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Abstract

This paper presents a new classifier combination technique based on the Dempster-
Shafer theory of evidence. The Dempster-Shafer theory of evidence is a powerful method
for combining measures of evidence from different classifiers. However, since each of the
available methods that estimates the evidence of classifiers has its own limitations, we
propose here a new implementation which adapts to training data so that the overall mean
square error is minimized. The proposed technique is shown to outperform most available
classifier combination methods when tested on three different classification problems.

1. Introduction

In the field of pattern recognition, the main objective is to achieve the highest possible clas-
sification accuracy. To attain this objective, researchers, throughout the past few decades,
have developed numerous systems working with different features depending upon the ap-
plication of interest. These features are extracted from data and can be of different types
like continuous variables, binary values, etc. As such, a classification algorithm used with a
specific set of features may not be appropriate with a different set of features. In addition,
classification algorithms are different in their theories, and hence achieve different degrees
of success for different applications. Even though, a specific feature set used with a specific
classifier might achieve better results than those obtained using another feature set and/or
classification scheme, we can not conclude that this set and this classification scheme achieve
the best possible classification results (Kittler, Hatef, Duin, & Matas, 1998). As different
classifiers may offer complementary information about the patterns to be classified, combin-
ing classifiers, in an efficient way, can achieve better classification results than any single
classifier (even the best one).

As explained by Xu et al. (1992), the problem of combining multiple classifiers consists
of two parts. The first part, closely dependent on specific applications, includes the problems
of “How many and what type of classifiers should be used for a specific application?, and
for each classifier what type of features should we use?”, as well as other problems that are
related to the construction of those individual and complementary classifiers. The second
part, which is common to various applications, includes the problems related to the question
“How to combine the results from different existing classifiers so that a better result can be
obtained?”. In our work, we will be concentrating on problems related to the second issue.

(©2002 AT Access Foundation and Morgan Kaufmann Publishers. All rights reserved.



AL-ANI & DERICHE

The output information from various classification algorithms can be categorized into
three levels: the abstract, the rank, and the measurement levels. In the abstract level,
a classifier only outputs a unique label, as in the case of syntactic classifiers. For the
rank level, a classifier ranks all labels or a subset of the labels in a queue with the label
at the top being the first choice. This type was discussed by Ho et al. (1994). For the
measurement level, a classifier attributes to each class a measurement value that reflects the
degree of confidence that a specific input belongs to a given class. Among the three levels,
the measurement level contains the highest amount of information while the abstract level
contains the lowest. For this reason, we adopted, in this work, the measurement level.

Kittler et al. (1998) differentiated between two classifier combination scenarios. In the
first scenario, all the classifiers use the same representation of the input pattern. On the
other hand, each classifier uses its own representation of the input pattern in the second
scenario. They illustrated that in the first case, each classifier can be considered to pro-
duce an estimate of the same a posteriori class probability. However, in the second case
it is no longer possible to consider the computed a posteriori probabilities to be estimates
of the same functional value, as the classification systems operate in different measure-
ment systems. Kittler et al. (1998) focused on the second scenario, and they conducted
a comparative study of the performance of several combination schemes namely; product,
sum, min, max, and median. By assuming the joint probability distributions to be con-
ditionally independent, they found that the sum rule gave the best results. A well known
approach that has been used in combining the results of different classifiers is the weighted
sum, where the weights are determined through a Bayesian decision rule (Lam & Suen,
1995). An alternative method was presented by Hashem & Schmeiser (1995), where a cost
function was used to minimize the mean square error (MSE) in order to calculate a linear
combination of the corresponding outputs from a number of trained artificial neural net-
works (ANNs). The expectation maximization algorithm was used by Chen & Chi (1998)
to perform the linear combination. The fuzzy integral has been used by Cho & Kim (1995a,
1995b) to combine multiple ANNs, while (Rogova, 1994; Mandler & Schurmann, 1988) have
used the Dempster-Shafer theory of evidence to combine the result of several ANNs. Many
other combination methods have also been used to combine classifiers, such as bagging and
boosting (Dietterich, 1999), which are powerful methods for diversifying and combining
classification results obtained using a single classification algorithm and a specific feature
set. In bagging, we get a family of classifiers by training on different portions of the training
set. The method works as follows. We first create IV training bags. A single training bag
is obtained by taking a training set of size S and sampling this training set S times with
replacement. Some training instances will occur multiple times in a bag, while others may
not appear at all. Next, each bag is used to train a classifier. These classifiers are then
combined. Boosting, on the other hand, is based on multiple learning iterations. At each
iteration, instances that are incorrectly classified are given a greater weight in the next it-
eration. By doing so, in each iteration, the classifier is forced to concentrate on instances it
was unable to correctly classify in earlier iterations. In the end, all of the trained classifiers
are combined.

In this paper, we will focus on combining classification results obtained using N different
feature sets, 1, .-, fV. Each feature set will be used to train a classifier, and hence there
will be N different classifiers, ¢!, -- -, ¢V. For a specific input x, each classifier ¢” produces
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Figure 1: A multi-classifier recognition system

a real vector y" = [y"(1),---y"(k),---y"(K)]", where K is the number of class labels and
y" (k) corresponds to the degree that ¢" considers x has the label k. This degree could be
a probability, as in the Bayesian classifier, or any other scoring system. Fig. 1 shows the
block diagram of a multi-classifier recognition system.

Unlike statistical-based combination techniques, the Dempster-Shafer theory of evidence
has the ability to represent uncertainties and lack of knowledge. This is quite important for
the problem of classifier combination, because there is usually a certain level of uncertainty
associated with the performance of each of the classifiers. Since available classifier combi-
nation methods based on this theory do not accurately estimate the evidence of classifiers,
this paper attempts to solve this issue by proposing a new technique based on the gradient
descent learning algorithm, which aims at minimizing the MSE between the combined out-
put and the target output of a given training set. Aha (1995) gave the following definition
for learning;:

Learning denotes changes in the system that are adaptive in the sense that they
enable the system to do the same task or tasks drawn from the same population
more effectively the next time.

Based on the above, we show that instead of attempting to find an analytical formula which
accurately measures evidence, one can obtain a very good estimate of evidence by just using
appropriate learning procedures, as will be discussed later.

Some basic concepts of the Dempster-Shafer theory of evidence are presented in the
next section. Section three discusses the existing methods for computing evidence. The
proposed combination technique is presented in section four. Section five compares the
proposed algorithm to other conventional methods used by Kittler et al. (1998), the fuzzy
integral, and a previous implementation of the Dempster-Shafer theory. Section six provides
a conclusion to the paper.

2. The Dempster-Shafer Theory of Evidence

The Dempster-Shafer (D-S) theory of evidence (Shafer, 1976) is a powerful tool for rep-
resenting uncertain knowledge. This theory has inspired many researchers to investigate
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different aspects related to uncertainty and lack of knowledge and their applications to real
life problem. Today, the D-S theory covers several different models, such as the theory of
hints (Kohlas & Monney, 1995) and the transferable belief model (TBM) (Smets, 1998).
The latter will be adopted in this paper as it represents a powerful tool for combining
measures of evidence.

Let © = {01, .....,0k} be a finite set of possible hypotheses. This set is referred to as the
frame of discernment, and its powerset denoted by 2°. Following are the basic concepts of
the theory:

Basic belief assignment (BBA). A basic belief assignment m is a function that assigns
a value in [0, 1] to every subset A of © and satisfies the following:

m() =0,and Y m(A) =1 (1)

ACO

It is worth mentioning that m(()) could be positive when considering unnormalized combi-
nation rule as will be explained later. While in probability theory a measure of probability is
assigned to atomic hypotheses 6;, m(.A) is the part of belief that supports A, but does not
support anything more specific, i.e., strict subsets of A. For A # 60;, m(A) reflects some ig-
norance because it is a belief that we cannot subdivide into finer subsets. m(.A) is a measure
of support we are willing to assign to a composite hypothesis A at the expense of support
m(6;) of atomic hypotheses ;. A subset A for which m(A) > 0 is called a focal element.
The partial ignorant associated with A leads to the following inequality: m(A)4+m(A) < 1,
where A is the compliment of A. In other words, the D-S theory of evidence allows us
to represent only our actual knowledge without being forced to overcommit when we are
ignorant.

Belief function. The belief function, bel(.), associated with the BBA m(.) is a function
that assigns a value in [0, 1] to every nonempty subset B of ©. It is called “degree of belief
in B” and is defined by
bel(B) = Y m(A) (2)
ACB

We can consider a basic belief assignment as a generalization of a probability density func-
tion whereas a belief function is a generalization of a probability function.

