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Abstract

In this paper, we analyze the decision version of the NK landscape model from the
perspective of threshold phenomena and phase transitions under two random distributions,
the uniform probability model and the fixed ratio model. For the uniform probability
model, we prove that the phase transition is easy in the sense that there is a polynomial
algorithm that can solve a random instance of the problem with the probability asymptotic
to 1 as the problem size tends to infinity. For the fixed ratio model, we establish several
upper bounds for the solubility threshold, and prove that random instances with parameters
above these upper bounds can be solved polynomially. This, together with our empirical
study for random instances generated below and in the phase transition region, suggests
that the phase transition of the fixed ratio model is also easy.

1. Introduction

The NK landscape is a fitness landscape model devised by Kauffman (1989). An appealing
property of the NK landscape is that the “ruggedness” of the landscape can be tuned
by changing some parameters. Over the years, the NK landscape model itself has been
studied from the perspectives of statistics and computational complexity (Weinberger, 1996;
Wright, Thompson, & Zhang, 2000). In the study of genetic algorithms, NK landscape
models have been used as a prototype and benchmark in the analysis of the performance of
different genetic operators and the effects of different encoding methods on the algorithm’s
performance (Altenberg, 1997; Hordijk, 1997; Jones, 1995).

In the field of combinatorial search and optimization, one of the interesting discoveries
is the threshold phenomena and phase transitions. Roughly speaking, a phase transition in
combinatorial search refers to the phenomenon that the probability that a random instance
of the problem has a solution drops abruptly from 1 to 0 as the order parameter of the
random model crosses a critical value called the threshold. Closely related to this phase
transition in solubility is the hardness of solving the problems. There has been strong empir-
ical evidence and theoretical arguments showing that the hardest instances of the problems
usually occur around the threshold and instances generated with parameters far away from
the threshold are relatively easy. Since the seminal work of Cheeseman et al. (Cheese-
man, Kanefsky, & Taylor, 1991), many NP-complete combinatorial search problems have
been shown to have the phase transition and the associated easy-hard-easy pattern (Cook
& Mitchell, 1997; Culberson & Gent, 2001; Freeman, 1996; Gent, MacIntyre, Prosser, &
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Walsh, 1998; Kirkpatrick & Selman, 1994; Mitchell, Selman, & Levesque, 1992; Vandegriend
& Culberson, 1998).

In this paper, we analyze the NK landscape model from the perspective of threshold
phenomena and phase transitions. We establish two random models for the decision problem
of NK landscapes and study the threshold phenomena and the associated hardness of the
phase transitions in these two models.

The rest of the paper is organized as follows. In Section 2, we introduce the NK fitness
landscape and our probabilistic models, the uniform probability model and the fixed ratio
model. In Section 3 and Section 4, the threshold phenomena and phase transitions in
NK landscapes are analyzed. For the uniform probability model, we prove that the phase
transition of the uniform probability model is easy in the sense that there is a polynomial
algorithm that can solve a random instance of the problem with the probability asymptotic
to 1 as the problem size tends to infinity. For the fixed ratio model, we establish two upper
bounds for the solubility threshold, and prove that random instances with parameters above
these upper bounds can be solved polynomially. This, together with our empirical study
for random instances generated below and in the phase transition region, suggests that
the phase transition of the fixed ratio model is also easy. In Section 5, we report our
experimental results on typical hardness of the fixed ratio model. In Section 6, we conclude
our investigation and discuss implications of our results.

2. NK Landscapes and their Probabilistic Models

An NK landscape f(x) =
n∑

i=1
fi(xi,Π(xi)), is a real-valued function defined on binary strings

of fixed length, where n > 0 is a positive integer and x = (x1, · · · , xn) ∈ {0, 1}n. It is the sum
of n local fitness functions fi, 1 ≤ i ≤ n. Each local fitness function fi(xi,Π(xi)) depends
on the main variable xi and its neighborhood Π(xi) ⊂ Pk({x1, · · · , xn}\{xi}) where Pk(X)
denotes the set of all subsets of size k from X. The most important parameters of an NK
landscape are the number of variables n, and the size of the neighborhood k = |Π(xi)|.

In an NK landscape, the neighborhood Π(xi) can be chosen in two ways: the random
neighborhood, where the k variables are randomly chosen from the set {x1, · · · , xn}\{xi},
and the adjacent neighborhood, where k variables with indices nearest to i (modulo n) are
chosen. For example, for any even integer k, the k variables in Π(xi) can be defined as
x((n+i− k

2
) mod n), · · · , x((n+i+ k

2
) mod n). Once the variables in the neighborhood are deter-

mined, the local fitness function fi is determined by a fitness lookup table which specifies
the function value fi for each of the 2k+1 possible assignments to the variables xi and Π(xi).

Throughout this paper, we consider NK landscapes with random neighborhoods. To
simplify the discussion, we further assume that the local fitness functions take on binary
values. Given an NK landscape f , the corresponding decision problem is stated as follows:
Is the maximum of f(x) equal to n? An NK landscape decision problem is insoluble if there
is no solution for it.

It has been proved that the NK landscape model is NP complete for k ≥ 2 (e.g.,
Weinberger, 1996; Wright et al., 2000). The proofs were based on a reduction from SAT to
the decision problem of NK landscapes. To study the typical hardness of the NK landscape
decision problems in the framework of thresholds and phase transitions, we introduce two
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random models. In both of the models defined below, the neighborhood set Π(xi) of a
variable xi is selected by randomly choosing without replacement k = |Π(xi)| variables
from x\{xi}.

Definition 2.1. The Uniform Probability Model N(n, k, p): In this model, the fitness value
of the local fitness function fi(xi,Π(xi)) is determined as follows: For each assignment
y ∈ Dom(fi) = {0, 1}k+1, let fi(y) = 0 with the probability p and fi(y) = 1 with the
probability 1 − p, where this is done for each possible assignment and each local fitness
function independently.

Definition 2.2. The Fixed Ratio Model N(n, k, z): In this model, the parameter z takes
on values from [0, 2k+1]. If z is an integer, we specify the local fitness function fi(xi,Π(xi))
by randomly choosing without replacement z tuples of possible assignments Y = (y1, · · · , yz)
from Dom(fi) = {0, 1}k+1, and defining the local fitness function as follows:

fi(y) =
{

0, if y ∈ Y ;
1, else.

For a non-integer z = (1 − α)[z] + α[z + 1] where [z] is the integer part of z, we choose
randomly without replacement [(1− α)n] local fitness functions and determine their fitness
values according to N(n, k, [z]). The rest of the local fitness functions are determined ac-
cording to N(n, k, [z] + 1).

