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Abstract

We propose a logical/mathematical framework for statistical parameter learning of pa-

rameterized logic programs, i.e. de�nite clause programs containing probabilistic facts with

a parameterized distribution. It extends the traditional least Herbrand model semantics in

logic programming to distribution semantics , possible world semantics with a probability

distribution which is unconditionally applicable to arbitrary logic programs including ones

for HMMs, PCFGs and Bayesian networks.

We also propose a new EM algorithm, the graphical EM algorithm, that runs for a

class of parameterized logic programs representing sequential decision processes where each

decision is exclusive and independent. It runs on a new data structure called support graphs

describing the logical relationship between observations and their explanations, and learns

parameters by computing inside and outside probability generalized for logic programs.

The complexity analysis shows that when combined with OLDT search for all expla-

nations for observations, the graphical EM algorithm, despite its generality, has the same

time complexity as existing EM algorithms, i.e. the Baum-Welch algorithm for HMMs, the

Inside-Outside algorithm for PCFGs, and the one for singly connected Bayesian networks

that have been developed independently in each research �eld. Learning experiments with

PCFGs using two corpora of moderate size indicate that the graphical EM algorithm can

signi�cantly outperform the Inside-Outside algorithm.

1. Introduction

Parameter learning is common in various �elds from neural networks to reinforcement learn-

ing to statistics. It is used to tune up systems for their best performance, be they classi�ers

or statistical models. Unlike these numerical systems described by mathematical formu-

las however, symbolic systems, typically programs, do not seem amenable to any kind of

parameter learning. Actually there has been little literature on parameter learning of pro-

grams.

This paper is an attempt to incorporate parameter learning into computer programs.

The reason is twofold. Theoretically we wish to add the ability of learning to computer

programs, which the authors believe is a necessary step toward building intelligent systems.

Practically it broadens the class of probability distributions, beyond traditionally used nu-

merical ones, which are available for modeling complex phenomena such as gene inheritance,

consumer behavior, natural language processing and so on.
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The type of learning we consider here is statistical parameter learning applied to logic

programs.1 We assume that facts (unit clauses) in a program are probabilistically true and

have a parameterized distribution.2 Other clauses, non-unit de�nite clauses, are always

true as they encode laws such as \if one has a pair of blood type genes a and b, one's

blood type is AB". We call logic programs of this type a parameterized logic program and

use for statistical modeling in which ground atoms3 provable from the program represent

our observations such as \one's blood type is AB" and the parameters of the program are

inferred by performing ML (maximum likelihood) estimation on the observed atoms.

The probabilistic �rst-order framework sketched above is termed statistical abduction

(Sato & Kameya, 2000) as it is an amalgamation of statistical inference and abduction

where probabilistic facts play the role of abducibles, i.e. primitive hypotheses.4 Statistical

abduction is powerful in that it not only subsumes diverse symbolic-statistical frameworks

such as HMMs (hidden Markov models, Rabiner, 1989), PCFGs (probabilistic context free

grammars, Wetherell, 1980; Manning & Sch�utze, 1999) and (discrete) Bayesian networks

(Pearl, 1988; Castillo, Gutierrez, & Hadi, 1997) but gives us freedom of using arbitrarily

complex logic programs for modeling.5

The semantic basis for statistical abduction is distribution semantics introduced by Sato

(1995). It de�nes a parameterized distribution, actually a probability measure, over the set

of possible truth assignments to ground atoms and enables us to derive a new EM algorithm6

for ML estimation called the graphical EM algorithm (Kameya & Sato, 2000).

Parameter learning in statistical abduction is done in two phases, search and EM learn-

ing. Given a parameterized logic program and observations, the �rst phase searches for all

explanations for the observations. Redundancy in the �rst phase is eliminated by tabulating

partial explanations using OLDT search (Tamaki & Sato, 1986; Warren, 1992; Sagonas, T.,

& Warren, 1994; Ramakrishnan, Rao, Sagonas, Swift, & Warren, 1995; Shen, Yuan, You, &

Zhou, 2001). It returns a support graph which is a compact representation of the discovered

explanations. In the second phase, we run the graphical EM algorithm on the support graph

1. In this paper, logic programs mean de�nite clause programs. A de�nite clause program is a set of de�nite

clauses. A de�nite clause is a clause of the form A L1; : : : ; Ln (0 � n) where A; L1; : : : ; Ln are atoms.

A is called the head, L1; : : : ; Ln the body. All variables are universally quanti�ed. It reads if L1 and

� � � and Ln hold, then A holds. In case of n = 0, the clause is called a unit clause. A general clause is

one whose body may contain negated atoms. A program including general clauses is sometimes called a

general program (Lloyd, 1984; Doets, 1994).

2. Throughout this paper, for familiarity and readability, we will somewhat loosely use \distribution" as a

synonym for \probability measure".

3. In logic programming, the adjective \ground" means no variables contained.

4. Abduction means inference to the best explanation for a set of observations. Logically, it is formalized as

a search for an explanation E such that E;KB ` G where G is an atom representing our observation, KB

a knowledge base and E a conjunction of atoms chosen from abducibles, i.e. a class of formulas allowed

as primitive hypotheses (Kakas, Kowalski, & Toni, 1992; Flach & Kakas, 2000). E must be consistent

with KB.

5. Existing symbolic-statistical modeling frameworks have restrictions and limitations of various types com-

pared with arbitrary logic programs (see Section 7 for details). For example, Bayesian networks do not

allow recursion. HMMs and PCFGs, stochastic grammars, allow recursion but lack variables and data

structures. Recursive logic programs are allowed in Ngo and Haddawy's (1997) framework but they

assume domains are �nite and function symbols seem prohibited.

6. \EM algorithm" stands for a class of iterative algorithms for ML estimation with incomplete data

(McLachlan & Krishnan, 1997).
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and learn the parameters of the distribution associated with the program. Redundancy in

the second phase is removed by the introduction of inside and outside probability for logic

programs computed from the support graph.

The graphical EM algorithm has accomplished, when combined with OLDT search for

all explanations, the same time complexity as the specialized ones, e.g. the Baum-Welch

algorithm for HMMs (Rabiner, 1989) and the Inside-Outside algorithm for PCFGs (Baker,

1979), despite its generality. What is surprising is that, when we conducted learning exper-

iments with PCFGs using real corpora, it outperformed the Inside-Outside algorithm by

orders of magnitudes in terms of time for one iteration to update parameters. These ex-

perimental results enhance the prospect for symbolic-statistical modeling by parameterized

logic programs of even more complex systems than stochastic grammars whose modeling

has been di�cult simply because of the lack of an appropriate modeling tool and their sheer

complexities. The contributions of this paper therefore are

� distribution semantics for parameterized logic programs which uni�es existing symbolic-

statistical frameworks,

� the graphical EM algorithm (combined with tabulated search), a general yet e�cient

EM algorithm that runs on support graphs and

� the prospect suggested by the learning experiments for modeling and learning complex

symbolic-statistical phenomena.

The rest of this paper is organized as follows. After preliminaries in Section 2, a proba-

bility space for parameterized logic programs is constructed in Section 3 as a mathematical

basis for the subsequent sections. We then propose a new EM algorithm, the graphical

EM algorithm, for parameterized logic programs in Section 4. Complexity analysis of the

graphical EM algorithm is presented in Section 5 for HMMs, PCFGs, pseudo PCSGs and

sc-BNs.7 Section 6 contains experimental results of parameter learning with PCFGs by the

graphical EM algorithm using real corpora that demonstrate the e�ciency of the graphical

EM algorithm. We state related work in Section 7, followed by conclusion in Section 8. The

reader is assumed to be familiar with the basics of logic programming (Lloyd, 1984; Doets,

1994), probability theory (Chow & Teicher, 1997), Bayesian networks (Pearl, 1988; Castillo

et al., 1997) and stochastic grammars (Rabiner, 1989; Manning & Sch�utze, 1999).

2. Preliminaries

Since our subject intersects logic programming and EM learning which are quite di�erent

in nature, we separate preliminaries.

2.1 Logic Programming and OLDT

In logic programming, a program DB is a set of de�nite clauses8 and the execution is search

for an SLD refutation of a given goal G. The top-down interpreter recursively selects the

7. Pseudo PCSGs (probabilistic context sensitive grammars) are a context-sensitive extension of PCFGs

proposed by Charniak and Carroll (1994). sc-BN is a shorthand for a singly connected Bayesian network

(Pearl, 1988).

8. We do not deal with general logic programs in this paper.

393



Sato & Kameya

next goal and unfolds it (Tamaki & Sato, 1984) into subgoals using a nondeterministically

chosen clause. The computed result by the SLD refutation, i.e. a solution, is an answer

substitution (variable binding) � such that DB ` G�.9 Usually there is more than one

refutation for  G, and the search space for all refutations is described by an SLD tree

which may be in�nite depending on the program and the goal (Lloyd, 1984; Doets, 1994).

More often than not, applications require all solutions. In natural language processing

for instance, a parser must be able to �nd all possible parse trees for a given sentence as

every one of them is syntactically correct. Similarly in statistical abduction, we need to

examine all explanations to determine the most likely one. All solutions are obtained by

searching the entire SLD tree, and there is a choice of the search strategy. In Prolog, the

standard logic programming language, backtracking is used to search for all solutions in

conjunction with a �xed search order for goals (textually from left-to-right) and clauses

(textually top-to-bottom) due to the ease and simplicity of implementation.

The problem with backtracking is that it forgets everything until up to the previous

choice point, and hence it is quite likely to prove the same goal again and again, resulting in

exponential search time. One answer to avoid this problem is to store computed results and

reuse them whenever necessary. OLDT is such an instance of memoizing scheme (Tamaki

& Sato, 1986; Warren, 1992; Sagonas et al., 1994; Ramakrishnan et al., 1995; Shen et al.,

2001). Reuse of proved subgoals in OLDT search often drastically reduces search time

for all solutions, especially when refutations of the top goal include many common sub-

refutations. Take as an example a logic program coding an HMM. For a given string s,

there exist exponentially many transition paths that output s. OLDT search applied to

the program however only takes time linear in the length of s to �nd all of them unlike

exponential time by Prolog's backtracking search.

What does OLDT have to do with statistical abduction? From the viewpoint of statisti-

cal abduction, reuse of proved subgoals, or equivalently, structure sharing of sub-refutations

for the top-goal G brings about structure sharing of explanations for G, in addition to the

reduction of search time mentioned above, thereby producing a highly compact representa-

tion of all explanations for G.

2.2 EM Learning

Parameterized distributions such as the multinomial distribution and the normal distribu-

tion provide convenient modeling devices in statistics. Suppose a random sample x1; : : : ; xT
of size T on a random variable X drawn from a distribution P (X = x j �) parameterized

by unknown �, is observed. The value of � is determined by ML estimation as the MLE

(maximum likelihood estimate) of �, i.e. as the maximizer of the likelihood
Q

1�i�T P (xi j �).

Things get much more di�cult when data are incomplete. Think of a probabilistic

relationship between non-observable cause X and observable e�ect Y such as one between

diseases and symptoms in medicine and assume that Y does not uniquely determine the

cause X . Then Y is incomplete in the sense that Y does not carry enough information to

completely determine X . Let P (X = x; Y = y j �) be a parameterized joint distribution

over X and Y . Our task is to perform ML estimation on � under the condition that X is

9. By a solution we ambiguously mean both the answer substitution � itself and the proved atom G�, as

one gives the other.
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non-observable while Y is observable. Let y1; : : : ; yT be a random sample of size T drawn

from the marginal distribution P (Y = y j �) =
P
x P (X = x; Y = y j �). The MLE of � is

obtained by maximizing the likelihood
Q

1�i�T P (yi j �) as a function of �.

While mathematical formulation looks alike in both cases, the latter, ML estimation with

incomplete data, is far more complicated and direct maximization is practically impossible

in many cases. People therefore looked to indirect approaches to tackle the problem of

ML estimation with incomplete data to which the EM algorithm has been a standard

solution (Dempster, Laird, & Rubin, 1977; McLachlan & Krishnan, 1997). It is an iterative

algorithm applicable to a wide class of parameterized distributions including the multinomial

distribution and the normal distribution such that the MLE computation is replaced by the

iteration of two easier, more tractable steps. At n-th iteration, it �rst calculates the value

of Q function introduced below using current parameter value �(n) (E-step)10 :

Q(� j �(n))
def
=
X
x

P (x j y; �(n)) lnP (x; y j �): (1)

Next, it maximizes Q(� j �(n)) as a function of � and updates �(n) (M-step):

�(n+1) = argmax�Q(� j �
(n)): (2)

Since the old value �(n) and the updated value �(n+1) do not necessarily coincide, the E-steps

and M-steps are iterated until convergence, during which the (log) likelihood is assured to

increase monotonically (McLachlan & Krishnan, 1997).

Although the EM algorithm merely performs local maximization, it is used in a variety

of settings due to its simplicity and relatively good performance. One must notice however

that the EM algorithm is just a class name, taking di�erent form depending on distributions

and applications. The development of a concrete EM algorithm such as the Baum-Welch

algorithm for HMMs (Rabiner, 1989) and the Inside-Outside algorithm for PCFGs (Baker,

1979) requires individual e�ort for each case.

10. Q function is related to ML estimation as follows. We assume here only one data, y, is observed. From

Jensen's inequality (Chow & Teicher, 1997) and the concavity of ln function, it follows thatX
x

P (x j y; �
(n)

) lnP (x j y; �)�
X
x

P (x j y; �
(n)

) lnP (x j y; �
(n)

) � 0

and hence that

Q(� j �
(n)

) �Q(�
(n)
j �

(n)
)

=
X
x

P (x j y; �
(n)

) lnP (x j y; �) �
X
x

P (x j y; �
(n)

) lnP (x j y; �
(n)

) + lnP (y j �) � lnP (y j �
(n)

)

� lnP (y j �) � lnP (y j �
(n)

):

Consequently, we have

Q(� j �
(n)

) � Q(�
(n)
j �

(n)
) ) ln p(y j �) � ln p(y j �

(n)
) ) p(y j �) � p(y j �

(n)
):
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3. Distribution Semantics

In this section, we introduce parameterized logic programs and de�ne their declarative se-

mantics. The basic idea is as follows. We start with a set F of probabilistic facts (atoms)

and a set R of non-unit de�nite clauses. Sampling from F determines a set F 0 of true

atoms, and the least Herbrand model of F 0
[ R determines the truth value of every atom

in DB = F [ R. Hence every atom can be considered as a random variable, taking on 1

(true) or 0 (false). In what follows, we formalize this process and construct the underlying

probability space for the denotation of DB.

3.1 Basic Distribution PF

LetDB = F[R be a de�nite clause program in a �rst-order language L with countably many

variables, function symbols and predicate symbols where F is a set of unit clauses (facts)

and R a set of non-unit clauses (rules). In the sequel, unless otherwise stated, we consider

for simplicity DB as the set of all ground instances of the clauses in DB, and assume that

F and R consist of countably in�nite ground clauses (the �nite case is similarly treated).

We then construct a probability space for DB in two steps. First we introduce a probability

space over the Herbrand interpretations11 of F i.e. the truth assignments to ground atoms

in F . Next we extend it to a probability space over the Herbrand interpretations of all

ground atoms in L by using the least model semantics (Lloyd, 1984; Doets, 1994).

Let A1;A2; : : : be a �xed enumeration of atoms in F . We regard an in�nite vector ! =

hx1; x2; : : :i of 0s and 1s as a Herbrand interpretation of F in such a way that for i = 1; 2; : : :

Ai is true (resp. false) if and only if xi = 1 (resp. xi = 0). Under this isomorphism, the set

of all possible Herbrand interpretations of F coincides with the Cartesian product:


F
def
=

1Y
i=1

f0; 1gi:

We construct a probability measure PF over the sample space 
F
12 from a collection of

�nite joint distributions P
(n)
F (A1 = x1; : : : ;An = xn) (n = 1; 2; : : : ; xi 2 f0; 1g; 1 � i � n)

such that8>><>>:
0 � P

(n)
F (A1 = x1; : : : ; An = xn) � 1P

x1;:::;xn
P
(n)
F (A1 = x1; : : : ;An = xn) = 1P

xn+1
P
(n+1)
F (A1 = x1; : : : ; An+1 = xn+1) = P

(n)
F (A1 = x1; : : : ; An = xn):

(3)

The last equation is called the compatibility condition. It can be proved (Chow & Teicher,

1997) from the compatibility condition that there exists a probability space (
F ;F ; PF )

where PF is a probability measure on F , the minimal � algebra containing open sets of 
F ,

such that for any n,

PF (A1 = x1; : : : ; An = xn) = P
(n)
F (A1 = x1; : : : ;An = xn):

11. A Herbrand interpretation interprets a function symbol uniquely as a function on ground terms and

assigns truth values to ground atoms. Since the interpretation of function symbols is common to all

Herbrand interpretations, given L, they have a one-to-one correspondence with truth assignments to

ground atoms in L. So we do not distinguish them.

12. We regard 
F as a topological space with the product topology such that each f0; 1g is equipped with

the discrete topology.
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We call PF a basic distribution.13

The choice of P
(n)
F is free as long as the compatibility condition is met. If we want all

interpretations to be equiprobable, we should set P
(n)
F (A1 = x1; : : : ;An = xn) = 1=2n for

every hx1; : : : ; xni. The resulting PF is a uniform distribution over 
F just like the one

over the unit interval [0; 1]. If, on the other hand, we stipulate no interpretation except

!0 = hc1; c2; : : :i should be possible, we put, for each n,

P
(n)
F (A1 = x1; : : : ; An = xn) =

(
1 if 8i xi = ci (1 � i � n)

0 o.w.

Then PF places all probability mass on !0 and gives probability 0 to the rest.

De�ne a parameterized logic program as a de�nite clause program14 DB = F [R where

F is a set of unit clauses, R is a set of non-unit clauses such that no clause head in R is

uni�able with a unit clause in F and a parameterized basic distribution PF is associated with

F . A parameterized PF is obtained from a collection of parameterized joint distributions

satisfying the compatibility condition. Generally, the more complex P
(n)
F 's are, the more


exible PF is, but at the cost of tractability. The choice of parameterized �nite distributions

made by Sato (1995) was simple:

P
(2n)
F (ON1 = x1; OFF 2 = x2; : : : ;OFF2n = x2n j �1; : : : ; �n)

=
nY
i=1

Pbs(ON2i�1 = x2i�1; OFF2i = x2i j �i)

where

Pbs(ON2i�1 = x2i�1; OFF2i = x2i j �i)

=

8><>:
0 if x2i�1 = x2i
�i if x2i�1 = 1; x2i = 0

1� �i if x2i�1 = 0; x2i = 1:

(4)

Pbs(ON2i�1 = x2i�1; OFF2i = x2i j �i) (1 � i � n) represents a probabilistic binary switch,

i.e. a Bernoulli trial, using two exclusive atoms ON2i�1 and OFF 2i in such a way that either

one of them is true on each trial but never both. �i is a parameter specifying the probability

that the switch i is on. The resulting PF is a probability measure over the in�nite product of

independent binary outcomes. It might look too simple but expressive enough for Bayesian

networks, Markov chains and HMMs (Sato, 1995; Sato & Kameya, 1997).

3.2 Extending PF to PDB

In this subsection, we extend PF to a probability measure PDB over the possible worlds

for L, i.e. the set of all possible truth assignments to ground atoms in L through the least

13. This naming of PF , despite its being a probability measure, partly re
ects the observation that it behaves

like an in�nite joint distribution PF (A1 = x1; A2 = x2; : : :) for an in�nite random vector hA1; A2; : : :i

of which P
(n)

F
(A1 = x1; : : : ; An = xn) (n = 1; 2; : : :) are marginal distributions. Another reason is

intuitiveness. These considerations apply to PDB de�ned in the next subsection as well.

14. Here clauses are not necessarily ground.
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Herbrand model (Lloyd, 1984; Doets, 1994). Before proceeding however, we need a couple

of notations. For an atom A, de�ne Ax by(
Ax = A if x = 1

Ax = :A if x = 0:

Next take a Herbrand interpretation � 2 
F of F . It makes some atoms in F true and

others false. Let F� be the set of atoms made true by �. Then imagine a de�nite clause

program DB0 = R [ F� and its least Herbrand model MDB0 (Lloyd, 1984; Doets, 1994).

MDB0 is characterized as the least �xed point of a mapping TDB0(�) below

TDB0(I)
def
=

(
A

����� there is some A B1; : : : ; Bk 2 DB
0 (0 � k)

such that fB1; : : : ; Bkg � I

)

where I is a set of ground atoms.15 Or equivalently, it is inductively de�ned by

I0 = ;

In+1 = TDB0(In)

MDB0 =
[
n

In:

Taking into account the fact that MDB0 is a function of � 2 
F , we henceforth employ a

functional notation MDB(�) to denote MDB0 .