Combination rule. Consider two BBAs m;(.) and mg(.) for belief functions bel;(.) and
belo(.) respectively. Let A; and By be focal elements of bel; and bely respectively. Then
m1(.) and ma(.) can be combined to obtain the belief mass committed to C C © according
to the following combination or orthogonal sum formula (Shafer, 1976),

Y. mu(Ay)ma(By)
j,k},AjﬁBk:C

1-— Z ml(Aj>m2(B]€)’

j,k,.Aj NBL=0

m(C) = my ©my(C) = C#0 3)
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The denominator is a normalizing factor, which intuitively measures how much m;(.) and
ma(.) are conflicting. Smets (1990) proposed the unnormalized combination rule:

mi@ma(C) = Y mi(A;)ma(By), VCCO (4)
A;NBL=C

This rule implies that m(0)) could be positive, and in such case reflects some kind of con-
tradiction in the belief state. In this work we will consider that m(0)) = 0 and use the
normalized combination rule. A comparison between normalized and unnormalized combi-
nation rules for the problem of combining classifiers will be considered in the future.

Combining several belief functions. The combination rule can be easily extended to
several belief functions by repeating the rule for new belief functions. Thus the pairwise

orthogonal sum of n belief functions bely, bels, - - - , bel,,, can be formed as
((bely @ bely) @ bels) - - @ bel, = P bel; (5)
i=1

Notation. According to Smets (2000), the full notation for bel and its related functions is:
bel;@f{e[ECm](wo cA =z

where Y represents the agent, ¢ the time, © the frame of discernment, 3 a boolean algebra
of subsets of ©, wy the actual world, A a subset of ©, and ECy; all what agent Y knows
at t. Thus, the above expression denotes that the degree of belief held by Y at t that wq
belongs to the set A of worlds is equal to x. The belief is based on the evidential corpus
ECy; held be Y at t.

In practice, many indices can be omitted for simplicity sake. Usually R is the power set
of ©, which is 29. When bel is defined on 29, R is not explicitly stated. "wg € A’ is denoted
as 'A’. Y and/or ¢ are omitted when the values of the missing elements are clearly defined
from the context. Furthermore, FC is usually just a conditioning event. So, bel(.A) is one
of the most often used notations (Smets, 2000). In the proposed method, we will adopt the
following notation: bel,(0y), where the agent is the classifier, and the subsets of concern
are the class labels.

It is important to mention that the combination rule given by Eq. 3 assumes that the
belief functions to be combined are independent. Consider that we have certain information
and would like to measure its belief, then we can think of this process as a mapping from
the “original information level” to the “belief level”. Liu & Bundy (1992) explained that
independence in the original information level would lead to independence in the belief level.
But, if two independent belief functions are rooted to the original information level, then
their original information may or may not be independent. For the problem of combining
multiple classifiers, the original information level consists of outputs of the classifiers to be
combined, while the belief level consists of the evidence of these classifiers (or their BBAs).
The assumption that these BBAs are independent, whether obtained from independent or
dependent original information, can hence justify the use of D-S theory. In fact, many
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existing classifier combination methods assume the classification results of different classi-
fiers to be independent (Mandler & Schurmann, 1988; Hansen & Salamon, 1990; Xu et al.,
1992). Since the classifiers’ evidence plays a crucial role in the combination performance,
there is an increased interest in the proper estimation of such evidence. In the next section,
we discuss how a number of existing classifier combination methods estimate evidence of
classifiers, and in section 4 we present our proposed method.

3. Existing Methods for Computing Evidence

Mandler & Schurmann (1988) proposed a method that transforms distance measures of the
different classifiers into evidence. This was achieved by first calculating a distance between
learning data sets and a number of reference points in order to estimate statistical distri-
butions of intra- and interclass distances. For both, the a posteriori probability function
was estimated, indicating to which degree an input pattern belongs to a certain reference
point. Then, for each class label, the class conditional probabilities were combined into
evidence value ranging between 0 and 1, which was considered as the BBA of that class.
Finally, Dempster’s combination rule was used to combine the BBAs of the different classi-
fiers to give the final result. As explained by Rogova (1994), this method brought forward
questions about the choice of reference vectors and the distance measure. Moreover, ap-
proximations associated with estimation of parameters of statistical models for intra- and
interclass distances can lead to inaccurate measure of the evidence.

Xu et al. (1992) used K + 1 classes to perform the classification task, where for the
(K 4 1)*" class denotes that the classifier has no idea about which class the input comes
from. For each classifier ¢, n = 1..V, recognition, substitution, and rejection rates (€], €7,
and 1 — €' — €7) were used as a measure of BBA, m,,, on © as follows:

1. If the maximum output of a specific classifier belongs to K + 1, then m,, has only a
focal element © with m,(©) = 1.

2. When the maximum output belongs to one of the K classes, m,, has two focal elements
0 and 6y, with m,(0x) = €, m,(0x) = €. As the classifier says nothing about any

ro

other propositions, m,(0) = 1 — my,(0x) — m,(01).

The drawback of this method is again the way evidence is measured. There are two problems
associated with this method. Firstly, many classifiers do not produce binary outputs, but
rather probability like outputs. So, in the first case, it is inaccurate to assign 0 to both
mn(0)) and m,, (01). Secondly, this way of measuring evidence ignores the fact that classifiers
normally do not have the same performance with different classes. This had a clear impact
on the performance of this combination method when compared with other conventional
methods especially the Bayesian (Xu et al., 1992).

Rogova (1994) used several proximity measures between a reference vector and a clas-
sifier’s output vector. The proximity measure that gives the highest classification accuracy
was later transformed into evidences. The reference vector used was the mean vector, pu}, of
the output set of each classifier ¢ and each class label k. A number of proximity measures,
di, for pi and y" were considered. For each classifier, the proximity measure of each class
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is transformed into the following BBAs:

mk(ﬁk) = z, mk(@) =1- dz
mp@r) = 1-][—df), mg©) =[]0 -dp
l#k l#k

The evidence of classifier ¢ and class k is obtained by combining the knowledge about
Ok, thus my @ mgz. Finally, Dempster’s combination rule was used to combine evidences
for all classifiers to obtain a measure of confidence for each class label. Note that the first
combination was performed with respect to the class label (Rogova used the notations k and
k), while in the second one the agent was n. This idea was a promising one. However, the
major drawback is the way the reference vectors are calculated, where the mean of output
vectors may not be the best choice. Also, trying several proximity measures and choosing
the one that gives the highest classification accuracy is itself questionable.

4. The Proposed Combination Technique

In this section we will estimate the value of m,, (6 ), which represents the belief in class label
k that is produced by classifier ¢”. In addition, we will also estimate m,,(©), which reflects
the ignorance associated with classifier ¢’*. Since the ultimate objective is to minimize the
MSE between the combined classification results and the target output, m, (6x) and m,,(0)
will be estimated using an iterative procedure that aims at attaining this objective. We will
first compare y", which is the output classification vector produced by classifier ¢”, to a
reference vector, wj', and the obtained distance will be used to estimate the BBAs. These
BBAs will then be combined to obtain a new output vector, z, that represents the combined
confidence in each class label. w} will be measured such that the MSE between z and the
target vector, t, of a training dataset is minimized. Note that there are two indices for w;..
Thus, for class label k, we don’t only consider the value assigned to it by classifier ¢”, but
rather the whole output vector (values assigned to each class label).

Let the frame of discernment © = {6, -6, - ,0x}, where 6 is the hypothesis that
the input x is of class k. Considering a BBA, m,, such that m,(0x) > 0, m,(0) =
1-— Zle mn(0), and m, is 0 elsewhere. Let d,(0;) be a distance measure and g, the
unnormalized ignorance of classifier ¢, then m,,(0)) and m,,(©) will be estimated according
to the following formulas:

dn(0k) = exp(— W} — y"[?) (6)

i (05) = —— %) ()
k=1

mn(©) = —" (8)

B
Il
—

where my,(0x) and m,(0) are the normalized values of d,,(0)) and g, respectively. Similar
to wj!, the minimized MSE will be used to estimate g;,.
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Evidences of all classifiers are combined according to the normalized combination rule
to obtain a measure of confidence of each class label. The k*" element of the new combined
vector is given by:

z2(k) = m(0r) = m1(Op) ®--- ®mn(Ok) = @ M (O) 9)
neN

For a given classifier ¢, let 1 = {1--- N} \ {n}, mr = @,.; m;, then Eq. 9 can be written
as:
(k) = my(0x) & man(0k) (10)

where according to Eq. 3, the combination of two BBAs is:
m (O ) (Or) + m;j (6x)mu(©) + m; (©)my(6r)

L= my(6p)mu(8,)

a#p

m;(0) @ my(br) = (11)

wy and g, will be initialized randomly, then their values will be adjusted according to a
training dataset so that the MSE of z is minimized.