In the theory of random graphs, there are two related random models G(n, p) where
each of the n(n−1)

2 possible edges is included in the graph independently with probability
p, and G(n, m) where exactly m edges are chosen randomly and without replacement from
the set of n(n−1)

2 possible edges. It is well known that for most of the monotone graph
properties, results proved in G(n, p) (or G(n, m)) also hold asymptotically for G(n, Np)
(correspondingly, G(n, m

N )) where N = n(n−1)
2 . However, we cannot expect that similar

relations exist between the two random models of NK landscapes defined above unless the
parameter k tends to infinity. As a result, the asymptotic behaviors of the two NK landscape
models are significantly different for fixed k.

We conclude this section by establishing a relation between the decision problem of NK
landscapes and the SAT problem. A decision problem of the NK landscape

f(x) =
n∑

i=1

fi(xi,Π(xi)),

“is the maximum of f(x) equal or greater than n?”, can be reduced to a (k+1)-SAT problem
as follows:

(1) For each local fitness function fi(xi,Π(xi)), construct a conjunction Ci =
z∧

j=1
Cj

i

of clauses with exactly k + 1 variable-distinct literals from the set of variables {xi,Π(xi)},
where z is the number of zero values that fi takes and Cj

i is such that for any assignment
yj ∈ {0, 1}k+1 that falsifies Cj

i , we have fi(yj) = 0.

(2) The (k+1)-SAT is the conjunction ϕ =
n∧

i=1
Ci.
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x y z fi Clauses
0 0 0 0 x ∨ y ∨ z
0 0 1 1
0 1 0 1
0 1 1 0 x ∨ ȳ ∨ z̄
1 0 0 1
1 0 1 0 x̄ ∨ y ∨ z̄
1 1 0 0 x̄ ∨ ȳ ∨ z
1 1 1 1

Table 1: A local fitness function and its equivalent 3-clauses.

Table 1 shows an example of the fitness assignment of a local fitness function fi = fi(x, y, z)
and its associated equivalent 3-SAT clauses. It is easy to see that for any assignment s to
the variables x, y, z, fi(s) = 1 if and only if the assignment satisfies the formula

x ∨ y ∨ z, x ∨ ȳ ∨ z̄, x̄ ∨ y ∨ z̄, x̄ ∨ ȳ ∨ z.

3. Analysis of The Uniform Probability Model

In the uniform probability model N(n, k, p), the parameter p determines how many zero
values a local fitness function can take. We are interested in how the solubility and hardness
of the NK landscape decision problem change as the parameter p increases from 0 to 1. It
turns out that for fixed p > 0, the decision problem is asymptotically trivially insoluble.
This is quite similar to the phenomena in the random models of the constraint satisfaction
problem observed by Achlioptas et al. (1997).

To gain some more insight into the problem, we consider the case where p = p(n) is a
function of the problem size n with lim

n
p(n) = 0. Our analysis shows that the solubility of

the problem depends on how fast p(n) decreases:
(1) If

lim
n

p(n)n
1

2k+1 = +∞, (3.1)

the problem is still asymptotically trivially insoluble because with the probability asymp-
totic to 1, there is at least one local fitness function that always has a fitness value 0;

(2) On the other hand if p(n) decreases fast enough, i.e.,

lim
n

p(n)n
1

2k+1 < +∞, (3.2)

the problem can be decomposed into a set of independent sub-problems. In either case the
problem can be solved in polynomial time. The case of (3.1) is not difficult to prove, but
to prove the case of (3.2), we need to make use of the following concepts and results.

Definition 3.1. The connection graph of an NK landscape instance f(x) =
n∑

i=1
fi(xi,Π(xi))

is a graph G = G(V,E) satisfying
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(1) Each vertex v ∈ V corresponds to a local fitness function; and
(2)There is an edge between vi, vj if and only if the corresponding local fitness functions

fi, fj share variables, i.e., the neighborhoods Π(xi) and Π(xj) of xi and xj have a non-empty
intersection, and both of them have at least one zero value.

Definition 3.2. Let f(x) =
n∑

i=1
fi(xi,Π(xi)) be an NK landscape instance with the con-

nection graph G = G(V,E). Let G1, · · · , Gl be the connected components of G. Since the
vertices of G correspond to local fitness functions, we can regard Gi as a set of local fitness
functions. For each 1 ≤ i ≤ l, let Ui ⊂ x = (x1, · · · , xn) be the set of variables that appear
in the definition of the local fitness functions in Gi.

It is easy to see that (U1, · · ·Ul) excluding independent vertices forms a disjoint partition
of (a subset of) the variables x = (x1, · · · , xn), and that the local fitness functions in Gi

only depend on the variables in Ui. Furthermore, the NK decision problem is soluble if and
only if for each 1 ≤ i ≤ l, there is an assignment si ∈ {0, 1}|Ui| to the variables in Ui such
that for each local fitness function g ∈ Gi, g(s) = 1.

Theorem 3.1 summarizes the result on the uniform probability model.

Theorem 3.1. For any p(n) such that lim
n

p(n)n
1

2k+1 exists, k fixed,there is a polyno-

mial time algorithm that successfully solves a random instance of N(n, k, p) with probability
asymptotic to 1 as n tends to infinity.

Proof: We consider two cases: lim
n

p(n)n
1

2k+1 = +∞ and lim
n

p(n)n
1

2k+1 < +∞.

(1) The case of lim
n

p(n)n
1

2k+1 = +∞.

Let Ai be the event that fi(y) = 0 for each possible assignment y ∈ {0, 1}k+1 and let

A =
n⋃

i=1
Ai be the event that at least one of the Ai’s occurs. We have

lim
n→∞

Pr{A} = 1− lim
n→∞

Pr{
n⋂

i=1

Ac
i}

= 1− lim
n→∞

(1− p(n)2
k+1

)n.

It can be shown that if k is fixed and lim
n

p(n)n
1

2k+1 = +∞, then lim
n→∞

Pr{A} = 1. It follows
that with probability asymptotic to one, there is at least one local fitness function which
takes on values 0 for any possible assignments. We can therefore show that in this case, the
NK decision problem is insoluble by checking the local fitness functions one by one. And
this only takes linear time.

(2) The case of lim
n

p(n)n
1

2k+1 < +∞.
Consider an algorithm that first finds the connected components Gi, 1 ≤ i ≤ l of the

connection graph G of the NK model, and then uses brute force to find an assignment
si ∈ {0, 1}|Ui| to the variables in Ui such that for each local fitness function g ∈ Gi,
g(s) = 1. The time complexity of this algorithm is O(n2 +n∗2M(n,k,p)) where M(n, k, p) =
max(|Ui|, 1 ≤ i ≤ l) is the maximum size of the subsets (Ui, 1 ≤ i ≤ l) associated with the
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connected components of the connection graph. To prove the theorem, we only need to show
that M(n, k, p) ∈ O(log n). In the following, we will show that for lim

n
p(n)n

1

2k+1 < +∞,
we have

lim
n→∞

Pr{M(n, k, p) ≤ 2k + 2} = 1

Consider the connection graph G = G(V,E) of the NK model. It is a random graph and
there is an edge between two nodes if and only if the two corresponding local fitness functions
share variables and both of the local fitness functions take at least one zero as their fitness
value. However, under this definition the edge probabilities are not independent. If vx ∈ E
then we know that fx has at least one zero and so the probability that xw is in E is greater
than if there were no other edge on x.

