
Journal of Arti�cial Intelligence Research 17 (2002) 1-33 Submitted 8/01; published 7/02

A Critical Assessment of

Benchmark Comparison in Planning

Adele E. Howe howe@cs.colostate.edu

Eric Dahlman dahlman@cs.colostate.edu

Computer Science Department

Colorado State University, Fort Collins, CO 80523

Abstract

Recent trends in planning research have led to empirical comparison becoming com-

monplace. The �eld has started to settle into a methodology for such comparisons, which

for obvious practical reasons requires running a subset of planners on a subset of problems.

In this paper, we characterize the methodology and examine eight implicit assumptions

about the problems, planners and metrics used in many of these comparisons. The prob-

lem assumptions are: PR1) the performance of a general purpose planner should not be

penalized/biased if executed on a sampling of problems and domains, PR2) minor syntactic

di�erences in representation do not a�ect performance, and PR3) problems should be solv-

able by STRIPS capable planners unless they require ADL. The planner assumptions are:

PL1) the latest version of a planner is the best one to use, PL2) default parameter settings

approximate good performance, and PL3) time cut-o�s do not unduly bias outcome. The

metrics assumptions are: M1) performance degrades similarly for each planner when run

on degraded runtime environments (e.g., machine platform) and M2) the number of plan

steps distinguishes performance. We �nd that most of these assumptions are not supported

empirically; in particular, that planners are a�ected di�erently by these assumptions. We

conclude with a call to the community to devote research resources to improving the state

of the practice and especially to enhancing the available benchmark problems.

1. Introduction

In recent years, comparative evaluation has become increasingly common for demonstrating

the capabilities of new planners. Planners are now being directly compared on the same

problems taken from a set of domains. As a result, recent advances in planning have

translated to dramatic increases in the size of the problems that can be solved (Weld,

1999), and empirical comparison has highlighted those improvements.

Comparative evaluation in planning has been signi�cantly in
uenced and expedited by

the Arti�cial Intelligence Planning and Scheduling (AIPS) conference competitions. These

competitions have had the dual e�ect of highlighting progress in the �eld and providing

a relatively unbiased comparison of state-of-the-art planners. When individual researchers

compare their planners to others, they include fewer other planners and fewer test problems

because of time constraints.

To support the �rst competition in 1998 (McDermott, 2000), Drew McDermott de�ned,

with contributions from the organizing committee, a shared problem/domain de�nition

language, PDDL (McDermott et al., 1998) (Planning Domain De�nition Language). Using

c
2002 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Howe & Dahlman

a common language means that planners' performance can be directly compared, without

entailing hand translation or factoring in di�erent representational capabilities.

As a second bene�t, the lack of translation (or at least human accomplished trans-

lation) meant that performance could be compared on a large number of problems and

domains1. In fact, the �ve competition planners were given a large number of problems

(170 problems for the ADL track and 165 for the STRIPS track) within seven domains,

including one domain that the planner developers had never seen prior to the competition.

So the �rst competition generated a large collection of benchmarks: seven domains used in

the competition plus 21 more that were considered for use. All 28 domains are available

at ftp://ftp.cs.yale.edu/pub/mcdermott/domains/. The second competition added three

novel domains to that set.

A third major bene�t of the competitions is that they appear to have motivated re-

searchers to develop systems that others can use. The number of entrants went from �ve in

the �rst competition to 16 in the second. Additionally, all of the 1998 competitors and six

out of sixteen of the 2000 competitors made their code available on web sites. Thus, others

can perform their own comparisons.

In this paper, we describe the current practice of comparative evaluation as it has evolved

since the AIPS competitions and critically examine some of the underlying assumptions

of that practice. We summarize existing evidence about the assumptions and describe

experimental tests of others that had not previously been considered. The assumptions

are organized into three groups concerning critical decisions in the experiment design: the

problems tested, the planners included and the performance metrics collected.

Comparisons (as part of competitions or by speci�c researchers) have proven to be enor-

mously useful to motivating progress in the �eld. Our goal is to understand the assumptions

so that readers know how far the comparative results can be generalized. In contrast to the

competitions, the community cannot legislate fairness in individual researcher's compara-

tive evaluations, but readers may be able to identify cases in which results should be viewed

either skeptically or with con�dence. Thus, we conclude the paper with some observations

and a call for considerably more research into new problems, metrics and methodologies to

support planner evaluation.

Also in contrast to the competitions, our goal is not to declare a winner. Our goal is

also not to critique individual studies. Consequently, to draw attention away from such a

possible interpretation, whenever possible, we report all results using letter designators that

were assigned randomly to the planners.

2. Planning Competitions and Other Direct Comparisons

Recently, the AIPS competitions have spurred considerable interest in comparative evalua-

tion. The roots of comparative planner evaluation go back considerably further, however.

Although few researchers were able to run side-by-side comparisons of their planners with

1. To solve a particular planning problem (i.e., construct a sequence of actions to transform an initial state to

a goal state), planners require a domain theory and a problem description. The domain theory represents

the abstract actions that can be executed in the environment; typically, the domain descriptions include

variables that can be instantiated to speci�c objects or values. Multiple problems can be de�ned for

each domain; problem descriptions require an initial state description, a goal state and an association

with some domain.

2

A Critical Assessment of Benchmark Comparison in Planning

others, they were able to demonstrate performance of their planner on well-known prob-

lems, which could be viewed as de facto benchmarks. Sussman's anomaly (Sussman, 1973)

in Blocksworld was the premier planning benchmark problem and domain for many years;

every planner needed to \cut its teeth" on it.

As researchers tired of Blocksworld, many called for additional benchmark problems

and environments. Mark Drummond, Leslie Kaelbling and Stanley Rosenschein organized

a workshop on benchmarks and metrics (Drummond, Kaelbling, & Rosenschein, 1990).

Testbed environments, such as Martha Pollack's TileWorld (Pollack & Ringuette, 1990) or

Steve Hanks's TruckWorld (Hanks, Nguyen, & Thomas, 1993), were used for comparing

algorithms within planners. By 1992, UCPOP (Penberthy & Weld, 1992) was distributed

with a large set of problems (117 problems in 21 domains) for demonstration purposes. In

1995, Barry Fox and Mark Ringer set up a planning and scheduling benchmarks web page

(http://www.newosoft.com/~benchmrx/) to collect problem de�nitions, with an emphasis

on manufacturing applications. Recently, PLANET (a coordinating organization for Euro-

pean planning and scheduling researchers) has proposed a planning benchmark collection

initiative (http://planet.dfki.de).

Clearly, benchmark problems have become well-established means for demonstrating

planner performance. However, the practice has known bene�ts and pitfalls; Hanks, Pollack

and Cohen (1994) discuss them in some detail in the context of agent architecture design.

The bene�ts include providing metrics for comparison and supporting experimental control.

The pitfalls include a lack of generality in the results and a potential for the benchmarks to

unduly in
uence the next generation of solutions. In other words, researchers will construct

solutions to excel on the benchmarks, regardless of whether the benchmarks accurately

represent desired real applications.

To obtain the bene�ts just listed for benchmarks, the problems often are idealized or

simpli�ed versions of real problems. As Cohen (1991) points out , most research papers in

AI, or at least at an AAAI conference, exploit benchmark problems; yet few of them relate

the benchmarks to target tasks. This may be a signi�cant problem; for example, in a study

of
owshop scheduling2 benchmarks, we found that performance on the standard bench-

mark set did not generalize to performance on problems with realistic structure (Watson,

Barbulescu, Howe, & Whitley, 1999). A study of just Blocksworld problems found that the

best known Blocksworld benchmark problems are atypical in that they require only short

plans for solution and optimal solutions are easy to �nd (Slaney & Thiebaux, 2001).

In spite of these di�culties, benchmark problems and the AIPS competitions have con-

siderably in
uenced comparative planner evaluations. For example, in the AIPS 2000 con-

ference proceedings (Chien, Kambhampati, & Knoblock, 2000), all of the papers on im-

provements to classical planning (12 out of 44 papers at the conference) relied heavily on

comparative evaluation using benchmark problems; the other papers concerned scheduling,

speci�c applications, theoretical analyses or special extensions to the standard paradigm

(e.g., POMDP, sensing). Of the 12 classical papers, six used problems from the AIPS98

competition benchmark set, six used problems from Kautz and Selman's distribution of

problems with blackbox (Kautz, 2002) and three added some of their own problems as

well. Each paper showed results on a subset of problems from the benchmark distributions

2. Scheduling is an area related to planning in which the actions are already known, but their sequence still

needs to be determined. Flowshop scheduling is a type of manufacturing scheduling problem.

3

Howe & Dahlman

(e.g., Drew McDermott's from the �rst competition) with logistics, blocksworld, rocket and

gripper domains being most popular (used in 11, 7, 5 and 5 papers, respectively). The avail-

ability of planners from the competition was also exploited; eight of the papers compared

their systems to other AIPS98 planners: blackbox, STAN, IPP and HSP (in 5, 3, 3 and 1

papers, respectively).

3. Assumptions of Direct Comparison

A canonical planner evaluation experiment follows the procedure in Table 1. The procedure

is designed to compare performance of a new planner to the previous state of the art and

highlight superior performance in some set of cases for the new planner. The exact form

of an experiment depends on its purpose, e.g., showing superiority on a class of problem or

highlighting the e�ect of some design decision.