Turning back, let A1;A2; : : : be again an enumeration, but of all ground atoms in L.16

Form 
DB, similarly to 
F , as the Cartesian product of denumerably many f0; 1g's and iden-

tify it with the set of all possible Herbrand interpretations of the ground atoms A1;A2; : : :

in L, i.e. the possible worlds for L. Then extend PF to a probability measure PDB over 
DB

as follows. Introduce a series of �nite joint distributions P
(n)
DB (A1 = x1; : : : ; An = xn) for

n = 1; 2; : : : by

[Ax11 ^ � � � ^A
xn
n ]F

def
= f� 2 
F jMDB(�) j= Ax11 ^ � � � ^ A

xn
n g

P
(n)
DB (A1 = x1; : : : ; An = xn)

def
= PF ([A

x1
1 ^ � � � ^A

xn
n ]F ):

Note that the set [Ax11 ^ � � � ^A
xn
n ]F is PF -measurable and by de�nition, P

(n)
DB 's satisfy the

compatibility conditionX
xn+1

P
(n+1)
DB (A1 = x1; : : : ; An+1 = xn+1) = P

(n)
DB (A1 = x1; : : : ;An = xn):

Hence there exists a probability measure PDB over 
DB which is an extension of PF such

that

PDB(A1 = x1; : : : ; An = xn) = PF (A1 = x1; : : : ; An = xn)

15. I de�nes, mutually, a Herbrand interpretation such that a ground atom A is true if and only if A 2 I.

A Herbrand model of a program is a Herbrand interpretation that makes every ground instance of every

clause in the program true.

16. Note that this enumeration enumerates ground atoms in F as well.

398



Parameter Learning of Logic Programs for Symbolic-statistical Modeling

for any �nite atomsA1; : : : ;An in F and for every binary vector hx1; : : : ; xni (xi 2 f0; 1g; 1 �

i � n). De�ne the denotation of the program DB = F [ R w.r.t. PF to be PDB. The de-

notational semantics of parameterized logic programs de�ned above is called distribution

semantics. As remarked before, we regard PDB as a kind of in�nite joint distribution

PDB(A1 = x1; A2 = x2; : : :). Mathematical properties of PDB are listed in Appendix A

where our semantics is proved to be an extension of the standard least model semantics in

logic programming to possible world semantics with a probability measure.

3.3 Programs as Distributions

Distribution semantics views parameterized logic programs as expressing distributions. Tra-

ditionally distributions have been expressed by using mathematical formulas but the use of

programs as (discrete) distributions gives us far more freedom and 
exibility than mathe-

matical formulas in the construction of distributions because they have recursion and arbi-

trary composition. In particular a program can contain in�nitely many random variables

as probabilistic atoms through recursion, and hence can describe stochastic processes that

potentially involve in�nitely many random variables such as Markov chains and derivations

in PCFGs (Manning & Sch�utze, 1999).17

Programs also enable us to procedurally express complicated constraints on distributions

such as \the sum of occurrences of alphabets a or b in an output string of an HMM must be

a multiple of three". This feature, procedural expression of arbitrarily complex (discrete)

distributions, seems quite helpful in symbolic-statistical modeling.

Finally, providing mathematically sound semantics for parameterized logic programs

is one thing, and implementing distribution semantics in a tractable way is another. In

the next section, we investigate conditions on parameterized logic programs which make

probability computation tractable, thereby making them usable as a means for large scale

symbolic-statistical modeling.

4. Graphical EM Algorithm

According to the preceding section, a parameterized logic program DB = F [ R in a

�rst-order language L with a parameterized basic distribution PF (� j �) over the Herbrand

interpretations of ground atoms in F speci�es a parameterized distribution PDB(� j �) over

the Herbrand interpretations for L. In this section, we develop, step by step, an e�cient EM

algorithm for the parameter learning of parameterized logic programs by interpreting PDB
as a distribution over the observable and non-observable events. The new EM algorithm is

termed the graphical EM algorithm. It is applicable to arbitrary logic programs satisfying

certain conditions described later provided the basic distribution is a direct product of

multi-ary random switches, which is a slight complication of the binary ones introduced in

Section 3.1.

From this section on, we assume that DB consists of usual de�nite clauses containing

(universally quanti�ed) variables. De�nitions and changes relating to this assumption are

17. An in�nite derivation can occur in PCFGs. Take a simple PCFG fp : S ! a; q : S ! SSg where S is a

start symbol, a a terminal symbol, p+ q = 1 and p; q > 0. In this PCFG, S is rewritten either to a with

probability p or to SS with probability q. The probability of the occurrence of an in�nite derivation is

calculated as max f0; 1� (p=q)g which is non-zero when q > p (Chi & Geman, 1998).

399



Sato & Kameya

listed below. For a predicate p, we introduce i� (p), the i� de�nition of p by

i� (p)
def
= 8x (p(x)$ 9y1(x = t1 ^W1) _ � � � _ 9yn(x = tn ^Wn)) :

Here x is a vector of new variables of length equal to the arity of p, p(ti)  Wi (1 � i �

n; 0 � n), an enumeration of clauses about p in DB, and yi, a vector of variables occurring

in p(ti) Wi. Then de�ne comp(R) as follows.

head(R)
def
= fB j B is a ground instance of a clause head appearing in Rg

i� (R)
def
= fi� (p) j p appears in a clause head in Rg

Eq
def
= ff(x) = f(y)! x = y j f is a function symbolg

[ ff(x) 6= g(y) j f and g are di�erent function symbolsg

[ ft 6= x j t is a term properly containing xg

comp(R)
def
= i� (R) [ Eq

Eq, Clark's equational theory (Clark, 1978), deductively simulates uni�cation. Likewise

comp(R) is a �rst-order theory which deductively simulates SLD refutation with the help

of Eq by replacing a clause head atom with the clause body (Lloyd, 1984; Doets, 1994).

We here introduce some de�nitions which will be frequently used. Let B be an atom.

An explanation for B w.r.t. DB = F [ R is a conjunction S such that S;R ` B, and as a

set comprised of its conjuncts, S � F holds and no proper subset of S satis�es this. The

set of all explanations for B is called the support set for B and designated by  DB(B).
18

4.1 Motivating Example

First of all, we review distribution semantics by a concrete example. Consider the following

program DBb = Fb [Rb in Figure 1 modeling how one's blood type is determined by blood

type genes probabilistically inherited from the parents.19

The �rst four clauses in Rb state a blood type is determined by a genotype, i.e. a pair of

blood type genes a, b and o. For instance, btype('A'):- (gtype(a,a) ; gtype(a,o) ;

gtype(o,a)) says that one's blood type is A if his (her) genotype is ha; ai, ha; oi or ho;ai.

These are propositional rules.

Succeeding clauses state general rules in terms of logical variables. The �fth clause

says that regardless of the values of X and Y, event gtype(X,Y) (one's having genotype

hX; Yi) is caused by two events, gene(father,X) (inheriting gene X from the father) and

gene(mother,Y) (inheriting gene Y from the mother). gene(P,G):- msw(gene,P,G) is a

clause connecting rules in Rb with probabilistic facts in Fb. It tells us that the gene G

is inherited from a parent P if a choice represented by msw(gene,P,G)
20 is made. The

18. This de�nition of a support set di�ers from the one used by Sato (1995) and Kameya and Sato (2000).

19. When we implicitly emphasize the procedural reading of logic programs, Prolog conventions are employed

(Sterling & Shapiro, 1986). Thus, ; stands for \or", , \and" :- \implied by" respectively. Strings

beginning with a capital letter are (universally quanti�ed) variables, but quoted ones such as 'A' are

constants. The underscore is an anonymous variable.

20. msw is an abbreviation of \multi-ary random switch" and msw(�; �; �) expresses a probabilistic choice from

�nite alternatives. In the framework of statistical abduction, msw atoms are abducibles from which

explanations are constructed as a conjunction.
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Rb =

8>>>>>>><>>>>>>>:

btype('A') :- (gtype(a,a) ; gtype(a,o) ; gtype(o,a)).

btype('B') :- (gtype(b,b) ; gtype(b,o) ; gtype(o,b)).

btype('O') :- gtype(o,o).

btype('AB') :- (gtype(a,b) ; gtype(b,a)).

gtype(X,Y) :- gene(father,X), gene(mother,Y).

gene(P,G) :- msw(gene,P,G).

Fb = fmsw(gene,father,a);msw(gene,father,b); msw(gene,father,o);

msw(gene,mother,a);msw(gene,mother,b); msw(gene,mother,o)g

Figure 1: ABO blood type program DBb

genetic knowledge that the choice of G is by chance and made from fa; b; og is expressed by

specifying a joint distribution Fb as follows.

PFb(msw(gene,t,a) = x;msw(gene,t,b) = y; msw(gene,t,o) = z j �a; �b; �o)
def
= �xa�

y
b �
z
o

where x; y; z 2 f0; 1g, x + y + z = 1, �a; �b; �o 2 [0; 1], �a + �b + �o = 1 and t is either

father or mother. Thus �a is the probability of inheriting gene a from a parent. Statistical

independence of the choice of gene, once from father and once from mother, is expressed

by putting

PFb( msw(gene,father,a) = x;msw(gene,father,b) = y; msw(gene,father,o) = z;

msw(gene,mother,a) = x0; msw(gene,mother,b) = y0; msw(gene,mother,o) = z0

j �a; �b; �o)

= PFb(x; y; z j �a; �b; �o)PFb(x
0; y0; z0 j �a; �b; �o):

In this setting, atoms representing our observation are obs(DBb) = fbtype('A'); btype('B');

btype('O'); btype('AB')g. We observe one of them, say btype('A'), and infer a possible

explanation S, i.e. a minimal conjunction of abducibles msw(gene,�,�) such that

S;Rb ` btype('A').

S is obtained by applying a special SLD refutation procedure to the goal  btype('A')

which preserves msw atoms resolved upon in the refutation. Three explanations are found.

S1 = msw(gene,father,a) ^ msw(gene,mother,a)

S2 = msw(gene,father,a) ^ msw(gene,mother,o)

S3 = msw(gene,father,o) ^ msw(gene,mother,a)

So  DBb(btype(a)), the support set for btype(a), is fS1; S2; S3g. The probability of each

explanation is respectively computed as PFb(S1) = �2a and PFb(S2) = PFb(S3) = �a�o. From

Proposition A.2 in Appendix A, it follows that PDBb(btype('A')) = PDBb(S1 _ S2 _ S3) =

PFb(S1 _ S2 _ S3) and that

PDBb(btype('A') j �a; �b; �o) = PFb(S1) + PFb(S2) + PFb(S3)

= �2a + 2�a�o:
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Here we used the fact that S1, S2 and S3 are mutually exclusive as the choice of gene is

exclusive. Parameters, i.e. �a, �b and �o are determined by ML estimation performed on a

random sample such as fbtype('A'); btype('O');btype('AB')g of btype as follows.

h�a; �b; �oi = argmaxh�a;�b;�oi PDBb(btype('A'))PDBb(btype('O'))PDBb(btype('AB'))

= argmaxh�a;�b;�oi (�
2
a + 2�a�o)�

2
o�a�b

This program contains neither function symbol nor recursion though our semantics

allows for them. Later we see an example containing both, a program for an HMM (Rabiner

& Juang, 1993).

4.2 Four Simplifying Conditions

DBb in Figure 1 is simple and probability computation is easy. This is not generally the

case. Since our primary interest is learning, especially e�cient parameter learning of param-

eterized logic programs, we hereafter concentrate on identifying what property of a program

makes probability computation easy like DBb, thereby makes e�cient parameter learning

possible.

To answer this question precisely, let us formulate the whole modeling process. Suppose

there exist symbolic-statistical phenomena such as gene inheritance for which we hope

to construct a probabilistic computational model. We �rst specify a target predicate p

whose ground atom p(s) represents our observation of the phenomena. Then to explain

the empirical distribution of p, we write down a parameterized logic program DB = F [R

having a basic distribution PF with parameter � that can reproduce all observable patterns

of p(s). Finally, observing a random sample p(s1); : : : ; p(sT ) of ground atoms of p, we

adjust � by ML estimation, i.e. by maximizing the likelihood L(�) =
QT
t=1 PDB(p(st) j �) so

that PDB(p(�) j �) approximates as closely to the empirically observed distribution of p as

possible.

At �rst sight, this formulation looks right, but in reality it is not. Suppose two events

p(s) and p(s0) (s 6= s0) are observed. We put L(�) = PDB(p(s) j �)PDB(p(s
0) j �). But this

cannot be a likelihood at all simply because in distribution semantics, p(s) and p(s0) are

two di�erent random variables, not two realizations of the same random variable.

A quick remedy is to note that in the case of blood type program DBb where obs(DBb) =

fbtype('A'); btype('B');btype('O'); btype('AB')g are observable atoms, only one of

them is true for each observation, and if some atom is true, others must be false. In other

words, these atoms collectively behave as a single random variable having the distribution

PDBb whose values are obs(DBb).

Keeping this in mind, we introduce the following condition. Let obs(DB) (� head(R))

be a set of ground atoms which represent observable events. We call them observable atoms.

Uniqueness condition:

PDB(G ^G
0) = 0 for any G 6= G0

2 obs(DB), and
P
G2obs(DB) PDB(G) = 1.
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The uniqueness condition enables us to introduce a new random variable Yo representing

our observation. Fix an enumeration G1; G2; : : : of observable atoms in obs(DB) and de�ne

Yo by
21

Yo(!) = k i� ! j= Gk for ! 2 
DB (k � 1): (5)

LetGk1 ;Gk2 ; : : : ;GkT 2 obs(DB) be a random sample of size T . Then L(�) =
QT
t=1 PDB(Gkt j

�) =
QT
t=1 PDB(Yo = kt j �) quali�es for the likelihood function w.r.t. Yo.

The second condition concerns the reduction of probability computation to addition.

Take again the blood type exmaple. The computation of PDBb(btype('A')) is decomposed

into a summation because explanations in the support set are mutualy exclusive. So we

introduce

Exclusiveness condition:

For every G 2 obs(DB) and the support set  DB(G), PDB(S ^ S
0) = 0 for any S 6=

S0 2  DB(G).

Using the exclusiveness condition (and Proposition A.2 in Appendix A), we have

PDB(G) =
X

S2 DB(G)

PF (S):

From a modeling point of view, it means that while a single event, or a single observation,

G, may have several (or even in�nite) explanations  DB(G), only one of  DB(G) is allowed

to be true for each observation.

Now introduce 	DB, i.e. the set of all explanations relevant to obs(DB) by

	DB
def
=

[
G2obs(DB)

 DB(G)

and �x an enumeration S1; S2; : : : of explanations in 	DB. It follows from Proposition A.2,

the uniqueness condition and the exclusiveness condition that

PDB(Si ^ Sj) = 0 for i 6= j andX
S2	DB

PDB(S) =
X

G2obs(DB)

X
S2 DB(G)

PDB(S)

=
X

G2obs(DB)

PDB(G)

= 1:

So we are able to introduce under the uniqueness condition and the exclusiveness condition

yet another random variable Xe, representing an explanation for G, de�ned by

Xe(!) = k i� ! j= Sk for ! 2 
DB: (6)

The third condition concerns termination.

21.
P

G2obs(DB)
PDB(G) = 1 only guarantees that the measure of f! j ! j= Gk for some k (� 1)g is one, so

there can be some ! satisfying no Gk's. In such case, we put Yo(!) = 0. But values on a set of measure

zero do not a�ect any part of the discussion that follows. This also applies to the de�nition of Xe in (6).
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Finite support condition:

For every G 2 obs(DB)  DB(G) is �nite.

PDB(G) is then computed from the support set  DB(G) = fS1; : : : ; Smg (0 � m), with

the help of the exclusiveness condition, as a �nite summation
Pm
i=1 PF (Si). This condition

prevents an in�nite summation that is hardly computable.

The fourth condition simpli�es the probability computation to multiplication. Recall

that an explanation S for G 2 obs(DB) is a conjunction a1 ^ � � � ^ am of some abducibles

fa1; : : : ; amg � F (1 � m). In order to reduce the computation of PF (S) = PF (a1^� � �^am)

to the multiplication PF (a1) � � �PF (am), we assume

Distribution condition:

F is a set Fmsw of ground atoms with a parameterized distribution Pmsw speci�ed below.

Here atom msw(i,n,v) is intended to simulate a multi-ary random switch whose name is i

and whose outcome is v on trial n. It is a generalization of primitive probabilistic events

such as coin tossing and dice rolling.

1. Fmsw consists of probabilistic atoms msw(i,n,v). The arguments i, n and v are ground

terms called switch name, trial-id and a value (of the switch i), respectively. We

assume that a �nite set Vi of ground terms called the value set of i is associated with

each i, and v 2 Vi holds.

2. Write Vi as fv1; v2; : : : ; vmg (m = jVij). Then, one of the ground atoms f msw(i,n,v1),

msw(i,n,v2), . . . , msw(i,n,vm)g becomes exclusively true (takes on value 1) on each

trial. With each i, a parameter �i;v 2 [0; 1] such that
P
v2Vi

�i;v = 1 is associated. �i;v
is the probability of msw(i,�,v) being true (v 2 Vi).

3. For each ground terms i, i0, n, n0, v 2 Vi and v
0
2 Vi0 , random variable msw(i,n,v) is

independent of msw(i0,n0,v0) if n 6= n0 or i 6= i0.

In other words, we introduce a family of parameterized �nite distributions P(i;n) such that

P(i;n)(msw(i,n,v1) = x1; : : : ;msw(i,n,vm) = xm j �i;v1; : : : ; �i;vm)

def
=

(
�x1i;v1 � � � �

xm
i;vm

if
Pm
k=1 xk = 1

0 o.w.
(7)

where m = jVij, xk 2 f0; 1g (1 � k � m), and de�ne Pmsw as their in�nite product

Pmsw

def
=
Y
i;n

P(i;n):

Under this condition, we can compute Pmsw(S), the probability of an explanation S, as the

product of parameters. Suppose msw(ij,n,v) and msw(ij0,n
0
,v0) are di�erent conjuncts in

an explanation S = msw(i1,n1,v1) ^ � � � ^ msw(ik,nk,vk). If either j 6= j0 or n 6= n0 holds,

they are independent by construction. Else if j = j0 and n = n0 but v 6= v0, they are not

independent but Pmsw(S) = 0 by construction. As a result, whichever condition may hold,

Pmsw(S) is computed from the parameters.
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4.3 Modeling Principle

Up to this point, we have introduced four conditions, the uniqueness condition, the exclu-

siveness condition, the �nite support condition and the distribution condition, to simplify

probability computation. The last one is easy to satisfy. We just adopt Fmsw together with

Pmsw. So, from here on, we always assume that Fmsw has a parameterized distribution Pmsw
introduced in the previous subsection. Unfortunately the rest are not satis�ed automati-

cally. According to our modeling experiences however, it is only mildly di�cult to satisfy

the uniqueness condition and the exclusiveness condition as long as we obey the following

modeling principle.

Modeling principle: DB = Fmsw[R describes a sequential decision process

(modulo auxiliary computations) that uniquely produces an observable atom

G 2 obs(DB) where each decision is expressed by some msw atom.22

Translated into programming level, it says that we must take care when writing a pro-

gram so that for any sample F 0
from Pmsw, there must uniquely exist goal G (G 2 obs(DB))

which has a successful refutation from DB0 = F 0 [ R. We can con�rm the principle by the

blood type program DBb = Fb [ Rb. It describes a process of gene inheritance, and for

an arbitrary sample F 0
b from P

msw
, say F 0b = fmsw(gene,father,a); msw(gene,mother,o)g,

there exists a unique goal,  btype('A') in this case, that has a successful SLD refutation

from F 0
b [Rb.

The idea behind this principle is that a decision process always produces some result (an

observable atom), and di�erent decision processes must di�er at some msw thereby entailing

mutually exclusive observable atoms. So the uniqueness condition and the exclusiveness

condition will be automatically satis�ed.

Satisfying the �nite support condition is more di�cult as it is virtually equivalent to

writing a program DB for which all solution search for  G (G 2 obs(DB)) always termi-

nates. Apparently we have no general solution to this problem, but as far as speci�c models

such as HMMs, PCFGs and Bayesian networks are concerned, it can be met. All programs

for these models satisfy the �nite support condition (and other conditions as well).

4.4 Four Conditions Revisited

In this subsection, we discuss how to relax the four simplifying conditions introduced in Sub-

section 4.2 for the purpose of 
exible modeling. We �rst examine the uniqueness condition

considering its crucial role in the adaptation of the EM algorithm to our semantics.