Err = Hz—tH2 (12)

The values of wii and g, are adjusted according to the formulas:

OFE
wi[new] = wylold] — aM[Zd] (13)
gn[new] = gylold] — 3 825[;; ] (14)

where o and (3 are the learning rates. The terms 0Err/0w} and 0Err/dgy, are derived as
follows:

OErr _ OErr 0z(k) Omy(6k) (15)

owy 0z(k) Omy(0) Ow}

OErr _ OErr 0z(k) Omy(6k) (16)
9n az(k) 8mn(9k) 9gn
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where,
oErr
5y — 2200 — 1) (17)
afni(gk) = { [1 - zp: Zq: M (0,)mr (6 )] [m1 (k) +mi(0)] + [mn(Ok)m(0k)
q#p
My (Ok)m1(0) + my (©)mr(0y)] [Z m](9p)] }/
pik
2
15 S )| 1s)
b ’17qép
2exp(—|lwi — y"|2)[wy — y"I[)_ dn(8y) + 9]
oma0) pik
awz B Z d + gn (19)
omn(0r) dn (9k)
gn Z dn(0p) + gn)? -

Fig. 2 shows a flow chart of these learning procedures. It has been found that adjusting
the values of g, can be achieved during the first few iterations. By continuing the training
to fine-tune the values of w}} until there is no further improvement on the training set, or
we reach a pre-defined maximum number of epochs', the result could be further enhanced.
Note that the weight values are adjusted by each pattern (not batch training). We fix the
value of 3 = 1079, while « is first initialized to 5 x 10, and is then changed according to
the value of MSE, as described in the flow chart.

Although the computational cost involved in implementing our technique is higher than
that of other combination methods?, we only need to perform training once, which can be
done off-line. Then, with the optimal values of w} and g,, we can perform the on-line
combination, which is comparable to other combination methods.

On the other hand, as indicated in the beginning of this section, we consider a reference
vector, w}, for each class. This leads to an increase in training time as the number of classes
and/or classifiers increases. An alternative is to consider only using a reference value for
each class, wp. This will save more than 50% of training time for the case of several
classifiers and classes. Note that the same learning formulas are applicable by replacing w}
with w;! and y™ with y;;. We will refer to these two alternative approaches as DS1 and DS2,
respectively. In the following section, we will compare DS1 and DS2 with other well-known
combination methods.

1. The maximum number of epochs is set to 50 in all experiments described in this paper
2. Training time of most of the experiments conducted in section 5 required less than 3 minutes on a
conventional PC
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Figure 2: Training procedure of the proposed technique

It is worth mentioning that although the training procedures of both the proposed
method and the backpropagation algorithm of ANN are based on minimizing the MSE using
iterative approaches, the proposed method and ANN are not similar. The backpropagation
training operates by passing the weighted sum of its input through an activation function,
usually in a multi-layer architecture known as multi-layer perceptron (MLP). Extracting
rules from a trained MLP is a very challenging problem. On the other hand, the training of
the proposed method operates by measuring a distance between a classification vector and
a reference vector. This distance would later be used to measure the belief of each class
label for all classifiers. The final confidence of each class label is obtained by combining
the beliefs of all classifiers. Unlike MLP, the belief of a given class label for each classifier
indicates its contribution towards the final confidence. The reader may refer to (Denoeux,

2000) for a description of an ANN classifier based on the D-S theory.
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5. Performance Analysis of Different Combination Methods

The following three classification problems have been considered: texture classification,
classification of speech segments according to their manner of articulation, and speaker
identification. ANNs are used to perform classification for the three problems. For each
case, classifiers will be sorted according to their performance, such that the best classifier
is referred to as ¢!, the 2" best as ¢2, and the worst one as ¢!.

For each problem, we will consider different number of classes, and combine the results of
different number of classifiers, where combining results of the best, the worst and mixtures
of best and worst classifiers will be investigated. For example, if we have five classifiers
and would like to combine two of these, then we will consider combining the best two,
{c', %}, best one and worst one, {c!,c}, and worst two classifiers, {c*,c®}. The following
combination methods were tested: the weighted sum (WS)3, average (Av), median (Md),
maximum (Mx), majority voting (MV), fuzzy integral (FI) (Cho & Kim, 1995a) 4, Rogova’s
D-S method (DS0) (Rogova, 1994), and our proposed method with its two alternatives (DS1
& DS2). The training set used to train the ANNs will be used to estimate the confusion
matrix for WS and FI, as well as to estimate the evidence of DS0, DS1, and DS2.

Two measures will be used to compare the performance of the different combination
methods, namely: overall performance and error reduction rate (ERR). The overall perfor-
mance is the mean of classification accuracy obtained by combining all considered subsets
of 2,--- N classifiers. ERR is the percentage of error reduction obtained by combining
classifiers with reference to the best single classifier:

ERpsc — ERcc

ERR =
ERpsc

x 100 (21)

where FRpgc is the error rate of the best single classifier and FRo¢ is the error rate ob-
tained by combining the considered classifiers. Unlike classification accuracy, ERR clearly
shows how the performance of the combined classifiers improves or deteriorates compared
to the best single classifier. In other words, it shows the merit of performing the combi-
nation. We will specifically concentrate on the mazimum ERR obtained by combining all
the considered subsets of 2,--- | N classifiers. In addition, we will also investigate how the
value of ERR gets affected by increasing the number of combined classifiers.

5.1 Texture Classification

Several experiments have been carried out for the classification of texture images. The
textures considered here are: bark, brick, bubbles, leather, raffia, water, weave, wood and
wool (USC, 1981). In order to obtain a better comparison between the different combination
methods, we considered classifying the first two textures, then the first three, the first five
and finally all the nine textures. Additive Gaussian noise, with different signal-to-noise ratio,
has been added to (1024 x 1024) pixels image of each texture class to form the training and
testing sets. 961 patterns were obtained from each image using (64 x 64) windows with an
overlap of 32 pixels.

3. The weights of each classifier are determined according to the classification accuracy of each class label
using the training dataset
4. The reader may refer to Appendix A for a brief description of this method
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No. of classes | SDH, | SDHy | SDH3 | SDH, | En |

86.96 | 85.73 | 84.44 | 85.45 | 91.14
84.58 | 84.52 | 83.91 | 86.24 | 89.72
85.10 | 84.62 | 84.34 | 83.46 | 88.84
80.97 | Tr.44 | 77.51 | 75.72 | 83.65

OO W N

Table 1: Texture classification accuracy of the five original classifiers for different number
of class labels

Four nine-feature vectors were calculated using statistics of sum and difference histogram
(SDH) of the co-occurrence matrix with different directions, vertical (SDH;), horizontal
(SDH>), and the two diagonals (SDH3 and SDHy) . For each direction, the features used
were: mean, variance, energy, correlation, entropy, contrast, homogeneity, cluster shade,
and cluster prominence. The fractal dimension (FD) has also been used to form the tenth
feature of each vector. The energy contents of texture images (En) has been used to form
another feature vector using 9 different masks. Again the tenth feature was FD.

Each of these five feature vectors has been used as input to an ANN. The numbers of
training and testing patterns depend upon number of classes considered, i.e. for the case
of two classes, 15376 patterns were used to train the networks and 5766 to test them. The
results obtained are shown in Table 1. Note that as the number of classes increases the
overall accuracy decreases. In addition, the performance of the En classifiers is found to be
better than that of the other four.