1. Select and/or construct a subset of planner domains

2. Construct problem set by:

� running large set of benchmark problems

� selecting problems with desirable features

� varying some facet of the problem to increase di�culty (e.g., number of blocks)

3. Select other planners that are:

� representative of the state of the art on the problems OR

� similar to or distinct from the new planner, depending on the point of the com-

parison or advance of the new planner OR

� available and able to parse the problems

4. Run all problems on all planners using default parameters and setting an upper limit

on time allowed

5. Record which problems were solved, how many plan steps/actions were in the solution

and how much CPU time was required to either solve the problem, fail or time out

Table 1: Canonical comparative planner evaluation experiment.

The protocol depends on three selections: problems, planners and evaluation metrics.

It is simply not practical or even desirable to run all available planners on all available

problems. Thus, one needs to make informed decisions about which to select. A purpose

of this paper is to examine the assumptions underlying these decisions to help make them

more informed. Every planner comparison does not adopt every one of these assumptions,

but the assumptions are ones commonly found in planner comparisons. For example, those

comparisons designed for a speci�c purpose (e.g., to show scale-up on certain problems

or suitability of the planner for logistics problems) will carefully select particular types of

problems from the benchmark sets.

4

A Critical Assessment of Benchmark Comparison in Planning

Problems Many planning systems were developed to solve a particular type of planning

problem or explore a speci�c type of algorithmic variation. Consequently, one would expect

them to perform better on the problems on which and for which they were developed. Even

were they not designed for a speci�c purpose, the test set used during development may have

subtly biased the development. The community knows that planner performance depends

on problem features, but not in general, how, when and why. Researchers tend to design

planners to be general purpose. Consequently, comparisons assume that

the performance of a general-purpose planner should not be penalized/biased if

executed on a sampling of problems and domains (problem assumption 1).

The community also knows that problem representation in
uences planner performance.

For example, benchmark problem sets include many versions of Blocksworld problems, de-

signed by di�erent planner developers. These versions vary in their problem representation,

both minor apparently syntactic changes (e.g., how clauses are ordered within operators,

initial conditions and goals, and whether any information is extraneous) and changes re-

ecting addition of domain knowledge (e.g., what constraints are included and whether

variables are typed). Consequently, comparisons assume that

syntactic representational modi�cations either do not matter or a�ect each plan-

ner equally (problem assumption 2).

PDDL includes a �eld, :requirements, for the capabilities required of a planner to solve

the problem. PDDL1.0 de�ned 21 values for the :requirements �eld; the base/default re-

quirement is :strips, meaning STRIPS derived add and delete sets for action e�ects. :adl

(from Pednault's Action Description Language) requires variable typing, disjunctive pre-

conditions, equality as a built-in predicate, quanti�ed preconditions and conditional e�ects

in addition the :strips capability. Yet, many planners either ignore the :requirements

�eld or reject the problem only if it speci�es :adl (ignoring many of the other requirements

that could also cause trouble). Thus, comparisons assume that

problems in the benchmark set should be solvable by a STRIPS planner unless

they require :adl (problem assumption 3).

Planners The wonderful trend of making planners publicly available has led to a dilemma

in determining which to use and how to con�gure them. The problem is compounded by the

longevity of some of these planner projects; some projects have produced multiple versions.

Consequently, comparisons tend to assume that

the latest version of the planner is the best (planner assumption 1).

These planners may also include parameters. For example, the blackbox planner allows the

user to de�ne a strategy for applying di�erent solution methods. Researchers expect that

parameters a�ect performance. Consequently, comparisons assume that

default parameter settings approximate good performance (planner assumption

2).

5

Howe & Dahlman

Experiments invariably use time cut-o�s for concluding planning that has not yet found

a solution or declared failure. Many planners would need to exhaustively search a large space

to declare failure. For practical reasons, a time out threshold is set to determine when to

halt a planner, with a failure declared when the time-out is reached. Thus, comparisons

assume that

if one picks a su�ciently high time-out threshold, then it is highly unlikely that

a solution would have been found had slightly more time been granted (planner

assumption 3).

Metrics Ideally, performance would be measured based on how well the planner does

its job (i.e., constructing the `best' possible plan to solve the problem) and how e�ciently

it does so. Because no planner has been shown to solve all possible problems, the basic

metric for performance is the number or percentage of problems actually solved within the

allowed time. This metric is commonly reported in the competitions. However, research

papers tend not to report it directly because they typically test a relatively small number

of problems.

E�ciency is clearly a function of memory and e�ort. Memory size is limited by the

hardware. E�ort is measured as CPU time, preferably but not always on the same platform

in the same language. The problems with CPU time are well known: programmer skill

varies; research code is designed more for fast prototyping than fast execution; numbers in

the literature cannot be compared to newer numbers due to processor speed improvements.

However, if CPU times are regenerated in the experimenter's environment then one assumes

that

performance degrades similarly with reductions in capabilities of the runtime

environment (e.g., CPU speed, memory size) (metric assumption 1).

In other words, an experimenter or user of the system does not expect that code has been

optimized for a particular compiler/operating system/hardware con�guration, but it should

perform similarly when moved to another compatible environment.

The most commonly reported comparison metric is computation time. The second most

is number of steps or actions (for planners that allow parallel execution) in a plan. Although

planning seeks solutions to achieving goals, the goals are de�ned in terms of states of the

world, which does not lend itself well to general measures of quality. In fact, quality is likely

to be problem dependent (e.g., resource cost, amount of time to execute, robustness), which

is why number of plan steps has been favored. Comparisons assume that

number of steps in a resulting plan varies between planner solutions and approx-

imates quality (metric assumption 2).

Any comparison, competitions especially, has the unenviable task of determining how to

trade-o� or combine the three metrics (number solved, time, and number of steps). Thus,

if number of steps does not matter, then the comparison could be simpli�ed.

We converted each assumption into a testable question. We then either summarized the

literature on the question or ran an experiment to test it.

6

A Critical Assessment of Benchmark Comparison in Planning

3.1 Our Experimental Setup

Some of the key issues have been examined previously, directly or indirectly. For those,

we simply summarize the results in the subsections that follow. However, some are open

questions. For those, we ran seven well known planners on a large set of 2057 benchmark

problems. The planners all accept the PDDL representation, although some have built-in

translators for PDDL to their internal representation and others rely on translators that we

added. When several versions of a planner were available, we included them all (for a total

of 13 planners). The basic problem set comprises the UCPOP benchmarks, the AIPS98 and

2000 competition test sets and an additional problem set developed for a speci�c application.

With the exception of the permuted problems (see the section on Problem Assumption

2 for speci�cs), the problems were run on 440 MHz Ultrasparc 10s with 256 Megabytes

of memory running SunOS 2.8. Whenever possible, versions compiled by the developers

were used; when only source code was available, we compiled the systems according to the

developers' instructions. The planners written in Common Lisp were run under Allegro

Common Lisp version 5.0.1. The other planners were compiled with GCC (EGCS version

2.91.66). Each planner was given a 30 minute limit of wall clock time3 to �nd a solution;

however, all times reported are run times returned by the operating system.

3.1.1 Planners

The planners are all what have been called primitive-action planners (Wilkins & desJardins,

2001), planners that require relatively limited domain knowledge and construct plans from

simple action descriptions. Because the AIPS98 competition required planners to accept

PDDL, the majority of planners used in this study were competition entrants or are later

versions thereof 4. The common language facilitated comparison between the planners with-

out having to address the e�ects of a translation step. The two exceptions were UCPOP and

Prodigy; however, their representations are similar to PDDL and were translated automat-

ically. The planners represent �ve di�erent approaches to planning: plan graph analysis,

planning as satis�ability, planning as heuristic search, state-space planning with learning

and partial order planning. When possible, we used multiple versions of a planner, and not

necessarily the most recent. Because we conducted this study over some period of time (al-

most 1.5 years), we froze the set early on; we are not comparing the performance to declare

a winner and so did not think that the lack of recent versions undermined the results of

testing our assumptions.

IPP (Koehler, Nebel, Ho�mann, & Dimopoulos, 1997) extends the Graphplan (Blum &

Furst, 1997) algorithm to accept a richer plan description language. In its early versions,

this language was a subset of ADL that extends the STRIPS formalism of Graphplan

to allow for conditional and universally quanti�ed e�ects in operators. Until version 4.0,

negation was handled via the introduction of new predicates for the negated preconditions

3. We used actual time on lightly loaded machines because occasionally a system would thrash due to

inadequate memory resulting in little progress over considerable time.

4. We used the BUS system as the manager for running the planners (Howe, Dahlman, Hansen, Scheetz, &

von Mayrhauser, 1999), which was implemented with the AIPS98 competition planners. This facilitated

the running of so many di�erent planners, but did somewhat bias what was included.

7

Howe & Dahlman

and corresponding mutual exclusion rules; subsequent versions handle it directly (Koehler,

1999). We used the AIPS98 version of IPP as well as the later 4.0 version.

SGP (Sensory Graph Plan) (Weld, Anderson, & Smith, 1998) also extends Graphplan to

a richer domain description language, primarily focusing on uncertainty and sensing. As

with IPP, some of this transformation is performed using expansion techniques to remove

quanti�cation. SGP also directly supports negated preconditions and conditional e�ects.

SGP tends to be slower (it is implemented in Common Lisp instead of C) than some of the

other Graphplan based planners. We used SGP version 1.0b.

STAN (STate ANalysis) (Fox & Long, 1999) extends the Graphplan algorithm in part by

adding a preprocessor (called TIM) to infer type information about the problem and domain.