To deal with this we resort to the following proof construction. Let Cm = {v1, . . . , vm}
be a subset of V of size m. Let π be an ordering (permutation) of v1 . . . vm. We say that
Cm is variable connected with respect to the ordering π, denoted as C(Cm, π), if for each
i, 2 ≤ i ≤ m there is either

1. a j < i such that fπ(j) and fπ(i) share a variable; or

2. a j, 1 ≤ j ≤ i such that the variable xj is one of the k random variables in fi.

Lemma If the induced subgraph G[Cm] is connected then there exists at least one ordering
π of v1 . . . vm such that C(Cm, π).

As proof, consider the ordering of vertices of any depth first search of a connected
subgraph. In this case, the connections are all by case 1.

The expected number of permutations π for which C(Cm, π) is

Ec = E[|{π : C(Cm, π)}|] = m!Pr{C(Cm, π)}

We then observe that the expected number of connected induced graphs on m vertices is
less than pm

0

(
n
m

)
Ec, where p0 is the probability that fi takes at least one value zero. We

show this value goes to zero in the limit if m ≥ 2k + 2. Finally, since if there is a connected
subgraph on m vertices then there must be one for each i < m, it follows that the largest
connected component has size at most 2k + 1.

For a randomly generated permutation π of Cm, let Ci be the set of the first i vertices
of the permutation. For i ≥ 2 define Pi to be the probability that fπ(i) shares at least one
variable with fπ(j) for some j < i given that C(Ci−1, π/1, · · · , i − 1). Let P1 = 1. (A one
vertex subgraph is always connected.)

For i > 1 we have Pi = Pr{∃j < i, fπ(i) and fπ(j) share variables, given C(Ci−1, π) or
one of the k random variables in fπ(i) is in {x1 . . . xm} − {xi}}.

Pr{C(Cm, π)} =
m∏

i=2

Pi.

Finally, for i > 1 we note that Ci−1 has at most (i−1)k distinct other variables. If Ci−1

is connected then the number of variables may be less than this. Thus,

Pi ≤ 1−
(n−k(i−1)−m

k

)(
n−1

k

) .
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The combinatorial part reduces to

(n− k(i− 1)−m) . . . (n− k(i− 1)−m− k + 1)
(n− 1) . . . (n− k)

≥
(

n− ki−m + 1
n− 1

)k

.

So, Pr{C(Cm, π)} is

≤
m∏

i=2

(
1−

(
n− ki−m + 1

n− 1

)k
)

≤

(
1−

(
1− km + m− 2

n− 1

)k
)m−1

∈ O

((
1
n

)m−1
)

,m, k fixed.

Noting that pm
0 ∈ O

(
n
−m

2k+1

)
, we see that the expected number of connected subgraphs of

size m is bounded by

pm
0

(
n

m

)
Ec ∈ O

(
nmn

−m

2k+1

(
1
n

)m−1
)

which goes to zero if m = 2k+2. It follows thatM(n, k, p) is less than 2k+2 with probability
asymptotic to 1. This completes the proof.

4. Analysis of The Fixed Ratio Model

As has been discussed in the previous section, the uniform probability model N(n, k, p) of
NK landscapes is asymptotically trivial. Part of the cause of this asymptotic triviality lies in
the fact that if the parameter p does not decrease very quickly with n, then asymptotically
there will be at least one local fitness function that takes the value 0 for all the possible
assignments, making the whole decision problem insoluble. In this section, we study the
fixed ratio model N(n, k, z). In this model, we require that each local fitness function has
fixed number of zero values so that the trivially insoluble situation in the uniform probability
model is avoided. We note that the same idea has been used in the study of the flawless
CSP (Gent et al., 1998).

Recall that in the fixed ratio model, we choose the neighborhood structure for each local
fitness in the same way as in the uniform probability model N(n, k, p). To determine the
fitness value for a local fitness function fi, we randomly without replacement select exactly
z tuples {s1, · · · , sz} from {0, 1}k+1, and let fi(sj) = 0 for each 1 ≤ j ≤ z and fi(s) = 1 for
every other s ∈ {0, 1}k+1.

For the fixed ratio model, we are interested in how the probability of an instance of
N(n, k, z) being soluble changes as the parameter z increases from 0 to 2k+1. It is easy to

see that the property “There exists an assignment x such that f(x) =
n∑

i=1
fi(xi,Π(xi)) = n”
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is monotone in the parameter z — the number of tuples at which a local fitness function takes
zero. Actually, we have the following Lemma on the property of the solubility probability
of the fixed ratio model:

Lemma 4.1. For the fixed ratio model, if z1 > z2, then

Pr{N(n, k, z1)is soluble} ≤ Pr{N(n, k, z2)is soluble}.

Furthermore, we have

Pr{N(n, k, z)is soluble} =
{

1, if z ≤ 1;
0, if z = 2k+1.

Based on the above Lemma and in parallel to the study of the threshold phenomena in
other random combinatorial structures such as 3-Coloring of random graphs and random
3-SAT, we suggest the following conjecture:

Conjecture 4.1. There exists a threshold zc such that

lim
n→∞

Pr{N(n, k, z)is soluble} =
{

1, if z < zc;
0, if z > zc.

Conjectures like this are the starting point of the study of phase transition in many
random combinatorial structures such as 3-coloring of random graphs and random SAT,
but the existence of the thresholds is still an open question (Achlioptas, 1999; Cook &
Mitchell, 1997). However, bounding the thresholds has been an important topic in the
study of phase transition (Achlioptas, 1999, 2001; Dubois, 2001; Franco & Gelder, 1998;
Franco & Paul, 1983; Frieze & Suen, 1996; Kirousis, P.Kranakis, D.Krizanc, & Y.Stamation,
1994). In this section, we will establish two upper bounds on the threshold of the parameter
zc, and theoretically prove that random instances generated with the parameter z above
these upper bounds can be solved with probability asymptotic to 1 by polynomial (even
linear) algorithms.