The uniqueness condition guarantees that there exists a (many-to-one) mapping from

explanations to observations so that the EM algorithm is applicable (Dempster et al., 1977).

It is possible, however, to relax the uniqueness condition while justifying the application

of the EM algorithm. We assume the MAR (missing at random) condition introduced by

Rubin (1976) which is a statistical condition on how a complete data (explanation) be-

comes an incomplete data (observation), and is customarily assumed implicitly or explicitly

in statistics (see Appendix B). By assuming the MAR condition, we can apply our EM

22. Decisions made in the process are a �nite subset of Fmsw.
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algorithm to non-exclusive observations O such that
P
O P (O) � 1 where the uniqueness

condition is seemingly destroyed.

Let us see the MAR condition in action with a simple example. Imagine we walk along

a road in front of a lawn. We occasionally observe their state such as \the road is dry but

the lawn is wet". Assume that the lawn is watered by a sprinkler running probabilistically.

The program DBrl = Rrl [ Frl in Figure 2 describes a sequential process which outputs

an observation observed(road(x),lawn(y)) (\the road is x and the lawn is y") where

x; y 2 fwet; dryg.

R
rl

= { observed(road(X),lawn(Y)):-

msw(rain,once,A),

( A = yes, X = wet, Y = wet

; A = no, msw(sprinkler,once,B),

( B = on, X = dry, Y = wet

; B = off, X = dry, Y = dry ) ). }

Frl = { msw(rain,once,yes), msw(rain,once,no),

msw(sprinkler,once,on), msw(sprinkler,once,off) }

Figure 2: DBrl

The basic distribution over Frl is speci�ed like PFb(�) in Subsection 4.1, so we omit it.

msw(rain,once,A) in the program determines whether it rains (A = yes) or not (A = no),

whereas msw(sprinkler,once,B) determines whether the sprinkler works �ne (B = on)

or not (B = off). Since for each sampled values of A = a (a 2 fyes; nog) and B = b

(b 2 fon;offg), there uniquely exists an observation observed(road(x),lawn(y)) (x; y 2

fwet; dryg), there is a many-to-one mapping � : �(a; b) = hx; yi. In other words, we

can apply the EM algorithm to the observations observed(road(x),lawn(y)) (x; y 2

fwet; dryg). What would happen if we observe exclusively either a state of the road or

that of the lawn? Logically, this means we observe 9y observed(road(x),lawn(y)) or

9x observed(road(x),lawn(y)). Apparently the uniqueness condition is not met, because

9y observed(road(wet),lawn(y)) and 9x observed(road(x),lawn(wet)) are compatible

(they are true when it rains). Despite the non-exclusiveness of the observations, we can still

apply the EM algorithm to them under the MAR condition, which in this case translates

into that we observe either the lawn or the road randomly regardless of their state.

We now brie
y check other conditions. Basically they can be relaxed at the cost of

increased computation. Without the exclusiveness condition for instance, we would need an

additional process of transforming the support set  DB(G) for a goal G into a set of exclusive

explanations. For instance, if G has explanations fmsw(a,n,v); msw(b,m,w)g, we have to

transform it into fmsw(a,n,v); :msw(a,n,v) ^ msw(b,m,w)g and so on.23 Clearly, this

transformation is exponential in the number of msw atoms and e�ciency concern leads to

assuming the exclusiveness condition.

The �nite support condition is in practice equivalent to the condition that the SLD tree

for  G is �nite. So relaxing this condition might induce in�nite computation.

23. :msw(a,n,v) is further transformed to a disjunction of exclusive msw atoms like
W
v0 6=v;v02Va

msw(a,n,v0).
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Relaxing the distribution condition and accepting probability distributions other than

P
msw

serve to expand the horizon of the applicability of parameterized logic programs. In

particular the introduction of parameterized joint distributions P (v1; : : : ; vk) like Boltz-

mann distributions over switches msw1; : : : ;mswk where v1; : : : ; vk are values of the switches,

makes them correlated. Such distributions facilitate writing parameterized logic programs

for complicated decision processes in which decisions are not independent but interdepen-

dent. Obviously, on the other hand, they increase learning time, and whether the added


exibility of distributions deserves the increased learning time or not is yet to be seen.

4.5 Naive Approach to EM Learning

In this subsection, we derive a concrete EM algorithm for parameterized logic programs

DB = Fmsw [ R assuming that they satisfy the uniqueness condition, the exclusiveness

condition and the �nite support condition.

To start, we introduce Yo, a random variable representing our observations according

to (5) based on a �xed enumeration of observable atoms in obs(DB). We also introduce

another random variable Xe representing their explanations according to (6) based on some

�xed enumeration of explanations in 	DB. Our understanding is that Xe is non-observable

while Yo is observable, and they have a joint distribution PDB(Xe = x; Yo = y j �) where

� denotes relevant parameters. It is then immediate, following (1) and (2) in Section 2, to

derive a concrete EM algorithm from the Q function de�ned by Q(� j �0)
def
=
P
x PDB(x j

y; �0) lnPDB(x; y j �) whose input is a random sample of observable atoms and whose output

is the MLE of �.

In the following, for the sake of readability, we substitute an observable atom G (G 2

obs(DB)) for Yo = y and write PDB(G j �) instead of PDB(Yo = y j �). Likewise we

substitute an explanation S (S 2 	DB) for Xe = x and write PDB(S;G j �) instead of

PDB(Xe = x; Yo = y j �). Then it follows from the uniqueness condition that

PDB(S;G j �) =

(
0 if S 62  DB(G)

Pmsw(S j �) if S 2  DB(G):

We need yet another notation here. For an explanation S, de�ne the count of msw(i,n,v)

in S by

�i;v(S)
def
= jf n j msw(i,n,v) 2 Sgj :

We have done all preparations now. Suppose we make some observations G = G1; : : : ; GT
where Gt 2 obs(DB) (1 � t � T ). Put

I
def
= fi j msw(i,n,v) 2 S 2  DB(Gt); 1 � t � Tg

�
def
= f�i;v j msw(i,n,v) 2 S 2  DB(Gt); 1 � t � Tg:

I is a set of switch names that appear in some explanation for one of the Gt's and � denotes

parameters associated with these switches. � is �nite due to the �nite support condition.
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Various probabilities and the Q function are computed by using Proposition A.2 in

Appendix A together with our assumptions as follows.

PDB(Gt j �) = PDB

�_
 DB(Gt)

��� �� =
X

S2 DB(Gt)

P
msw

(S j �) (8)

Pmsw(S j �) =
Y

i2I;v2Vi

�
�i;v(S)
i;v

Q(� j �0)
def
=

TX
t=1

X
S2	DB

PDB(S j Gt; �
0) lnPDB(S;Gt j �)

=
X

i2I;v2Vi

�(i; v; �0) ln �i;v �
X

i2I;v2Vi

 
�(i; v;�0) ln

�(i; v;�0)P
v02Vi

�(i; v0; �0)

!
(9)

where

�(i; v;�)
def
=

TX
t=1

1

PDB(Gt j �)

X
S2 DB(Gt)

Pmsw(S j �)�i;v(S)

Here we used Jensen's inequality to obtain (9). Note that PDB(Gt j �)
�1 P

S2 DB(Gt)

Pmsw(S j �)�i;v(S) is the expected count of msw(i,�,v) in an SLD refutation of Gt. Speaking

of the likelihood function L(�) =
QT
t=1 PDB(Gt j �), it is already shown in Subsection 2.2

(footnote) that Q(� j �0) � Q(�0 j �0) implies L(�) � L(�0). Hence from (9), we reach

the procedure learn-naive(DB,G) below that �nds the MLE of the parameters. The array

variable �[i; v] stores �(i; v;�) under the current �.

1: procedure learn-naive(DB;G) begin

2: Initialize � with appropriate values and " with a small positive number ;

3: �(0) :=
PT
t=1 lnPDB(Gt j �); % Compute the log-likelihood.

4: repeat

5: foreach i 2 I; v 2 Vi do

6: �[i; v] :=
TX
t=1

1

PDB(Gt j �)

X
S2 DB(Gt)

Pmsw(S j �)�i;v(S);

7: foreach i 2 I; v 2 Vi do

8: �i;v :=
�[i; v]P

v02Vi
�[i; v0]

; % Update the parameters.

9: m := m+ 1;

10: �(m) :=
PT
t=1 lnPDB(Gt j �) % Compute the log-likelihood again.

11: until �(m)
� �(m�1) < " % Terminate if converged.

12: end

This EM algorithm is simple and correctly calculates the MLE of �, but the calcula-

tion of PDB(Gt j �) and �[i; v](Line 3, 6 and 10) may su�er a combinatorial explosion of

explanations. That is, j DB(Gt)j often grows exponentially in the complexity of the model.

For instance, j DB(Gt)j for an HMM with N states is O(NL), exponential in the length L

of an input/output string. Nonetheless, suppressing the explosion to realize e�cient com-

putation in a polynomial order is possible, under suitable conditions, by avoiding multiple

computations of the same subgoal as we see next.
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4.6 Inside Probability and Outside Probability for Logic Programs

In this subsection, we generalize the notion of inside probability and outside probability

(Baker, 1979; Lari & Young, 1990) to logic programs. Major computations in learn-naive(DB,G)

are those of two terms in Line 6, PDB(Gt j �) and
P
S2 DB(Gt)

Pmsw(S j �)�i;v(S). Computa-

tional redundancy lurks in the naive computation of both terms. We show it by an example.

Suppose there is a propositional program DBp = Fp [Rp where Fp = fa;b; c; d;mg and

Rp =

8>>>>><>>>>>:

f a ^ g

f b ^ g

g c

g d ^ h

h m:

(10)

Here f is an observable atom. We assume that a, b, c, d and m are independent and also

that fa; bg and fc; dg are pair-wise exclusive. Then the support set for f is calculated as

 DBp
(f) = fa ^ c; a ^ d ^ m; b ^ c; b ^ d ^ m g:

Hence, in light of (8), we may compute PDBp
(f) as

PDBp
(f) = PFp(a ^ c) + PFp(a ^ d ^ m) + PFp(b ^ c) + PFp(b ^ d ^ m): (11)

This computation requires 6 multiplications (because PFp(a ^ c) = PFp(a)PFp(c) etc.) and

3 additions. On the other hand, it is possible to compute PDBp
(f) much more e�ciently by

factoring out common computations. Let A be a ground atom. De�ne the inside probability

�(A) of A as

�(A)
def
= PDB(A j �):

24 (12)

Then by applying Theorem A.1 in Appendix A to

comp(Rp) ` f$ (a ^ g) _ (b ^ g); g$ c _ (d ^ h); h$ m (13)

which unconditionally holds in our semantics, and by using the independent and the ex-

clusiveness assumption made on Fp, the following equations about inside probability are

derived. 8><>:
�(f) = �(a)�(g) + �(b)�(g)

�(g) = �(c) + �(d)�(h)

�(h) = �(m)

(14)

PDBp
(f)(= �(f)) is obtained by solving (14) about �(f), for which only 3 multiplications

and 2 additions are required.

It is quite straightforward to generalize (14) but before proceeding, look at a program

DBq = fmg [ fg:-m ^ m; g:-mg where g is an observable atom and m the only msw atom.

We have g$ (m ^ m) _ m in our semantics, but to compute P (g) = P (m)P (m) + P (m) is

clearly wrong as it ignores the fact that clause bodies for g, i.e. m^m and m are not mutually

exclusive, and atoms in the clause body m^m are not independent (here P (�) = PDBq (�)).

Similarly, if we set a = b = c = d = m, the equation (14) will be totally incorrect.

24. Note that if A is a fact in F , �(A) = Pmsw(A j �).
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We therefore add, temporarily in this subsection, two assumptions on top of the ex-

clusiveness condition and the �nite support condition so that equations like (14) become

mathematically correct. The �rst assumption is that \clause" bodies are mutually exclu-

sive i.e. if there are two clauses B  W and B  W 0, PDB(W ^W
0
j �) = 0, and the

second assumption is that body atoms are independent, i.e. if A B1 ^ � � � ^Bk is a rule,

PDB(B1 ^ � � � ^Bk j �) = PDB(B1 j �) � � �PDB (Bk j �) holds.

Please note that \clause" used in this subsection has a special meaning. It is intended to

mean G � where G is a goal and � is a tabled explanation for G obtained by OLDT search

both of which will be explained in the next subsection.25 In other words, these additional

conditions are not imposed on a source program but on the result of OLDT search. So

clauses for auxiliary computations do not need to satisfy them.

Now suppose clauses about A occur in DB like

A B1;1 ^ � � � ^B1;i1

� � �

A BL;1 ^ � � � ^BL;iL

where Bh;j (1 � h � L; 1 � j � ih) is an atom. Theorem A.1 in Appendix A and the above

assumptions ensure

�(A) =

i1Y
j=1

�(B1;j) + � � �+

iLY
j=1

�(BL;j): (15)

(15) suggests that �(Gt) can be considered as a function of �(A) if these equations about

inside probabilities are hierarchically organized in such a way that �(Gt) belongs to the top

layer and any �(A) appearing on the left hand side only refers to �(B)'s which belong to the

lower layers. We refer to this condition as the acyclic support condition. Under the acyclic

support condition, equations of the form (15) have a unique solution, and the computation

of PDB(G j �) via inside probabilities allows us to take advantage of reusing intermediate

results stored as �(A), thereby contributing to faster computation of PDB(Gt j �).

Next we tackle a more intricate problem, the computation of
P
S2 DB(Gt)

P
msw

(S j

�)�i;v(S). Since the sum equals
P
n

P
msw(i,n,v)2S2 DB(Gt) Pmsw(S j �), we concentrate

on the computation of

�(Gt; m)
def
=

X
m2S2 DB(Gt)

Pmsw(S j �)

where m = msw(i,n,v). First we note that if an explanation S contains m like S = a1^� � �^

ah ^ m, then we have �(S) = �(a1) � � ��(ah)�(m). So �(Gt;m) is expressed as

�(Gt; m) = �(Gt; m)�(m) (16)

where �(Gt;m) =
@�(Gt;m)
@�(m) and �(Gt; m) does not depend on �(m). Generalizing this obser-

vation to arbitrary ground atoms, we introduce the outside probability of ground atom A

w.r.t. Gt by

�(Gt; A)
def
=
@�(Gt)

@�(A)

25. The logical relationship (13) corresponds to (20) where f, g and h are table atoms.
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assuming the same conditions as inside probability. In view of (16), the problem of comput-

ing �(Gt;m) is now reduced to that of computing �(Gt;m), which is recursively computable

as follows. Suppose A occurs in the ground program DB like

B1  A ^W1;1; � � � ;B1  A ^W1;i1

� � �

BK  A ^WK;1; � � � ;BK  A ^WK;iK :

As �(Gt) is a function of �(B1); : : : ; �(BK) by our assumption, the chain rule of derivatives

leads to

�(Gt; A) =

�
@�(Gt)

@�(B1)

��
@�(A ^W1;1)

@�(A)

�
+ � � �+

�
@�(Gt)

@�(BK)

��
@�(A ^WK;iK )

@�(A)

�
and hence to26

�(Gt; Gt) = 1 (17)

�(Gt;A) = �(Gt;B1)
i1X
j=1

�(W1;j) + � � �+ �(Gt;BK)

iKX
j=1

�(WK;j): (18)

Therefore if all inside probabilities have already been computed, outside probabilities are

recursively computed from the top (17) using (18) downward along the program layers. In

the case of DBp with f and m being chosen atoms, we compute8>>><>>>:
�(f;f) = 1

�(f;g) = �(a) + �(b)

�(f;h) = �(f; g)�(d)

�(f;m) = �(f; h):

(19)

From (19), the desired sum �(f; m) is calculated as

�(f; m) = �(f; m)�(m) = (�(a) + �(b))�(d)�(m)

which requires only two multiplications and one addition compared to four multiplications

and one addition in the naive computation.

Gains obtained by computing inside and outside probability may be small for this case,

but as the problem size grows, they become enormous, and compensate enough for addi-

tional restrictions imposed on the result of OLDT search.

4.7 OLDT Search

To compute inside and outside probability recursively like (15) or (17) and (18), we need

at programming level a tabulation mechanism for structure-sharing of partial explanations

26. Because of the independence assumption on body atoms, Wh;j (1 � h � K; 1 � j � ih) and A are

independent. Therefore
@�(A ^Wh;j)

@�(A)
=

@�(A)�(Wh;j)

@�(A)
= �(Wh;j):
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between subgoals. We henceforth deal with programs DB in which a set table(DB) of table

predicates are declared in advance. A ground atom containing a table predicate is called

a table atom. The purpose of table atoms is to store their support sets and eliminate the

need of recomputation, and by doing so, to construct hierarchically organized explanations

made up of the table atoms and the msw atoms.

Let DB = Fmsw [R be a parameterized logic program which satis�es the �nite support

condition and the uniqueness condition. Also let G1;G2; : : : ;GT be a random sample of

observable atoms in obs(DB). We make the following additional assumptions.

Assumptions:

For each t (1 � t � T ), there exists a �nite set f� t1; : : : ; �
t
Kt
g of table atoms associated

with conjunctions eStk;j (0 � k � Kt; 1 � j � mk) such that

comp(R) `
�
Gt $ eSt0;1 _ � � � _ eSt0;m0

�
^

�
� t1 $

eSt1;1 _ � � � _ eSt1;m1

�
^ � � � ^

�
� tKt
$ eStKt;1

_ � � � _ eStKt;mKt

� (20)

where

� each eStk;j (0 � k � Kt; 1 � j � mk) is, as a set, a subset of Fmsw [ f�k+1; : : : ; �Kt
g

(acyclic support condition). As a convention, we put �0 = Gt and call respectively

� tDB
def
= f�0; �

t
1; : : : ; �

t
Kt
g the set of table atoms for Gt and eStk;j (k � 0) a t-explanation

for � tk.
27 The set of all t-explanations for �k is denoted by e DB(� tk) and we considere DB(�) as a function of table atoms.

� t-explanations are mutually exclusive, i.e. for each k (0 � k � Kt), PDB( eStk;j ^ eStk;j0) =
0 (1 � j 6= j0 � mk) (t�exclusiveness condition).

� eStk;j (0 � k � Kt; 1 � j � mk) is a conjunction of independent atoms (independent

condition).28

These assumptions are aimed at e�cient probability computation. Namely, the acyclic

support condition makes dynamic programming possible, the t-exclusiveness condition re-

duces PDB(A_B) to PDB(A)+PDB(B) and the independent condition reduces PDB(A^B)

to PDB(A)PDB(B). There is one more point concerning e�ciency however. Note that the

computation in dynamic programming proceeds following the partial order on � tDB
29 im-

posed by the acyclic support condition and access to the table atoms will be much simpli�ed

if they are linearly ordered. We therefore topologically sort � tDB respecting the said partial

order and call the linearized � tDB satisfying the three assumptions (the acyclic support con-

dition, the t-exclusiveness condition and the independent condition) a hierarchical system

of t-explanations for Gt. We write it as � tDB = h� t0; �
t
1; : : : ; �

t
Kt
i (�0 = Gt) assuming e DB(�) is

implicitly given.30 Once a hierarchical system of t-explanations for Gt is successfully built

27. Pre�x \t-" is an abbreviation of \tabled-".

28. The independence mentioned here only concerns positive propositions. For B1; B2 2 head(DB), we say

B1 and B2 are independent if PDB(B1 ^ B2 j �) = PDB(B1 j �)PDB(B2 j �) for any �.

29. �i precedes �j if and only if the top-down execution of �i w.r.t. DB invokes �j directly or indirectly.

30. So now it holds that if �i precedes �j then i < j.
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from the source program, equations on inside probability and outside probability such as

(14) and (19) are automatically derived and solved in time proportional to the size of the

equations. It plays a central role in our approach to e�cient EM learning.

One way to obtain such t-explanations is to use OLDT search (Tamaki & Sato, 1986;

Warren, 1992), a complete refutation method for logic programs. In OLDT search, when

a goal G is called for the �rst time, we set up an entry for G in a solution table and store

its answer substitutions G� there. When a call to an instance G0 of G occurs later, we stop

solving G0 and instead try to retrieve an answer substitution G� stored in the solution table

by unifying G0 with G�. To record the remaining answer substitutions of G, we prepare a

lookup table for G0 and hold a pointer to them.

For self-containedness, we look at details of OLDT search using a sample program

DBh = Fh[Rh in Figure 4
31 which depicts an HMM32 in Figure 3. This HMM has two states

fs0; s1g. At a state transition, it probabilistically chooses the next destination from fs0; s1g

s s

a,b

a,b

a,b a,b

10

Figure 3: Two state HMM

Fh =

8<: f1: values(init, [s0,s1]).

f2: values(out(_),[a,b]).

f3: values(tr(_), [s0,s1]).