This information is then used within the planning algorithm to reduce the size of the search

space that the Graphplan algorithm would search. STAN also incorporated optimized data

structures (bit vectors of the planning graph) that help avoid many of the redundant calcu-

lations performed by Graphplan. Additionally, STAN maintains a wave front during graph

construction to track remaining goals and so limit graph construction. Subsequent versions

incorporated further analyses (e.g., symmetry exploitation) and an additional simpler plan-

ning engine. Four versions of STAN were tested: the AIPS98 competition version, version

3.0, version 3.0s and a development snapshot of version 4.0.

blackbox (Kautz & Selman, 1998) converts planning problems into Boolean satis�ability

problems, which are then solved using a variety of di�erent techniques. The user indicates

which techniques should be tried in what order. In constructing the satis�ability problem,

blackbox uses the planning graph constructed as in Graphplan. For blackbox, we used

version 2.5 and version 3.6b.

HSP (Heuristic Search Planner) (Bonet & Ge�ner, 1999) is based on heuristic search. The

planner uses a variation of hill-climbing with random restarts to solve planning problems.

The heuristic is based on using the Graphplan algorithm to solve a relaxed form of the

planning problem. In this study, we used version 1.1, which is an algorithmic re�nement of

the version entered into the AIPS98 competition, and version 2.0.

Prodigy 5 (The Prodigy Research Group, 1992) combines state-space planning with back-

ward chaining from the goal state. A plan under construction consists of a head-plan of

totally ordered actions starting from the initial state and a tail-plan of partially ordered

actions related to the goal state. Although not o�cially entered into the competition, in-

formal results presented at the AIPS98 competition suggested that Prodigy performed well

in comparison to the entrants. We used Prodigy version 4.0.

UCPOP (Barrett, Golden, Penberthy, & Weld, 1993) is a Partial Order Causal Link

planner. The decision to include UCPOP was based on several factors. First, it does

not expand quanti�ers and negated preconditions; for some domains, the expansion from

grounding operators can be so great as to make the problem insolvable. Second, UCPOP

is based on a signi�cantly di�erent algorithm in which interest has recently resurfaced. We

used UCPOP version 4.1.

5. We thank Eugene Fink for code that translates PDDL to Prodigy.

8

A Critical Assessment of Benchmark Comparison in Planning

Source # of Domains # of Problems

Benchmarks 50 293

AIPS 1998 6 202

AIPS 2000 5 892

Developers 1 13

Application 3 72

Table 2: Summary of problems in our testing set: source of the problems, the number of

domains and problems within those domains.

3.1.2 Test Problems

Following standard practice, our experiments require planners to solve commonly available

benchmark problems and the AIPS competition problems. In addition, to test our assump-

tions about the in
uence of domains (assumption PR1) and representations of problems

(assumption PR2), we will also include permuted benchmark problems and some other ap-

plication problems. This section describes the set of problems and domains in our study,

focusing on their source and composition.

The problems require only STRIPS capabilities (i.e., add and delete lists). We chose this

least common denominator for several reasons. First, more capable planners can still handle

STRIPS requirements; thus, this maximized the number of planners that could be included

in our experiment. Also, not surprisingly, more problems of this type are available. Second,

we are examining assumptions of evaluation, including the e�ect of required capabilities on

performance. We do not propose to duplicate the e�ort of the competitions in singling out

planners for distinction, but rather, our purpose is to determine what factors di�erentially

a�ect planners.

The bulk of the problems came from the AIPS98 and AIPS 2000 problem sets and

the set of problems distributed with the PDDL speci�cation. The remaining problems

were solicited from several sources. The source and counts of problems and domains are

summarized in Table 2.

Benchmark Problems The preponderance of problems in planning test sets are \toy

problems": well-known synthetic problems designed to test some attribute of planners.

The Blocksworld domain has long been included in any evaluation because it is well known,

can have subgoal interactions and supports constructing increasingly complex problems

(e.g., towers of more blocks). A few benchmark problems are simpli�ed versions of realistic

planning problems, e.g., the
at tire, refrigerator repair or logistics domains. We used the

set included with the UCPOP planner. These problems were contributed by a large number

of people and include multiple encodings of some problems/domains, especially Blocksworld.

AIPS Competitions: 1998 and 2000 For the �rst AIPS competition, Drew McDer-

mott solicited problems from the competitors as well as constructing some of his own, such

as the mystery domain, which had semantically useless names for objects and operators.

Problems were generated for each domain automatically. The competition included 155

problems from six domains: robot movement in a grid, gripper in which balls had to be

9

Howe & Dahlman

moved between rooms by a robot with two grippers, logistics of transporting packages, orga-

nizing snacks for movie watching, and two mystery domains, which were disguised logistics

problems.

The format of the 1998 competition required entrants to execute 140 problems in the

�rst round. Of these problems, 52 could not be solved by any planner. For round two, the

planners executed 15 new problems in three domains, one of which had not been included

in the �rst round.

The 2000 competition attracted 15 competitors in three tracks: STRIPS, ADL and

a hand-tailored track. It required performance on problems in �ve domains: logistics,

Blocksworld, parts machining, Freecell (a card game), and Miconic-10 elevator control.

These domains were determined by the organizing committee, with Fahiem Bacchus as the

chair, and represented a somewhat broader range. We chose problems from the Untyped

STRIPS track for our set.

From a scienti�c standpoint, one of the most interesting conclusions of both competi-

tions was the observed trade-o�s in performance. Planners appeared to excel on di�erent

problems, either solving more from a set or �nding a solution faster. In 1998, IPP solved

more problems and found shorter plans in round two; STAN solved its problems the fastest;

HSP solved the most problems in round one; and blackbox solved its problems the fastest

in round one. In 2000, awards were given to two groups of distinguished planners across

the di�erent categories of planners (STRIPS, ADL and hand tailored), because according

to the judges, \it was impossible to say that any one planner was the best"(Bacchus, 2000);

TalPlanner and FF were in the highest distinguished planner group. The graphs of perfor-

mance do show di�erences in computation time relative to other planners and to problem

scale-up. However, each planner failed to solve some problems, which makes these trends

harder to interpret (the computation time graphs have gaps).

The purpose of these competitions was to showcase planner technology at which they

succeeded admirably. The planners solved much harder problems than could have been

accomplished in years past. Because of this trend in planners handling increasingly di�cult

problems, the competition test sets may become of historical interest for tracking the �eld's

progress.

Problems Solicited from Planner Developers We also asked planner developers what

problems she had used during development. One developer, Maria Fox, sent us a domain

(Sodor, which is a logistics application) and set of problems that they had used. We would

have included other domains and problems had we received any others.

Other Applications The Miconic elevator domain from the AIPS2000 competition was

derived from an actual planning application. The domain and problems were extremely

simpli�ed (e.g., removing the arithmetic).

To add another realistic problem to the comparison, we included one other planning ap-

plication to the set of test domains: generating cases to test a software interface. Because

of the similarities between software interface test cases and plans, we developed a system,

several years ago, for automatically generating interface test cases using an AI planner.

The system was designed to generate test cases for the user interface to Storage Technol-

ogy's robot tape library (Howe, von Mayrhauser, & Mraz, 1997). The interface (i.e., the

commands in the interface) was coded as the domain theory. For example, the mount com-

10

A Critical Assessment of Benchmark Comparison in Planning

mand/action's description required that a drive be empty and had the e�ect of changing

the position of the tape being mounted and changing the status of the tape drive. Problems

described initial states of the tape library (e.g., where tapes were resident, what was the

status of the devices and software controller) and goal states that a human operator might

wish to achieve.

At the time, we found that only the simplest problems could be generated using the

planners available. We included this application in part because we knew it would be a

challenge. As part of the test set, we include three domain theories (di�erent ways of

coding the application involving 8-11 operators) and twenty-four problems for each domain.

We included only 24 because we wanted to include enough problems to see some e�ect, but

not too many to overly bias the results. These problems were relatively simple, requiring

the movement of no more than one tape coupled with some status changes, but they were

still more di�cult than could be solved in our original system.

3.2 Problem Assumptions

General-purpose planners exhibit di�erential capabilities on domains and sometimes even

problems within a domain. Thus, the selection of problem set would seem to be critical

to evaluation. For example, many problems in benchmark sets are variants of logistics

problems; thus, a general-purpose planner that was actually tailored for logistics may appear

to be better overall on current benchmarks. In this section, we will empirically examine

some possible problem set factors that may in
uence performance results.

Problem Assumption 1: To What Extent Is Performance of General Purpose

Planners Biased Toward Particular Problems/Domains? Although most planners

are developed as general purpose, the competitions and previous studies have shown that

planners excel on di�erent domains/problems. Unfortunately, the community does not yet

have a good understanding of why a planner does well on a particular domain. We studied

the impact of problem selection on performance in two ways.

First, we assessed whether performance might be positively biased toward problems

tested during development. Each developer6 was asked to indicate which domains they used

during development. We then compared each planner's performance on their development

problems (i.e., the development set) to the problems remaining in the complete test set

(rest). We ran 2x2 �2 tests comparing number of problems solved versus failed in the

development and test sets. We included only the number solved and failed in the analysis

as timed-out problems made no di�erence to the results7.

The results of this analysis are summarized in Table 3; Figure 1 graphically displays the

ratio of successes to failures for the development and other problems. All of the planners

except C performed signi�cantly better on their development problems. This suggests that

these planners have been tailored (intentionally or not) for particular types of problems and

that they will tend to do better on test sets biased accordingly. For example, one of the

6. We decided against studying some of the planners in this way because the representations for their

development problems were not PDDL.

7. One planner was the exception to this rule; in one case, the planner timed out far more frequently on

non-development problems.