Characterizing the sharpness of the thresholds is also of great interest in the study of
the phase transition. After proving that every monotone graph property has a threshold
behavior (Friedgut & Kalai, 1996), Friedgut (1999) established a necessary and sufficient
condition for a monotone graph property to have sharp threshold, which has been used to
prove the sharpness of the thresholds of 3-colorability and 3-SAT problems (Friedgut, 1999;
Achlioptas, 1999). For the fixed ratio model discussed in this paper, we suspect that it will
exhibit a coarse threshold behavior, and would like to leave a detailed investigation into
this problem as a future research direction.

4.1 The Upper Bound of z = 3.0

The derivation of this upper bound is based on the concept of a conflicting pair of local
fitness functions. We say that two local fitness functions fi and fj conflict with each other
if

1. fi and fj share at least one variable x; and
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2. For any assignment s ∈ {0, 1}n, we have fi(s)fj(s) = 0.

It is obvious that an instance of the NK decision problem is insoluble if there exists a pair
of conflicting local fitness functions.

Based on the second moment method in the theory of probability (Alon & Spencer,
1992), we can prove the following upper bound result. As it takes linear time to check if
there is a pair of conflicting local fitness functions, we can see that the fixed ratio model
N(n, 2, z) is linearly solvable when z > 3.0.

Theorem 4.1. Define A to be the event that there is a conflicting pair of local fitness
functions in N(n, 2, z). For the fixed ratio model N(n, 2, z) with z = 3.0 + ε, we have

lim
n

Pr{A} = 1

and thus the problem is insoluble with probability asymptotic to 1.

Proof: Without loss of generality, we may write f as where fi has 4 zeroes in its fitness
value assignment for 1 ≤ i ≤ εn, and 3 zeroes for εn + 1 ≤ i ≤ n. Let Iij be the indicator
function of the event that fi and fj conflicts with each other, i.e.,

Iij =
{

1, if fi and fj conflicts with each other;
0, else.

and S =
∑

1≤i,j≤εn
Iij . We claim that lim

n→∞
Pr{S = 0} = 0.

By Chebyschev’s inequality, we have

Pr{S = 0} ≤ Pr{|S − E(S)| ≥ E(S)}

≤ V ar(S)
(E(S)2)

.
(4.3)

Since for each 1 ≤ i ≤ εn, fi has exactly 4 zeros in its fitness value assignment, we know
that two local fitness function fi, fj , 1 ≤ i, j ≤ εn, conflict with each other if and only if
they have exactly one common variable x such that one of the following is true: (1)fi(s) =
0(or 1), fj(s) = 1(or 0) for all the assignments s such that x = 1(respectively x = 0); and
(2)fi(s) = 1(or 0), fj(s) = 0(or 1) for all the assignments s such that x = 1(respectively x =
0);

Since the probability that two local fitness functions share at least one variable is equal
to

1−
(
n−2

2

)(
n−4

2

)(
n−1

2

)(
n−1

2

) ,
we have

Pr{Iij = 1} =

(
1−

(
n−2

2

)(
n−4

2

)(
n−1

2

)(
n−1

2

)) · 2( 1(
8
4

))2

= Ω(
1
n

), ε > 0, 1 ≤ i, j ≤ εn,

(4.4)
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and hence,
E(S) =

∑
1≤i,j≤εn

E(Iij) =
∑

1≤i,j≤εn

Pr{Iij = 1} ∈ Ω(n).

We now consider the variance of S. Since S =
∑

1≤i,j≤εn
Iij , we have

V ar(S) =

∑
i,j

V ar(Iij) + 2
∑

(i,j) 6=(l,m)

[E{IijIlm} − E{Iij}E{Ilm}]

(E(S))2
.

Let

A1 =

∑
i,j

V ar(Iij)

(E(S))2

and

A2 =

2
∑

(i,j) 6=(l,m)

[E{IijIlm} − E{Iij}E{Ilm}]

(E(S))2
.

It is easy to see that lim
n→∞

A1 = 0. To prove lim
n→∞

A2 = 0, we consider two cases:
Case 1: i 6= j 6= m 6= l. In this case, the two random variables Iij and Ilm are actually

independent. It follows that E{IijIlm} − E{Iij}E{Ilm} = 0.
Case 2: (i, j) 6= (l, m), but they have one in common, say j = l. In this case, we have

E{IijIlm} − E{Iij}E{Ilm} = Pr{Iij = 1}Pr{Ijm = 1|Iij = 1} − Ω

((
1
n

)2
)

= Ω
(

1
n

)
Pr{Ijm = 1|Iij = 1} − Ω

((
1
n

)2
)

Given that fi and fj conflict with each other, the conditional probability that fj and fm

conflict with each other is still in Ω( 1
n).

Since there are only C3
εn pairs of Iij and Ijm satisfying the condition in Case 2, we know

that
∑

(i,j) 6=(l,m)

[E{IijIlm}−E{Iij}E{Ilm}] is in Ω(n). And therefore, lim
n→∞

A2 = 0. It follows

that
lim

n→∞
Pr{S = 0} ≤ lim

n→∞

V ar(S)
(E(S)2)

= 0.

Since the event {S > 0} implies that there exists a conflicting pair of local fitness functions,
the theorem follows.

4.2 2-SAT Sub-problems in N(n, 2, z) and a Tighter Upper Bound

In this subsection, we establish a tighter upper bound z > 2.837 for the threshold of the fixed
ratio model N(n, 2, z) by showing that asymptotically N(n, 2, z) contains an unsatisfiable
2-SAT sub-problem with probability 1 for any value of z greater than 2.873. This also
gives us a polynomial time algorithm which determines that N(n, 2, z) is insoluble with
probability asymptotic to 1 for z > 2.837.
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Recall from Section 2 that each instance of N(n, 2, z) has an equivalent 3-SAT instance.
The idea is to show that with probability asymptotic to 1, an instance of N(n, 2, z) will
contain a set of specially structured 3-clauses, called a t-3-module (Definition 10.3, Franco
& Gelder, 1998):

M = {M1, . . . ,M3p+2}, t = 3p + 2,

where

M1 = (ū1 ∨ u2 ∨ z1, ū1 ∨ u2 ∨ z̄1);
· · ·

Mp−1 = (ūp−1 ∨ up ∨ zp−1, ūp−1 ∨ up ∨ z̄p−1);
Mp = (ūp ∨ ū0 ∨ zp, ūp ∨ ū0 ∨ z̄p);

Mp+1 = (ūp+1 ∨ up+2 ∨ zp+1, ūp+1 ∨ up+2 ∨ z̄p+1);
· · ·

M3p−1 = (ū3p−1 ∨ u3p ∨ z3p−1, ū3p−1 ∨ u3p ∨ z̄3p−1);
M3p = (ū3p ∨ u0 ∨ z3p, ū3p ∨ u0 ∨ z̄3p)

M3p+1 = (ū0 ∨ u1 ∨ z3p+1, ū0 ∨ u1 ∨ z̄3p+1);
M3p+2 = (u0 ∨ up+1 ∨ z3p+2, u0 ∨ up+1 ∨ z̄3p+2);

and u1, · · · , u3p+1, z1, · · · , z3p+1 are binary variables. Notice that a t-3-module can be re-
duced to a 2-SAT problem containing two contradictory cycles and hence is unsatisfiable.