No. of classes H WS \ Av \ Md \ Mx ‘ MV ‘ FI ‘ DSO ‘ DS1 ‘ DS2 ‘

89.16 | 89.04 | 87.66 | 90.12 | 88.09 | 90.08 | 88.70 | 90.66 | 90.72
88.52 | 88.39 | 87.41 | 88.86 | 87.30 | 88.71 | 88.40 | 90.21 | 90.08
89.60 | 89.41 | 87.99 | 89.23 | 87.83 | 90.28 | 89.52 | 92.69 | 91.50
84.96 | 84.55 | 83.37 | 82.90 | 83.23 | 86.76 | 84.87 | 89.83 | 86.79

OO W N

Table 2: Overall performance of the various combination methods for different number of
class labels (texture classification)

The overall performance of the tested combination methods for different number of class
labels are shown in Table 2. For the case of 2 classes, it is clear that the overall performances
of DS1 and DS2 are better than that of the other combination methods. When mixtures of
good and bad classifiers are considered, the performance of combination methods, except
for DS1 and DS2, is closer to or worse than that of the best single classifier. This is shown
in Table 3 for the combination of {c!,c3, ¢, ¢}, {c!,c*, %}, {c!,c’}, etc®. When 3 and 5
classes are considered, DS1 performs slightly better than DS2, and both outperform the
other methods. The gap between DS1 and other methods gets wider when all 9 classes are
considered. The superiority of DS1 reflects the advantage of using the whole output vector
in measuring evidences of classifiers.

5. The reader may refer to Appendix B for detailed results of other cases
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| Classifiers | WS | Av [ Md | Mx | MV | FI [ DSO | DS1 | DS2 |
cl, ¢ 92.56 | 92.59 | 92.59 | 92.51 | 92.51 | 92.61 | 92.40 | 92.46 | 92.46
e, 91.16 | 91.12 | 91.12 | 91.09 | 91.09 | 91.00 | 91.33 | 91.62 | 91.61
A o 85.07 | 85.07 | 85.07 | 85.22 | 85.22 | 85.07 | 85.15 | 85.10 | 85.12
c, 2 91.21 | 91.21 | 88.92 | 91.62 | 88.92 | 91.69 | 90.81 | 92.40 | 92.53
c, 91.03 | 90.81 | 88.68 | 91.48 | 88.71 | 91.48 | 90.43 | 92.47 | 92.39
c, 89.80 | 89.59 | 86.21 | 91.21 | 86.21 | 91.24 | 88.88 | 91.68 | 91.78
A A 85.38 | 85.38 | 85.47 | 85.40 | 85.48 | 85.33 | 85.22 | 85.43 | 85.40
c, 2, 3 89.94 | 89.70 | 87.84 | 91.47 | 89.13 | 91.59 | 89.13 | 92.21 | 92.33
ch, 2, 3 0 89.70 | 89.42 | 87.53 | 91.42 | 89.04 | 91.29 | 88.92 | 92.32 | 92.42
c, 2, P 89.72 | 89.49 | 87.37 | 91.48 | 88.94 | 91.40 | 89.00 | 92.25 | 92.26
e, 3, P 88.57 | 88.45 | 86.30 | 91.09 | 87.03 | 90.98 | 87.81 | 91.78 | 91.87
2, 3, P 86.07 | 86.11 | 85.87 | 86.25 | 86.26 | 86.13 | 85.93 | 86.66 | 86.80
et 3, et ]| 88.81 | 88.54 | 86.63 | 91.33 | 86.59 | 91.21 | 88.10 | 92.21 | 92.33

Table 3: Classification accuracy of texture images using different combination methods (2
textures)

The best ERR values of WS, FI, DS0, DS1 and DS2 are determined according to Eq.
21. Since WS has been widely used in the literature, and it outperforms other conventional
methods (Av, Md, Mx, and MV), as observed in Table 2, then we will use it as a represen-
tative of the conventional methods when performing the comparison with FI, DS0, DS1 and
DS2. Figure 3a shows the FRR values when 2 classes are considered. It is clear that the
maximum F RR values of these five combination methods are very close, ranging between
14% to 16%. They are obtained by combining the best two classifiers for WS, FI and DS0,
while DS1 and DS2 use three classifiers to obtain their maximum ERR. As mentioned
earlier, The performance of the first four individual classifiers is weaker than that of the
En. Notice that, for both DS1 and DS2, there is no significant degradation in ERR as the
number of combined classifiers increases.

For the case of 3 classes, both DS1 and DS2 outperform other combination methods
in terms of the maximum FRR. They achieve values of 17.3% and 19.6% respectively,
compared to 11.4% or less for other methods as shown in Figure 3b. In addition, ERR of
DS1 and DS2 are not affected as the number of combined classifiers increases.

For the case of 5 classes, the maximum ERR values sorted in a descending order are:
DS1 50.7%, DS2 40.2%, FI 31.6%, WS 28.1%, and DS0 23.8%, as shown in Figure 3c. In
addition, FRR values of DS1 improve as the number of combined classifiers increases, DS2
is the second best, while FRR values of other methods degrade as the number of combined
classifiers increases. For the case of 9 classes, the superiority of DS1 becomes clearer, where
as shown in Figure 3d, the maximum FRR value of DS1 is 54% compared to 37.5% or less
for other methods. It is worth mentioning that even though the maximum FRR values of
other methods degrade, they still perform better than the best single classifier. This leads
us to conclude that as the number of classes increases, the performance of most classifier
combination methods gets better overall.
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Figure 3: ERR of different classifier combination methods obtained by considering different
number of classifiers for the cases: (a) 2 classes, (b) 3 classes, (c) 5 classes, and
(d) 9 classes

Taking all these facts into consideration, we can sort the methods in a descending order
as follows: DS1, DS2, FI, WS, DSO0, and the other conventional methods. Thus, in summary,
for the problem of texture classification, our proposed technique with its two alternatives
(DS1 and DS2) clearly outperforms other standard combination methods with an increase
in classification accuracy of about 2 — 7%. For the cases of 2 and 3 classes, there is a little
difference in performance between DS1 and DS2. This is because using reference vectors of
small size, 2 x 1 and 3 x 1, does not make a big impact upon the estimation of evidence
compared to that obtained using a single reference value. As the size of the reference vector
increases, 5 X 1 and 9 x 1 for the other two cases, its impact on estimating the evidence
becomes clearer, which leads to better results, but at the cost of increasing computational
load.

5.2 Speech Segment Classification

Six different input feature sets have been used to classify speech segments according to their
manner of articulation, these were: 13 mel-frequency cepstral coefficients (MFC), 16 log
mel-filter bank (MFB), 12 linear predictive cepstral coefficients (LPC), 12 linear predictive
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No. of classes | MFC | MFB | LPC | LPR | WVT | ARP |

3 88.21 | 90.98 | 81.64 | 80.69 | 90.64 | 70.87
6 83.16 | 85.50 | 74.77 | 74.06 | 84.33 | 62.90
9 78.48 | 83.24 | 71.64 | 70.03 | 81.33 | 56.66

Table 4: Speech segment classification accuracy of the six original classifiers for different
number of class labels

reflection coefficients (LPR), 10 wavelet energy bands (WVT), and 12 autoregressive model
parameters (ARP). For this experiment, speech was obtained from the TIMIT database
(MIT, SRI, & TI, 1990). Segments of 152 speakers (56456 segments) were used to train
the ANNs, and 52 speakers (19228 segments) to test them. Three cases were considered:
3 classes (vowel, consonant, and silence), 6 classes (vowel, nasal, fricative, stop, glide, and
silence), and finally 9 classes (vowel, semi-vowel, nasal, fricative, stop, closure, lateral,

rhotic, and silence). The classification results for these three cases are summarized in Table
4.

| No. of classes | WS | Av | Md | Mx | MV | FI [ DSO [ DS1 [ DS2 |

3 90.80 | 90.41 | 90.20 | 86.15 | 89.51 | 90.65 | 90.90 | 91.57 | 91.31
6 85.54 | 84.91 | 84.62 | 81.16 | 84.03 | 85.29 | 85.18 | 87.18 | 86.37
9 83.05 | 82.31 | 81.93 | 75.63 | 81.00 | 82.73 | 82.86 | 85.20 | 84.22

Table 5: Overall performance of the various combination methods for different number of
class labels (speech segment classification)

The two best individual classifiers are MFB and WVT in all three cases, followed by
MFC then other methods. Unlike texture classifiers that had one good classifier and four,
relatively, weak classifiers, we have here three good classifiers (MFB, MFC and WVT) and
three weak classifiers (LPC, LPR and ARP).

The overall performance values of the various combination methods are displayed in
Table 5. For the case of the 3 classes, it can be seen that the overall performance of DS1 is
better than that of DS2 and they both outperform the other methods. This becomes even
clearer as the number of classes increases (with more than 2% increase in accuracy).