Rh =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

h1: hmm(Cs):- % To generate a string (chars) Cs,

msw(init,once,Si), % Set initial state to Si, and then

hmm(1,Si,Cs). % Enter the loop with clock = 1.

h2: hmm(T,S,[C|Cs]):- T=<3, % Loop:

msw(out(S),T,C), % Output C in state S.

msw(tr(S),T,NextS), % Transit from S to NextS.

T1 is T+1, % Put the clock ahead.

hmm(T1,NextS,Cs). % Continue the loop (recursion).

h3: hmm(T,_,[]):- T>3. % Finish the loop if clock > 3.

Figure 4: Two state HMM program DBh

31. f1, f2, f3, h1, h2 and h3 are temporary marks, not part of the program.

32. An HMM de�nes a probability distribution over strings in the given set of alphabets, and works as a

stochastic string generator (Rabiner & Juang, 1993) such that an output string is a sample from the

de�ned distribution.
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and also an alphabet from fa; bg to emit. Note that to specify a fact set Fh and the associ-

ated distribution compactly, we introduce here a new notation values(i,[v1,...,vm]). It

declares that Fh contains msw atoms of the form msw(i,n,v) (v 2 fv1; : : : ; vmg) whose distri-

bution is P(i;n) given by (7) in Subsection 4.2. For example, (f3), values(tr( ),[s0,s1])

introduces msw(tr(t),n,v) atoms into the program such that t can be any ground term,

v 2 fs0;s1g and for a ground term n, they have a distribution

P(tr(t);n)(msw(tr(t),n,s0) = x; msw(tr(t),n,s1) = y j �i;s0; �i;s1) = �xi;s0�
y
i;s1

where i = tr(t), x; y 2 f0; 1g and x+ y = 1.

This program runs like a Prolog program. For a non-ground top-goal hmm(S), it func-

tions as a stochastic string generator returning a list of alphabets such as [a,b,a] in the

variable S as follows. The top-goal calls clause (h1) and (h1) selects the initial state by ex-

ecuting subgoal msw(init,once,Si)33 which returns in Si an initial state probabilistically

chosen from fs0, s1g. The second clause (h2) is called from (h1) with ground S and ground

T. It makes a probabilistic choice of an output alphabet C by asking msw(out(S),T,C) and

then determines NextS, the next state, by asking msw(tr(S),T,NextS). (h3) is there to

stop the transition. For simplicity, the length of output strings is �xed to three. This way

of execution is termed as sampling execution because it corresponds to a random sampling

from PDBh . If the top-goal is ground like  hmm([a,b,a]), it works as an acceptor, i.e.

returning success (yes) or failure (no).

If all explanations for hmm([a,b,a]) are sought for, we keep all msw atoms resolved upon

during the refutation as a conjunction (explanation), and repeat this process by backtrack-

ing until no more refutation is found. If we need t-explanations however, backtracking must

be abandoned because sharing of partial explanations through t-explanations, the purpose

of t-explanations itself, becomes impossible. We therefore instead use OLDT search for all

t1: top_hmm(Cs,Ans):- tab_hmm(Cs,Ans,[]).

t2: tab_hmm(Cs,[hmm(Cs)|X],X):- hmm(Cs,_,[]).

t3: tab_hmm(T,S,Cs,[hmm(T,S,Cs)|X],X):- hmm(T,S,Cs,_,[]).

t4: e_msw(init,T,s0,[msw(init,T,s0)|X],X).

t4': e_msw(init,T,s1,[msw(init,T,s1)|X],X).

:

t7: hmm(Cs,X0,X1):- e_msw(init,once,Si,X0,X2), tab_hmm(1,Si,Cs,X2,X1).

t8: hmm(T,S,[C|Cs],X0,X1):-

T=<3, e_msw(out(S),T,C,X0,X2), e_msw(tr(S),T,NextS,X2,X3),

T1 is T+1, tab_hmm(T1,NextS,Cs,X3,X1).

t9: hmm(T,S,[],X,X):- T>3.

Figure 5: Translated program of DBh

33. If msw(i,n,V) is called with ground i and ground n, V, a logical variable, behaves like a random variable.

It is instantiated to some term v with probability �i;v selected from the value set Vi declared by a values

atom. If, on the other hand, V is a ground term v when called, the procedural semantics of msw(i,n,v)

is equal to that of msw(i,n,V) ^ V = v.
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t-explanation search. In the case of the HMM program for example, to build a hierarchical

system of t-explanations for hmm([a,b,a]) by OLDT search, we �rst declare hmm=1 and

hmm=3 as table predicate.34 So a t-explanation will be a conjunction of hmm=1 atoms, hmm=3

atoms and msw atoms. We then translate the program into another logic program, analo-

gously to the translation of de�nite clause grammars (DCGs) in Prolog (Sterling & Shapiro,

1986). We add two arguments (which forms a D-list) to each predicate for the purpose of

accumulating msw atoms and table atoms as conjuncts in a t-explanation. The translation

applied to DBh yields the program in Figure 5.

In the translated program, clause (t1) corresponds to the top-goal  hmm(l) with an

input string l, and a t-explanation for the table atom hmm(l) will be returned in Ans. (t2)

and (t3) are auxiliary clauses to add to the callee's D-list a table atom of the form hmm(l)

and hmm(t,s,l) respectively (t: time step, s: state). In general, if p=n is a table predicate

in the original program, p=(n+2) becomes a table predicate in the translated program and

an auxiliary predicate tab p=(n+2) is inserted to signal the OLDT interpreter to check the

solution table for p=n, i.e. to check if there already exist t-explanations for p=n. Likewise

clauses (t4) and (t4') are a pair corresponding to (f1) which insert msw(init,T,�) to the

callee's D-list with T = once. Clauses (t7), (t8) and (t9) respectively correspond to (h1),

(h2) and (h3).

hmm([a,b,a]):[hmm([a,b,a])]

hmm(1,s0,[a,b,a]):[hmm(1,s0,[a,b,a])]

hmm(1,s1,[a,b,a]):[hmm(1,s1,[a,b,a])]

hmm(2,s0,[b,a]):[hmm(2,s0,[b,a])]

hmm(2,s1,[b,a]):[hmm(2,s1,[b,a])]

hmm(3,s0,[a]):[hmm(3,s0,[a])]

hmm(3,s1,[a]):[hmm(3,s1,[a])]

[ [msw(init,once,s0), hmm(1,s0,[a,b,a])],
  [msw(init,once,s1), hmm(1,s1,[a,b,a])] ] 

[ [msw(out(s0),1,a), msw(tr(s0),1,q0), hmm(2,s0,[b,a])],
  [msw(out(s0),1,a), msw(tr(s0),1,s1), hmm(2,s1,[b,a])] ]

[ [msw(out(s1),1,a), msw(tr(s1),1,s0), hmm(2,s0,[b,a])],
  [msw(out(s1),1,a), msw(tr(s1),1,s1), hmm(2,s1,[b,a])] ]

[ [msw(out(s0),2,b), msw(tr(s0),2,s0), hmm(3,s0,[a])],
  [msw(out(s0),2,b), msw(tr(s0),2,s1), hmm(3,s1,[a])] ]

[ [msw(out(s1),2,b), msw(tr(s1),2,s0), hmm(3,s0,[a])],
  [msw(out(s1),2,b), msw(tr(s1),2,s1), hmm(3,s1,[a])] ]

[ [msw(out(s0),3,a), msw(tr(s0),3,s0), hmm(4,s0,[])],
  [msw(out(s0),3,a), msw(tr(s0),3,s1), hmm(4,s1,[])] ]

[ [msw(out(s1),3,a), msw(tr(s1),3,s0), hmm(4,s0,[])],
  [msw(out(s1),3,a), msw(tr(s1),3,s1), hmm(4,s1,[])] ]

hmm(4,s0,[]):[hmm(4,s0,[])]

hmm(4,s1,[]):[hmm(4,s1,[])]

[[]]

[[]]

Figure 6: Solution table

34. In general, p=n means a predicate p with arity n. So although hmm=1 and hmm=3 share the predicate name

hmm, they are di�erent predicates.
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Then after translation, we apply OLDT search to  top hmm([a,b,a],Ans) while not-

ing (i) the added D-list does not in
uence the OLDT procedure, and (ii) we associate with

each solution of a table atom in the solution table a list of t-explanations. The resulting

solution table is shown in Figure 6. The �rst row reads that a call to hmm([a,b,a]) oc-

curred and entered the solution table and its solution, hmm([a,b,a]) (no variable bind-

ing generated), has two t-explanations, msw(init,once,s0) ^ hmm(1,s0,[a,b,a]) and

msw(init,once,s1) ^ hmm(1,s1,[a,b,a]). The remaining task is the topological sort-

ing of the table atoms stored in the solution table respecting the acyclic support condition.

This can be done by using depth-�rst search (trace) of t-explanations from the top-goal for

example. Thus we obtain a hierarchical system of t-explanations for hmm([a,b,a]).

4.8 Support Graphs

Looking back, all we need to compute inside and outside probability is a hierarchical system

of t-explanations, which essentially is a boolean combination of primitive events (msw atoms)

and compound events (table atoms) and as such can be more intuitively representable as a

graph. For this reason, and to help visualizing our learning algorithm, we introduce a new

data-structure termed support graphs, though the new EM algorithm in the next subsection

itself is described solely by the hierarchical system of t-explanations.

As illustrated in Figure 7 (a), the support graph for Gt is a graphical representation of

the hierarchical system of t-explanations � tDB = h� t0; �
t
1; : : : ; �

t
Kt
i (� t0 = Gt) for Gt in (20).

It consists of totally ordered disconnected subgraphs, each of which is labeled with the

corresponding table atom � tk in � tDB (0 � k � Kt). A subgraph labeled � tk comprises two

special nodes (the start node and the end node) and explanation graphs, each corresponding

to a t-explanation eStk;j in e DB(� tk) (1 � j � mk).

An explanation graph of eStk;j is a linear graph in which a node is labeled either with a

table atom � or with a switch msw(�,�,�) in eStk;j. They are called a table node and a switch

node respectively. Figure 7 (b) is the support graph for hmm([a,b,a]) obtained from the

solution table in Figure 6. Each table node labeled � refers to the subgraph labeled � , so

data-sharing is achieved through the distinct table nodes referring to the same subgraph.

4.9 Graphical EM Algorithm

We describe here an e�cient EM learning algorithm termed the graphical EM algorithm

(Figure 8) introduced by Kameya and Sato (2000), that runs on support graphs. Suppose

we have a random sample G = G1; : : : ;GT of observable atoms. Also suppose support

graphs for Gt (1 � t � T ), i.e. hierarchical systems of t-explanations satisfying the acyclic

support condition, the t-exclusiveness condition and the independent condition, have been

successfully constructed from a parameterized logic program DB satisfying the uniqueness

condition and the �nite support condition.

The graphical EM algorithm re�nes learn-naive(DB,G) by introducing two subroutines,

get-inside-probs(DB, G) to compute inside probabilities and get-expectations(DB, G) to com-

pute outside probabilities. They are called from the main routine learn-gEM(DB,G). When

learning, we prepare four arrays for each support graph for Gt in G:

� P [t; � ] for the inside probability of � , i.e. �(�) = PDB(� j �) (see (12))
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hmm([a,b,a]):

msw(init,once,s0) hmm(1,s0,[a,b,a])

start

start

msw(init,once,s1) hmm(1,s1,[a,b,a])

hmm(1,s0,[a,b,a]):

msw(out(s0),1,a) msw(tr(s0),1,s0) hmm(2,s0,[b,a])

msw(out(s0),1,a) msw(tr(s0),1,s1) hmm(2,s1,[b,a])

start

hmm(1,s1,[a,b,a]):

msw(out(s1),1,a) msw(tr(s1),1,s0) hmm(2,s0,[b,a])

msw(out(s1),1,a) msw(tr(s1),1,s1) hmm(2,s1,[b,a])

end

end

end

msw

G t :

:

:

(a)

(b)

start

start

msw

end

end

msw msw

msw msw

msw

τ k

τ k

τ  :k

explanation graph

Figure 7: A support graph (a) in general form, (b) for Gt = hmm([a,b,a]) in the HMM

program DBh. A double-circled node refers to a table node.

� Q[t; � ] for the outside probability of � w.r.t. Gt, i.e. �(Gt; �) (see (17) and (18))

� R[t; �; eS] for the explanation probability of eS (2 e DB(� tk)), i.e. PDB( eS j �)
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1: procedure learn-gEM (DB;G)

2: begin

3: Select some � as initial

parameters;

4: get-inside-probs(DB;G);

5: �(0) :=
PT
t=1 lnP [t;Gt];

6: repeat

7: get-expectations(DB;G);

8: foreach i 2 I; v 2 Vi do

9: �[i; v] :=PT
t=1 �[t; i; v]=P [t; Gt];

10: foreach i 2 I; v 2 Vi do

11: �i;v := �[i; v]=
P
v02Vi �[i; v

0];

12: get-inside-probs(DB;G);

13: m := m+ 1;

14: �(m) :=
PT
t=1 lnP [t; Gt]

15: until �(m)
� �(m�1) < "

16: end.

1: procedure get-inside-probs(DB;G)

2: begin

3: for t := 1 to T do begin

4: Let � t0 = Gt;

5: for k := Kt downto 0 do begin

6: P [t; � tk] := 0;

7: foreach eS 2 e DB(� tk) do begin

8: Let eS = fA1;A2; : : : ; AjeSjg;
9: R[t; � tk;

eS] := 1;

10: for l := 1 to j eSj do
11: if Al = msw(i,�,v) then

12: R[t; � tk;
eS] �= �i;v

13: else R[t; � tk;
eS] �= P [t; Al];

14: P[t; � tk]+= R[t; �
t
k;
eS]

15: end /* foreach eS */

16: end /* for k */

17: end /* for t */

18: end.

1: procedure get-expectations(DB;G) begin

2: for t := 1 to T do begin

3: foreach i 2 I; v 2 Vi do �[t; i; v] := 0;

4: Let � t0 = Gt; Q[t; �
t
0] := 1:0;

5: for k := 1 to Kt do Q[t; �
t
k] := 0;

6: for k := 0 to Kt do

7: foreach eS 2 e DB(� tk) do begin

8: Let eS = fA1; A2; : : : ; AjeSjg;
9: for l := 1 to jeSj do
10: if Al = msw(i,�,v) then �[t; i; v] += Q[t; � tk] � R[t; �

t
k;
eS]

11: else Q[t;Al] += Q[t; �
t
k] � R[t; �

t
k;
eS]=P[t; Al]

12: end /* foreach eS */

13: end /* for t */

14: end.

Figure 8: graphical EM algorithm.

� �[t; i; v] for the expected count of msw(i,�,v), i.e.
P
S2 DB(Gt) Pmsw(S j �)�i;v(S)

and call the procedure learn-gEM(DB,G) in Figure 8. The main routine learn-gEM(DB,G) ini-

tially computes all inside probabilities (Line 4) and enters a loop in which get-expectations(DB,G)

is called �rst to compute the expected count �[t; i; v] of msw(i,�,v) and parameters are up-

dated (Line 11). Inside probabilities are renewed by using the updated parameters before

entering the next loop (Line 12).
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The subroutine get-inside-probs(DB,G) computes the inside probability �(�) = PDB(� j �)

(and stores it in P [t; � ]) of a table atom � from the bottom layer up to the topmost layer �0 =

Gt (Line 4) of the hierarchical system of t-explanations for Gt (see (20) in Subsection 4.6).

It takes a t-explanation eS in e DB(� tk) one by one (Line 7), decomposes eS into conjuncts and

multiplies their inside probabilities which are either known (Line 12) or already computed

(Line 13).

The other subroutine get-expectations(DB,G) computes outside probabilities following the

recursive de�nitions (17) and (18) in Subsection 4.6 and stores the outside probability

�(Gt; �) of a table atom � in Q[t; � ]. It �rst sets the outside probability of the top-goal

�0 = Gt to 1:0 (Line 4) and computes the rest of outside probabilities (Line 6) going down

the layers of the t-explanation for Gt described by (20) in Subsection 4.6. (Line 10) adds

Q[t; � tk] � R[t; �
t
k;
eS] = �(Gt; �

t
k) � �(

eS) to �[t; i; v], the expected count of msw(i,�,v), as a

contribution of msw(i,�,v) in eS through � tk to �[t; i; v]. (Line 11) increments the outside

probability Q[t;Al] = �(Gt;Al) of Al according to the equation (18). Notice that Q[t; � tk]

has already been computed and R[t; � tk;
eS]=P [t;Al] = �(W ) for eS = Al ^W . As shown in

Subsection 4.5, learn-naive(DB,G) is the MLE procedure, hence the following theorem holds.

Theorem 4.1 Let DB be a parameterized logic program, and G = G1; : : : ; GT a ran-

dom sample of observable atoms. Suppose the �ve conditions (uniqueness, �nite support

(Subsection 4.2), acyclic support, t-exclusiveness and independence (Subsection 4.7)) are

met. Then learn-gEM (DB;G) �nds the MLE �
�
which (locally) maximizes the likelihood

L(G j �) =
QT
t=1 PDB(Gt j �).

(Proof) Sketch.35 Since the main routine learn-gEM(DB,G) is the same as learn-naive(DB,G)

except the computation of �[i; v] =
PT
t=1 �[t; i; v], we show that �[t; i; v] =

P
S2 DB(Gt) Pmsw(S j

�)�i;v(S) (=
P
n

P
msw(i,n,v)2S2 DB(Gt) Pmsw(S j �)). However,

�[t; i; v] =
X

0�k�Kt

X
n

X
msw(i,n,v)2eS2e DB(� tk)

�(Gt; �
t
k)�(

eS)
(see (Line 10) in get-expectations(DB;G))

=
X
n

�(Gt;msw(i,n,v))�(msw(i,n,v))

=
X
n

�(Gt;msw(i,n,v)) (see the equation (16))

=
X
n

X
msw(i,n,v)2S2 DB(Gt)

Pmsw(S j �): Q.E.D.

Here we used the fact that if eS contains msw(i,n,v) like eS = eS0 ^ msw(i,n,v), �( eS) =
�( eS0)�(msw(i,n,v)) holds, and hence

�(Gt; �
t
k)�(

eS) = �(Gt; �
t
k)�(

eS 0)�(msw(i,n,v))
= (contribution of msw(i,n,v) in eS through � tk to �(Gt; msw(i,n,v)))�(msw(i,n,v)):

35. A formal proof is given by Kameya (2000). It is proved there that under the common parameters �, �[i; v]

in learn-naive(DB,G) coincides with �[i; v] in learn-gEM(DB,G). So, the parameters are updated to

the same values. Hence, starting with the same initial values, the parameters converge to the same

values.
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The �ve conditions on the applicability of the graphical EM algorithm may look hard

to satisfy at once. Fortunately, the modeling principle in Section 4.3 still stands, and with

due care in modeling, it is likely to lead us to a program that meets all of them. Actually,

we will see in the next section, programs for standard symbolic-statistical frameworks such

as Bayesian networks, HMMs and PCFGs all satisfy the �ve conditions.

5. Complexity

In this section, we analyze the time complexity of the graphical EM algorithm applied

to various symbolic-statistical frameworks including HMMs, PCFGs, pseudo PCSGs and

Bayesian networks. The results show that the graphical EM algorithm is competitive with

these specialized EM algorithms developed independently in each research �eld.

5.1 Basic Property

Since the EM algorithm is an iterative algorithm and since we are unable to predict when

it converges, we measure time complexity by the time taken for one iteration. We therefore

estimate time per iteration on the repeat loop of learn-gEM (DB;G) (G = G1; : : : ;GT ). We

observe that in one iteration, each support graph for Gt (1 � t � T ) is scanned twice, once

by get-inside-probs(DB;G) and once by get-expectations(DB;G). In the scan, addition is

performed on the t-explanations, and multiplication (possibly with division) is performed

on the msw atoms and table atoms once for each. So time spent for Gt per iteration by the

graphical EM algorithm is linear in the size of the support graph, i.e. the number of nodes

in the support graph for Gt. Put

e�t
DB

def
=

[
�2� t

DB

e DB(� )
�num

def
= max

1�t�T
j e�t

DBj

�maxsize
def
= max

1�t�T;eS2e�t

DB

j eSj:
Recall that � tDB is the set of table atoms for Gt, and hence e�t

DB is the set of all t-explanations

appearing in the right hand side of (20) in Subsection 4.7. So �num is the maximum number

of t-explanations in a support graph for the Gt's and �maxsize the maximum size of a t-

explanation for the Gt's respectively. The following is obvious.