11

Howe & Dahlman

Development Rest

Planner Sol. Fail Sol. Fail �2 P

A 48 56 207 1026 51.70 0.001

B 42 34 226 929 51.27 0.001

C 30 0 549 16 0.13 0.722

G 43 35 233 924 49.56 0.001

H 52 9 234 655 91.41 0.001

I 113 20 328 920 187.72 0.001

J 114 24 388 949 157.62 0.001

K 37 56 203 987 27.82 0.001

L 63 32 358 846 52.13 0.001

Table 3: �2 results comparing outcome on development versus other problems.

planners in our set, STAN, was designed with an emphasis on logistics problems (Fox &

Long, 1999).

Figure 1: Histogram of ratios of success/failures for development and other problems for

each of the planners.

The above analysis introduces a variety of biases. The developers tended to give us short

lists that probably were not really representative of what they actually used. The set used

is a moving target, rather than stationary as this suggests. The set of problems included

in experimentation for publication may be di�erent still. Consequently, for the second

part, we broadened the question to determine the e�ect of di�erent subsets of problems on

12

A Critical Assessment of Benchmark Comparison in Planning

Rank Dominance

n 0 1 2 3 4 5 6 7 8 9 10 Total Pairs

5 0 1 2 0 5 7 10 4 10 18 21 78

10 0 3 0 0 4 10 6 7 5 23 20 78

20 0 0 0 0 1 3 8 7 11 8 40 78

30 0 0 0 0 1 1 9 6 9 8 44 78

Table 4: Rank dominance counts for 10 samples of domains with domain sizes (n) of �ve

through 30.

performance. For each of 10 trials, we randomly selected n domains (and their companion

problems) to form the problem set. We counted how many of these problems could be

solved by each planner and then ranked the relative performance of each planner. Thus,

for each value of n, we obtained 10 planner rankings. We focused on rankings of problems

solved for two reasons: First, each domain includes a di�erent number of problems, making

the count of problems variable across each of the trials. Second, relative ranking gets to the

heart of whether one planner might be considered to be an improvement over another.

We tested values of 5, 10, 20 and 30 for n (30 is half of the domains at our disposal).

To give a sense of the variability in size, at n = 5, the most problems solved in a trial

varied from 11 to 64. To assess the changes in rankings across the trials, we computed rank

dominance for all pairs of planners; rank dominance is de�ned as the number of trials in

which planner x's rank was lower than planner y's (note: ties would count toward neither

planner). The 13 planners in our study resulted in 78 dominance pairings. If the relative

ranking between two planners is stable, then one would expect one to always dominate the

other, i.e., have rank dominance of 10.

Table 4 shows the number of pairs having each value (0-10) of rank dominance for the

four values for n. For a given pair, we used the highest number as the rank dominance for

the pair, e.g., if one always has a lower rank, then the pair's rank dominance is 10 or if

both have �ve, then it is �ve. Because of ties, the maximum can be less than �ve. The

data suggest that even when picking half of the domains, the rankings are not completely

stable: in 56% of the pairings, one always dominates, but 22% have a 0.3 or greater chance

of switching relative ranking. The values degrade as n decreases with only 27% always

dominating for n = 5.

Problem Assumption 2: How Do Syntactic Representation Di�erences A�ect

Performance? Although it is well known that some planners' performance depends on

representation (Joslin & Pollack, 1994; Srinivasan & Howe, 1995), two recent developments

in planner research suggest that the e�ect needs to be better understood. First, a common

representation, i.e., PDDL, may bias performance. Some planners rely on a pre-processing

step to convert PDDL to their native representation, a step that usually requires making

arbitrary choices about ordering and coding. Second, an advantage of planners based on

Graphplan is that they are supposed to be less vulnerable to minor changes in representa-

13

Howe & Dahlman

Planner All None Subset

A 65 315 30

B 70 295 45

C 318 74 18

D 202 169 39

E 111 132 167

F 112 138 160

G 70 295 45

H 91 290 29

I 109 134 167

J 150 124 136

K 60 305 45

L 112 284 14

M 212 148 50

Table 5: The number of problems for which the planners were able to solve all, none or

only a subset of the permutations.

tion. Although the reasoning for the claim is sound, the exigencies of implementation may

require re-introduction of representation sensitivity.

To evaluate the sensitivity to representation, ten permutations of each problem in the

AIPS2000 set were generated, resulting in 4510 permuted problems. The permutations were

constructed by randomly reordering the preconditions in the operator de�nitions and the

order of the de�nitions of the operators within the domain de�nition.

We limited the number of problems in this study because ten permutations of all prob-

lems would be prohibitive. We selected the AIPS2000 problems for attention because this

was the most recently developed benchmark set. Even within that set, not all of the domains

were permuted because some would not result in di�erent domains under the transforma-

tion we used. For the purposes of this investigation, we limited the set of modi�cations to

permutations of preconditions and operators because these were known to a�ect some plan-

ners and because practical considerations limited the number of permutations that could be

executed. Finally, for expediency, we ran the permutations on a smaller number of faster

platforms because it expedited throughput and computation time was not a factor in this

study.

To analyze the data, we divided the performance on the permutations of the problems

into three groups based on whether the planner was able to solve all of the permutations,

none of the permutations or only a subset of the permutations. If a planner is insensitive to

the minor representational changes, then the subset count should be zero. From the results

in Table 5, we can see that all of the planners were a�ected by the permutation operation.

The susceptibility to permuting the problem was strongly planner dependent (�2 = 1572:16,

P < 0:0001), demonstrating that some planners are more vulnerable than others.

By examining the number in the Subset column, one can assess the degree of suscepti-

bility. All of the planners were sensitive to reorderings, even those that relied on Graphplan

14

A Critical Assessment of Benchmark Comparison in Planning

Planner Feature

A
x
io
m
s

C
o
n
d
.
E
�
.

D
is
.
P
re
.

E
q
u
a
li
ty

9
P
re
.

S
a
fe
ty

S
tr
ip
s

T
y
p
in
g

8
P
re
.

A 0 0 0 35 0 0 255 8 0

B 0 0 0 8 0 0 268 0 0

C 5 169 165 216 163 2 561 197 160

D 3 164 166 196 139 0 279 180 139

E 1 162 152 199 157 0 384 168 149

F 0 157 145 185 150 0 376 165 145

G 0 0 0 8 0 0 276 0 0

H 0 0 0 46 0 0 285 17 0

I 0 138 138 169 138 0 441 139 138

J 0 130 130 160 130 0 502 130 130

K 0 0 0 8 0 0 240 0 0

L 0 19 13 24 16 0 421 13 13

M 0 168 169 212 149 2 372 180 151

Table 6: The number of problems claiming to require each PDDL feature solved by each

planner.

methodology. The most sensitive were E, F, I and J (which included some Graphplan based

planners and in which 40% of the problems had mixed results on the permutations) with C

and L being least sensitive (3-4% were a�ected).

Problem Assumption 3: Does Performance Depend on PDDL Requirements

Features? The planners were all intended to handle STRIPS problems. Some of the

problems in the test set claim to require features other than STRIPS; one would expect

that some of the planners would not be able to handle those problems. In addition, those

planners that claim to be able to handle a given feature may not do as well as other planners.

Table 6 shows the e�ects of feature requirements on the ability to solve problems. The data

in this table are based on the features speci�ed with the :requirements list in the PDDL

de�nition of the domain.

We did not verify that the requirements were accurate or necessary; thus, the problem

may be solvable by ignoring a part of the PDDL syntax that is not understood, or the

problem may have been mislabeled by its designer. This is evident in cases where a planner

that does not support a given feature still appears to be able to solve the corresponding

problem. Some planners, e.g., older versions of STAN, will reject any problem that requires

more than STRIPS without trying to solve it; an ADL problem that only makes use of

STRIPS features would not be attempted.

As guidance on which planner to use when, these results must be viewed with some

skepticism. For example, it would appear based on these results that planner I might be

15

Howe & Dahlman

a good choice for problems with conditional e�ects as it was able to solve many of these

problems. This would be a mistake, since that planner cannot actually handle these types

of problems. In these cases, the problems claim to require ADL, but in fact, they only make

use of the STRIPS subset.

Clearly, certain problems can only be solved by speci�c planners. For instance, C and

M are the only planners that are able to handle safety constraints, while based on the data,

only C, D and E appear to handle domain axioms. About half the planners had trouble

with the typed problems. Some of the gaps appear to be due to problems in the translation

to native representation.

3.3 Planners

Publicly available, general-purpose planners tend to be large programs developed over a

period of years and enhanced to include additional features over time. Thus, several versions

are likely to be available, and those versions are likely to have features that can be turned

on/o� via parameter settings.

When authors release later versions of their planning systems, the general assumption is

that these newer versions will outperform their predecessors. However, this may not be the

case in practice. For instance, a planner could be better optimized toward a speci�c class

of problem which then in turn hurts its performance on other problems. Also, advanced

capabilities, even when unused, may incur overhead in the solution of all problems.

So for comparison purposes, should one use the latest version? First, we tested this

question in a study comparing multiple versions of four of the planners. Second, each

planner relies on parameter settings to tune its performance. Some, such as blackbox, have

many parameters. Others have none. Comparisons tend to use the default or published

parameter settings because few people usually understand the e�ects of the parameters

and tuning can be extremely time consuming. So does this practice undermine a fair

comparison?

Planner Assumption 1: Is the Latest Version the Best? In this study, we compared

performance of multiple versions of four planners (labeled for this section with W, X, Y and

Z, with larger version numbers indicating subsequent versions). We considered two criteria

for improvement: outcome of planning and computation time for solved problems. The

outcome of planning is one of: solved, failed or timed-out. On each criterion, we statistically

analyzed the data for superior performance of one of the versions. The outcome results for

all the planners are summarized in Table 7. As the table shows, rarely does a new version

result in more problems being solved. Only Z improved the number of our test problems

solved in subsequent versions.

