
(Manning, 1993; Brent, 1991). Both of these are different from the information required
for mapping to semantic representation, but could be useful as a source of information to
further constrain the search. Li (1998) further expands on the subcategorization work by
inducing clustering information. Finally, several systems (Knight, 1996; Hastings, 1996;
Russell, 1993) learn new words from context, assuming that a large initial lexicon and
parsing system are already available.

Another related body of work is grammar acquisition, especially those areas that tightly
integrate the grammar with a lexicon, such as with Categorial Grammars (Retore & Bonato,
2001; Dudau-Sofronie, Tellier, & Tommasi, 2001; Watkinson & Manandhar, 1999). The
theory of Categorial Grammar also has ties with lexical semantics, but these semantics
have not often been used for inference in support of high-level tasks such as database
retrieval. While learning syntax and semantics together is arguably a more difficult task,
the aforementioned work has not been evaluated on large corpora, presumably primarily
due to the difficulty of annotation.

7.2 Active Learning

With respect to additional active learning techniques, Cohn et al. (1994) were among the
first to discuss certainty-based active learning methods in detail. They focus on a neural
network approach to active learning in a version-space of concepts. Only a few of the
researchers applying machine learning to natural language processing have utilized active
learning (Hwa, 2001; Schohn & Cohn, 2000; Tong & Koller, 2000; Thompson et al., 1999;
Argamon-Engelson & Dagan, 1999; Liere & Tadepalli, 1997; Lewis & Catlett, 1994), and
the majority of these have addressed classification tasks such as part of speech tagging
and text categorization. For example, Liere and Tadepalli (1997) apply active learning
with committees to the problem of text categorization. They show improvements with
active learning similar to those that we obtain, but use a committee of Winnow-based
learners on a traditional classification task. Argamon-Engelson and Dagan (1999) also
apply committee-based learning to part-of-speech tagging. In their work, a committee of
hidden Markov models is used to select examples for annotation. Lewis and Catlett (1994)
use heterogeneous certainty-based methods, in which a simple classifier is used to select
examples that are then annotated and presented to a more powerful classifier.

However, many language learning tasks require annotating natural language text with
a complex output, such as a parse tree, semantic representation, or filled template. The
application of active learning to tasks requiring such complex outputs has not been well
studied, the exceptions being Hwa (2001), Soderland (1999), Thompson et al. (1999). The
latter two include work on active learning applied to information extraction, and Thompson
et al. (1999) includes work on active learning for semantic parsing. Hwa (2001) describes
an interesting method for evaluating a statistical parser’s uncertainty, when applied for
syntactic parsing.

8. Future Work

Although Wolfie’s current greedy search method has performed quite well, a better search
heuristic or alternative search strategy could result in improvements. We should also more
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thoroughly evaluate Wolfie’s ability to learn long phrases, as we restricted this ability in
the evaluations here. Another issue is robustness in the face of noise. The current algorithm
is not guaranteed to learn a correct lexicon in even a noise-free corpus. The addition of noise
complicates an analysis of circumstances in which mistakes are likely to happen. Further
theoretical and empirical analysis of these issues is warranted.

Referential uncertainty could be handled, with an increase in complexity, by forming
LICS from more pairs of representations with which a phrase appears, but not between
alternative representations of the same sentence. Then, once a pair is added to the lexicon,
for each sentence containing that word, representations can be eliminated if they do not
contain the learned meaning, provided another representation does contain it (thus allowing
for lexical ambiguity). We plan to flesh this out and evaluate the results.

A different avenue of exploration is to apply Wolfie to a corpus of sentences paired
with the more common query language, SQL. Such corpora should be easily constructible
by recording queries submitted to existing SQL applications along with their English forms,
or translating existing lists of SQL queries into English (presumably an easier direction to
translate). The fact that the same training data can be used to learn both a semantic
lexicon and a parser also helps limit the overall burden of constructing a complete natural
language interface.

With respect to active learning, experiments on additional corpora are needed to test
the ability of our approach to reduce annotation costs in a variety of domains. It would
also be interesting to explore active learning for other natural language processing problems
such as syntactic parsing, word-sense disambiguation, and machine translation.

Our current results have involved a certainty-based approach; however, proponents of
committee-based approaches have convincing arguments for their theoretical advantages.
Our initial attempts at adapting committee-based approaches to our systems were not very
successful; however, additional research on this topic is indicated. One critical problem is
obtaining diverse committees that properly sample the version space (Cohn et al., 1994).