Proposition 5.1 The time complexity of the graphical EM algorithm per iteration is linear

in the total size of support graphs, O(�num�maxsizeT ) in notation, which coincides with the

space complexity because the graphical EM algorithm runs on support graphs.

This is a rather general result, but when we compare the graphical EM algorithm with

other EM algorithms, we must remember that the input to the graphical EM algorithm is

support graphs (one for each observed atom) and our actual total learning time is

OLDT time + (the number of iterations) �O(�num�maxsizeT )
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where \OLDT time" denotes time to construct all support graphs for G. It is the sum of

time for OLDT search and time for the topological sorting of the table atoms, but because

the latter is part of the former order-wise,36 we represent \OLDT time" by time for OLDT

search. Also observe that the total size of support graphs does not exceed time for OLDT

search for G order-wise.

To evaluate OLDT time for a speci�c class of models such as HMMs, we need to know

time for table operations. Observe that our OLDT search in this paper is special in the

sense that table atoms are always ground when called and there is no resolution with solved

goals. Accordingly a solution table is used only

� to check if a goal G already has an entry in the solution table, i.e. if it was called

before, and

� to add a new searched t-explanation for G to the list of discovered t-explanations

under G's entry.

The time complexity of these operations is equal to that of table access which depends

both on the program and on the implementation of the solution table.37 We �rst suppose

programs are carefully written in such a way that the arguments of table atoms used as in-

decies for table access are integers. Actually all programs used in the subsequent complexity

analysis (DBh in Subsection 4.7, DBg and DBg0 in Subsection 5.3, DBG� in Subsection 5.5)

satisfy or can satisfy this condition by replacing non-integer terms with appropriate inte-

gers. We also suppose that the solution table is implemented using an array so that table

access can be done in O(1) time.38

In what follows, we present a detailed analysis of the time complexity of the graphical

EM algorithm applied to HMMs, PCFGs, pseudo PCSGs and Bayesian networks, assuming

O(1) time access to the solution table. We remark by the way that their space complexity

is just the total size of solution tables (support graphs).

5.2 HMMs

The standard EM algorithm for HMMs is the Baum-Welch algorithm (Rabiner, 1989; Ra-

biner & Juang, 1993). An example of HMM is shown in Figure 3 in Subsection 4.7.39 Given

T observations w1; : : : ; wT of output string of length L, it computes in O(N2LT ) time in

each iteration the forward probability �tm(q) = P (ot1o
t
2 � � � o

t
m�1; q j �) and the backward

probability �tm(q) = P (otmo
t
m+1 � � � o

t
L j q; �) for each state q 2 Q, time step m (1 � m � L)

and a string wt = ot1o
t
2 � � � o

t
L (1 � t � T ), where Q is the set of states and N the number of

states. The factor N 2 comes from the fact that every state has N possible destinations and

36. Think of OLDT search for a top-goal Gt. It searches for msw atoms and table atoms to create a so-

lution table, while doing some auxiliary computations. Therefore its time complexity is never less

than O(jthe number of msw atoms and table atoms in the support graph for Gtj), which coincides with

the time we need to topologically sort table atoms in the solution table by depth-�rst search from �0 = Gt.

37. Sagonas et al. (1994) and Ramakrishnan et al. (1995) discuss about the implementation of OLDT.

38. If arrays are not available, we may be able to use balanced trees, giving O(log n) access time where n

is the number data in the solution table, or we may be able to use hashing, giving average O(1) time

access under a certain condition (Cormen, Leiserson, & Rivest, 1990).

39. We treat here only \state-emission HMMs" which emit a symbol depending on the state. Another type,

\arc-emission HMMs" in which the emitted symbol depends on the transition arc, is treated similarly.
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we have to compute the forward and backward probability for every destination and every

state. After computing all �tm(q)'s and �tm(q)'s, parameters are updated. So, the total

computation time in each iteration of the Baum-Welch algorithm is estimated as O(N2LT )

(Rabiner & Juang, 1993; Manning & Sch�utze, 1999).

To compare this result with the graphical EM algorithm, we use the HMM program

DBh in Figure 4 with appropriate modi�cations to L, the length of a string, Q, the

state set, and declarations in Fh for the output alphabets. For a string w = o1o2 � � � oL,

hmm(n,q,[om; om+1; : : : ; oL]) in DBh reads that the HMM is in state q 2 Q at time n and

has to output [om,om+1,...,oL] until it reaches the �nal state. After declaring hmm=1 and

hmm=3 as table predicate and translation (see Figure 5), we apply OLDT search to the goal

 top hmm([o1,...,oL],Ans) w.r.t. the translated program to obtain all t-explanations

for hmm([o1,...,oL]). For a complexity argument however, the translated program and

DBh are the same, so we talk in terms of DBh for the sake of simplicity. In the search,

we �x the search strategy to multi-stage depth-�rst strategy (Tamaki & Sato, 1986). We

assume that the solution table is accessible in O(1) time.40 Since the length of the list in

the third argument of hmm=3 decreases by one on each recursion, and there are only �nitely

many choices of the state transition and the output alphabet, the search terminates, leaving

�nitely many t-explanations in the solution table like Figure 6 that satisfy the acyclic sup-

port condition respectively. Also the sampling execution of hmm(L) w.r.t. DBh is nothing

but a sequential decision process such that decisions made by msw atoms are exclusive,

independent and generate a unique string, which means DBh satis�es the t-exclusiveness

condition, the independence condition and the uniqueness condition respectively. So, the

graphical EM algorithm is applicable to the set of hierarchical systems of t-explanations for

hmm(wt) (1 � t � T ) produced by OLDT search for T observations w1; : : : ; wT of output

string. Put wt = ot1o
t
2 � � � o

t
L. It follows from

� tDBh = fhmm(m,q,[otm,...,o
t
L]) j 1 � m � L+ 1; q 2 Qg [ fhmm([ot1,...,o

t
L])g

e DBh(hmm(m,q,[otm,...,o
t
L]))

(1 � m � L)

=

(
msw(out(q),m,om); msw(tr(q),m,q0);

hmm(m+ 1,q0,[otm+1,...,o
t
L])

����� q0 2 Q
)

that for a top-goal hmm([ot1,...,o
t
L]), there are at most O(NL) calling patterns of hmm=3

and each call causes at most N calls to hmm=3, implying there occur O(NL �N) = O(N 2L)

calls to hmm=3. Since each call is computed once due to the tabling mechanism, we have

�num = O(N2L). Also �maxsize = 3. Applying Proposition 5.1, we reach

Proposition 5.2 Suppose we have T strings of length L. Also suppose each table operation

in OLDT search is done in O(1) time. OLDT time by DBh is O(N2LT ) and the graphical

EM algorithm takes O(N2LT ) time per iteration where N is the number of states.

O(N2LT ) is the time complexity of the Baum-Welch algorithm. So the graphical EM

algorithm runs as e�ciently as the Baum-Welch algorithm.41

40. O(1) is possible because in the translated program DBh in Section 4.7, we can identify a goal pattern of

hmm(�,�,�,�,�) by the �rst two arguments which are constants (integers).

41. Besides, the Baum-Welch algorithm and the graphical EM algorithm whose input are support graphs

generated by DBh update parameters to the same value if initial values are the same.
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By the way, the Viterbi algorithm (Rabiner, 1989; Rabiner & Juang, 1993) provides for

HMMs an e�cient way of �nding the most likely transition path for a given input/output

string. A similar algorithm for parameterized logic programs that determines the most

likely explanation for a given goal can be derived. It runs in time linear in the size of the

support graph, thereby O(N 2L) in the case of HMMs, the same complexity as the Viterbi

algorithm (Sato & Kameya, 2000).

5.3 PCFGs

We now compare the graphical EM algorithm with the Inside-Outside algorithm (Baker,

1979; Lari & Young, 1990). The Inside-Outside algorithm is a well-known EM algorithm

for PCFGs (Wetherell, 1980; Manning & Sch�utze, 1999).42 It takes a grammar in Chomsky

normal form. Given N nonterminals, a production rule in the grammar takes the form

i ! j; k (1 � i; j; k � N) (nonterminals are named by numbers from 1 to N and 1 is a

starting symbol) or the form i! w where 1 � i � N and w is a terminal. In each iteration,

it computes the inside probability and the outside probability of every partial parse tree

of the given sentence to update parameters for these production rules. Time complexity is

measured by time per iteration, and is described by N , the number of nonterminals, and

L, the number of terminals in a sentence. It is O(N3L3T ) for T observed sentences (Lari

& Young, 1990).

To compare the graphical EM algorithm with the Inside-Outside algorithm, we start

from a propositional program DBg = Fg [ Rg below representing the largest grammar

containing all possible rules i ! j; k in N nonterminals where nonterminal 1 is a starting

symbol, i.e. sentence.

Fg =
fmsw(i,[d,d0],[j,k]) j 1 � i; j; k � N; d; d0 are numbersg

[ fmsw(i,d,w) j 1 � i � N;d is a number; w is a terminalg

Rg =

8><>:
q(i,d0,d2) :- msw(i,[d0,d2],[j,k]),

q(j,d0,d1),

q(k,d1,d2).

�������
1 � i; j; k � N;

0 � d0 < d1 < d2 � L

9>=>;
S n

q(i,d,d+1) :- msw(i,d,wd+1).
��� 1 � i � N; 0 � d � L� 1

o

Figure 9: PCFG program DBg

DBg is an arti�cial parsing program whose sole purpose is to measure the size of an

OLDT tree43 created by the OLDT interpreter when it parses a sentence w1w2 � � �wL. So

42. A PCFG (probabilistic context free grammar) is a backbone CFG with probabilities (parameters) as-

signed to each production rule. For a nonterminal A having n production rules fA! �i j 1 � i � ng, a

probability pi is assigned to A! �i (1 � i � n) where
P

n

i=1
pi = 1. The probability of a sentence s is

the sum of probabilities of each (leftmost) derivation of s. The latter is the product of probabilities of

rules used in the derivation.

43. To be more precise, an OLDT structure, but in this case, it is a tree because DBg contains only constants

(Datalog program) and there never occurs the need of creating a new root node.
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  q(1,d,d+1),
    q(1,d+1,L)

   q(1,d+1,L)

  q(1,d,d+1),
    q(k,d+1,L)

  q(j,d,d+1),
    q(1,d+1,L)

  q(j,d,d+1),
    q(k,d+1,L)

  q(j,d,e),
    q(1,e,L)

  q(j,d,e),
    q(k,e,L)

 q(1,d,L)

q(i,d’,d’’) already appears
   d+1     d’    d’’   L,  1    i     N
   d’’-d’    L-d-2

   q(1,d+1,L)   q(k,d+1,L)    q(k,d+1,L)

   q(j’,e’,e),
    q(1,e,L)

   q(1,e,L)

   q(k,e,L)   q(i’,d,e’),
    q(j’,e’,e),
    q(1,e,L)

2   k    N2    k    N

 2   j   N

d+2    e    L-1
1    j     N

2    k    N

Td+1

 T  d 

 Td 
’

[Note]

1    i     N

p(i) p(1) p(2) p(N)

...

q q

Td+1

(1)

(1)

(k)
1    i’    N,
1    j’    N,

d+2     e’   e

Figure 10: OLDT tree for the query  q(1,d,L)

the input sentence w1w2 � � �wL is embedded in the program separately as msw(i,d,wd+1)

(0 � d � L�1) in the second clauses of Rg (this treatment does not a�ect the complexity ar-

gument). q(i,d0,d1) reads that the i-th nonterminal spans from position d0 to position d1,

i.e. the substring wd0+1 � � �wd1. The �rst clauses q(i,d0,d2) :- msw(�,�,�), q(j,d0,d1),

q(k,d1,d2) are supposed to be textually ordered according to the lexicographic order for

tuples hi; j; k; d0; d2; d1i. As a parser, the top-goal is set to  q(1,0,L).44 It asks the

parser to parse the whole sentence w1w2 � � �wL as the syntactic category \1" (sentence).

We make an exhaustive search for this query by OLDT search.45 As before, the multi-

stage depth-�rst search strategy and O(1) time access to the solution table are assumed.

Then the time complexity of OLDT search is measured by the number of nodes in the

OLDT tree. Let T
(k)
d be the OLDT tree for  q(k,d,L). Figure 10 illustrates T

(1)
d for d

(0 � d � L� 3) where msw atoms are omitted. As can be seen, the tree has many similar

subtrees, so we put them together (see Note in Figure 10). Due to the depth-�rst strategy,

T
(1)
d has a recursive structure and contains T

(1)
d+1 as a subtree. Nodes whose leftmost atom

is not underlined are solution nodes, i.e. they solve their leftmost atoms for the �rst time in

the entire refutation process. The underlined atoms are already computed in the subtrees

to their left.46 They only check the solution table if there are their entries (= already

44. L here is not a Prolog variable but a constant denoting the sentence length.

45. q is a table predicate.

46. It can be inductively proved that T
(1)

d+1 contains every computed q(i,d0,d00) (0 � d � L�3; d+1 � d0 <

d00 � L; 1 � i � N; d00 � d0 � L � d � 2).
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computed) in O(1) time. Since all clauses are ground, such execution only generates a

single child node.

We enumerate h
(1)
d , the number of nodes in T

(1)
d but not in T

(k)
d+1 (1 � k � N). From

Figure 10, we see h
(1)
d = O(N 3(L� d)2).47 Let h

(k)
d (2 � k � N) be the number of nodes in

T
(k)
d+1 not contained in T

(1)
d+1. It is estimated as O(N

2(L�d�2)). Consequently, the number

of nodes that are newly created in T
(1)
d is h

(1)
d +

PN
k=2 h

(k)
d = O(N3(L � d)2). As a result,

total time for OLDT search is computed as
PL�3
d=0 hd = O(N3L3)48 which is also the size of

the support graph.

We now consider a non-propositional parsing program DBg0 = Fg0 [ Rg0 in Figure 11

whose ground instances constitute the propositional program DBg. DBg0 is a probabilistic

variant of DCG program (Pereira & Warren, 1980) in which q'/1, q'/6 and between/3 are

declared as table predicate. Semantically DBg0 speci�es a probability distribution over the

atoms of the form fq'(l) j l is a list of terminalsg.

Fg0 =
fmsw(si,t,[sj,sk]) j 1 � i; j; k � N; t is a numberg

[ fmsw(si,t,w) j 1 � i � N; t is a number; w is a terminalg

Rg0 =

8>>>>>>>>>>>><>>>>>>>>>>>>:

q'(S) :- length(S,D), q'(s1,0,D,0, ,S-[]).

q'(I,D0,D2,C0,C2,L0-L2) :- between(D0,D1,D2),

msw(I,C0,[J,K]),

q'(J,D0,D1,s(C0),C1,L0-L1),

q'(K,D1,D2,s(C1),C2,L1-L2).

q'(I,D,s(D),C0,s(C0),[W|X]-X) :- msw(I,C0,W).

Figure 11: Probabilistic DCG like program DBg0

The top-goal to parse a sentence S = [w1; : : : ; wL] is  q'([w1; : : : ; wL]). It invokes

q'(s1,0,D,0, ,[w1,: : :,wL]-[]) after measuring the length D of an input sentence S by

calling length=2. 49 50 In general, q'(i,d0,d2,c0,c2,l0-l2) works identically to q(i,d0,d2)

but three arguments, c0, c2 and l0-l2, are added. c0 supplies a unique trial-id for msws to be

used in the body, c2 the latest trial-id in the current computation, and l0-l2 a D-list holding

a substring between d0 and d2. Since the added arguments do not a�ect the shape of the

47. We here focus on the subtree T 0d. j, i
0 and j0 range from 1 toN , and

��f(e; e0) j d + 2 � e0 < e � L� 1g
�� =

O((L � d)2). Hence, the number of nodes in T 0d is O(N3(L � d)2). The number of nodes in T
(1)

d
but

neither in T
(1)

d+1 nor in T 0
d
is negligible, therefore h

(1)

d
= O(N3(L� d)2).

48. The number of nodes in T
(1)

L�1 and T
(1)

L�2 is negligible.

49. To make the program as simple as possible, we assume that an integer n is represented by a ground term

sn
def
=

(n)z }| {
s(� � �s (0)� � �). We also assume that when D0 and D2 are ground, the goal between(D0, D1, D2)

returns an integer D1 between them in time proportional to jD1 � D0j.

50. We omit an obvious program for length(l,sn) which computes the length sn of a list l in O(jlj) time.
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search tree in Figure 10 and the extra computation caused by length=2 is O(L) and the

one by the insertion of between(D0,D1,D2) is O(NL3) respectively,51 OLDT time remains

O(N3L3), and hence so is the size of the support graph.

To apply the graphical EM algorithm correctly, we need to con�rm the �ve conditions

on its applicability. It is rather apparent however that the OLDT refutation of any top-

goal of the form  q'([w1,: : :,wL]) w.r.t. DBg0 terminates, and leaves a support graph

satisfying the �nite support condition and the acyclic support condition. The t-exclusiveness

condition and the independent condition also hold because the refutation process faithfully

simulates the leftmost stochastic derivation of w1 � � �wL in which the choice of a production

rule made by msw(si,sc,[sj,sk]) is exclusive and independent (trial-ids are di�erent on

di�erent choices).

What remains is the uniqueness condition. To con�rm it, let us consider another pro-

gram DBg00, a modi�cation of DBg0 such that the �rst goal length(S,D) in the body of the

�rst clause and the �rst goal between(D0,D1,D2) in the second clause of Rg0 are moved to

the last position in their bodies respectively. DBg00 and DBg0 are logically equivalent, and

semantically equivalent as well from the viewpoint of distribution semantics. Then think of

the sampling execution by the OLDT interpreter of a top-goal  q'(S) w.r.t. DBg00 where

S is a variable, using the multi-stage depth-�rst search strategy. It is easy to see �rst that

the execution never fails, and second that when the OLDT refutation terminates, a sentence

[w1; : : : ; wL] is returned in S, and third that conversely, the set of msw atoms resolved upon

in the refutation uniquely determines the output sentence [w1; : : : ; wL].
52 Hence, if the

sampling execution is guaranteed to always terminate, every sampling from PF
g00

(= PF
g0
)

uniquely generates a sentence, an observable atom, so the uniqueness condition is satis�ed

by DBg00 , and hence by DBg0 .

Then when is the sampling execution guaranteed to always terminate? In other words,

when does the grammar only generate �nite sentences? Giving a general answer seems

di�cult, but it is known that if the parameter values in a PCFG are obtained by learning

from �nite sentences, the stochastic derivation by the PCFG terminates with probability

one (Chi & Geman, 1998). In summary, assuming appropriate parameter values, we can

say that the parameterized logic program DBg0 for the largest PCFG with N nonterminal

symbols satis�es all applicability conditions, and the OLDT time for a sentence of length

L is O(N3L3)53 and this is also the size of the support graph. From Proposition 5.1, we

conclude

Proposition 5.3 Let DB be a parameterized logic program representing a PCFG with N

nonterminals in the form of DB0g in Figure 11, and G = G1;G2; : : : ;GT be the sampled atoms

representing sentences of length L. We suppose each table operation in OLDT search is done

in O(1) time. Then OLDT search for G and one iteration in learn-gEM are respectively

done in O(N3L3T ) time.

51. between(D0,D1,D2) is called O(N(L� d)2) times in T
(1)

d
. So it is called

P
L�3

d=0
O(N(L� d)2) = O(NL3)

times in T
(1)

0 .

52. Because the trial-ids used in the refutation record which rule is used at what step in the derivation of

w1 � � �wL.

53. In DBg0 , we represent integers by ground terms made out of 0 and s(�) to keep the program short. If

we use integers instead of ground terms however, the �rst three arguments of q'(�,�,�,�,�,�) are enough

to check whether the goal is previously called or not, and this check can be done in O(1) time.
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O(N3L3T ) is also the time complexity of the Inside-Outside algorithm per iteration

(Lari & Young, 1990), hence our algorithm is as e�cient as the Inside-Outside algorithm.

5.4 Pseudo PCSGs

PCFGs can be improved by making choices context-sensitive, and one of such attempts is

pseudo PCSGs (pseudo probabilistic context sensitive grammars) in which a rule is cho-

sen probabilistically depending on both the nonterminal to be expanded and its parent

nonterminal (Charniak & Carroll, 1994).

A pseudo PCSG is easily programmed. We add one extra-argument, N, representing

the parent node, to the predicate q'(I,D0,D2,C0,C2,L0-L2) in Figure 11 and replace

msw(I,C0,[J,K]) with msw([N,I],C0,[J,K]). Since the (leftmost) derivation of a sentence

from a pseudo PCSG is still a sequential decision process described by the modi�ed program,

the graphical EM algorithm applied to the support graphs generated from the modi�ed

program and observed sentences correctly performs the ML estimation of parameters in the

pseudo PCSG.