To check for whether the di�erences in outcome are signi�cant, we ran 2x3 �2 tests with

planner version as independent variable and outcome as dependent. Table 8 summarizes

the results of the �2 analysis. For Z, we compared each version to its successor only. The

di�erences are signi�cant except for Y and the transition from Z 2 to 3 (this was expected

because these two versions were extremely similar).

Another planner performance metric, which we evaluated, was the speed of solution. For

this analysis, we limited the comparison to just those problems that were solved by both

versions of the planner. We then classi�ed each problem by whether the later version solved

16

A Critical Assessment of Benchmark Comparison in Planning

Planner Version Solved Failed Timeout � Solved?

W 1 286 664 533

W 2 255 1082 147 +

X 1 502 973 3

X 2 441 940 103 +

Y 1 387 750 339

Y 2 382 771 329 +

Z 1 240 1043 201

Z 2 276 959 248 *

Z 3 268 963 252 +

Z 4 421 878 184 *

Table 7: Version performance: counts of outcome and change in number solved.

old new

Planner Version Version �2 P

W 1 2 320.96 .0001

X 1 2 98.84 .0001

Y 1 2 .46 .79

Z 1 2 10.96 .004

Z 2 3 .158 .924

Z 3 4 48.50 .0001

Table 8: �2 results comparing versions of the same planner.

the problem faster, slower, or in the same time as the preceding version. From the results

in Table 9, we see that all of the planners improved in the average speed of solution for

subsequent versions, with the exception of Z (transition from the 1 to 2 versions). However,

Z did increase the number of problems solved between those versions.

Planner Old New Faster Slower Same Total

W 1 2 161 61 30 252

X 1 2 295 126 0 421

Y 1 2 222 82 53 357

Z 1 2 84 121 30 235

Z 2 3 131 84 53 268

Z 3 4 115 92 21 228

Table 9: Improvements in execution speed across versions. The Faster column counts the

number of cases in which the new version solved the problem faster; Slower speci�es

those cases in which the new version took longer to solve a given problem.

17

Howe & Dahlman

Planner Assumption 2: Do Parameter Settings Matter to a Fair Comparison?

In this planner set, only three have obvious, easily manipulable parameters: Blackbox, HSP

and UCPOP. blackbox has an extensive set of parameters that control everything from

how much trace information to print to the sequence of solver applications. HSP's function

can be varied to include (or not) loop detection, change the search heuristic and vary the

number paths to expand. For UCPOP, the user can change the strategies governing node

orderings and
aw selection.

We did not run any experiments for this assumption because not all of the planners

have parameters and because it is clear from the literature that the parameters do matter.

Blackbox relies heavily on random restarts and trying alternative SAT solvers. In Kautz

and Selman (1999), the authors of blackbox carefully study aspects of blackbox's design and

demonstrate di�erential performance using di�erent SAT solvers; they propose hypotheses

for the performance di�erences and are working on better models of performance variation.

At the heart of HSP is heuristic search. Thus, its performance varies depending on

the heuristics. Experiments with both HSP and FF (a planner that builds on some ideas

from HSP) have shown the importance of heuristic selection in search space expansion,

computation time and problem scale up (Haslum & Ge�ner, 2000; Ho�mann & Nebel,

2001).

As with HSP, heuristic search is critical to UCPOP's performance. A set of studies have

explored alternative settings to the
aw selection heuristics employed by UCPOP (Joslin &

Pollack, 1994; Srinivasan & Howe, 1995; Genevini & Schubert, 1996), producing dramatic

improvements on some domains with some heuristics. As Pollack et al. (1997) con�rmed,

a good default strategy could be derived, but its performance was not the best under some

circumstances.

Thus, because parameters can control fundamental aspects of algorithms, such as their

search strategies, the role of parameters in comparisons cannot be easily dismissed.

Planner Assumption 3: Are Time Cut-o�s Unfair? Planners often do not admit

to failure. Instead, the planner stops when it has used the allotted time and not found

a solution. So setting a time threshold is a requirement of any planner execution. In

a comparison, one might always wonder whether enough time was allotted to be fair {

perhaps the solution was almost found when execution was terminated.

To determine whether our cut-o� of 30 minutes was fair, we examined the distribution

of times for declared successes and failures8. Across the planners and the problem set, we

found that the distributions were skewed (approximately log normal with long right tails)

and that the planners were quick to declare success or failure, if they were going to do so.

Table 10 shows the max, mean, median and standard deviation for success and failure times

for each of the planners. The di�erences between mean and median indicate the distribution

skew, as do the low standard deviations relative to the observed max times. The max time

shows that on rare occasions the planners might make a decision within 2 minutes of our

cut-o�.

8. We separated the two because we usually observed a signi�cant di�erence in the distributions of time to

succeed and time to fail { about half the planners were quick to succeed and slow to fail, the other half

reversed the relationship.

18

A Critical Assessment of Benchmark Comparison in Planning

Successes Failures

Planner Max Mean Median Sd Max Mean Median Sd

A 667.9 34.0 1.3 98.7 1116.4 44.9 4.9 128.8

B 1608.5 38.5 0.5 182.8 1692.0 45.6 17.8 96.8

C 1455.4 89.9 1.6 244.6 1.4 0.4 0.13 0.4

D 481.0 17.8 1.1 77.4 713.6 26.3 1.1 122.6

E 1076 26.2 0.1 126.8 1622.8 286.9 260.6 189.1

F 1282.4 44.4 0.1 126.8 1188.4 22.3 0.2 104.8

G 1456.2 44.6 0.7 188.5 1196.5 43.8 16.7 78.5

H 657.7 29.58 1.4 80.6 1080.6 93.8 1.4 162.1

I 1713.8 115.4 0.2 303.1 50.6 5.1 4.9 6.3

J 1596.5 43.6 4.3 127.4 1796 11.0 11.0 57.9

K 1110.5 31.0 0.32 121.8 1298.8 27.7 12.1 65.2

L 1611.9 54.4 2.0 180.9 847.1 124.1 68.4 164.8

M 1675.3 53.4 1.45 196.5 1.6 0.9 0.8 0.4

Table 10: Max, mean, median and standard deviations (Sd) for the computation times to

success and failure for each planner.

What this table does not show, but the observed distributions do show, is that very

few values are greater than half of the time until the cut-o�. Figures 2 and 3 display

the distributions for planner F, which had means in the middle of the set of planners and

quite typical distributions. Consequently, at least for these problems, any cut-o� above 15

minutes (900 seconds) would not signi�cantly change the results.

0 104 208 312 416 520 624 728 832 936 1040 1144 1248
success.time

0

100

200

300

Figure 2: Histogram of times, in seconds, for planner F to succeed.

19

Howe & Dahlman

0 96 192 288 384 480 576 672 768 864 960 1056 1152
fail.time

0

200

400

600

Figure 3: Histogram of times, in seconds, for planner F to fail.

3.4 Performance Metrics

Most comparisons emphasize the number of problems solved and the CPU time to comple-

tion as metrics. Often, the problems are organized in increasing di�culty to show scale-up.

Comparing based on these metrics leaves a lot open to interpretation. For example, some

planners are designed to �nd the optimal plan, as measured by number of steps in either

a parallel or sequential plan. Consequently, these planners may require more computation.

Thus, by ignoring plan quality, these planners may be unfairly judged. We also hypothesize

that the hardware and software platform for the tests can vary the results. If a planner is

developed for a machine with 1GB of memory, then likely its performance will degrade with

less. A key issue is whether the e�ect is more or less uniform across the set of planners.

In this section, we examine these two issues: execution platform and e�ect of plan

quality.

Metric Assumption 1: Does Performance Vary between Planners When Run

on Di�erent Hardware Platforms? Often when a planner is run at a competition or

in someone else's lab, the hardware and software platforms di�er from the platform used

during development. Clearly, slowing down the processor speed should slow down planning,

requiring higher cut-o�s. Reduction in memory may well change the set of problems that

can be solved or increase the processing time due to increased swapping. Changing the

hardware con�guration may change the way memory is cached and organized, favoring

some planners' internal representations over others. Changing compilers could also a�ect

the amount and type of optimizations in the code. The exact e�ects are probably unknown.

The assumption is that such changes a�ect all planners more or less equally.

To test this, we ran the planners on a less powerful, lower memory machine and compared

the results on the two platforms: the base Sun Ultrasparc 10/440 with 256mb of memory

and Ultrasparc 1/170 with 128mb of memory. The operating system and compilers were

the same versions for both machines. The same problems were run on both platforms. We

followed much the same methodology as in the comparison of planner versions: comparing

on both number of problems solved and time to solution. Table 11 shows the results as

measured by problems solved, failed or timed-out for each planner on the two platforms.