The FRR values for the case of 3 classes are shown in Figure 4a. The maximum ERR
value of DS1 is 23.4%, which is achieved by combining all six classifiers, compared to 20.3%
for DS2 and 19.6% or less for the other methods. The gap between DS1 and the other
methods gets wider when we consider 6 and 9 classes as shown in Figures 4b and 4c.
Because there are more good classifiers in this experiment compared to that of the texture
experiment, the variations of the FRR values when the number of classifiers increases are
found to be smaller. In addition, we can see that as the number classes increases DS1 keeps
its steady and superior performance in terms of FRR with more than 10% increase.

As a summary, DS1 outperforms other methods in terms of overall performance and
ERR measurements. It is followed by DS2, WS, and the rest of the methods.
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Figure 4: ERR of different classifier combination methods obtained by considering different
number of classifiers for the cases: (a) 3 classes, (b) 6 classes, and (c) 9 classes

5.3 Speaker Identification

Three limited-scope experiments were carried out to perform speaker identification using 2,
3, and 4 speakers. Speech data from the TIMIT database was also used (MIT et al., 1990).
The number of training patterns were 3232, 4481 and 5931 respectively, and the number of
testing patterns were 1358, 1921 and 2542 respectively. The same features used to classify
speech segments according to their manner of articulation were used to identify speakers.
Classification results of the six classifiers are shown in Table 6. The performance of the
individual classifiers are not quite similar to the speech segment problem, where the three
good classifiers are: MFB, MFC and LPC and the three weak classifiers are: LPR, WVT
and ARP.

The overall performance of the various combination methods are shown in Table 7. For
the case of 2 classes, it is clear that the overall performance of most combination methods
is very comparable. The superiority of DS1, and to a lesser degree DS2, becomes clear as
the number of classes increases (more patterns were included to estimate evidence).

Note that, because of the high performance of individual classifiers for the case of 2
classes, a small difference in the performance of combination methods will have great impact
on KRR, which explains the graphs’ fluctuations, as shown in Figure 5a. It can be seen
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No. of classes | MFC | MFB | LPC | LPR | WVT | ARP |

2 94.58 | 96.17 | 92.49 | 89.60 | 87.80 | 84.55
3 85.84 | 87.25 | 82.20 | 81.00 | 74.39 | 73.03
4 85.01 | 85.96 | 80.84 | 77.97 | 70.93 | 64.59

Table 6: Speaker identification accuracy of the six original classifiers with different number
of speakers

| No. of classes | WS | Av | Md | Mx | MV | FI [ DSO [ DS1 [ DS2 |

2 95.53 | 95.50 | 95.26 | 95.36 | 95.21 | 95.25 | 95.46 | 95.48 | 95.45
3 90.80 | 90.41 | 90.20 | 86.15 | 89.51 | 90.65 | 90.90 | 91.57 | 91.31
4 83.05 | 82.31 | 81.93 | 75.63 | 81.00 | 82.73 | 82.86 | 85.20 | 84.22

Table 7: Overall performance of the various combination methods for different number of
class labels (speaker identification)

that both maximum FRR and overall performance of most combination methods are close.
These results do not favor DS1 nor DS2, because they have an additional computational
cost. Let’s now consider the case of 3 classes, Figure 5b shows that the maximum EFRR
of DS2 is the highest followed by DS1, and they both outperform the other methods. For
the case of 4 classes, the maximum EFRR of DS1 is 30%, compared to 27% or less for other
methods, as shown in Figure 5c. The figure also shows that FRR values of DS2 and WS
are close. However, as the overall performance of DS2 is better than that of WS, DS2 can
be considered as the second best method followed by WS, DS0 and finally FI.

The above results clearly show how the performance of DS1 and DS2 get affected by the
number of training patterns, which is crucial in achieving good estimation of the evidence of
each classifier. This is very clear for the case of 2 speakers. Their performance, however, get
better as the number of speakers and training patterns increase. In other words, DS1 and
DS2 require a larger number of patterns to work properly. Failing to provide such number
of patterns, other conventional methods, such as WS, can achieve similar performance.

The experiments of textures, speech segments and speaker classification show that our
proposed technique clearly outperforms the other methods in terms of overall performance
and FRR, providing that a sufficient number of patterns to estimate evidence of classifiers
exists. Also, among the different combination methods, DS1 and DS2 are the least effected
by the inclusion of weak classifiers. The experiments also show that the BBAs could be
better estimated using reference wvectors rather than reference wvalues, especially for large
number of classes.

It is worth mentioning that each one of the combination methods has its own merit.
For example, the MV is very useful combination method when dealing with classifiers that
produce results of the abstract level. When working in the measurement level, other com-
bination methods could have better performance.

The Mx method can provide good results when the performance of the combined classi-
fiers are close. In such case, the classifier with higher confidence can provide better results
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Figure 5: ERR of different classifier combination methods obtained by considering different
number of classifiers for the cases: (a) 2 classes, (b) 3 classes, and (c) 4 classes

than any individual classifier. This is shown in Tables 11-13 (refer to Appendix B), where
good results are achieved when combining the best two or three classifiers of the speech
segment experiment compared to the best individual classifier. However, if there is a clear
difference in the performance of classifiers, as in the case when considering mixtures of good
and bad classifiers, then using Mx to combine the classification results will not be a good
choice. In case we don’t have any information about the performance of the classifiers, i.e.,
there is no training dataset, the Av and Md methods could provide an attractive choice.
Similar to the findings of (Kittler et al., 1998; Alkoot & Kittler, 1999), the performance of
these two methods are found to be close with slight favor of the Av method. If the clas-
sification accuracy of the different classifiers are available, then the WS method represents
a good choice, where it outperforms Av in almost all the conducted experiments. This is
expected, as associating each classifier with a weight that reflects its performance, would
make the better classifier contributes more towards the final decision. If the performance
of the combined classifiers are very close, then combining their results using both the Av
and WS methods would lead to very similar performance, as shown in Tables 11-13 for the
cases of combining the best two and three speech segment classifiers.

The FI and DSO represent two non-linear combination methods. According to (Cho &
Kim, 1995a), the performance of FI was slightly better than the WS when tested using an
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optical character recognition database, which is similar to the results we obtained for the
texture experiments. However, for speech segment classification and speaker identification
experiments, the performance of FI was not as good as that of WS. On the other hand, the
experiments conducted here show that WS slightly outperforms DS0O. Note that Rogova
(1994) only compared DSO to the original classifiers. The main problem with both FI
and DSO0 is the appropriate estimation of their parameters. For example, the desired sum
of fuzzy densities affects the combination results of FI, while the choice of the proximity
measure and reference vector plays an important role in the performance of DS0.

DS1 and DS2 differ from DSO by the appropriate measure of the reference vectors,
and hence the accurate estimation of the evidence of each classifier. This will exploit
the complementary information provided by the different classifiers. In other words, the
accurate estimation of evidence of each classifier will lead to minimizing the MSE of the
combined results, and hence resolving the conflicts between classifiers.

6. Conclusion

We have developed in this work a new powerful classifier combination technique based
on the D-S theory of evidence. The technique, based on adjusting the evidence of different
classifiers by minimizing the MSE of training data, gave very good results in terms of overall
performance and error reduction rate. To test the algorithm, three experiments were carried
out: texture classification, speech segments classification, and speaker identification. All
of the experiments showed the superiority of the proposed technique when compared to
conventional methods, fuzzy integral, and another D-S implementation that uses a different
measure of evidence. We have shown that accurate estimation of the evidence from different
classifiers based on the whole output vectors (DS1) gives the best performance, especially
for higher number of class labels. The only drawback of the algorithm is that training
can be computationally expensive (this is used to accurately estimate the evidence of each
classifier). However, this can be executed off-line, and as such, has no major effect on the
performance of the algorithm. We have also shown that the proposed algorithm can easily
achieve an increase in classification accuracy of the order of 2% to 7% compared to other
combination methods. We believe that with more work on enhancing the technique, the
scheme can form a new framework for pattern classification in the future.
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Appendix A. Classifier Combination Based on the Fuzzy Integral

Fuzzy integral is a non-linear combination method defined with respect to a fuzzy measure.
Detailed explanation of classifier combination based on the g fuzzy measure can be found
in the work of Cho & Kim (1995a, 1995b).
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For a finite set of elements, Z, the gy fuzzy measure (Sugeno, 1977) is defined as the set
function g: 24 — [0, 1] that satisfies the following conditions:

L. g(0) =0,9(2) =1,

2. g(A) <g(B)if AC B,

3. if {A4;}9°, is an increasing sequence of measurable sets, then lim; . g(A4;) = g(lim;_.oc A4;),
4. g(AUB) = g(A) +g(B) + Ag(A)g(B)

for all A,B C Z and AN B = (), and for some A > —1. Let h : Z — [0,1] be a fuzzy
subset of Z. The fuzzy integral over Z of the function h with respect to a fuzzy measure g
is defined by

h(z)og() = max [min (minh(z).g(E))]

ECZ z€E

= max [min(a, g(Fy))], where
a€l0,1]

Fo = {z[h(z) = a}

Let Z = {z1,- -z}, and suppose that h(z1) > h(z2) > -+ > h(z,), (if not, Z is rearranged
so that this relation holds). Then a fuzzy integral e, with respect to a fuzzy measure g over
Z can be computed by

e = m%lx[min(h(zi),g(Ai))], where
Ai={z, -z}

9(A) = g({z}) = ¢'
g(A) =g" +g(Ai_1) + M\g'g(Ai1), forl<i<n

A is given by solving: A+ 1 =[], (1 + Ag’), where A € (—1,00) and X # 0. This can be
calculated by solving an (n — 1)% degree polynomial and finding the unique root greater
than —1.