A pseudo PCSG is thought to be a PCFG with rules of the form [n; i] ! [i; j][i; k]

(1 � n; i; j; k � N) where n is the parent nonterminal of i, so the arguments in the previous

subsection are carried over with minor changes. We therefore have (details omitted)

Proposition 5.4 Let DB be a parameterized logic program for a pseudo PCSG with N

nonterminals as shown above, and G = G1; G2; : : : ; GT the observed atoms representing

sampled sentences of length L. Suppose each table operation in OLDT search can be done

in O(1) time. Then OLDT search for G and each iteration in learn-gEM is completed in

O(N4L3T ) time.

5.5 Bayesian Networks

A relationship between cause C and its e�ect E is often probabilistic such as the one be-

tween diseases and symptoms, and as such it is mathematically captured as the conditional

probability P (E = e j C = c) of e�ect e given the cause c. What we wish to know however is

the inverse, i.e. the probability of a candidate cause c given evidence e, i.e. P (C = c j E = e)

which is calculated by Bayes' theorem as P (E = e j C = c)P (C = c)=
P
c0 P (E = e j C =

c0)P (C = c0). Bayesian networks are a representational/computational framework that �ts

best this type of probabilistic inference (Pearl, 1988; Castillo et al., 1997).

A Bayesian network is a graphical representation of a joint distribution P (X1 = x1; : : : ;

XN = xN) of �nitely many random variables X1; : : : ; XN . The graph is a dag (directed

acyclic graph) such as ones in Figure 12, and each node is a random variable.54

In the graph, a conditional probability table (CPT) representing P (Xi = xi j �i = ui)

(1 � i � N) is associated with each node Xi where �i represents Xi's parent nodes and ui
their values. When Xi has no parent, i.e. a topmost node in the graph, the table is just a

marginal distribution P (Xi = xi). The whole joint distribution is de�ned as the product of

54. We only deal with discrete cases.
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Figure 12: Bayesian networks

these conditional distributions:

P (X1 = x1; : : : ; XN = xN)
55 =

NY
i=1

P (Xi = xi j�i = ui): (21)

Thus the graph G1 in Figure 12 de�nes

PG1
(a; b; c; d; e; f) = PG1

(a)PG1
(b)PG1

(c j a)PG1
(d j a; b)PG1

(e j d)PG1
(f j d)

where a, b, c, d, e and f are values of corresponding random variables A, B, C, D, E

and F , respectively.56 As mentioned before, one of the basic tasks of Bayesian networks

is to compute marginal probabilities. For example, the marginal distribution PG1
(c; d) is

computed either by (22) or (23) below.

PG1(c; d) =
X
a;b;e;f

PG1(a)PG1(b)PG1(c ja)PG1(d j a; b)PG1(e j d)P (f j d) (22)

=

0@X
a;b

PG1(a)PG1(b)PG1(c ja)PG1(d j a; b)

1A0@X
e;f

PG1(e jd)PG1(f jd)

1A(23)
(23) is clearly more e�cient than (22). Observe that if the graph were like G2 in

Figure 12, there would be no way to factorize computations like (23) but to use (22) requiring

exponentially many operations. The problem is that computing marginal probabilities is

NP-hard in general, and factorization such as (23) is assured only when the graph is singly

connected like G1, i.e. has no loop when viewed as an undirected graph. In such case, the

computation is possible in O(jV j) time where V is the set of vertices in the graph (Pearl,

1988). Otherwise, the graph is called multiply-connected, and might need exponential time

to compute marginal probabilities. In the sequel, we show the following.

� For any discrete Bayesian network G de�ning a distribution PG(x1; : : : ; xN ), there is a

parameterized logic programDBG for a predicate bn(�) such that PDBG
(bn(x1,: : :,xN))

= PG(x1; : : : ; xN).

55. Thanks to the acyclicity of the graph, without losing generality, we may assume that if Xi is an ancestor

node of Xj , then i < j holds.

56. For notational simplicity, we shall omit random variables when no confusion arises.
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� For arbitrary factorizations and their order to compute a marginal distribution, there

exists a tabled program that accomplishes the same computation in the speci�ed way.

� When the graph is singly connected and evidence e is given, there exists a tabled

program DBG� such that OLDT time for  bn(e) is O(jV j), and hence the time

complexity per iteration of the graphical EM algorithm is O(jV j) as well.

Let G be a Bayesian network de�ning a joint distribution PG(x1; : : : ; xN) and fPG(Xi =

xi j �i = ui) j 1 � i � N; xi 2 val(Xi); ui 2 val(�i)g the conditional probabilities

associated with G where val(Xi) is the set of Xi's possible values and val(�i) denotes

the set of possible values of the parent nodes �i as a random vector, respectively. We

construct a parameterized logic program that de�nes the same distribution PG(x1; : : : ; xN ).

Our program DBG = FG [RG is shown in Figure 13.

FG = f msw(par(i,ui),once,xi) j 1 � i � N;ui 2 val(�i); xi 2 val(Xi) g

RG = f bn(X1,: : :,XN):-
VN
i=1 msw(par(i,�i),once,Xi). g

Figure 13: Bayesian network program DBG

FG is comprised of msw atoms of the form msw(par(i,ui),once,xi) whose probability is

exactly the conditional probability PG(Xi = xi j �i = ui). When Xi has no parents, ui is

the empty list []. RG is a singleton, containing only one clause whose body is a conjunction

of msw atoms which corresponds to the product of conditional probabilities. Note that we

intentionally identify random variables X1; : : : ; XN with logical variables X1; : : : ; XN for

convenience.

Proposition 5.5 DBG denotes the same distributions as G.

(Proof) Let hx1; : : : ; xN i be a realization of the random vector hX1; : : : ;XN i. It holds by

construction that

PDBG
(bn(x1,: : :,xN)) =

NY
h=1

P
msw

(msw(par(i,ui),once,xi))

=
NY
h=1

PG(Xi = xi j �i = ui)

= PG(x1; : : : ; xN ): Q:E:D:

In the case of G1 in Figure 12, the program becomes57

bn(A,B,C,D,E,F) :- msw(par('A',[]),once,A), msw(par('B',[]),once,B),

msw(par('C',[A]),once,C), msw(par('D',[A,B]),once,D),

msw(par('E',[D]),once,E), msw(par('F',[D]),once,F).

57. 0A0; 0B0; : : : are Prolog constants used in place of integers.
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and the left-to-right sampling execution gives a sample realization of the random vector

h A;B; C;D; E;F i. A marginal distribution is computed from bn(x1,: : :,xN) by adding a new

clause to DBG. For example, to compute PG1
(c; d), we add bn(C,D):- bn(A,B,C,D,E,F)

to DBG1 (let the result be DB0G1
) and then compute PDB0

G1

(bn(c,d)) which is equal to

PG1
(c; d) because

PDB0
G1

(bn(c,d)) = PDBG1
(9 a; b; e; f bn(a,b,c,d,e,f))

=
X
a;b;e;f

PDBG1
(bn(a,b,c,d,e,f))

= PG1
(c; d):

Regrettably this computation corresponds to (22), not to the factorization (23). E�cient

probability computation using factorization is made possible by carrying out summations

in a proper order.

We next sketch by an example how to carry out speci�ed summations in a speci�ed

order by introducing new clauses. Suppose we have a joint distribution P (x; y; z; w) =

�1(x; y)�2(y; z; w)�3(x; z; w) such that �1(x; y), �2(y; z;w) and �3(x; z;w) are respectively

computed by atoms p1(X,Y), p2(Y,Z,W) and p3(X,Z,W). Suppose also that we hope to

compute the sum

P (x) =
X
y

�1(x; y)

 X
z;w

�2(y; z;w)�3(x; z; w)

!

in which we �rst eliminate z;w and then y. Corresponding to each elimination, we introduce

two new predicates, q(X,Y) to compute �4(x; y) =
P
z;w �2(y; z; w)�3(x; z; w) and p(X) to

compute P (x) =
P
y �1(x; y)�4(x; y) as follows.

p(X) :- p1(X,Y), q(X,Y).

q(X,Y) :- p2(Y,Z,W), p3(X,Z,W).

Note that the clause body of q=2 contains Z and W as (existentially quanti�ed) local variables

and the clause head q(X,Y) contains variables shared with other atoms. In view of the

correspondence between
P

and 9, it is easy to con�rm that this program realizes the

required computation. It is also easy to see by generalizing this example, though we do

not prove here, that there exists a parameterized logic program that carries out the given

summations in the given order for an arbitrary Bayesian network, in particular we are

able to simulate VE (variable elimination, Zhang & Poole, 1996; D'Ambrosio, 1999) in our

approach.

E�cient computation of marginal distributions is not always possible but there is a

well-known class of Bayesian networks, singly connected Bayesian networks, for which there

exists an e�cient algorithm to compute marginal distributions by message passing (Pearl,

1988; Castillo et al., 1997). We here show that when the graph is singly connected, we can

construct an e�cient tabled Bayesian network program DBG� assigning a table predicate

to each node. To avoid complications, we explain the construction procedure informally

and concentrate on the case where we have only one interested variable. Let G be a singly
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connected graph. First we pick up a node U whose probability PG(u) is what we seek. We

construct a tree G� with the root node U from G, by letting other nodes dangling from U .

Figure 14 shows how G1 is transformed to a tree when we select node B as the root node.

Transformed graph G
τ
1

A

C

E F

D

B

Figure 14: Transforming G1 to a tree

Then we examine each node in G� one by one. We add for each node X in the graph a

corresponding clause to DBG� whose purpose is to visit all nodes connected to X except the

one that calls X . Suppose we started from the root node U1 in Figure 15 where evidence

u is given, and have generated clause (24). Now we proceed to an inner node X (U1 calls

X). In the original graph G, X has parent nodes fU1; U2; U3g and child nodes fV1; V2g. U3
is a topmost node in G.

Tree  Gτ

U1

X

V2
V1U3

U2

Figure 15: General situation

For node X in Figure 15, we add clause (25). When it is called from the parent node

U1 with U1 being ground, we �rst generate possible values of U2 by calling val U2(U2),

and then call call X U2(U2) to visit all nodes connected to X through U2. U3 is similary

treated. After visiting all nodes in G connecting to X through the parent nodes U2 and

U3 (nodes connected to U1 have already been visited), the value of random variable X is

determined by sampling the msw atom jointly indexed by 'X' and the values of U1, U2 and
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U3. Then we visit X 's children, V1 and V2. For a topmost node U3 in the original graph,

we add clause (26).

tbn(U1) :- msw(par('U1',[]),once,U1), call U1 X(U1). (24)

call U1 X(U1) :- val U2(U2), call X U2(U2),

val U3(U3), call X U3(U3),

msw(par('X',[U1,U2,U3]),once,X),

call X V1(X), call X V2(X). (25)

call X U3(U3) :- msw(par('U3',[]),once,U3). (26)

Let DBG� be the �nal program containing clauses like (24), (25) and (26). Apparently

DBG� can be constructed in time linear in the number of nodes in the network. Also

note that successive unfolding (Tamaki & Sato, 1984) of atoms of the form call ...(�)

in the clause bodies that starts from (24) yields a program DB0
G similar to the one in

Figure 13 which contains msw atoms but no call ...(�)'s. As DBG� and DB0
G de�ne the

same distribution,58 it can be proved from Proposition 5.5 that PG(u) = PDB0
G

(bn(u)) =

PDBG� (tbn(u)) holds (details omitted). By the way, in Figure 15 we assume the construction

starts from the topmost node U1 where the evidence u is given, but this is not necessary.

Suppose we change to start from the inner node X. In that case, we replace clause (24)

with call X U1(U1) :- msw(par('U1',[]),once,U1) just like (26). At the same time we

replace the head of clause (25) with tbn() and add a goal call X U1(u) to the body

and so on. For the changed program DB00
G� , it is rather straightforward to prove that

PDB00G� (tbn()) = PG(u) holds. It is true that the construction of the tabled program

DBG� shown here is very crude and there is a lot of room for optimization, but it su�ces

to show that a parameterized logic program for a singly connected Bayesian network runs

in O(jV j) time where V is the set of nodes.

To estimate time complexity of OLDT search w.r.t. DBG� , we declare tbn and every

predicate of the form call ...(�) as table predicate and verify the �ve conditions on the

applicability of the graphical EM algorithm (details omitted). We now estimate the time

complexity of OLDT search for the goal tbn(u) w.r.t.DBG� .
59 We notice that calls occur

according to the pre-order scan (parents { the node { children) of the tree G� , and calls

to call Y X(�) occur val(Y ) times. Each call to call Y X(�) invokes calls to the rest of

nodes, X's parents and X 's children in the graph G� except the caller node, with di�rent

set of variable instantiations, but from the second call on, every call only refers to solutions

stored in the solution table in O(1) time. Thus, the number of added computation steps in

58. Since distribution semantics is based on the least model semantics, and because unfold/fold transforma-

tion (Tamaki & Sato, 1984) preserves the least Herbrand model of the transformed program, unfold/fold

transformation applied to parameterized logic programs preserves the denotation of the transformed

program.

59. DBG� is further transformed for the OLDT interpreter to collect msw atoms like the case of the HMM

program.
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OLDT search by X is bounded from above, by constant O(val(U1)val(U2)val(U3)val(X))

in the case of Figure 15. As a result OLDT time is proportional to the number of nodes

in the original graph G (and so is the size of the support graph) provided that the number

of edges connecting to a node, and that of values of a random variable are bounded from

above. So we have

Proposition 5.6 Let G be a singly connected Bayesian network de�ning distribution PG,

V the set of nodes, and DBG� the tabled program derived as above. Suppose the number of

edges connecting to a node, and that of values of a random variable are bounded from above

by some constant. Also suppose table access can be done in O(1) time. Then, OLDT time

for computing PG(u) for an observed value u of a random variable U by means of DBG� is

O(jV j) and so is time per iteration required by the graphical EM algorithm. If there are T

observations, time complexity is O(jV jT ).

O(jV j) is the time complexity required to compute a marignal distribution for a singly

connected Bayesian network by a standard algorithm (Pearl, 1988; Castillo et al., 1997),

and also is that of the EM algorithm using it. We therefore conclude that the graphical

EM algorithm is as e�cient as a specialzed EM algorithm for singly connected Bayesian

networks.60 We must also quickly add that the graphical EM algorithm is applicable to

arbitrary Bayesian networks,61 and what Proposition 5.6 says is that an explosion of the

support graph can be avoided by appropriate programming in the case of singly connected

Bayesian networks.

To summarize, the graphical EM algorithm, a single generic EM algorithm, is proved to

have the same time complexity as specialized EM algorithms, i.e. the Baum-Welch algorithm

for HMMs, the Inside-Outside algorithm for PCFGs, and the one for singly connected

Bayesian networks that have been developed independently in each research �eld.

Table 1 summarizes the time complexity of EM learning using OLDT search and the

graphical EM algorithm in the case of one observation. In the �rst column, \sc-BNs"

represents singly connected Bayesian networks. The second column shows a program to use.

DBh is an HMM proram in Subsection 4.7, DBg0 a PCFG program in Subsection 5.3 and

DBG� a transformed Bayesian network program in Subsection 5.5, respectively. OLDT time

in the third column is time for OLDT search to complete the search of all t-explanations.

gEM in the fourth column is time in one iteration taken by the graphical EM algorithm

to update parameters. We use N , M , L and V respectively for the number of states in

an HMM, the number of nonterminals in a PCFG, the length of an input string and the

number of nodes in a Bayesian network. The last column is a standard (specialized) EM

algorithm for each model.

60. When a marginal distribution of PG for more than one variable is required, we can construct a similar

tabled program that computes marginal probabilities still in O(jV j) time by adding extra-arguments

that convey other evidence or by embedding other evidnece in the program.

61. We check the �ve conditions with DBG in Figure 13. The uniqueness condition is obvious as sampling

always uniquely generates a sampled value for each random variable. The �nite support condition is

satis�ed because there are only a �nite number of random variables and their values. The acyclic support

condition is immediate because of the acyclicity of Bayesian networks. The t-exclusiveness condition and

the independent condition are easy to verify.

433



Sato & Kameya

Model Program OLDT time gEM Specialized EM

HMMs DBh O(N2L) O(N2L) Baum-Welch

PCFGs DBg0 O(M3L3) O(M3L3) Inside-Outside

sc-BNs DBG� O(jV j) O(jV j) (Castillo et al., 1997)

user model O(jOLDT treej) O(jsupport graphj)

Table 1: Time complexity of EM learning by OLDT search and the graphical EM algorithm

5.6 Modeling Language PRISM

We have been developing a symbolic-statistical modeling laguage PRISM since 1995 (URL

= http://mi.cs.titech.ac.jp/prism/) as an implementation of distribution semantics

(Sato, 1995; Sato & Kameya, 1997; Sato, 1998). The language is intented for modeling

complex symbolic-statistical phenomena such as discourse interpretation in natural language

processing and gene inheritance interacting with social rules. As a programming language,

it looks like an extension of Prolog with new built-in predicates including the msw predicate

and other special predicates for manipulating msw atoms and their parameters.

A PRISM program is comprised of three parts, one for directives, one for modeling and

one for utilities. The directive part contains declarations such as values, telling the system

what msw atoms will be used in the execution. The modeling part is a set of non-unit de�nite

clauses that de�ne the distribution (denotation) of the program by using msw atoms. The

last part, the utility part, is an arbitary Prolog program which refers to predicates de�ned

in the modeling part. We can use in the utility part learn built-in predicate to carry out

EM learning from observed atoms.

PRISM provides three modes of execution. The sampling execution correponds to a

random sampling drawn from the distribution de�ned by the modeling part. The second

one computes the probability of a given atom. The third one returns the support set for a

given goal. These execution modes are available through built-in predicates.

We must report however that while the implementation of the graphical EM algorithm

with a simpi�ed OLDT search mechanism has been under way, it is not completed yet. So

currently, only Prolog search and learn-naive(DB;G) in Section 4 are available for EM learn-

ing though we realized, partially, structrure sharing of explanations in the implemention

of learn-naive(DB;G). Putting computational e�ciecy aside however, there is no problem

in expressing and learning HMMs, PCFGs, pseudo PCSGs, Bayesian networks and other

probailistic models by the current version. The learning experiments in the next section

used a parser as a substitute for the OLDT interpreter, and the independently implemented

graphical EM algorithm.

6. Learning Experiments

After complexity analysis of the graphical EM algorithm for popular symbolic-probabilistic

models in the previous section, we look at an actual behavior of the graphical EM algorithm

with real data in this section. We conducted learning experiments with PCFGs using two
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corpora which have contrasting characters, and compared the performance of the graphical

EM algorithm against that of the Inside-Outside algorithm in terms of time per iteration

(= time for updating parameters). The results indicate that the graphical EM algorithm

can outperform the Inside-Outside algorithm by orders of magnigude. Detalis are reported

by Sato, Kameya, Abe, and Shirai (2001). Before proceeding, we review the Inside-Outside

algorithm for completeness.

6.1 The Inside-Outside Algorithm

The Inside-Outside algorithm was proposed by Baker (1979) as a generalization of the

Baum-Welch algorithm to PCFGs. The algorithm is designed to estimate parameters for a

CFG grammar in Chomsky normal form containing rules expressed by numbers like i! j; k

(1 � i; j; k � N for N nonterminals, where 1 is a starting symbol). Suppose an input

sentence w1; : : : ; wL is given. In each iteration, it �rst computes in a bottom up manner

inside probabilities e(s; t; i) = P (i
�
) ws; : : : ; wt) and then computes outside probabilities

f(s; t; i) = P (S
�
) w1; : : : ; ws�1 i wt+1; : : : ; wL) in a top-down manner for every s, t and

i (1 � s � t � L; 1 � i � N). After computing both probabilities, parameters are

updated by using them, and this process iterates until some predetermined criterion such

as a convergence of the likelihood of the input sentence is achieved. Although Baker did

not give any analysis of the Inside-Outside algorithm, Lari and Young (1990) showed that it

takes O(N3L3) time in one iteration and La�erty (1993) proved that it is the EM algorithm.

While it is true that the Inside-Outside algorithm has been recognized as a standard EM

algortihm for training PCFGs, it is notoriously slow. Although there is not much literature

explicitly stating time required by the Inside-Outside algorithm (Carroll & Rooth, 1998;

Beil, Carroll, Prescher, Riezler, & Rooth, 1999), Beil et al. (1999) reported for example

that when they trained a PCFG with 5,508 rules for a corpus of 450,526 German subordi-

nate clauses whose average ambiguity is 9,202 trees/clause using four machines (167MHz

Sun UltraSPARC�2 and 296MHz Sun UltraSPARC-II�2), it took 2.5 hours to complete

one iteration. We discuss later why the Inside-Outside algorithm is slow.