20

A Critical Assessment of Benchmark Comparison in Planning

Planner Platform Solved Failed Timed-Out �2 p % Reduction

A Ultra 1 94 383 27

Ultra 10 95 389 20 1.09 .58 1

B Ultra 1 121 346 37

Ultra 10 121 353 30 0.80 .67 0

C Ultra 1 354 7 143

Ultra 10 367 7 130 0.85 .65 4

D Ultra 1 218 59 227

Ultra 10 217 59 228 0.01 .998 -.4

E Ultra 1 280 145 79

Ultra 10 284 150 70 0.66 .72 1

F Ultra 1 277 155 72

Ultra 10 284 154 66 0.35 .84 2

G Ultra 1 120 347 37

Ultra 10 121 352 31 0.57 .75 1

H Ultra 1 116 350 38

Ultra 10 122 338 44 0.80 .67 7

I Ultra 1 265 201 38

Ultra 10 274 201 29 1.36 .51 3

J Ultra 1 280 220 4

Ultra 10 285 217 2 0.73 .69 2

K Ultra 1 108 370 26

Ultra 10 108 368 28 0.08 .96 0

L Ultra 1 149 339 16

Ultra 10 150 341 13 0.32 .85 1

M Ultra 1 250 65 189

Ultra 10 258 66 180 0.35 .84 3

Table 11: Number of problems solved, failed and timed-out for each planner on the two

hardware platforms. Last column is the percentage reduction in the number

solved from the faster to slower platforms.

21

Howe & Dahlman

Planner Faster Slower Same Total

Mean � Sd � # Mean � Sd �

A 92 5.18 30.76 1 1 94

B 120 4.02 10.01 0 1 121

C 294 31.89 101.71 60 0.29 0.14 0 354

D 177 11.02 82.82 39 0.23 0.14 1 217

E 275 2.68 12.27 1 4 280

F 271 14.86 72.44 0 6 277

G 117 5.02 17.17 1 2 120

H 115 6.86 25.24 0 1 116

I 261 25.73 119.97 0 4 265

J 280 42.24 138.16 0 0 280

K 107 15.26 75.42 0 1 108

L 148 16.81 98.54 1 0 149

M 194 32.72 139.73 56 0.30 0.18 0 250

Table 12: Improvements in execution speed moving from slower to faster platform. Counts

only problems that were solved on both platforms. For faster and slower, the

mean and standard deviation (Sd) of di�erence is also provided.

As before, we also looked at change in time to solution. Table 12 shows how the time

to solution changes for each planner. Not surprisingly, faster processor and more memory

nearly always lead to better performance. Somewhat surprisingly, the di�erence is far less

than the doubling that might be expected; the mean di�erences are much less than the

mean times on the faster processor (see Table 10 for the mean solution times).

Also, the e�ect seems to vary between the planners. Based on the counts, the Lisp-based

planners appear to be less susceptible to this trend (the only ones that sometimes were faster

on the slower platform). However, the advantages are very small, a�ecting primarily the

smaller problems. We think that this e�ect is due to the need to load in a Lisp image

at startup from a centralized server; thus, computation time for small problems will be

dominated by any network delay. Older versions of planners appear to be less sensitive to

the switch in platform.

In this study, the platforms make little di�erence to the results, despite a more than

doubling of processor speed and doubling of memory. However, the two platforms are

underpowered when compared to the development platforms for some of the planners. We

chose these platforms because they di�ered in only a few characteristics (processor speed

and memory amount) and because we had access to 20 identically con�gured machines. To

really observe a di�erence, 1GB9 of memory or more may be needed.

Recent trends in planning technology have exploited cheap memory: translations to

propositional representations, compilation of the problems and built-in caching and memory

management techniques. Thus, some planners are designed to trade-o� memory for time;

9. We propose this �gure because it is the amount requested by some of the participants in the AIPS 2000

planning competition.

22

A Critical Assessment of Benchmark Comparison in Planning

these planners will understandably be a�ected by memory limitations for some problems.

Given the results of this study, we considered performing a more careful study of memory

by arti�cially limiting memory for the planners but did not do so because we did not have

access to enough su�ciently large machines to likely make a di�erence and because we could

not devise a scheme for fairly doing so across all the planners (which are implemented in

di�erent languages and require di�erent software run-time environments).

Another important factor may be memory architecture/management. Some planners

include their own memory managers, which map better to some hardware platforms than

to others (e.g., HSP uses a linear organization that appears to �t well with Intel's memory

architecture).

Metric Assumption 2: Do the Number of Plan Steps Vary? Several researchers

have examined the issue of measuring plan quality and directing planning based on it, e.g.,

(Perez, 1995; Estlin & Mooney, 1997; Rabideau, Englehardt, & Chien, 2000). The number

of steps in a plan is a rather weak measure of plan quality, but so far, it is the only one

that has been widely used for primitive-action planning.

We expect that some planners sacri�ce quality (as measured by plan length) for speed.

Thus, ignoring even this measure of plan quality may be unfair to some planners. To

check whether this appears to be a factor in our problem set, we counted the plan length

in the plans returned in output and compared the lengths across the planners. Because

not all of the planners construct parallel plans, we adopted the most general de�nition:

sequential plan length. We then compared the plan lengths returned by each planner on

every successfully solved problem.

We found that 11% of the problems were solved by only one planner (not necessarily the

same one). The planners found equal length solutions for 62% of those that remained (493

problems). We calculated the standard deviation (SD) of plan length for solutions to each

problem and then analyzed the SDs. We found that the minimum observed SD was 0.30,

the maximum was 63.30, the mean was 2.43 and the standard deviation was 5.45. Thirteen

cases showed SDs higher than 20. Obviously, these cases involved fairly long plans (up to

165 steps); the cases were for problems from the logistics and gripper domains.

To check whether some planners favored minimal lengths, we counted the number of

cases in which each planner found the shortest length plan (ties were attributed to all

planners) when there was some variance in plan length. Table 13 lists the results. Most

planners �nd the shortest length plans on about one third of these problems. Planner F

was designed to optimize plan length, which shows in the results. With one exception, the

older planners rarely �nd the shortest plans.

4. Interpretation of Results and Recommendations

The previous section presented our summarization and analysis of the planner runs. In

this section, we re
ect on what those results mean for empirical comparison of planners; we

summarize the results and recommend some partial solutions. It is not possible to guarantee

fairness and we propose no magic formula for performing evaluations, but the state of the

practice in general can certainly be improved. We propose three general recommendations

and 12 recommendations targeted to speci�c assumptions.

23

Howe & Dahlman

Planner Count

A 178

B 169

C 0

D 161

E 5

F 319

G 171

H 176

I 222

J 0

K 159

L 151

M 283

Table 13: Number of plans on which each planner found the shortest plan. The data only

include problems for which di�erent length plans were found.

Many of the targeted recommendations amount to requesting problem and planner devel-

opers to be more precise about the requirements for and expectations of their contributions.

Because the planners are extremely complex and time consuming to build, the documenta-

tion may be inadequate to determine how a subsequent version di�ers from the previous or

under what conditions (e.g., parameter settings, problem types) the planner can be fairly

compared. With the current positive trend in making planners available, it behooves the

developer to include such information in the distribution of the system.

The most sweeping recommendation is to shift the research focus away from developing

the best general-purpose planner. Even in the competitions, some of the planners identi�ed

as superior have been ones designed for speci�c classes of problems, e.g., FF and IPP. The

competitions have done a great job of exciting interest and encouraging the development

and public availability of planners that incorporate the same representation.

However, to advance the research, the most informative comparative evaluations are

those designed for a speci�c purpose { to test some hypothesis or prediction about the

performance of a planner10. An experimental hypothesis focuses the analysis and often

leads naturally to justi�ed design decisions about the experiment itself. For example, Ho�-

mann and Nebel, the authors of the Fast-Forward (FF) system, state in the introduction to

their JAIR paper that FF's development was motivated by a speci�c set of the benchmark

domains; because the system is heuristic, they designed the heuristics to �t the expec-

tations/needs of those domains (Ho�mann & Nebel, 2001). Additionally, in part of their

evaluation, they compare to a speci�c system on which their own system had commonalities

and point out the various advantages or disadvantages of their design decisions on speci�c

10. Paul Cohen has advocated such an experimental methodology for all of arti�cial intelligence based on

hypotheses, predictions and models in considerable detail; see Cohen (1991, 1995).

24

A Critical Assessment of Benchmark Comparison in Planning

problems. Follow-up work or researchers comparing their own systems to FF now have a

well-de�ned starting point for any comparison.

Recommendation 1: Experiments should be driven by hypotheses. Re-

searchers should precisely articulate in advance of the experiments their expecta-

tions about how their new planner or augmentations to an existing planner add

to the state of the art. These expectations should in turn justify the selection

of problems, other planners and metrics that form the core of the comparative

evaluation.

A general issue is whether the results are accurate. We reported the results as they are

output by the planners. If a planner stated in its output that it had been successful, we

took it at face value. However, by examining some of the output, we determined that some

claims of successful solution were erroneous { the proposed solution would not work. The

only way to ensure that the output is correct is with a solution checker. Drew McDermott

used a solution checker in the AIPS98 competition. However, the planners do not all

provide output in a compatible format with his checker. Thus, another concern with any

comparative evaluation is that the output needs to be cross-checked. Because we are not

declaring a winner (i.e., that some planner exhibited superior performance), we do not think

that the lack of a solution checker casts serious doubt on our results. For the most part, we

have only been concerned with factors that cause the observed success rates to change.

Recommendation 2: Just as input has been standardized with PDDL, output

should be standardized, at least in the format of returned plans.