For the problem of combining classifiers, Z represents the set of classifiers, A the object
under consideration for classification, and hg(z;) is the partial evaluation of the object A for
class wy,. Corresponding to each classifier z;, the degree of importance, ¢, that reflects how
good is z; in the classification of class wy must be given. These densities can be induced
from a training dataset.
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Appendix B. Tables of Classification Accuracy for Different Combination

Methods
| Classifiers | WS | Av | Md | Mx | MV | FI | DSO | DS1 | DS2 |
o, 2 90.89 | 90.79 | 90.79 | 90.83 | 90.17 | 90.22 | 90.81 | 91.09 | 90.81
c, 89.69 | 89.57 | 89.57 | 89.68 | 89.10 | 88.99 | 89.92 | 90.45 | 90.29
A, 85.05 | 85.05 | 85.05 | 84.67 | 84.81 | 85.13 | 85.51 | 85.49 | 85.44
c, 89.92 | 89.83 | 88.04 | 90.48 | 87.77 | 89.88 | 89.59 | 91.26 | 91.73
c, e e 89.55 | 89.39 | 87.54 | 90.23 | 87.09 | 89.56 | 89.18 | 91.12 | 91.10
P 89.05 | 88.80 | 86.95 | 89.62 | 86.62 | 89.26 | 88.80 | 90.77 | 90.73
A, AP 85.76 | 85.73 | 85.49 | 84.81 | 85.49 | 85.67 | 85.91 | 87.27 | 86.88
et 2, 3, 89.29 | 89.07 | 87.98 | 90.17 | 87.91 | 89.85 | 88.82 | 91.44 | 91.51
ch, 2,3, 89.07 | 88.83 | 87.24 | 90.01 | 87.50 | 89.58 | 88.81 | 91.48 | 91.53
ch, 2, P 88.87 | 88.78 | 87.34 | 90.02 | 87.61 | 89.64 | 88.66 | 91.16 | 91.26
ct,e3 88.60 | 88.38 | 87.05 | 89.39 | 87.52 | 89.44 | 88.39 | 91.31 | 91.00
2, 3, P 86.45 | 86.44 | 86.18 | 85.52 | 86.31 | 86.36 | 86.46 | 88.37 | 87.20
2 A et || 88.54 | 88.47 | 87.06 | 89.73 | 87.03 | 89.65 | 88.29 | 91.50 | 91.61
Table 8: Classification accuracy of texture images using different combination methods (3
textures)
Classifiers | WS | Av [ Md | Mx | MV [ FI | DSO | DS1 | DS2
e, 91.98 | 91.87 | 91.87 | 90.28 | 89.89 | 92.21 | 91.45 | 93.40 | 92.81
cl, 91.95 | 91.74 | 91.74 | 90.72 | 89.58 | 91.30 | 91.55 | 93.27 | 92.72
A, 85.14 | 85.19 | 85.19 | 84.77 | 84.50 | 84.94 | 85.82 | 86.28 | 85.36
c, 2, 91.49 | 91.29 | 88.78 | 90.39 | 88.60 | 92.35 | 91.08 | 94.37 | 93.19
c, e e 90.77 | 90.50 | 87.92 | 90.34 | 87.74 | 91.54 | 90.32 | 93.66 | 92.96
c, P 90.61 | 90.35 | 87.67 | 90.29 | 87.43 | 91.41 | 90.25 | 93.69 | 92.90
3, 86.29 | 86.22 | 85.40 | 85.99 | 85.64 | 85.91 | 86.98 | 89.16 | 87.29
2 3 A 90.26 | 90.03 | 88.37 | 90.12 | 88.90 | 91.86 | 89.93 | 94.48 | 93.19
ch, ?, 3,0 90.14 | 89.91 | 88.17 | 90.25 | 89.00 | 91.83 | 90.09 | 94.41 | 93.26
ch, 2, P 89.73 | 89.43 | 87.62 | 90.19 | 88.45 | 91.11 | 89.41 | 93.82 | 92.56
ch, 3t 90.32 | 90.06 | 87.91 | 90.50 | 88.51 | 91.83 | 90.20 | 94.50 | 93.33
2 3, S 86.41 | 86.38 | 85.99 | 85.98 | 85.79 | 86.15 | 87.21 | 89.47 | 86.97
c, 2 3t P 89.65 | 89.39 | 87.27 | 90.11 | 87.81 | 91.22 | 89.51 | 94.46 | 93.01

Table 9: Classification accuracy of texture images using different combination methods (5

textures)
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| Classifiers | WS | Av [ Md | Mx | MV | FI [ DSO | DS1 | DS2 |
cl, 88.45 | 88.13 | 88.13 | 85.44 | 85.91 | 89.78 | 89.26 | 91.42 | 89.20
e, 86.39 | 85.97 | 85.97 | 82.27 | 83.00 | 88.18 | 87.10 | 90.07 | 88.08
A o 79.55 | 79.40 | 79.40 | 78.74 | 78.53 | 79.37 | 79.28 | 81.22 | 79.91
et 2 e 87.10 | 86.53 | 84.20 | 84.65 | 84.60 | 89.51 | 87.06 | 92.00 | 88.59
ch, 2, 86.48 | 85.85 | 83.66 | 84.08 | 84.17 | 88.72 | 86.92 | 92.13 | 88.53
c, 85.92 | 85.32 | 83.22 | 82.97 | 83.67 | 88.25 | 85.98 | 92.01 | 88.30
A A 80.27 | 80.21 | 79.63 | 79.54 | 79.38 | 79.97 | 79.80 | 82.48 | 80.89
c, 2, 3 86.42 | 85.95 | 84.56 | 84.33 | 85.16 | 89.18 | 85.96 | 92.45 | 88.70
c,c? 3, e 85.70 | 85.11 | 83.37 | 83.91 | 84.26 | 88.52 | 85.41 | 92.02 | 88.30
c, 2, P 85.79 | 85.39 | 84.29 | 83.83 | 84.91 | 88.52 | 85.94 | 92.48 | 88.66
e, 3, o 85.42 | 84.92 | 83.06 | 83.47 | 84.08 | 88.34 | 84.81 | 92.35 | 88.35
2, 3, P 81.60 | 81.44 | 81.15 | 80.75 | 81.03 | 81.54 | 81.02 | 84.70 | 82.17
et 3, et ]| 85.33 | 84.88 | 83.19 | 83.74 | 83.35 | 88.02 | 84.83 | 92.43 | 88.65