9. Conclusions

Acquiring a semantic lexicon from a corpus of sentences labeled with representations of
their meaning is an important problem that has not been widely studied. We present both a
formalism of the learning problem and a greedy algorithm to find an approximate solution to
it. Wolfie demonstrates that a fairly simple, greedy, symbolic learning algorithm performs
well on this task and obtains performance superior to a previous lexicon acquisition system
on a corpus of geography queries. Our results also demonstrate that our methods extend
to a variety of natural languages besides English, and that they scale fairly well to larger,
more difficult corpora.

Active learning is a new area of machine learning that has been almost exclusively
applied to classification tasks. We have demonstrated its successful application to more
complex natural language mappings from phrases to semantic meanings, supporting the
acquisition of lexicons and parsers. The wealth of unannotated natural language data,
along with the difficulty of annotating such data, make selective sampling a potentially
invaluable technique for natural language learning. Our results on realistic corpora indicate
that example annotations savings as high as 22% can be achieved by employing active
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sample selection using only simple certainty measures for predictions on unannotated data.
Improved sample selection methods and applications to other important language problems
hold the promise of continued progress in using machine learning to construct effective
natural language processing systems.

Most experiments in corpus-based natural language have presented results on some
subtask of natural language, and there are few results on whether the learned subsystems
can be successfully integrated to build a complete NLP system. The experiments presented
in this paper demonstrated how two learning systems, Wolfie and Chill, were successfully
integrated to learn a complete NLP system for parsing database queries into executable
logical form given only a single corpus of annotated queries, and further demonstrated the
potential of active learning to reduce the annotation effort for learning for NLP.
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Suppes, P., Liang, L., & Böttner, M. (1991). Complexity issues in robotic machine learning
of natural language. In Lam, L., & Naroditsky, V. (Eds.), Modeling Complex Phe-
nomena, Proceedings of the 3rd Woodward Conference, pp. 102–127. Springer-Verlag.

Thompson, C. A., Califf, M. E., & Mooney, R. J. (1999). Active learning for natural language
parsing and information extraction. In Proceedings of the Sixteenth International
Conference on Machine Learning (ICML-99), pp. 406–414 Bled, Slovenia.

Thompson, C. A. (1995). Acquisition of a lexicon from semantic representations of sentences.
In Proceedings of the 33rd Annual Meeting of the Association for Computational Lin-
guistics (ACL-95), pp. 335–337 Cambridge, MA.

Tishby, N., & Gorin, A. (1994). Algebraic learning of statistical associations for language
acquisition. Computer Speech and Language, 8, 51–78.

Tomita, M. (1986). Efficient Parsing for Natural Language. Kluwer Academic Publishers,
Boston.

Tong, S., & Koller, D. (2000). Support vector machine active learning with applications
to text classification. In Proceedings of the Seventeenth International Conference on
Machine Learning (ICML-2000), pp. 999–1006 Stanford, CA.

Watkinson, S., & Manandhar, S. (1999). Unsupervised lexical learning with categorial
grammars using the lll corpus. In Learning Language In Logic (LLL) Workshop Bled,
Slovenia.

Webster, M., & Marcus, M. (1995). Automatic acquisition of the lexical semantics of verbs
from sentence frames. In Proceedings of the 27th Annual Meeting of the Association
for Computational Linguistics (ACL-89), pp. 177–184.

43



Thompson & Mooney

Wu, D., & Xia, X. (1995). Large-scale automatic extraction of an English-Chinese transla-
tion lexicon. Machine Translation, 9 (3-4), 285–313.

Yamazaki, T., Pazzani, M., & Merz, C. (1995). Learning hierarchies from ambiguous natural
language data. In Proceedings of the Twelfth International Conference on Machine
Learning (ICML-95), pp. 575–583 San Francisco, CA. Morgan Kaufmann.

Zelle, J. M. (1995). Using Inductive Logic Programming to Automate the Construction of
Natural Language Parsers. Ph.D. thesis, Department of Computer Sciences, Univer-
sity of Texas, Austin, TX. Also appears as Artificial Intelligence Laboratory Technical
Report AI 96-249.

Zelle, J. M., & Mooney, R. J. (1996). Learning to parse database queries using inductive
logic programming. In Proceedings of the Thirteenth National Conference on Artificial
Intelligence (AAAI-96), pp. 1050–1055 Portland, OR.

Zipf, G. (1949). Human behavior and the principle of least effort. Addison-Wesley, New
York, NY.

44