6.2 Learning Experiments Using Two Corpora

We report here parameter learning of existing PCFGs using two corpora of moderate size

and compare the graphical EM algorithm against the Inside-Outside algorithm in terms

of time per iteration. As mentioned before, support graphs, input to the garphical EM

algorithm, were generated by a parser, i.e. MSLR parser.62 All measurements were made

on a 296MHz Sun UltraSPARC-II with 2GB memory under Solaris 2.6 and the threshold

for an increase of the log likelihood of input sentences was set to 10�6 as a stopping criterion

for the EM algorithms.

In the experiments, we used ATR corpus and EDR corpus (each converted to a POS

(part of speech)-tagged corpus). They are similar in size (about 10,000) but contrasting in

their characters, sentence length and ambiguity of their grammars. The �rst experiment

employed ATR corpus which is a Japanese-English corpus (we used only the Japanese part)

developed by ATR (Uratani, Takezawa, Matsuo, & Morita, 1994). It contains 10,995 short

62. MSLR parser is a Tomita (Generalized LR) parser developed by Tanaka-Tokunaga Laboratory in Tokyo

Institute of Technology (Tanaka, Takezawa, & Etoh, 1997).
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conversational sentences, whose minimum length, average length and maximum length are

respectively 2, 9.97 and 49. As a skeleton of PCFG, we employed a context free grammar

Gatr comprising 860 rules (172 nonterminals and 441 terminals) manually developed for

ATR corpus (Tanaka et al., 1997) which yields 958 parses/sentence.

Because the Inside-Outside algorithm only accepts a CFG in Chomsky normal form, we

converted Gatr into Chomsky normal form G�
atr. G

�
atr contains 2,105 rules (196 nonter-

minals and 441 terminals). We then divided the corpus into subgroups of similar length

like (L = 1; 2); (L = 3; 4); : : : ; (L = 25; 26), each containing randomly chosen 100 sentences.

After these preparations, we compare at each length the graphical EM algorithm applied to

Gatr and G
�
atr against the Inside-Outside algorithm applied to G�

atr in terms of time per

iteration by running them until convergence.
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Figure 16: Time per iteration : I-O vs. gEM (ATR)

Curves in Figure 16 show the learning results where an x-axis is the length L of an input

sentence and a y-axis is average time taken by the EM algorithm in one iteration to update

all parameters contained in the support graphs generated from the chosen 100 sentences

(other parameters in the grammar do not change). In the left graph, the Inside-Outside

algorithm plots a cubic curve labeled \I-O". We omitted a curve drawn by the graphical

EM algorithm as it drew the x-axis. The middle graph magni�es the left graph. The curve

labeled \gEM (original)" is plotted by the graphical EM algorithm applied to the original

grammar Gatr whereas the one labeled \gEM (Chomsky NF)" used G�
atr. At length 10, the

average sentence length, it is measured that whichever grammar is employed, the graphical

EM algorithm runs several hundreds times faster (845 times faster in the case of Gatr
and 720 times faster in the case of G�

atr) than the Inside-Outside algorithm per iteration.

The right graph shows (almost) linear dependency of updating time by the graphical EM

algorithm within the measuared sentence length.

Although some di�erence is anticipated in their learning speed, the speed gap between

the Inside-Outside algorithm and the graphical EM algorithm is unexpectedly large. The

most conceivable reason is that ATR corpus only contains short sentences and Gatr is not
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much ambiguous so that parse trees are sparse and generated support graphs are small,

which a�ects favorably the perforamnce of the graphical EM algorithm.

We therefore conducted the same experiment with another corpus which contains much

longer sentences using a more ambiguous grammar that generates dense parse trees. We

used EDR Japanese corpus (Japan EDR, 1995) containing 220,000 Japanese news article

sentences. It is however under the process of re-annotation, and only part of it (randomly

sampled 9,900 sentences) has recently been made available as a labeled corpus. Compared

with ATR corpus, sentences are much longer (the average length of 9,900 sentences is 20,

the minimum length 5, the maximum length 63) and a CFG grammar Gedr (2,687 rules,

converted to Chomsky normal form grammar G�
edr

containing 12,798 rules) developed for

it is very ambiguous (to keep a coverage rate), having 3:0 � 108 parses/sentence at length

20 and 6:7� 1019 parses/sentence at length 38.
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Figure 17: Time per iteration : I-O vs. gEM (EDR)

Figure 17 shows the obtained curves from the experiments with EDR corpus (the graph-

ical EM algorithm applied to Gedr vs. the Inside-Outside algorithm applied to G�
edr

) under

the same condition as ATR corpus, i.e. plotting average time per iteration to process 100

sentences of the designated length, except that the plotted time for the Inside-Outside al-

gorithm is the average of 20 iterations whereas that for the graphical EM algorithm is the

average of 100 iterations. As is clear from the middle graph, this time again, the graphical

EM algorithm runs orders of magnitude faster than the Inside-Outside algorithm. At aver-

age sentence length 20, the former takes 0.255 second whereas the latter takes 339 seconds,

giving a speed ratio of 1,300 to 1. At sentence length 38, the former takes 2.541 seconds but

the latter takes 4,774 seconds, giving a speed ratio of 1,878 to 1. Thus the speed ratio even

widens compared to ATR corpus. This can be explained by the mixed e�ects of O(L3),

time complexity of the Inside-Outside algorithm, and a moderate increase in the total size

of support graphs w.r.t. L. Notice that the right graph shows how the total size of support

graphs grows with sentence length L as time per iteration by the graphical EM algorithm

is linear in the total size of support graphs.
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Since we implemented the Inside-Outside algorithm faithfully to Baker (1979), Lari and

Young (1990), there is much room for improvement. Actually Kita gave a re�ned Inside-

Outside algorithm (Kita, 1999). There is also an implementation by Mark Johnson of the

Inside-Outside algorithm down-loadable from http://www.cog.brown.edu/%7Emj/. The

use of such implementations may lead to di�erent conclusions. We therefore conducted

learning experiments with the entire ATR corpus using these two implementations and

measured updating time per iteration (Sato et al., 2001). It turned out that both imple-

mentations run twice as fast as our naive implementation and take about 630 seconds per

iteration while the graphical EM algorithm takes 0.661 second per iteration, which is still

orders of magnitude faster than the former two. Regrettably a similar comparison using

the entire EDR corpus available at the moment was abandoned due to memory over
ow

during parsing for the construction of support graphs.

Learning experiments so far only compared time per iteration which ignore extra time

for search (parsing) required by the graphical EM algorithm. So a question naturally arises

w.r.t. comparison in terms of total learning time. Assuming 100 iterations for learning

ATR corpus however, it is estimated that even considering parsing time, the graphical

EM algorithm combined with MSLR parser runs orders of magnitude faster than the three

implementations (ours, Kita's and Johnson's) of the Inside-Outside algorithm (Sato et al.,

2001). Of course this estimation does not directly apply to the graphical EM algorithm

combined with OLDT search, as the OLDT interpreter will take more time than a parser

and how much more time is needed depends on the implementaiton of OLDT search.63

Conversely, however, we may be able to take it as a rough indication of how far our approach,

the graphical EM algorithm combined with OLDT search via support graphs, can go in the

domain of EM learning of PCFGs.

6.3 Examing the Performance Gap

In the previous subsection, we compared the performance of the graphical EM algorithm

against the Inside-Outside algorithm when PCFGs are given, using two corpora and three

implementations of the Inside-Outside algorithm. In all experiments, the graphical EM

algorithm considerably outperformed the Inside-Outside algorithm despite the fact that

both have the same time complexity. Now we look into what causes such a performance

gap.

Simply put, the Inside-Outside algorithm is slow (primarily) because it lacks parsing.

Even when a backbone CFG grammar is explicitly given, it does not take any advantage of

the constraints imposed by the grammar. To see it, it might help to review how the inside

probability e(s; t;A), i.e. P(nonterminal A spans from s-th word to t-th word) (s � t), is

calculated by the Inside-Outside algorithm for the given grammar.

e(s; t;A) =
X

B;C s.t. A!BC in the grammar

r=t�1X
r=s

P(A! BC)e(s; r;B)e(r + 1; t; C)

Here P(A! BC) is a probability associated with a production rule A! BC. Note that for

a �xed triplet (s; t;A), it is usual that the term P(A! BC)e(s; r;B)e(r+1; t; C) is non-zero

63. We cannnot answer this question right now as the implementation of OLDT search is not completed.
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only for a relatively small number of (B;C; r)'s determined from successful parses and the

rest of combinations always give 0 to the term. Nonetheless the Inside-Outside algorithm

attempts to compute the term in every iteration for all possible combinations of B, C and

r and this is repeated for every possible (s; t; A), resulting in a lot of redundancy. The same

kind of redundancy occurs in the computation of outside probability by the Inside-Outside

algorithm.

The graphical EM algorithm is free of such redundancy because it runs on parse trees (a

parse forest) represented by the support graph.64 It must be added, on the other hand, that

superiority in learning speed of the graphical EM algorithm is realized at the cost of space

complexity because while the Inside-Outside algorithm merely requires O(NL2) space for

its array to store probabilities, the graphical EM algorithm needs O(N 3L3) space to store

the support graph where N is the number of nonterminals and L is the sentence length.

This trade-o� is understandable if one notices that the graphical EM algorithm applied

to a PCFG can be considered as partial evaluation of the Inside-Outside algorithm by the

grammar (and the introduction of appropriate data structure for the output).

Finally we remark that the use of parsing as a preprocess for EM learning of PCFGs is

not unique to the graphical EM algorithm (Fujisaki, Jelinek, Cocke, Black, & Nishino, 1989;

Stolcke, 1995). These approaches however still seem to contain redundancies compared with

the graphical EM algorithm. For instance Stolcke (1995) uses an Earley chart to compute

inside and outside probability, but parses are implicitly reconstructed in each iteration

dynamically by combining completed items.

7. Related Work and Discussion

7.1 Related Work

The work presented in this paper is at the crossroads of logic programming and probability

theory, and considering an enormous body of work done in these �elds, incompleteness is

unavoidable when reviewing related work. Having said that, we look at various attempts

made to integrate probability with computational logic or logic programming.65 In review-

ing, one can immediately notice there are two types of usage of probability. One type,

constraint approach, emphasizes the role of probability as constraints and does not nec-

essarily seek for a unique probability distribution over logical formulas. The other type,

distribution approach, explicitly de�nes a unique distribution by model theoretical means

or proof theoretical means, to compute various probabilities of propositions.

A typical constraint approach is seen in the early work of probabilistic logic by Nilsson

(1986). His central problem, \probabilistic entailment problem", is to compute the upper

and lower bound of probability P(�) of a target sentence � in such a way that the bounds

are compatible with a given knowledge base containing logical sentences (not necessarily

logic programs) annotated with a probability. These probabilities work as constraints on

64. We emphasize that the di�erence between the Inside-Outside algorithm and the graphical EM algorithm

is solely computational e�ciency, and they converge to the same parameter values when starting from the

same initial values. Linguistic evaluations of the estimated parameters by the graphical EM algorithm

are also reported by Sato et al. (2001).

65. We omit literature leaning strongly toward logic. For logic(s) concerning uncertainty, see an overview

by Kyburg (1994).
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the possible range of P(�). He used the linear programming technique to solve this problem

that inevitably delimits the applicability of his approach to �nite domains.

Later Lukasiewicz (1999) investigated the computational complexity of the probabilistic

entailment problem in a slightly di�erent setting. His knowledge base comprises statements

of the form (H j G)[u1; u2] representing u1 � P(H j G) � u2. He showed that inferring

\tight" u1; u2 is NP-hard in general, and proposed a tractable class of knowledge base called

conditional constraint trees.

After the in
uential work of Nilsson, Frish and Haddawy (1994) introduced a deduc-

tive system for probabilistic logic that remedies \drawbacks" of Nilsson's approach, that

of computational intractability and the lack of a proof system. Their system deduces a

probability range of a proposition by rules of probabilistic inferences about unconditional

and conditional probabilities. For instance, one of the rules infers P (� j �) 2 [0 y] from

P (�_� j �) 2 [x y] where �,� and � are propositional variables and [x y] (x � y) designates

a probability range.

Turning to logic programming, probabilistic logic programming formalized by Ng and

Subrahmanian (1992) and Dekhtyar and Subrahmanian (1997) was also a constraint ap-

proach. Their program is a set of annotated clauses of the form A : � F1 : �1; : : : ; Fn : �n
where A is an atom, Fi (1 � i � n) a basic formula, i.e. a conjunction or a disjunction of

atoms, and �j (0 � j � n) a sub-interval of [0; 1] indicating a probability range. A query

 9 (F1 : �1; : : : ; Fn : �n) is answered by an extension of SLD refutation. On formalization,

it is assumed that their language contains only a �nite number of constant and predicate

symbols, and no function symbol is allowed.

A similar framework was proposed by Lakshmanan and Sadri (1994) under the same syn-

tactic restrictions (�nitely many constant and predicate symbols but no function symbols)

in a di�erent uncertainty setting. They used annotated clauses of the form A
c
 B1; : : : ; Bn

where A and Bi (1 � i � n) are atoms and c = h[�; �]; [
; �]i, a con�dence level, represents

a belief interval [�; �] (0 � � � � � 1) and a doubt interval [
; �] (0 � 
 � � � 1), which

an expert has in the clause.

As seen above, de�ning a unique probability distribution is of secondary or no concern

to the constraint approach. This is in sharp contrast with Bayesian networks as the whole

discipline rests on the ability of the networks to de�ne a unique probability distribution

(Pearl, 1988; Castillo et al., 1997). Researchers in Bayesian networks have been seeking for

a way of mixing Bayesian networks with a logical representation to increase their inherently

propositional expressive power.

Breese (1992) used logic programs to automatically build a Bayesian network from a

query. In Breese's approach, a program is the union of a de�nite clause program and a set

of conditional dependencies of the form P(P j Q1 ^ � � � ^ Qn) where P and Qis are atoms.

Given a query, a Bayesian network is constructed dynamically that connects the query and

relevant atoms in the program, which in turn de�nes a local distribution for the connected

atoms. Logical variables can appear in atoms but no function symbol is allowed.

Ngo and Haddawy (1997) extended Breese's approach by incorporating a mechanism

re
ecting context. They used a clause of the form P(A0 j A1; : : : ; An) = �  L1; : : : ; Lk,

where Ai's are called p-atoms (probabilistic atoms) whereas Lj 's are context atoms disjoint

from p-atoms, and computed by another general logic program (satisfying certain restric-
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tions). Given a query, a set of evidence and context atoms, relevant ground p-atoms are

identi�ed by resolving context atoms away by SLDNF resolution, and a local Bayesian net-

work is built to calculate the probability of the query. They proved the soundness and

completeness of their query evaluation procedure under the condition that programs are

acyclic66 and domains are �nite.

Instead of de�ning a local distribution for each query, Poole (1993) de�ned a global dis-

tribution in his \probabilistic Horn abduction". His program consists of de�nite clauses and

disjoint declarations of the form disjoint([h1:p1,...,hn:pn]) which speci�es a probabil-

ity distribution over the hypotheses (abducibles) fh1; : : : ; hng. He assigned probabilities to

all ground atoms with the help of the theory of logic programming, and furthermore proved

that Bayesian networks are representable in his framework. Unlike previous approaches, his

language contains function symbols, but the acyclicity condition imposed on the programs

for his semantics to be de�nable seems to be a severe restriction. Also, probabilities are not

de�ned for quanti�ed formulas.

Bacchus et al. (1996) used a much more powerful �rst-order probabilistic language than

clauses annotated with probabilities. Their language allows a statistically quanti�ed term

such as k �(x)j�(x) kx to denote the ratio of individuals in a �nite domain satisfying �(x)^

�(x) to those satisfying �(x). Assuming that every world (interpretation for their language)

is equally likely, they de�ne the probability of a sentence ' under the given knowledge

base KB as the limit limN!1

�
#worlds�

N
('^KB)

#worlds
�

N(KB)

�
where #worlds�N (�) is the number of

possible worlds containing N individuals satisfying �, and � parameters used in judging

approximations. Although the limit does not necessarily exist and the domain must be �nite,

they showed that their method can cope with di�culties arising from \direct inference" and

default reasoning.

In a more linguistic vein, Muggleton (1996, and others) formulated SLPs (stochastic

logic programs) procedurally, as an extension of PCFGs to probabilistic logic programs.

So, a clause C , which must be range-restricted,67 is annotated with a probability p like

p : C . The probability of a goal G is the product of such ps appearing in its refutation but

with a modi�cation such that if a subgoal g can invoke n clauses, pi : Ci (1 � i � n) at

some refutation step, the probability of choosing k-th clause is normalized to pk=
Pn
i=1 pi.

More recently, Cussens (1999, 2001) enriched SLPs by introducing a special class of

log-linear models for SLD refutations w.r.t. a given goal. He for example considers all

possible SLD refutations for the most general goal  s(X) and de�nes probability P(R)

of a refutation R as P(R) = Z�1 exp (
P
i �i�(R; i)). Here �i is a number associated with

a clause Ci and �(R; i) is a feature, i.e. the number of occurrences of Ci in R. Z is the

normalizing constant. Then, the probability assigned to s(a) is the sum of probabilities of

refutation for  s(a).

66. The condition says that every ground atom A must be assigned a unique integer n(A) such that n(A) >

n(B1); : : : ; n(Bn) holds for any ground instance of a clause of the form A  B1; : : : ; Bn. Under this

condition, when a program includes p(X) q(X;Y ), we cannot write recursive clauses about q such as

q(X; [HjY ]) q(X;Y ).

67. A syntactic property that variables appearing in the head also appear in the body of a clause. A unit

clause must be ground.
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7.2 Limitations and Potential Problems

Approaches described so far have more or less similar limitations and potential problems.

Descriptive power con�ned to �nite domains is the most common limitation, which is due

to the use of the linear programming technique (Nilsson, 1986), or due to the syntactic

restrictions not allowing for in�nitely many constant, function or predicate symbols (Ng

& Subrahmanian, 1992; Lakshmanan & Sadri, 1994). Bayesian networks have the same

limitation as well (only a �nite number of random variables are representable).68 Also there

are various semantic/syntactic restrictions on logic programs. For instance the acyclicity

condition imposed by Poole (1993) and Ngo and Haddawy (1997) prevents the unconditional

use of clauses with local variables, and the range-restrictedness imposed by Muggleton

(1996) and Cussens (1999) excludes programs such as the usual membership Prolog program.

There is another type of problem, the possibility of assigning con
icting probabilities

to logically equivalent formulas. In SLPs, P(A) and P(A ^ A) do not necessarily coincide

because A and A^A may have di�erent refutations (Muggleton, 1996; Cussens, 1999, 2001).

Consequently in SLPs, we would be in trouble if we naively interpret P(A) as the probability

of A's being true. Also assigning probabilities to arbitrary quanti�ed formulas seems out of

scope of both approaches to SLPs.

Last but not least, there is a big problem common to any approach using probabilities:

where do the numbers come from? Generally speaking, if we use n binary random variables in

a model, we have to determine 2n probabilities to completely specify their joint distribution,

and ful�lling this requirement with reliable numbers quickly becomes impossible as n grows.

The situation is even worse when there are unobservable variables in the model such as

possible causes of a disease. Apparently parameter learning from observed data is a natural

solution to this problem, but parameter learning of logic programs has not been well studied.

Distribution semantics proposed by Sato (1995) was an attempt to solve these problems

along the line of the global distribution approach. It de�nes a distribution (probability

measure) over the possible interpretations of ground atoms for an arbitrary logic program

in any �rst order language and assigns consistent probabilities to all closed formulas. Also

distribution semantics enabled us to derive an EM algorithm for the parameter learning of

logic programs for the �rst time. As it was a naive algorithm however, dealing with large

problems was di�cult when there are exponentially many explanations for an observation

like HMMs. We believe that the e�ciency problem is solved to a large extent by the

graphical EM algorithm presented in this paper.

7.3 EM Learning

Since EM learning is one of the central issues in this paper, we separately mention work

related to EM learning for symbolic frameworks. Koller and Pfe�er (1997) used in their

approach to KBMC (knowledge-based model construction) EM learning to estimate pa-

rameters labeling clauses. They express probabilistic dependencies among events by de�-

nite clauses annotated with probabilities, similarly to Ngo and Haddawy's (1997) approach,

and locally build a Bayesian network relevant to the context and evidence as well as the

68. However, RPMs (recursive probability models) proposed by Pfe�er and Koller (2000) as an extension

of Bayesian networks allow for in�nitely many random variables. They are organized as attributes of

classes and a probability measure over attribute values is introduced.
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query. Parameters are learned by applying to the constructed network the specialized EM

algorithm for Bayesian networks (Castillo et al., 1997).