The result is proved in two steps. In the first step, it is shown that for z > 2.837 the
average number of t-3-modules contained in N(n, 2, z) tends to infinity as n increases. In
the second step, we use a result established by Alon and Spencer (1992) on the second
moment method to prove that for z > 2.837 the probability that N(n, 2, z) contains at least
one t-3-module tends to 1.

Let us start with the first step to show that the average number of t-3-modules contained
in N(n, 2, z) tends to infinity as n increases.

Definition 4.1. Given a t-3-module M and an NK landscape instance f =
n∑

i=1
fi, k = 2, a

sequence of local fitness functions

g = (g1, · · · , gt) ⊂ (f1, · · · , fn)

is said to be a possible match(PM) if for each 1 ≤ m ≤ t, the main variable of gm is one of
the three variables that occur in the 3-module Mm. A subsequence (h1, · · · , hl) of a possible
match g is legal if for any 1 ≤ m < j ≤ l, hm 6= hj.

Lemma 4.2. Let f(x) =
n∑

i=1
fi(xi,Π(xi)) be an instance of N(n, 2, z) and M be a t-3-

module. Then the number of possible matches for the t-3-module M is 3t. Further, the
number of legal possible matches is Θ

(
(3+

√
5

2 )t
)
.
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Proof: For each 1 ≤ m ≤ t, there are exactly 3 possible choices for gm:

fi1(xi1 ,Π(xi1)), fi2(xi2 ,Π(xi2)), fi3(xi3 ,Π(xi3)),

where xi1 , xi2 , and xi3 correspond to the three variables that occur in the 3-module Mm.
Therefore, there are 3t possible matches for the t-3-module.

To prove the second conclusion, we divide the t-3-module into 3 partsM = (M1,M2,M3),
where M1 = (Mm, 1 ≤ m ≤ p), M2 = (Mm, p + 1 ≤ m ≤ 3p − 1), and M3 =
(M3p,M3p+1,M3p+2). Letting L1, L2, and L3 be the number of legal possible matches for
M1,M2,M3 respectively. Since the literals in M1 are variable-distinct from the literals in
M2, we have that the number of legal possible matches, L, for the t-3-module M satisfies

L1L2 ≤ L ≤ 27L1L2.

We now estimate the order of L1. To this end, we consider the probability space (Ω, P ),
where Ω is the set of sequences (g1, · · · , gp) of local fitness functions that possibly match M1

and P is the uniform probability distribution. Then, the number of legal possible matches
is

L1 = |Ω| · Pr{a random sample from Ω is legal} (4.5)

Let g = (g1, · · · , gp) be a random sample from Ω and xgm denote the main variable of the
local fitness function gm, then we have

Pr{xgm = |um|} = Pr{xgm = |um+1|} = Pr{xgm = |zm|} =
1
3
,

where |u| denotes the variable corresponding to the literal u.
Let Bm, 0 < m ≤ p be the event that the first m local fitness functions g1, · · · , gm in

the possible match g = (g1, · · · , gp) are mutually distinct. Since in M1 only consecutive
3-modules share variables, we have

Bm = {(g1, · · · , gm) : gi 6= gi+1, 1 ≤ i ≤ m− 1}.

Let bm = Pr{gm 6= gm−1 | Bm−1},m ≥ 2, and b1 = 1. Notice that B1 = Ω. Then, we have

Pr{g = (g1, · · · , gp)is legal} = Pr{Bp}
= Pr{g1 6= g2, g2 6= g3, · · · , gp−1 6= gp}
= Pr{B1}Pr{g2 6= g1 | B1} · Pr{g3 6= g2 | B2} · · ·Pr{gp 6= gp−1 | Bp−1}
= b1b2 · · · bp

(4.6)

Recalling that xgm denotes the main variable of the local fitness function gm, we have

bp = Pr{gp−1 6= gp, xgp−1 = |up| | Bp−1}+ Pr{gp−1 6= gp, xgp−1 6= |up| | Bp−1}
= Pr{gp−1 6= gp | Bp−1, xgp−1 = |up|} · Pr{xgp−1 = |up| | Bp−1}+

Pr{gp−1 6= gp | Bp−1, xgp−1 6= |up|} · Pr{xgp−1 6= |up| | Bp−1}

=
2
3
ap + (1− ap)

= 1− 1
3
ap, (4.7)

320



Phase Transition in NK Landscapes

where ap = Pr{xgp−1 = |up| | Bp−1}. For ap, we have

ap =
Pr{Bp−1, xgp−1 = |up|}

Pr{Bp−1}

=
1

Pr{Bp−1}
(Pr{Bp−1, xgp−1 = |up|, xgp−2 = |up−1|}

+ Pr{Bp−1, xgp−1 = |up|, xgp−2 6= |up−1|})

=
1

Pr{Bp−1}
(Pr{xgp−1 = |up| | Bp−1, xgp−2 = |up−1|} · Pr{Bp−1, xgp−2 = |up−1|}

+ Pr{xgp−1 = |up| | Bp−1, xgp−2 6= |up−1|} · Pr{Bp−1, xgp−2 6= |up−1|})

=
1

Pr{Bp−1}

(
1
2
Pr{Bp−1, xgp−2 = |up−1|}+

1
3
Pr{Bp−1, xgp−2 6= |up−1|}

)
(4.8)

The last equation in the above formula is because that given Bp−1 and xgp−2 = |up−1|
(or xgp−2 6= |up−1|), we have two (three, respectively) choices in selecting the local fitness
function gp−1. Consider the two terms Pr{Bp−1, xgp−2 = |up−1|} and Pr{Bp−1, xgp−2 6=
|up−1|} in (4.8), we have

Pr{Bp−1, xgp−2 = |up−1|}
= Pr{gp−2 6= gp−1 | Bp−2, xgp−2 = |up−1|} · Pr{Bp−2, xgp−2 = |up−1|}

=
2
3

Pr{xgp−2 = |up−1| | Bp−2} · Pr{Bp−2}

=
2
3
ap−1 · Pr{Bp−2}

(4.9)

and

Pr{Bp−1, xgp−2 6= |up−1|}
= Pr{gp−2 6= gp−1 | Bp−2, xgp−2 6= |up−1|} · Pr{Bp−2, xgp−2 6= |up−1|}
= Pr{xgp−2 6= |up−1| | Bp−2} · Pr{Bp−2}
= (1− ap−1) · Pr{Bp−2}

(4.10)

By plugging (4.9) and (4.10) into (4.8), we get

ap =
Pr{Bp−2}
Pr{Bp−1}

(
1
3
ap−1 +

1
3
(1− ap−1)

)
=

1
3bp−1

.