Another general issue is whether the benchmark sets are representative of the space of

interesting planning problems. We did not test this directly (in fact, we are not sure how

one could do so), but the clustering of results and observations by others in the planning

community suggest that the set is biased toward logistics problems. Additionally, many of

the problems are getting dated and no longer distinguish performance. Some researchers

have begun to more formally analyze the problem set, either in service of building improved

planners (e.g., Ho�mann & Nebel, 2001) or to better understand planning problems. For

example, in the related area of scheduling, our group has identi�ed distinctive patterns in

the topology of search spaces for di�erent types of classical scheduling problems and has

related the topology to performance of algorithms (Watson, Beck, Barbulescu, Whitley, &

Howe, 2001). Within planning, Ho�mann has examined the topology of local search spaces

in some of the small problems in the benchmark collection and found a simple structure

with respect to some well-known relaxations (Ho�mann, 2001). Additionally, he has worked

out a partial taxonomy, based on three characteristics, for the analyzed domains. Helmert

has analyzed the computational complexity of a subclass of the benchmarks, transportation

problems, and has identi�ed key features that a�ect the di�culty of such problems (Helmert,

2001).

Recommendation 3: The benchmark problem sets should themselves be eval-

uated and over-hauled. Problems that can be easily solved should be removed.

Researchers should study the benchmark problems/domains to classify them

25

Howe & Dahlman

into problem types and key characteristics. Developers should contribute appli-

cation problems and realistic versions of them to the evolving set.

The remainder of this section describes other recommendations for improving the state

of the art in planner comparisons.

Problem Assumption 1: Are General Purpose Planners Biased Toward Par-

ticular Problems/Domains? The set of problems on which a planner was developed

can have a strong e�ect on the performance of the planner. This can be either the e�ect

of unintentional over-specialization or the result of a concerted e�ort on the part of the

developers to optimize their system to solve a speci�c problem. With one exception, every

planner fared better on the tailored subset of problems (training set). Consequently, we

must conclude that the choice of a subset of problems may well a�ect the outcome of any

comparison.

A fair planner comparison must account for likely biases in the problem set. Good

performance on a certain class of problems does not imply good performance in general.

A large performance di�erential for planners with a targeted problem domain (i.e., do well

on their focus problems and poorly on others) may well indicate that the developers have

succeeded in optimizing the performance of their planner.

Recommendation 4: Problem sets should be constructed to highlight the

designers' expectations about superior performance for their planner, and they

should be speci�c about this selection criteria.

On the other hand, if the goal is to demonstrate across the board performance, then

our results at randomly selecting domains suggests that biases can be mitigated.

Recommendation 5: If highlighting performance on \general" problems is

the goal, then the problem set should be selected randomly from the benchmark

domains.

Problem Assumption 2: How Do Syntactic Representation Di�erences A�ect

Performance? Many studies, including this, have shown that planners may be sensitive

to representational features. Just because representations can be translated automatically

does not mean that performance will be una�ected. Just because an algorithm should

theoretically be insensitive to a factor does not mean that in practice it is. All of the

planners showed some sensitivity to permuted problems, and the degree of sensitivity varied.

This outcome suggests that translators and even minor variations on problem descriptions

impact outcome and should be used with care, especially when the sensitivity is not the

focus of the study and some other planner is more vulnerable to the e�ect.

Recommendation 6: Representation translators should be avoided by using

native versions of problems and testing multiple versions of problems if necessary.

With many planner developers participating in the AIPS competitions, this should become

less of an issue.

More importantly, researchers should be explicitly testing the e�ect of alternative phras-

ings of planning problems to determine the sensitivity of performance and to separate the

e�ects of advice/tuning from the essence of the problem.

26

A Critical Assessment of Benchmark Comparison in Planning

Recommendation 7: Studies should consider the role of minor syntactic vari-

ations in performance and include permuted problems (i.e., initial conditions,

goals, preconditions and actions) in their problem sets because they can demon-

strate robustness, provide an opportunity for learning and protect developers

from accidentally over-�tting their algorithm to the set of test problems.

Problem Assumption 3: Does Performance Depend on PDDL Requirements

Features? The planners did not perform quite as advertised or expected given some

problem features. This discrepancy could have many possible causes: problems incorrectly

speci�ed, planners with less sensitivity than thought, solutions not being correct, etc. For

example, many of the problems in the benchmark set were not designed for the competitions

or even intended to be widely used and so may not have been speci�ed carefully enough.

Recommendation 8: When problems are contributed to the benchmark set,

developers should verify that the requirements stated in the description of each

problem correctly re
ect the subset of features needed. Planner evaluators

should then use only those problems that match a planner's capabilities.

Depending on the cause, the results can be skewed, e.g., a planner may be unfairly

maligned for being unable to solve a problem that it was speci�cally designed not to solve.

The above recommendation addresses gaps in the speci�cation of the problem set, but some

mismatches between the capabilities speci�able in PDDL and those that planners possess

remain.

Recommendation 9: Planner developers should develop a vocabulary for

their planner's capabilities, as in the PDDL
ags, and specify the expected

capabilities in the planner's distribution.

Planner Assumption 1: Is the Latest Version the Best? Our results suggest that

new versions run faster, but often do not solve more problems. Thus, the newest version may

not represent the \best" (depending on your de�nition) performance for the class of planner.

Some competitions in other �elds, e.g., the automatic theorem proving community, require

the previous year's best performer to compete as well; this has the advantage of establishing

a baseline of performance as well as allowing a comparison to how the focus may shift over

time.

Recommendation 10: If the primary evaluation metric is speed, then a newer

version may be the best competition. If it is number of problems solved or if one

wishes to establish what progress has been made, then it may be worth running

against an older version as well. If recommendation 9 has been followed, then

evaluators should select a version based on this guidance.

Planner Assumption 2: What Are the E�ect of Parameter Settings? Perfor-

mance of some planners does vary with the parameter settings. Unfortunately, it often is

di�cult to �gure out how to set the parameters properly, and changing settings makes it

di�cult to compare results across experiments. Generally, this is not an issue because the

27

Howe & Dahlman

developers and other users tend to rely on the default parameter settings. Unfortunately,

sometimes the developers exploit alternative settings in their own experiments, complicating

later comparison.

Recommendation 11: If a planner includes parameters, the developer should

guide users in their settings. If they do not, then the default settings should be

used by both the developers and others in experiments to facilitate comparison.

Planner Assumption 3: Are Time Cut-o�s Unfair? We found little bene�t from

increasing time cut-o�s beyond 15 minutes for our problems.

Recommendation 12: If total computation time is a bottleneck, then run the

problems in separate batches, incrementally increasing the time cut-o� between

runs and including only unresolved problems in subsequent runs. When no

additional problems are solved in a run, stop.

Metric Assumption 1: Do Alternative Platforms Lead to Di�erent Perfor-

mance? In our experiments, performance did not vary as much as we expected. This

result suggests that researchers in general are not developing for speci�c hardware/software

con�gurations, but recent trends suggest otherwise, at least with regards to memory. Again,

because these systems are research prototypes, it behooves the developer to be clear about

his/her expectations and anyone subsequently using the system to accommodate those re-

quests in their studies.

Recommendation 13: As with other factors in planner design, researchers

must clearly state the hardware/software requirements for their planners, if the

design is based on platform assumptions. Additionally, a careful study of mem-

ory versus time trade-o�s should be undertaken, given the recent trends in mem-

ory exploitation.

Metric Assumption 2: Do the Number of Plan Steps Vary? They certainly can.

If one neglects quality measures, then some planners are being penalized in e�orts to declare

a best planner.

Recommendation 14: To expedite generalizing across studies, reports should

describe performance in terms of what was solved (how many of what types),

how much time was required and what were the quality of the solutions. Trade-

o�s should be reported, when possible, e.g., 12% increase in computation time

for 30% decrease in plan length. Additionally, if the design goal was to �nd an

optimal solution, compare to other planners with that as their design goal.

Good metrics of plan quality are sorely needed. The latest speci�cation of the PDDL

speci�cation supports the de�nition of problem-speci�c metrics (Fox & Long, 2002); these

metrics indicate whether total-time (a new concept supported by speci�cation of action

durations) or speci�ed functions should be minimized or maximized. This addition is an

excellent start, but general metrics other than just plan-length and total-time are also

needed to expedite comparisons across problems.

28

A Critical Assessment of Benchmark Comparison in Planning

Recommendation 15: Developing good metrics is a valuable research contri-

bution. Researchers should consider it a worthwhile project, conference organiz-

ers and reviewers should encourage papers on the topic, and planner developers

should implement their planners to be responsive to new quality metrics (i.e.,

support tunable heuristics or evaluation criteria).

5. Conclusions

Fair evaluation and comparison of planners is hard. Many apparently benign factors exert

signi�cant e�ects on performance. Superior performance of one planner over another on

a problem that neither was intentionally designed to solve may be explained by minor

representational features. However, comparative analysis on general problems is of practical

importance as it is not practical to create a specialized solution to every problem.

We have analyzed the e�ects of experiment design decisions in empirical comparison of

planners and made some recommendations for ameliorating the e�ects of these decisions.

Most of the recommendations are common sense suggestions for improving the current

methodology.

To expand beyond the current methodology will require at least two substantive changes.

First, the �eld needs to question whether we should be trying to show performance on

planning problems in general. A shift from general comparisons to focused comparisons (on

problem class or mechanism or on hypothesis testing) could produce signi�cant advances in

our understanding of planning.

Second, the benchmark problem sets require attention. Many of the problems should be

discarded because they are too simple to show much. The domains are far removed from

real applications. It may be time to revisit testbeds. For example, several researchers in

robotics have constructed an interactive testbed for comparing motion planning algorithms

(Piccinocchi, Ceccarelli, Piloni, & Bicchi, 1997). The testbed consists of a user interface for

de�ning new problems, a collection of well-known algorithms and a simulator for testing

algorithms on speci�c problems. Thus, the user can design his/her own problems and com-

pare performance of various algorithms (including their own) on them via a web site. Such a

testbed a�ords several advantages over the current paradigm of static benchmark problems

and developer conducted comparisons, in particular, replicability and extendability of the

test set. Alternatively, challenging problem sets can be developed by modifying deployed

applications (Wilkins & desJardins, 2001; Engelhardt, Chien, Barrett, Willis, & Wilklow,

2001).