Dealing with a PCFG by a statically constructed Bayesian network was proposed Pyna-

dath and Wellman (1998), and it is possible to combine the EM algorithm with their method

to estimate parameters in the PCFG. Unfortunately, the constructed network is not singly

connected, and time complexity of probability computation is potentially exponential in the

length of an input sentence.

Closely related to our EM learning is parameter learning of log-linear models. Rie-

zler (1998) proposed the IM algorithm in his approach to probabilistic constraint pro-

gramming. The IM algorithm is a general parameter estimation algorithm from incom-

plete data for log-linear models whose probability function P(x) takes the form P(x) =

Z�1 exp (
Pn
i=1 �i�i(x)) p0(x) where (�1; : : : ; �n) are parameters to be estimated, �i(x) the

i-th feature of an observed object x and Z the normalizing constant. Since a feature can

be any function of x, the log-linear model is highly 
exible and includes our distribution

Pmsw as a special case of Z = 1. There is a price to pay however; the computational cost

of Z. It requires a summation over exponentially many terms. To avoid the cost of exact

computation, approximate computation by a Monte Carlo method is possible. Whichever

one may choose however, learning time increases compared to the EM algorithm for Z = 1.

The FAM (failure-adjusted maximization) algorithm proposed by Cussens (2001) is an

EM algorithm applicable to pure normalized SLPs that may fail. It deals with a special

class of log-linear models but is more e�cient than the IM algorithm. Because the statistical

framework of the FAM is rather di�erent from distribution semantics, comparison with the

graphical EM algorithm seems di�cult.

Being slightly tangential to EM learning, Koller et al. (1997) developed a functional

modeling language de�ning a probability distribution over symbolic structures in which

they showed \cashing" of computed results leads to e�cient probability computation of

singly connected Bayesian networks and PCFGs. Their cashing corresponds to the compu-

tation of inside probability in the Inside-Outside algorithm and the computation of outside

probability is untouched.

7.4 Future Directions

Parameterized logic programs are expected to be a useful modeling tool for complex symbolic-

statistical phenomena. We have tried various types of modeling, besides stochastic gram-

mars and Bayesian networks, such as the modeling of gene inheritance in the Kariera tribe

(White, 1963) where the rules of bi-lateral cross-cousin marriage for four clans interact with

the rules of genetic inheritance (Sato, 1998). The model was quite interdisciplinary, but

the 
exibility of combining msw atoms by means of de�nite clauses greatly facilitated the

modeling process.

Although satisfying the �ve conditions in Section 4

� the uniqueness condition (roughly, one cause yields one e�ect)

� the �nite support condition (there are a �nite number of explanations for one obser-

vation)

� the acyclic support condition (explanations must not be cyclic)
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� the t-exclusiveness condition (explanations must be mutually exclusive)

� the independence condition (events in an explanation must be independent)

for the applicability of the graphical EM algorithm seems daunting, our modeling experi-

ences so far tell us that the modeling principle in Section 4 e�ectively guides us to successful

modeling. In return, we can obtain a declarative model described compactly by a high level

language whose parameters are e�ciently learnable by the graphical EM algorithm as shown

in the preceding section.

One of the future directions is however to relax some of the applicability conditions,

especially the uniqueness condition that prohibits a generative model from failure or from

generating multiple observable events. Although we pointed out in Section 4.4 that the MAR

condition in Appendix B adapted to our semantics can replace the uniqueness condition and

validates the use of the graphical EM algorithm even when a complete data does not uniquely

determine the observed data just like the case of \partially bracketed corpora" (Pereira &

Schabes, 1992), we feel the need to do more research on this topic. Also investigating

the role of the acyclicity condition seems theoretically interesting as the acyclicity is often

related to the learning of logic programs (Arimura, 1997; Reddy & Tadepalli, 1998).

In this paper we only scratched the surface of individual research �elds such as HMMs,

PCFGs and Bayesian networks. Therefore, there remains much to be done about clarifying

how experiences in each research �eld are re
ected in the framework of parameterized logic

programs. For example, we need to clarify the relationship between symbolic approaches

to Bayesian networks such as SPI (Li, Z. & D'Ambrosio, B., 1994) and our approach.

Also it is unclear how a compiled approach using the junction tree algorithm for Bayesian

networks can be incorporated into our approach. Aside from exact methods, approximate

methods of probability computation specialized for parameterized logic programs must also

be developed.

There is also a direction of improving learning ability by introducing priors instead of ML

estimation to cope with data sparseness. The introduction of basic distributions that make

probabilistic switches correlated seems worth trying in the near future. It is also important

to take advantage of the logical nature of our approach to handle uncertainty. For example,

it is already shown by Sato (2001) that we can learn parameters from negative examples

such as \the grass is not wet" but the treatment of negative examples in parameterized

logic programs is still in its infancy.

Concerning developing complex statistical models based on the \programs as distribu-

tions" scheme, stochastic natural language processing which exploits semantic information

seems promising. For instance, uni�cation-based grammars such as HPSGs (Abney, 1997)

may be a good target beyond PCFGs because they use feature structures logically de-

scribable, and the ambiguity of feature values seems to be expressible by a probability

distribution.

Also building a mathematical basis for logic programs with continuous random variables

is a challenging research topic.

444



Parameter Learning of Logic Programs for Symbolic-statistical Modeling

8. Conclusion

We have proposed a logical/mathematical framework for statistical parameter learning of

parameterized logic programs, i.e. de�nite clause programs containing probabilistic facts

with a parameterized probability distribution. It extends the traditional least Herbrand

model semantics in logic programming to distribution semantics , possible world semantics

with a probability distribution over possible worlds (Herbrand interpretations) which is

unconditionally applicable to arbitrary logic programs including ones for HMMs, PCFGs

and Bayesian networks.

We also have presented a new EM algorithm, the graphical EM algorithm in Section 4,

which learns statistical parameters from observations for a class of parameterized logic pro-

grams representing a sequential decision process in which each decision is exclusive and

independent. It works on support graphs, a new data structure specifying a logical relation-

ship between an observed goal and its explanations, and estimates parameters by computing

inside and outside probability generalized for logic programs.

The complexity analysis in Section 5 showed that when OLDT search, a complete tabled

refutation method for logic programs, is employed for the support graph construction and

table access is done in O(1) time, the graphical EM algorithm, despite its generality, has

the same time complexity as existing EM algorithms, i.e. the Baum-Welch algorithm for

HMMs, the Inside-Outside algorithm for PCFGs and the one for singly connected Bayesian

networks that have been developed independently in each research �eld. In addition, for

pseudo probabilistic context sensitive grammars with N nonterminals, we showed that the

graphical EM algorithm runs in time O(N4L3) for a sentence of length L.

To compare actual performance of the graphical EM algorithm against the Inside-

Outside algorithm, we conducted learning experiments with PCFGs in Section 6 using two

real corpora with contrasting characters. One is ATR corpus containing short sentences for

which the grammar is not much ambiguous (958 parses/sentence), and the other is EDR

corpus containing long sentences for which the grammar is rather ambiguous (3:0 � 108

at average sentence length 20). In both cases, the graphical EM algorithm outperformed

the Inside-Outside algorithm by orders of magnitude in terms of time per iteration, which

suggests the e�ectiveness of our approach to EM learning by the graphical EM algorithm.

Since our semantics is not limited to �nite domains or �nitely many random variables

but applicable to any logic programs of arbitrary complexity, the graphical EM algorithm is

expected to give a general yet e�cient method of parameter learning for models of complex

symbolic-statistical phenomena governed by rules and probabilities.
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Appendix A. Properties of PDB

In this appendix, we list some properties of PDB de�ned by a parameterized logic program

DB = F [ R in a countable �rst-order language L.69 First of all, PDB assigns consistent

probabilities70 to every closed formula � in L by

PDB(�)
def
= PDB(f! 2 
DB j ! j= �g)

while guaranteeing continuity in the sense that

limn!1 PDB(�(t1) ^ � � � ^ �(tn)) = PDB(8x�(x))

limn!1 PDB(�(t1) _ � � � _ �(tn)) = PDB(9x�(x))

where t1; t2; : : : is an enumeration of ground terms in L.

The next proposition, Proposition A.1, relates PDB to the Herbrand model. To prove

it, we need some terminology. A factor is a closed formula in prenex disjunctive normal

form Q1 � � �QnM where Qi (1 � i � n) is either an existential quanti�cation or a universal

quanti�cation and M a matrix. The length of quanti�cations n is called the rank of the

factor. De�ne � as a set of formulas made out of factors, conjunctions and disjunctions.

Associate with each formula � in � a multi-set r(�) of ranks by

r(�) =

8><>:
; if � is a factor with no quanti�cation

fng if � is a factor with rank n

r(�1) ] r(�2) if � = �1 _ �2 or � = �1 ^ �2:

Here ] stands for the union of twomulti-sets. For instance f1; 2; 3g]f2; 3; 4g = f1; 2; 2; 3; 3; 4g.

We use the multi-set ordering in the proof of Proposition A.1 because the usual induction

on the complexity of formulas does not work.

Lemma A.1 Let � be a boolean formula made out of ground atoms in L. PDB(�) =

PF (f� 2 
F jMDB(�) j= �g).

(Proof) We have only to prove the lemma about a conjunction of atoms of the form Dx1
1 ^

� � � ^Dxn
n (xi 2 f0; 1g; 1 � i � n).

PDB(D
x1
1 ^ � � � ^D

xn
n ) = PDB(f! 2 
DB j ! j=Dx1

1 ^ � � � ^D
xn
n g)

= PDB(D1 = x1; : : : ; Dn = xn)

= PF (f� 2 
F jMDB(�) j= Dx1
1 ^ � � � ^D

xn
n g) Q.E.D.

Proposition A.1 Let � be a closed formula in L. PDB(�) = PF (f� 2 
F jMDB(�) j= �g).

69. For de�nitions of 
F , PF , MDB(�), 
DB, PDB and others used below, see Section 3.

70. By consistent, we mean probabilities assigned to logical formulas respect the laws of probability such as

0 � P (A) � 1, P (:A) = 1� P (A) and P (A _B) = P (A) + P (B)� P (A ^B).
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(Proof) Recall that a closed formula has an equivalent prenex disjunctive normal form

that belongs to �. We prove the proposition for formulas in � by using induction on the

multi-set ordering over fr(�) j � 2 �g. If r(�) = ;, � has no quanti�cation. So the

proposition is correct by Lemma A.1. Suppose otherwise. Write � = G[Q1Q2 � � �QnF ]

where Q1Q2 � � �QnF indicates a single occurrence of a factor in G.71 We assume Q1 = 9x

(Q1 = 8x is similarly treated). We also assume that bound variables are renamed to avoid

name clash. Then G[9xQ2 � � �QnF ] is equivalent to 9xG[Q2 � � �QnF ] in light of the validity

of (9xA) ^B = 9x(A ^B) and (9xA) _B = 9x(A _ B) when B contains no free x.

PDB(�) = PDB(G[Q1Q2 � � �QnF ])

= PDB(9xG[Q2 � � �QnF [x] ])

= lim
k!1

PDB(G[Q2 � � �QnF [t1]] _ � � � _ G[Q2 � � �QnF [tk] ])

= lim
k!1

PDB(G[Q2 � � �QnF [t1] _ � � � _ Q2 � � �QnF [tk] ])

= lim
k!1

PF (f� 2 
F jMDB(�) j= G[Q2 � � �QnF [t1] _ � � � _Q2 � � �QnF [tk] ]g)

(by induction hypothesis)

= PF (f� 2 
F jMDB(�) j= 9xG[Q2 � � �QnF [x]]g)

= PF (f� 2 
F jMDB(�) j= �g) Q.E.D.

We next prove a theorem on the i� de�nition introduced in Section 4. Distribution

semantics considers the program DB = F [ R as a set of in�nitely many ground de�nite

clauses such that F is a set of facts (with a probability measure PF ) and R a set of rules,

and no clause head in R appears in F . Put

head(R)
def
= fB j B appears in R as a clause headg:

For B 2 head(R), let B  Wi (i = 1; 2; : : :) be an enumeration of clauses about B in R.

De�ne i� (B), the i� (if-and-only-if) form of rules about B in DB72 by

i� (B)
def
= B $W1 _W2 _ � � �

Since MDB(�) is a least Herbrand model, the following is obvious.

Lemma A.2 For B in head(R) and � 2 
F , MDB(�) j= i� (B).

Theorem A.1 below is about i� (B). It states that at general level, both sides of the i�

de�nition p(x) $ 9y1(x = t1 ^W1) _ � � � _ 9yn(x = tn ^Wn) of p(�) coincide as random

variables whenever x is instantiated to a ground term.

Theorem A.1 Let i� (B) = B $W1_W2_� � � be the i� form of rules about B 2 head(R).

PDB(i� (B)) = 1 and PDB(B) = PDB(W1 _W2 _ � � �).

71. For an expression E, E[
] means that 
 may occur in the speci�ed positions of E. If 
1 _
2 in E[
1_ 
2]

indicates a single occurrence of 
1 _ 
2 in a positive boolean formula E, E[
1 _
2] = E[
1]_E[
2] holds.

72. This de�nition is di�erent from the usual one (Lloyd, 1984; Doets, 1994) as we are here talking at ground

level. W1 _W2 _ � � � is true if and only if one of the disjuncts is true.
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(Proof)

PDB(i� (B)) = PDB(f! 2 
DB j ! j= B ^ (W1 _W2 _ � � �)g)

+PDB(f! 2 
DB j ! j= :B ^ :(W1 _W2 _ � � �)g)

= lim
k!1

PDB(f! 2 
DB j ! j= B ^

k_
i=1

Wig)

+ lim
k!1

PDB(f! 2 
DB j ! j= :B ^ :
k_
i=1

Wig)

= lim
k!1

PF (f� 2 
F jMDB(�) j= B ^

k_
i=1

Wig)

+ lim
k!1

PF (f� 2 
F jMDB(�) j= :B ^ :
k_
i=1

Wig)

(Lemma A.1)

= PF (f� 2 
F jMDB(�) j= i� (B)g)

= PF (
F ) (Lemma A.2)

= 1

It follows from PDB(i� (B)) = 1 that

PDB(B) = PDB(B ^ i� (B)) = PDB(W1 _W2 _ � � �): Q.E.D.

We then prove a proposition useful in probability computation. Let  DB(B) be the

support set for an atom B introduced in Section 4 (it is the set of all explanations for B). In

the sequel, B is a ground atom. Write  DB(B) = fS1; S2; : : :g and
W
 DB(B) = S1_S2_� � �

73

De�ne a set �B by

�B
def
= f! 2 
DB j ! j= B $

_
 DB(B)g:

Proposition A.2 For every B 2 head(R), PDB(�B) = 1 and PDB(B) = PDB(
W
 DB(B)).

(Proof) We �rst prove PDB(�B) = 1 but the proof exactly parallels that of Theorem A.1

except that W1 _W2 _ � � � is replaced by S1 _S2 _ � � � using the fact that B $ S1 _S2 _ � � �

is true in every least Herbrand model of the form MDB(�). Then from PDB(�B) = 1, we

have

PDB(B) = PDB(B ^ (B $
_
 DB(B)))

= PDB(
_
 DB(B)): Q.E.D.

Finally, we show that distribution semantics is a probabilistic extension of the traditional

least Herbrand model semantics in logic programming by proving Theorem A.2. It says that

the probability mass is distributed exclusively over possible least Herbrand models.

De�ne � as the set of least Herbrand models generated by �xing R and varying a subset

of F in the program DB = F [R. In symbols,

73. For a set K = fE1; E2; : : :g of formulas,
W
K denotes a (-n in�nite) disjunction E1 _ E2 _ � � �
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�
def
= f! 2 
DB j ! =MDB(�) for some � 2 
Fg:

Note that as � is merely a subset of 
DB, we cannot conclude PDB(�) = 1 a priori, but the

next theorem, Theorem A.2, states PDB(�) = 1, i.e. distribution semantics distributes the

probability mass exclusively over �, i.e. possible least Herbrand models.

To prove the theorem, we need some preparations. Recalling that atoms outside head(R)[

F have no chance of being proved from DB, we introduce

�0
def
= f! 2 
DB j ! j= :D for every ground atom D 62 head(R) [ Fg:

For a Herbrand interpretation ! 2 
DB, !jF (2 
F ) is the restriction of ! to those atoms

in F .

Lemma A.3 Let ! 2 
DB be a Herbrand interpretation.

! =MDB(�) for some � 2 
F i� ! 2 �0 and ! j= B $
W
 DB(B) for every B 2 head(R).

(Proof) Only-if part is immediate from the property of the least Herbrand model. For

if-part, suppose ! satis�es the right hand side. We show that ! = MDB(!jF ). As ! and

MDB(!jF ) coincide w.r.t. atoms not in head(R), it is enough to prove that they also give

the same truth values to atoms in head(R). Take B 2 head(R) and write
W
 DB(B) =

S1 _ S2 _ � � � Suppose ! j= B $ S1 _ S2 _ � � � Then if ! j= B, we have ! j= Sj for some j,

thereby !jF j= Sj, and hence MDB(!jF ) j= Sj , which implies MDB(!jF ) j= B. Otherwise

! j= :B. So ! j= :Sj for every j. It follows that MDB(!jF ) j= :B. Since B is arbitrary,

we conclude that ! and MDB(!jF ) agree on the truth values assigned to atoms in head(R)

as well. Q.E.D.

Theorem A.2 PDB(�) = 1.

(Proof) From Lemma A.3, we have

� = f! 2 
DB j ! =MDB(�) for some � 2 
Fg

= �0 \
\

B2head(R)

�B :

PDB(�B) = 1 by Proposition A.2. To prove PDB(�
0) = 1, let D1; D2; : : : be an enumeration

of atoms not belonging to head(R) [ F . They are not provable from DB = F [ R, and

hence false in every least Herbrand model MDB(�) (� 2 
F ). So

PDB(�
0) = lim

m!1
PDB(f! 2 
DB j ! j= :D1 ^ � � � ^ :Dmg)

= lim
m!1

PF (f� 2 
F jMDB(�) j= :D1 ^ � � � ^ :Dmg)

= PF (
F ) = 1:

Since a countable conjunction of measurable sets of probability measure one has also

probability measure one, it follows from PDB(�B) = 1 for everyB 2 head(R) and PDB(�
0) =

1 that PDB(�) = 1. Q.E.D.
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Appendix B. The MAR (missing at random) Condition

In the original formulation of the EM algorithm by Dempster et al. (1977), it is assumed

that there exists a many-to-one mapping y = �(x) from a complete data x to an incomplete

(observed) data y. In the case of parsing, x is a parse tree and y is the input sentence and x

uniquely determines y. In this paper, the uniqueness condition ensures the existence of such

a many-to-one mapping from explanations to observations. We however sometimes face a

situation where there is no such many-to-one mapping from complete data to incomplete

data but nonetheless we wish to apply the EM algorithm.

This dilemma can be solved by the introduction of a missing-data mechanism which

makes a complete data incomplete. The missing-data mechanism, m, has a distribution

g�(m j x) parameterized by � and y, the observed data, is described as y = �m(x). It says

x becomes incomplete y by m. The correspondence between x and y, i.e. fhx; yi j 9m(y =

�m(x))g naturally becomes many-to-many.

Rubin (1976) derived two conditions on g� (data are missing at random and data are

observed at random) collectively called theMAR (missing at random) condition, and showed

that if we assume a missing-data mechanism behind our observations that satis�es the MAR

condition, we may estimate parameters of the distribution over x by simply applying the

EM algorithm to y, the observed data.

We adapt the MAR condition to parameterized logic programs as follows. We keep a

generative model satisfying the uniqueness condition that outputs goals G such as parse

trees. We further extend the model by additionally inserting a missing-data mechanism

m between G and our observation O like O = �m(G) and assume m satis�es the MAR

condition. Then the extended model has a many-to-many correspondence between expla-

nations and observations, and generates non-exclusive observations such that P (O^O0) > 0

(O 6= O0), which causes
P
O P (O) � 1 where P (O) =

P
G:9m O=�m(G) PDB(G). Thanks to

the MAR condition however, we are still allowed to apply the EM algorithm to such non-

exclusive observations. Put it di�erently, even if the uniqueness condition is seemingly

destroyed, the EM algorithm is applicable just by (imaginarily) assuming a missing-data

mechanism satisfying the MAR condition.
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