This, together with (4.7), gives us

bp = 1− 1
9bp−1

. (4.11)

It is not difficult to show that the sequence {bp} is decreasing and lower bounded by 0.
Letting lim

p
bp = b and taking the limit on both sides, we get

b = 1− 1
9b

, (4.12)
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and thus, b = 3±
√

5
6 . In our case, b = 3+

√
5

6 since b1 = 1. It follows that bp ≥ b = 3+
√

5
6 and

thus,

b1 · · · bp ≥

(
3 +

√
5

6

)p

.

From (4.5), we know that the number of legal possible matches is greater than

3p

(
3 +

√
5

6

)p

=

(
3 +

√
5

2

)p

. (4.13)

To prove that the expected number of legal possible matches L1 for M1 is in Θ
((

3+
√

5
2

)p)
,

let αp = bp − 3+
√

5
6 = bp − b. From (4.11) and (4.12), we have

αp = bp − b =
bp−1 − b

9bbp−1
≤ dαp−1, 0 < d < 1,

which means that the series
p∑

m=1
αm is convergent. It follows that

(1 +
α1

b
) · · · (1 +

αp

b
)

converges to a finite positive constant c. Therefore,

b1 · · · bp = (b + α1) · · · (b + αp)

= bp
(
1 +

α1

b

)
· · ·
(
1 +

αp

b

)
≤ c

(
3 +

√
5

6

)p
(4.14)

for sufficient large p and some constant c.
Similarly, we can show that the number of legal possible matches L2 for M2 is in

Θ
((

3+
√

5
2

)2p+2
)

. Recalling that the number of legal possible matches L for the t-3-module

satisfies L1L2 ≤ L ≤ 27L1L2, the second conclusion follows.
The following Lemma calculates the probability that a matching local fitness function

implies the matched 3-module.

Lemma 4.3. Given a 3-module x ∨ y ∨ w, x ∨ y ∨ w̄, and a local fitness function g such
that the main variable xg of g is one of the three Boolean variables |x|, |y|, |w|, let z =
2 + α, 0 ≤ α ≤ 1 be the parameter in the fixed ratio model N(n, 2, z). Then the probability
that g contains the 3-module is

p0 =

(
1(

n−1
2

))( 1
28

(1− α) +
6
56

α

)
(4.15)
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Proof: Since xg is already one of the variables in the 3-module, the probability that
the other two variables are also in the 3-module is 1

(n−1
2 ) .

Now, assume that the variables of the local fitness function g are the same as the
variables in the 3-module. From the definition of the fixed ratio model, g has two zeros
in its fitness value assignment with probability (1 − α), and has three zeros in its fitness
assignment with probability α. Note that the local fitness function g implies the 3-module
x ∨ y ∨ w, x ∨ y ∨ w̄ if and only if

g(x̄, ȳ, w̄) = 0 and g(x̄, ȳ, w) = 0.

From the definition of the fixed ratio model, this happens with the probability

1(
8
2

)(1− α) +
6(
8
3

)α
The Lemma follows.

With the above preparation, we can now prove that the average number of t-3-modules
contained in N(n, 2, z) tends to infinity.

Theorem 4.2. Let At be the number of t-3-modules contained in N(n, 2, z) and t =
Θ(ln2 n). Then, if z = 2 + α > 2.837,

lim
n→∞

E{At} = ∞. (4.16)

Proof: From Lemma 4.2, there are more than (3+
√

5
2 )t legal possible matches for a fixed

t-3-module. From Lemma 4.3, we know that each possible legal match g = {g1, · · · , gt}
implies the t-3-module with probability pt

0. From the proof of Theorem 10.1 in (Franco &
Gelder, 1998), there are

2t−2nt−1(n− t + 1)t (4.17)

possible t-3-modules, where nt−1 = n!
(n−t+1)! . Let r =

(
1
28(1− α) + 6

56α
)
, and write p0 =

1

(n−1
2 )r. We have

E{At} =

(
3 +

√
5

2
p0

)t

· 2t−2nt−1(n− t + 1)t

=

(
3 +

√
5

2
r

)t

· 2t−2nt−1(n− t + 1)t · 1(
n−1

2

)t
=

1
4(n− t + 1)

(
3 +

√
5

2
r

)t

· 2tnt(n− t + 1)t(
n
2

)t
( (

n
2

)(
n−1

2

))t

=
1

4(n− t + 1)

(
3 +

√
5

2
r

)t

· 4tnt(n− t + 1)t

(n(n− 1))t

(
n

n− 2

)t

=
1
4n

(2(3 +
√

5)r)t(1−O

(
t2

n

)
),

(4.18)
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where the fourth equation in (4.18) is due to the fact that for any positive integer n and q
such that q < n

2 , we have nqe−q2/2n ≤ nq ≤ nq. It follows that lim
n→∞

E{At} = ∞ if

2(3 +
√

5)r > 1. (4.19)

Solving the inequality (4.19) gives us α > 0.837, that is, z = 2 + α > 2.837. This proves
Theorem 4.2.

Based on the Chebychev’s inequality, to prove that N(n, 2, z) contains t-3-modules with
probability 1, we need to show that the variance of At, the number of contained t-3-modules,
is o(E{At}). For this purpose, we follow Franco and Gelder’s approach (Lemma 4.1, Franco
& Gelder, 1998) to apply the second moment method (Alon & Spencer, 1992):

Lemma 4.4. (Alon & Spencer, 1992, Ch. 4.3 Cor 3.5) Given a random structure(e.g., a
random CNF formula), let W be the set of substructures under consideration, A(w) be the
set of substructures sharing some clauses with w ∈ W . Let Iw = 1 when w is in the random
structure and 0 otherwise. If

(1) elements of W are symmetric;
(2) µ = E{

∑
w∈W

Iw} → ∞; and

(3)
∑

w̄∈A(w)

Pr(w̄ | w) = o(µ), for each w ∈ W ,

then as n → ∞, the probability that the random structure contains a substructure tends to
1.

To use the above Lemma to study the 2-SAT sub-problem in NK landscapes, we view
the random structure to be a random instance of N(n, 2, z), and W to be the set of all
t-3-modules which are symmetric by their definitions(Sections 5 and 10, Franco & Gelder,
1998).

Theorem 4.3. If z = 2 + α > 2.837, then N(n, 2, z) is asymptotically insoluble with
probability 1.