Table 10: Classification accuracy of texture images using different combination methods (9

textures)
Classifiers | WS | Av [ Md | Mx | MV | FI [ DS0O | DS1 | DS2 |
ct, & 92.34 | 92.34 | 92.34 | 92.34 | 92.22 | 91.84 | 92.38 | 92.45 | 92.29
ct, b 89.99 | 88.11 | 88.11 | 83.95 | 82.64 | 91.06 | 90.92 | 91.48 | 91.42
&, b 81.09 | 80.65 | 80.65 | 76.19 | 76.10 | 82.03 | 81.54 | 82.29 | 82.01
c, 2, 92.63 | 92.61 | 92.37 | 92.34 | 92.27 | 92.36 | 92.63 | 92.79 | 92.67
c,c? b 92.17 | 91.79 | 91.83 | 85.97 | 91.60 | 92.03 | 92.27 | 92.53 | 92.23
c, e 89.85 | 88.79 | 88.20 | 84.17 | 87.50 | 89.66 | 90.34 | 91.92 | 91.79
A P, 84.98 | 84.96 | 84.76 | 79.36 | 84.08 | 84.89 | 84.62 | 85.65 | 85.36
et 2, 3, 92.59 | 92.57 | 92.42 | 91.64 | 92.04 | 92.38 | 92.61 | 92.77 | 92.64
ch,?, 3,8 92.62 | 92.47 | 92.50 | 86.94 | 92.02 | 92.49 | 92.73 | 92.78 | 92.54
ch,?, P, b 92.25 | 91.93 | 91.82 | 86.01 | 91.96 | 92.14 | 92.37 | 92.77 | 92.49
ct ot b, b 90.15 | 89.51 | 89.34 | 84.64 | 89.84 | 89.48 | 90.12 | 91.92 | 91.84
3.t P b 88.79 | 88.42 | 88.30 | 83.25 | 88.46 | 88.46 | 88.76 | 90.51 | 89.94
c, 2 3 A0 92.75 | 92.64 | 92.23 | 91.42 | 92.13 | 92.49 | 92.74 | 93.07 | 92.81
2 3 A S 92.57 | 92.48 | 92.30 | 86.96 | 91.92 | 92.25 | 92.56 | 92.77 | 92.56
et 3, e, b 92.73 | 92.50 | 92.20 | 86.93 | 91.91 | 92.53 | 92.76 | 93.03 | 92.72
2 b, S 92.14 | 91.70 | 91.07 | 86.19 | 90.97 | 91.71 | 92.23 | 92.78 | 92.46
et 3, 0, b 91.41 | 91.04 | 90.63 | 85.79 | 90.41 | 90.98 | 91.46 | 92.48 | 92.14
2 A3, S 91.51 | 90.98 | 90.52 | 85.73 | 90.60 | 91.15 | 91.50 | 92.67 | 92.40
c, 2 3 et P, A 9262 | 9236 | 92.24 | 86.95 | 91.97 | 92.38 | 92.61 | 93.09 | 92.64

Table 11: Classification accuracy of speech segments using different combination methods
(3 classes)
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| Classifiers | WS | Av [ Md | Mx | MV | FI [ DSO | DS1 | DS2 |
cl, 2 86.97 | 86.95 | 86.95 | 86.46 | 86.30 | 86.67 | 86.64 | 88.12 | 87.59
c, b 84.30 | 81.98 | 81.98 | 77.97 | 76.66 | 85.01 | 84.52 | 86.71 | 86.39
&, b 74.60 | 73.91 | 73.91 | 70.38 | 70.20 | 75.00 | 74.20 | 76.47 | 75.68
c, 2 88.09 | 88.08 | 87.77 | 87.11 | 87.76 | 87.51 | 87.49 | 88.73 | 88.10
et ?, 86.48 | 85.76 | 86.01 | 80.38 | 85.31 | 86.49 | 86.45 | 88.19 | 87.50
ch, e, b 84.33 | 82.80 | 81.88 | 78.64 | 81.24 | 83.88 | 84.56 | 87.16 | 86.45
A, b 79.27 | 78.73 | 77.84 | 74.07 | 77.26 | 78.46 | 78.51 | 80.17 | 79.39
c, 2 3 A 88.03 | 87.91 | 87.81 | 86.58 | 87.29 | 87.67 | 87.48 | 88.98 | 88.09
c,e? 3, b 87.64 | 87.17 | 87.26 | 82.59 | 86.95 | 87.37 | 87.25 | 88.61 | 88.08
c, e 0, b 86.51 | 85.84 | 85.90 | 80.54 | 86.10 | 86.69 | 86.59 | 88.47 | 87.57
ot P b 84.61 | 83.64 | 83.28 | 79.47 | 83.85 | 83.97 | 84.29 | 87.38 | 86.68
3, P, b 83.84 | 83.12 | 82.84 | 79.28 | 83.05 | 83.22 | 83.56 | 86.00 | 84.95
c, 2 3 40 87.90 | 87.87 | 87.44 | 86.01 | 87.35 | 87.72 | 87.34 | 89.15 | 88.15
ch, 2, 3 4 S 87.57 | 87.24 | 86.98 | 82.76 | 86.85 | 87.36 | 87.08 | 88.95 | 88.11
2 3,0, S 87.69 | 87.17 | 86.91 | 82.64 | 86.96 | 87.52 | 87.32 | 88.93 | 88.12
c, 2 o, S 86.71 | 86.00 | 85.54 | 81.21 | 85.63 | 86.46 | 86.39 | 88.64 | 87.56
3t o, S 86.36 | 85.85 | 85.26 | 81.50 | 85.57 | 86.10 | 85.95 | 88.26 | 87.38
2, 3, A, S 86.70 | 85.95 | 85.18 | 81.63 | 85.23 | 86.06 | 85.81 | 88.37 | 87.28
et 3, et P, B 87.67 | 87.33 | 87.02 | 82.76 | 86.95 | 87.35 | 86.98 | 89.14 | 88.01

Table 12: Classification accuracy of speech segments using different combination methods
(6 classes)
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| Classifiers | WS | Av [ Md | Mx | MV | FI [ DSO | DS1 | DS2 |
cl, 84.58 | 84.61 | 84.61 | 83.77 | 83.66 | 84.06 | 84.15 | 86.11 | 85.60
c, b 81.85 | 78.59 | 78.59 | 71.48 | 70.50 | 82.53 | 82.51 | 84.41 | 83.72
&, b 70.48 | 69.04 | 69.04 | 62.87 | 62.65 | 71.22 | 69.97 | 73.24 | 71.94
c, 2, 85.41 | 85.42 | 85.00 | 83.81 | 85.02 | 85.00 | 85.34 | 86.85 | 86.15
ch, 2, b 84.20 | 83.44 | 83.53 | 74.18 | 82.70 | 84.11 | 84.01 | 86.05 | 85.44
ch, e, b 82.18 | 80.26 | 79.19 | 72.32 | 77.86 | 81.20 | 82.53 | 85.10 | 84.56
A, b 75.94 | 75.23 | 74.43 | 67.23 | 73.46 | 75.30 | 75.54 | 78.21 | 76.92
c, 2 3 A 85.44 | 85.30 | 85.20 | 83.41 | 84.96 | 85.11 | 85.15 | 87.05 | 86.13
c,e? 3, b 85.34 | 84.97 | 84.99 | 76.49 | 84.82 | 85.19 | 85.14 | 86.79 | 86.16
2 P8 84.48 | 83.77 | 83.77 | 74.61 | 83.98 | 84.58 | 84.53 | 86.67 | 85.86
et ot b, S 82.41 | 81.44 | 81.03 | 73.61 | 81.49 | 81.61 | 82.44 | 85.65 | 84.76
3, P, b 81.02 | 80.51 | 80.15 | 72.74 | 79.83 | 80.06 | 80.41 | 83.86 | 82.25
c, 2 3 40 85.52 | 85.43 | 84.94 | 82.93 | 84.77 | 85.45 | 85.42 | 87.32 | 86.32
ct, 2, 3, et 8 85.53 | 85.01 | 84.41 | 77.04 | 84.53 | 84.96 | 85.00 | 87.09 | 86.09
2 3,0, S 85.54 | 85.16 | 84.76 | 76.62 | 84.66 | 85.38 | 85.25 | 87.11 | 86.22
c, 2 o, S 84.60 | 84.03 | 83.34 | 75.51 | 83.69 | 84.17 | 84.42 | 86.82 | 85.78
3t e, S 83.97 | 83.32 | 82.74 | 75.80 | 83.16 | 83.67 | 83.91 | 86.59 | 85.45
2, 3, A, S 84.14 | 83.48 | 82.32 | 75.40 | 82.66 | 83.29 | 83.44 | 86.55 | 85.56
et 3, et P, P 8532 | 84.93 | 84.70 | 77.08 | 84.51 | 85.07 | 85.19 | 87.26 | 85.23