In recent years, the planning community has signi�cantly improved the size of planning

problems that can be solved in reasonable time and has advanced the state of the art in

empirical comparison of our systems. To interpret the results of empirical comparisons

and understand how they should motivate further development in planning, the community

needs to understand the e�ects of the empirical methodology itself. The purpose of this

paper is to further that understanding and initiate a dialogue about the methodology that

should be used.

29

Howe & Dahlman

Acknowledgments

This research was partially supported by a Career award from the National Science

Foundation IRI-9624058 and by a grant from Air Force O�ce of Scienti�c Research F49620-

00-1-0144. The U.S. Government is authorized to reproduce and distribute reprints for

Governmental purposes notwithstanding any copyright notation thereon. We are most

grateful to the reviewers for the careful reading of and well-considered comments on the

submitted version; we hope we have done justice to your suggestions.

References

Bacchus, F. (2000). AIPS-2000 planning competition.

http://www.cs.toronto.edu/aips2000/SelfContainedAIPS-2000.ppt.

Barrett, A., Golden, K., Penberthy, S., & Weld, D. (1993). UCPOP User's Manual. Dept.

of Computer Science and Engineering, University of Washington, Seattle, WA. TR

93-09-06.

Blum, A. L., & Furst, M. L. (1997). Fast planning through planning graph analysis. Arti�cial

Intelligence Journal, 90 (1-2), 225{279.

Bonet, B., & Ge�ner, H. (1999). Planning as heuristic search: New results. In Proceedings

of the Fifth European Conference on Planning (ECP-99) Durham, UK.

Chien, S., Kambhampati, S., & Knoblock, C. A. (Eds.)(2000). Proceedings of the Fifth

International Conference on Arti�cial Intelligence Planning and Scheduling (AIPS

2000). AAAI Press, Breckenridge, CO.

Cohen, P. R. (1991). A survey of the eighth national conference on arti�cial intelligence:

Pulling together or pulling apart? AI Magazine, 12 (1), 16{41.

Cohen, P. R. (1995). Empirical Methods for Arti�cial Intelligence. MIT Press.

Drummond, M. E., Kaelbling, L. P., & Rosenschein, S. J. (1990). Collected notes from the

benchmarks and metrics workshop. Arti�cial intelligence branch FIA-91-06, NASA

Ames Research Center.

Engelhardt, B., Chien, S., Barrett, T., Willis, J., & Wilklow, C. (2001). The data-chaser

and citizen explorer benchmark problem sets. In Proceedings of the Sixth European

Conference on Planning (ECP 01) Toledo, Spain.

Estlin, T. A., & Mooney, R. J. (1997). Learning to improve both e�cicency and quality of

planning. In Proceedings of the Fifteenth International Joint Conference on Arti�cial

Intelligence, pp. 1227{1233, Nagoya, Japan.

Fox, M., & Long, D. (1999). The e�cient implementation of the plan-graph in STAN.

Journal of Arti�cial Intelligence Research, 10, 87{115.

Fox, M., & Long, D. (2002). PDDL2.1: An extension to PDDL for expressing temporal

planning domains. Available at http://www.dur.ac.uk/d.p.long/pddl2.ps.gz.

30

A Critical Assessment of Benchmark Comparison in Planning

Genevini, A., & Schubert, L. (1996). Accelerating partial-order planners: Some techniques

for e�ective search control and pruning. Journal of Arti�cial Intelligence Research, 5,

95{137.

Hanks, S., Nguyen, D., & Thomas, C. (1993). A beginner's guide to the truckworld simu-

lator. Dept. of Computer Science and Engineering UW-CSE-TR 93-06-09, University

of Washington.

Hanks, S., Pollack, M. E., & Cohen, P. R. (1994). Benchmarks, test beds, controlled

experimentation and the design of agent architectures. AI Magazine, 17{42.

Haslum, P., & Ge�ner, H. (2000). Admissible heuristics for optimal planning. In Pro-

ceedings of the Fifth International Conference on Arti�cial Intelligence Planning and

Scheduling (AIPS 2000), pp. 140{149, Breckenridge, CO. AAAI Press.

Helmert, M. (2001). On the complexity of planning in transportation domains. In 6th

European Conference on Planning (ECP'01), Lecture Notes in Arti�cial Intelligence,

New York, Springer-Verlag.

Ho�mann, J. (2001). Local search topology in planning benchmarks: An empirical analysis.

In Proceedings of the 17th International Joint Conference on Arti�cial Intelligence

Seattle, WA, USA.

Ho�mann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through

heuristic search. Journal of Arti�cial Intelligence Research, 14, 253{302.

Howe, A. E., Dahlman, E., Hansen, C., Scheetz, M., & von Mayrhauser, A. (1999). Exploit-

ing competitive planner performance. In Proceedings of the Fifth European Conference

on Planning, Durham, UK.

Howe, A. E., von Mayrhauser, A., & Mraz, R. T. (1997). Test case generation as an AI

planning problem. Automated Software Engineering, 4 (1), 77{106.

Joslin, D., & Pollack, M. (1994). Least-cost
aw repair: A plan re�nement strategy for

partial-order planning. In Proceedings of the Twelfth National Conference on Arti�cial

Intelligence, pp. 1004{1009, Seattle, WA.

Kautz, H., & Selman, B. (1998). BLACKBOX: A new approach to the application of

theorem proving to problem solving. In Working notes of the AIPS98 Workshop on

Planning as Combinatorial Search, Pittsburgh, PA.

Kautz, H. blackbox: a SAT technology planning system.

http://www.cs.washington.edu/homes/kautz/blackbox/index.html.

Kautz, H., & Selman, B. (1999). Unifying SAT-based and graph-based planning. In Proceed-

ings of the Sixteenth International Joint Conference on Arti�cial Intelligence, Stock-

holm, Sweden.

Koehler, J. (1999). Handling of conditional e�ects and negative goals in IPP. Tech. rep.

128, Institute for Computer Science, Albert Ludwigs University, Freiburg, Germany.

31

Howe & Dahlman

Koehler, J., Nebel, B., Ho�mann, J., & Dimopoulos, Y. (1997). Extending planning graphs

to an ADL subset. In Proceedings of the Fourth European Conference in Planning.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., &

Wilkins, D. (1998). The Planning Domain De�nition Language.

McDermott, D. (2000). The 1998 AI planning systems competition. AI Magazine, 21 (2),

35{56.

Penberthy, J. S., & Weld, D. S. (1992). UCPOP: a sound, complete, partial order planner

for adl. In Proceedings of the Third International Conference on Knowledge Repre-

sentation and Reasoning, pp. 103{114.

Perez, M. A. (1995). Learning Search Control Knowledge to Improve Plan Quality. Ph.D.

thesis, Carnegie-Mellon University.

Piccinocchi, S., Ceccarelli, M., Piloni, F., & Bicchi, A. (1997). Interactive benchmark for

planning algorithms on the web. In Proceedings of IEEE International Conference on

Robotics and Automation.

Pollack, M. E., & Ringuette, M. (1990). Introducing the Tileworld: Experimentally evaluat-

ing agent architectures. In Proceedings of the Eight National Conference on Arti�cial

Intelligence, pp. 183{189, Boston, MA.

Pollack, M., Joslin, D., & Paolucci, M. (1997). Flaw selection strategies for partial-order

planning. Journal of Arti�cial Intelligence Research, 6, 223{262.

Rabideau, G., Englehardt, B., & Chien, S. (2000). Using generic prferences to incrementally

improve plan quality. In Proceedings of the Fifth International Conference on Arti�cial

Intelligence Planning and Scheduling (AIPS 2000), Breckenridge, CO.

Slaney, J., & Thiebaux, S. (2001). Blocks world revisited. Arti�cial Intelligence Journal,

125 (1-2), 119{153.

Srinivasan, R., & Howe, A. E. (1995). Comparison of methods for improving search e�ciency

in a partial-order planner. In Proceedings of the 14th International Joint Conference

on Arti�cial Intelligence, pp. 1620{1626, Montreal, Canada.

Sussman, G. A. (1973). A computational model of skill acquisition. Tech. rep. Memo no.

AI-TR-297, MIT AI Lab.

The Prodigy Research Group (1992). PRODIGY 4.0; the manual and tutorial. School of

Computer Science 92-150, Carnegie Mellon University.

Watson, J., Barbulescu, L., Howe, A., & Whitley, L. D. (1999). Algorithm performance and

problem structure for
ow-shop scheduling. In Proceedings of the Sixteenth National

Conference on Arti�cial Intelligence (AAAI-99), Orlando, FL.

Watson, J., Beck, J., Barbulescu, L., Whitley, L. D., & Howe, A. (2001). Toward a de-

scriptive model of local search cost in job-shop scheduling. In Proceedings of Sixth

European Conference on Planning (ECP'01), Toledo, Spain.

32

A Critical Assessment of Benchmark Comparison in Planning

Weld, D., Anderson, C., & Smith, D. (1998). Extending graphplan to handle uncertainty

and sensing actions. In Proceedings of the Fifteenth National Conference on Arti�cial

Intelligence Madison, WI.

Weld, D. S. (1999). Recent advances in AI planning. AI Magazine, 20 (2), 93{122.

Wilkins, D. E., & desJardins, M. (2001). A call for knowledge-based planning. AI Magazine,

22 (1), 99{115.

33