Proof: Let At be the number of t-3-modules implied by N(n, 2, z) and t = O(ln2 n).
Theorem 4.2 shows that lim

n→∞
E{At} = ∞. By Lemma 4.4, it is enough to show that for

each w ∈ W , ∑
w̄∈A(w)

Pr(w̄ | w) = o(E{At}), (4.20)

where Pr(w̄ | w) is the conditional probability that N(n, 2, z) implies the t-3-module w̄
given that it implies w, and A(w) is the set of all t-3-modules sharing some clauses with w.

Suppose that w̄ shares Q, 1 ≤ Q ≤ 2t clauses with w, and that these Q clauses are
distributed among q 3-modules. Further, let q1 be the number of 3-modules whose two
clauses are both shared and q2 = q − q1 the number of 3-modules that only has one clause
shared.

Let T1 be a 3-module in w̄ that shares exactly one clause with a 3-module T2 in w.
We claim that the conditional probability that T1 is implied by N(n, 2, z) given that w is
implied by N(n, 2, z), is

1
6
α + O(

1
n

). (4.21)
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Without loss of generality, assume that T2 = {x∨y∨u, x∨y∨ū} and T1 = {x∨y∨u, x̄∨y∨ū}.
Since w is implied by N(n, 2, z), there is a local fitness function g = g(|x|, |y|, |u|) that implies
T2. The conditional probability that T1 is implied, is less than or equal to P1 + P2 where
P1 is the conditional probability that g also implies the clause x̄∨ y∨ ū given that g implies
T2, and P2 is the conditional probability that the clause x̄ ∨ y ∨ ū is implied by other local
fitness functions. By the definition of N(n, 2, z), we have that P1 = 1

6α. Since a local fitness
function implies x̄ ∨ y ∨ ū only if it has the same variables with g = g(|x|, |y|, |u|), we have
that P2 = O( 1

n). The claim is proved. It follows that, for sufficiently large n,

Pr{w̄ | w} ≤ c

(
3 +

√
5

2
p0

)t−q

· 1q1 ·
(

1
6
α

)q2

(4.22)

where p0 is defined in Lemma 4.3 and c is a fixed constant.
Let AQ,q,q2(w) be the set of t-3-modules that share Q clauses with w such that these Q

clauses are distributed over q different 3-modules. As before, q1 is the number of 3-modules
whose two clauses are both shared and q2 = q − q1 the number of 3-modules that only has
one clause shared. We claim that

|AQ,q,q2(w)| = |A2q,q,0(w)|6q2 . (4.23)

where A2q,q,0(w) is the set of t-3-modules that share all the 2q clauses in the q 3-modules
with w. Let M = {M1, · · · ,Mt} be a t-3-module in which all the clauses Mi, 1 ≤ i ≤ q
are shared with w. Let M = {M1, · · · ,Mt} be a t-3-module in which all the clauses in
Mi, 1 ≤ i ≤ q1 are shared and each of the 3-modules Mi, q1 + 1 ≤ q1 + q2 has only one
clause shared. Since for each of the q2 3-modules, we have 6 ways to choose the non-shared
clauses, there are 6q2 such t-3-modules M in AQ,q,q2(w) that correspond to one t-3-module
M in A2q,q,0. The claims follow. From formula (55) and (56) in (Franco & Gelder, 1998)
and (4.23), it follows that

|AQ,q,q2(w)| <

{
O(t)
n2 2t−qn2(t−q)6q2 , q ≤ p + 1,

O(1)
n 2t−qn2(t−q)6q2 , q > p + 1.

(4.24)

Let r =
(

1
28(1− α) + 6

56α
)
, and write p0 = 1

(n−1
2 )r. Then, we have

|AQ,q,q2(w)|Pr{w̄ | w}

≤ O(t)
n2

2t−qn2(t−q)6q2(
3 +

√
5

2
p0)t−q(

1
6
α)q2

≤ O(t)
n2

2t−qn2(t−q)

(
3 +

√
5

2
r

)t−q
1(

n−1
2

)t−q

≤ O(t)
n

1
4n

(2(3 +
√

5)r))t−q

≤ O(t)
n

E{At}(2(3 +
√

5)r))−q, q ≤ p + 3

(4.25)

and
|AQ,q,q2(w)|Pr{w̄ | w} ≤ O(1)E{At}(2(3 +

√
5)r))−q, q > p + 3. (4.26)
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Therefore,∑
w̄∈A(w)

Pr(w̄ | w) =
∑

Q,q,q2

|AQ,q,q2(w)|Pr{w̄ | w}

=
t∑

Q=1

∑
q≤p+3

∑
q2

O(t)
n

E{At}(2(3 +
√

5)r))−q +
t∑

Q=1

∑
q>p+3

∑
q2

O(1)E{At}(2(3 +
√

5)r))−q.

(4.27)

Since 2(3 +
√

5)r) > 1 for z > 2.837, we have∑
w̄∈A(w)

Pr(w̄ | w) ≤ O(t4)
n

E{At}+ t3E{At}(4r)−(p+3)

= o(E{At}).

(4.28)

This completes the proof of Theorem 4.3.

5. Experiments

Our study of the threshold phenomena in NK landscapes started with an experimental
investigation. Many of the theoretical results in the previous section are motivated by
the observations made in our experiments. In this section, we describe the approach and
methods we used in the experimental study, and report the results and observations we
have made.

In our experiments, an instance of the NK landscape decision problem is converted to an
equivalent 3-SAT problem, and then the 3-SAT problem is solved using Roberto’s relsat—an
enhanced version of the famous Davis-Putnam algorithm for SAT problems implemented in
C++. The source code of relsat can be found at http://www.cs.ubc.ca/ hoos/SATLIB/.

In the experiments, we generated random instances of the NK landscape decision prob-
lem from the random model N(n, 2, z). As a result, the equivalent SAT problem for each
random NK landscape instance is a 3-SAT problem with n variables and (on average) zn
clauses. By definition, the parameter z is between 0 and 8. For z ≤ 1, the 3-SAT instance
can be solved easily by setting the literals that correspond to the main variables of the
local fitness function to true. As z increases, we get more and more clauses and the 3-SAT
problem becomes more and more constrained. The aims of the experiments are three-
fold:(1)Investigating if there exists a threshold phenomenon in the random NK landscape
model; (2) Locating the threshold of the parameter z; and (3)Determining if there are any
hard instances around the threshold.

5.1 Experiments on the Fixed Ratio Model

In this part of the experiments, we generate 100 random instances of N(n, 2, z) for each
of the parameters n = 29 · · · 216 and z = 2.71, 2.72, · · · , 3.00. These instances are then
converted to 3-SAT instances and solved by relsat. Figure 1 shows the fraction of insoluble
instances as a function of the parameter z. It can be seen that there exists a threshold
phenomenon and the threshold is around 2.83. This shows that our upper bound z = 2.837
is very tight.
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Figure 1: Fractions of insoluble instances(Y-axis) as a function of z (X-axis).