Table 13: Classification accuracy of speech segments using different combination methods
(9 classes)
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| Classifiers | WS | Av [ Md | Mx | MV | FI [ DSO | DS1 | DS2 |
cl, 2 96.10 | 96.10 | 96.10 | 96.10 | 96.10 | 95.16 | 96.02 | 95.51 | 95.80
ct, b 95.38 | 94.95 | 94.95 | 94.95 | 94.95 | 96.25 | 95.36 | 96.17 | 96.17
&, b 90.25 | 90.69 | 90.69 | 90.83 | 90.83 | 87.51 | 89.32 | 88.59 | 88.66
c, 2, 96.68 | 96.68 | 96.90 | 96.97 | 96.90 | 96.61 | 96.98 | 96.91 | 96.54
ct 2, 95.81 | 95.74 | 95.23 | 95.38 | 95.23 | 96.17 | 95.73 | 95.51 | 95.88
c, e, b 94.66 | 94.73 | 94.37 | 95.09 | 94.51 | 94.95 | 94.62 | 96.24 | 96.17
A, b 92.20 | 92.13 | 91.77 | 92.64 | 91.70 | 91.48 | 91.75 | 91.16 | 91.16
c, 2 3 A 96.90 | 96.90 | 96.97 | 96.68 | 96.61 | 96.61 | 97.05 | 96.69 | 96.69
2 3,8 97.04 | 96.82 | 96.97 | 96.10 | 96.53 | 96.97 | 96.91 | 96.76 | 96.69
ch,?, b 95.88 | 95.88 | 95.74 | 95.16 | 95.96 | 96.17 | 95.95 | 95.80 | 95.80
et ot b, b 95.88 | 95.81 | 95.52 | 95.52 | 95.45 | 94.95 | 95.95 | 95.88 | 96.24
3.t P b 95.02 | 94.95 | 94.30 | 94.01 | 94.30 | 94.30 | 95.14 | 94.55 | 94.40
c, 2, 3 4 96.82 | 96.75 | 96.25 | 96.53 | 96.25 | 96.82 | 96.69 | 96.76 | 96.61
ct, 2, 3, et 8 96.10 | 96.10 | 95.45 | 96.32 | 95.45 | 96.25 | 96.02 | 96.24 | 96.10
c, 2 3,60, S 96.53 | 96.46 | 96.17 | 95.88 | 96.10 | 96.75 | 96.47 | 96.76 | 96.54
2 o, S 95.74 | 95.67 | 95.38 | 95.60 | 95.31 | 95.81 | 95.88 | 96.02 | 95.95
3t e, S 96.39 | 96.32 | 95.60 | 96.39 | 95.52 | 95.96 | 96.24 | 96.39 | 96.24
2, 3, A, S 95.16 | 95.23 | 95.02 | 95.45 | 94.95 | 95.16 | 95.14 | 95.58 | 95.58
2 3, et P, B 96.53 | 96.61 | 96.53 | 96.17 | 96.25 | 95.96 | 96.54 | 96.54 | 96.39

Table 14: Speaker identification accuracy using different combination methods (2 speakers)
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| Classifiers | WS | Av [ Md | Mx | MV | FI [ DSO | DS1 | DS2 |
cl, 2 89.22 | 89.17 | 89.17 | 88.70 | 88.91 | 87.82 [ 89.22 | 89.33 | 89.17
ct, b 88.91 | 88.55 | 88.55 | 87.61 | 85.58 | 89.38 | 88.86 | 89.90 | 89.95
&, b 80.37 | 80.90 | 80.90 | 79.44 | 77.93 | 75.90 | 79.44 | 80.37 | 79.85
c, 2, 90.53 | 90.47 | 90.32 | 89.28 | 90.06 | 89.80 | 90.47 | 90.58 | 91.20
c, 2, b 90.37 | 90.58 | 89.90 | 88.65 | 90.06 | 89.43 | 90.58 | 90.32 | 90.21
ch, e, b 88.70 | 88.60 | 87.35 | 87.25 | 86.93 | 88.29 | 88.96 | 90.11 | 90.58
A, b 84.54 | 84.17 | 83.60 | 83.24 | 83.34 | 83.08 | 83.86 | 84.64 | 85.06
c, 2 3 A 91.10 | 91.10 | 90.58 | 89.59 | 90.32 | 90.94 | 91.31 | 91.78 | 91.51
2 3,8 91.25 | 91.51 | 91.36 | 88.70 | 90.06 | 90.89 | 91.62 | 91.62 | 92.04
c, e 0, b 90.63 | 90.47 | 90.47 | 88.81 | 88.39 | 90.16 | 90.58 | 90.94 | 90.21
et ot b, S 90.37 | 90.32 | 89.48 | 87.87 | 88.55 | 89.54 | 90.47 | 91.57 | 91.46
3.t e b 86.88 | 86.78 | 85.94 | 84.64 | 84.54 | 85.79 | 86.15 | 87.40 | 87.35
c, 2 3 40 91.20 | 91.20 | 90.58 | 89.59 | 89.59 | 90.84 | 91.72 | 91.93 | 91.78
ch, 2, 3, 4 S 91.36 | 91.31 | 91.25 | 88.96 | 90.32 | 90.89 | 91.36 | 91.93 | 92.40
c, 2 3,60, S 90.99 | 91.15 | 90.58 | 88.81 | 90.06 | 90.73 | 91.20 | 91.62 | 91.88
2 o, S 91.41 | 91.67 | 90.99 | 88.86 | 90.47 | 90.89 | 91.46 | 91.83 | 92.09
3t e, S 91.05 | 90.99 | 89.69 | 88.34 | 89.59 | 89.85 | 91.04 | 91.83 | 91.41
2, 3, A, S 90.37 | 90.27 | 89.22 | 88.24 | 88.81 | 88.96 | 89.38 | 90.42 | 90.32
2 3, et P, ] 91.51 ] 91.36 | 91.78 | 88.91 | 90.89 | 91.46 | 91.46 | 91.93 | 91.98

Table 15: Speaker identification accuracy using different combination methods (3 speakers)
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| Classifiers | WS | Av [ Md | Mx | MV | FI [ DSO | DS1 | DS2 |
cl, 87.45 | 87.53 | 87.53 | 87.29 | 86.98 | 86.55 | 87.69 | 87.73 | 87.41
e, b 84.78 | 83.79 | 83.79 | 83.40 | 81.55 | 85.48 | 83.87 | 85.37 | 84.78
&, b 74.00 | 74.47 | 74.47 | 72.03 | 71.28 | 69.83 | 71.99 | 73.29 | 73.13
c, 2 89.18 | 89.18 | 88.24 | 88.16 | 87.92 | 88.32 | 89.10 | 89.38 | 88.87
ch, 2, b 87.96 | 88.08 | 87.53 | 86.35 | 87.33 | 87.25 | 87.65 | 88.08 | 87.41
ct, e, b 85.60 | 85.41 | 83.32 | 83.52 | 83.12 | 84.66 | 84.62 | 86.15 | 85.13
A, b 80.84 | 80.68 | 79.58 | 77.18 | 78.76 | 80.29 | 78.80 | 81.51 | 80.68
c, 2, 3 89.77 | 89.85 | 89.65 | 88.04 | 88.59 | 89.65 | 89.61 | 90.17 | 89.61
c,e? 3, b 89.26 | 89.22 | 88.71 | 87.29 | 88.20 | 88.75 | 88.91 | 89.50 | 88.71
c,e? e, b 87.84 | 87.33 | 86.90 | 86.35 | 87.10 | 87.37 | 87.65 | 88.32 | 87.69
ot P b 87.06 | 86.74 | 86.23 | 83.99 | 85.44 | 86.82 | 86.66 | 88.16 | 87.14
At AP b 84.74 | 84.38 | 84.30 | 80.72 | 83.01 | 84.07 | 83.83 | 85.68 | 84.66
2 A3 AP 89.61 | 89.61 | 89.02 | 88.00 | 88.47 | 89.18 | 89.61 | 90.01 | 89.73
e 3t b 89.77 | 89.73 | 88.83 | 87.45 | 88.87 | 89.06 | 89.61 | 89.93 | 89.50
ct, 2, 3,0, 8 89.26 | 89.14 | 88.36 | 87.29 | 88.04 | 88.55 | 89.18 | 89.73 | 88.59
ch, 2t e, S 89.10 | 89.06 | 88.20 | 86.74 | 88.36 | 88.36 | 88.95 | 89.65 | 88.95
3t e, S 88.00 | 87.88 | 86.98 | 85.21 | 87.45 | 87.92 | 87.88 | 89.38 | 89.02
2, 3, A, S 88.99 | 88.87 | 87.21 | 85.80 | 87.06 | 88.00 | 87.92 | 89.26 | 88.75
2, A3 P, A 89.42 | 89.26 | 88.91 | 87.37 | 88.24 | 89.22 | 89.54 | 89.89 | 89.73

Table 16: Speaker identification accuracy using different combination methods (4 speakers)
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