In Figure 2, we plot the square root of the average search cost as a function of the
parameter n. The figure indicates that the average search is in O(n2) for any parameter
z. We have also observed that more than 99 percent of the insoluble instances are solved
quickly in the preprocessing stage of relsat. This indicates that there must be some “small”
structures that make the instances insoluble. More detailed experimental results can be
found in Gao’s thesis (Gao, 2001).

5.2 Experiments on the 2-SAT sub-Problem

This is the part of the experiments that motivated our theoretical analyses in Section 4.2.
The idea can be explained as follows. Let

f(x) =
n∑

i=1

fi(xi,Π(xi))

be an instance of the decision problem of NK landscape and

ϕ = C1

∧
C2 · · ·

∧
Cn

the equivalent 3-SAT problem where Ci is the set of 3-clauses equivalent to the local fitness
function fi. For each i, there is a set of 2-clauses Di(possibly empty) implied by Ci. For
example, if Ci has three 3-clauses ((x, y, z), (x, ȳ, z), (x, y, z̄)), then the set of 2-clauses Di

would be ((x, z), (x, y)). The conjunction of Di, denoted by ϕ̄, is a 2-SAT problem. It is
obvious that the original 3-SAT problem ϕ is satisfiable only if the 2-SAT sub-problem ϕ̄ is
satisfiable. In the experiment, we generate instances of the NK landscape N(n, 2, z), convert
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Figure 2: Square root of the average search cost (Y-axis, in seconds) as a function of n
(X-axis).
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Figure 3: Fractions of insoluble instances(Y-axis) as a function of z (X-axis) for 2-SAT
sub-problems.

them to the equivalent 3-SAT problems, and extract the 2-SAT sub-problems. These 2-SAT
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Figure 4: Square root of the average search cost (Y-axis, in seconds) as a function of n
(X-axis) for 2-SAT sub-problems.

problems are then solved by the relsat solver. If the 2-SAT problem is unsatisfiable, then
the original NK landscape instance is also insoluble.

The experimental settings are the same as those in the experiment on the original
problem. The results are shown in Figures 3-4, in parallel to the Figures 1-2 of the results
on the original 3-SAT problems in Section 5.1. We see that the patterns of insoluble fractions
and search cost are similar to those we found in the original 3-SAT problems. There is a
soluble-insoluble phase transition occurring around 2.83, but the fraction of unsatisfiable
instances is lower than the fraction in the original 3-SAT problems.

We also observed that the average search cost for the 2-SAT sub-problems remains the
same as that for the original 3-SAT problems. This tells us that the difficulty of solving a
soluble instance of NK landscape is almost the same as that of solving a 2-SAT problem, and
hence is easy. Therefore, on average the NK landscape N(n, 2, z) is also easy at parameters
below the threshold where almost all of the instances are soluble.

6. Implications and Conclusions

One of the questions that arises about this work is its implications to the design and anal-
ysis of genetic algorithms. NK landscapes were initially conceived as simplified models
of evolutionary landscapes which could be tuned with respect to ruggedness and epistatic
interactions (Kauffman, 1989). In the study of genetic algorithms, NK landscape models
have been used as a prototype and benchmark in the analysis of the performance of dif-
ferent genetic operators and the effects of different encoding methods on the algorithm’s
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performance (Altenberg, 1997; Hordijk, 1997; Jones, 1995). Kauffman (1993) points out
that the parameters that primarily affect a number of ruggedness measures are n and k.

Nevertheless, the fact that for k ≥ 2 the discrete NK landscape is NP-complete (Wright
et al., 2000) when the neighbors are arbitrarily chosen could be construed as implying that
random landscapes with fixed k are in practice hard.

The results in this paper should serve as a cautionary note that this may not be the
case. Our analyses show that for fixed k the uniform probability model is trivially solvable
as the problem size tends to infinity. For the fixed ratio model, we have derived two upper
bounds for the threshold of the solubility phase transition, and proved that the problem
with the control parameter above the upper bounds can be solved in polynomial time with
probability asymptotic to 1 due to the existence of easy sub-problems such as 2-SAT. A
series of experiments has also been conducted to investigate the hardness of the problem
with the control parameters around and below the threshold. From the experiments, we
have observed that the problem is also easy around and below the threshold.

Our proofs hold only for the decision version of the problem where the component func-
tions are discrete on {0, 1}. The proofs are obtained by noticing that the clustering of
functions, or clauses, on selected subsets of variables implies that the overall problem is
decomposable into independent subproblems, or that the problem contains small substruc-
tures that identify the solution. The subproblems are the components of the connection
graph defined in Section 3 and the 2-SAT sub-problems studied in Section 4.2. It is cur-
rently unclear to us to what extent our analysis can be extended to the optimization version
of the NK model, and we would like to study this problem further in the future.

In response to the question ‘what are the implications for GAs?’ we suggest the following
speculative line of enquiry. For the discrete model we use, the soluble instances are readily
solved by a standard algorithmic approach based on recognizing the components of the
connection graph. (This should not be a surprise for us as it has been pointed out by
Heckendorn, Rana, and Whitley (1999) that ‘Even relatively old algorithms such as Davis-
Putnam which are deterministic and exact are orders of magnitude faster than GAs’.) 1 A
similar connectivity can be developed for real valued distributions, for example by capping
the minimum value which we allow a sub-function to take. We can speculate that the
clustering imposed by fixed values of k would also generate localized structures when real
values are applied and when considering optimization instead of decision, but perhaps with
fuzzy boundaries. In fact, this observation is just the flip side of limited epistasis. Genetic
algorithms, or their variants such as the probabilistic model-building algorithms (Larranaga
& Lozano, 2001), designed to mimic natural evolution, are supposed to take advantage of
this situation. So, to the extent that NK landscapes are an accurate reflection of the
features exploited by evolutionary algorithms, we pose the following question. Is it possible
to identify these fuzzy components if they exist, and in doing so design an algorithm that
exploits the same landscape features that the evolutionary algorithms do, but far more
efficiently, as we have done for the uniform discrete decision problem?

These landscapes were designed with the intent of studying limited interactions, and our
results can also be seen as a confirmation that indeed limited epistasis leads to easier prob-
lems. In another domain, that of the more traditional research into search and optimization,

1. We thanks an anonymous referee for pointing out to us the work of Heckendorn, et al. (Heckendorn
et al., 1999)
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there is a need for test bed problems with real world connections which are tunable with
respect to difficulty. NK landscapes might have been such a domain for generating 3-SAT
instances. It is disappointing that for restricted k the instances generated are easy with
high probability.
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