
Journal of Arti�cial Intelligence Research 15 (2001) 289-318 Submitted 3/01; published 10/01

EÆcient Methods for Qualitative Spatial Reasoning

Jochen Renz renz@dbai.tuwien.ac.at

Institut f�ur Informationssysteme, Technische Universit�at Wien

Favoritenstr.9, A-1040 Wien, Austria

Bernhard Nebel nebel@informatik.uni-freiburg.de

Institut f�ur Informatik, Albert-Ludwigs-Universit�at

Am Flughafen 17, D-79110 Freiburg, Germany

Abstract

The theoretical properties of qualitative spatial reasoning in the RCC-8 framework
have been analyzed extensively. However, no empirical investigation has been made yet.
Our experiments show that the adaption of the algorithms used for qualitative temporal
reasoning can solve large RCC-8 instances, even if they are in the phase transition region
{ provided that one uses the maximal tractable subsets of RCC-8 that have been identi�ed
by us. In particular, we demonstrate that the orthogonal combination of heuristic methods
is successful in solving almost all apparently hard instances in the phase transition region
up to a certain size in reasonable time.

1. Introduction

Representing qualitative spatial information and reasoning with such information is an
important subproblem in many applications, such as natural language understanding, doc-
ument interpretation, and geographical information systems. The RCC-8 calculus (Randell,
Cui, & Cohn, 1992b) is well suited for representing topological relationships between spatial
regions. Inference in the full calculus is, however, NP-hard (Grigni, Papadias, & Papadim-
itriou, 1995; Renz & Nebel, 1999). While this means that it is unlikely that very large
instances can be solved in reasonable time, this result does not rule out the possibility that
we can solve instances up to a certain size in reasonable time. Recently, maximal tractable
subsets of RCC-8 were identi�ed (Renz & Nebel, 1999; Renz, 1999) which can be used to
speed up backtracking search for the general NP-complete reasoning problem by reducing
the search space considerably.

In this paper we address several questions that emerge from previous theoretical results
on RCC-8 (Renz & Nebel, 1999; Renz, 1999): Up to which size is it possible to solve
instances in reasonable time? Which heuristic is the best? Is it really so much more eÆcient
to use the maximal tractable subsets for solving instances of the NP-complete consistency
problem as the theoretical savings given by the smaller branching factors indicate or is
this e�ect out-balanced by the forward-checking power of the interleaved path-consistency
computations? This was the case for similar temporal problems (pointisable vs. ORD-Horn
relations) (Nebel, 1997). Is it possible to combine the di�erent heuristics in such a way that
more instances can be solved in reasonable time than by each heuristic alone?

We treat these questions by randomly generating instances and solving them using
di�erent heuristics. In doing so, we are particularly interested in the hardest randomly

c
2001 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Renz & Nebel

generated instances which leads to the question of phase-transitions (Cheeseman, Kanefsky,
& Taylor, 1991): Is there a parameter for randomly generating instances of the consistency
problem of RCC-8 that results in a phase-transition behavior? If so, is it the case that the
hardest instances are mainly located in the phase-transition region while the instances not
contained in the phase-transition region are easily solvable? In order to generate instances
which are harder with a higher probability, we generate two di�erent kinds of instances. On
the one hand we generated instances which contain constraints over all RCC-8 relations, on
the other hand we generated instances which contain only constraints over relations which
are not contained in any of the maximal tractable subsets. We expect these instances to be
harder on average than the former instances.

The algorithmic techniques we use for solving these randomly generated instances are
borrowed from similar work on qualitative temporal reasoning (Nebel, 1997; van Beek &
Manchak, 1996; Ladkin & Reinefeld, 1992). Additionally, we make use of the fragments
of RCC-8, named bH8, Q8, and C8, that permit polynomial-time inferences (Renz & Nebel,
1999; Renz, 1999). In the backtracking algorithm, which is used to solve the reasoning
problem for full RCC-8, we decompose every disjunctive relation into relations of one of
these tractable subsets instead of decomposing them into its base relations. This reduces
the average branching factor of the backtracking tree from 4.0 for the base relations to
1.4375 for bH8, to 1.523 for C8, and to 1.516 for Q8. Although these theoretical savings
cannot be observed in our experiments, using the maximal tractable subsets instead of the
base relations leads to signi�cant performance improvements.

This paper is structured as follows. In Section 2, we give a brief sketch of the RCC-8
calculus and of the algorithms used for solving instances of RCC-8. In Section 3 we describe
the procedure for randomly generating instances, the di�erent heuristics we apply for solving
these instances, and how we measure the quality of the heuristics. In Section 4 we evaluate
di�erent path-consistency algorithms in order to �nd the most eÆcient one to be used for
forward-checking in the backtracking search. In Section 5 we observe a phase-transition
behavior of the randomly generated instances and show that the instances in the phase-
transition region are harder to solve than the other instances. In Section 6 we report on
the outcome of running the di�erent heuristics for solving the instances and identify several
hard instances which are mainly located in the phase-transition region. In Section 7 we try
to solve the hard instances by orthogonally combining the di�erent heuristics. This turns
out to be very e�ective and leads to a very eÆcient solution strategy. Finally, in Section 8
we evaluate this strategy by trying to solve very large instances.1

2. The Region Connection Calculus RCC-8

The Region Connection Calculus (RCC) is a �rst-order language for representation of and
reasoning about topological relationships between extended spatial regions (Randell et al.,
1992b). Spatial regions in RCC are non-empty regular subsets of some topological space
which do not have to be internally connected, i.e., a spatial region may consist of di�erent
disconnected pieces. Di�erent relationships between spatial regions can be de�ned based on
one dyadic relation, the connected relation C(a; b) which is true if the topological closures
of the spatial regions a and b share a common point.

1. The programs are available as an online appendix.

290

Efficient Methods for Qualitative Spatial Reasoning

Æ
��
Æ
��
X

Y

DC(X; Y)

Æ
��Æ
��
X

Y

EC(X; Y)

��
��
Æ
��Y X

Æ
��Y��
��
��
��

��
��
Æ
��

��
��

��
��

Æ
����
��

TPP(X; Y) TPP�1(X; Y)

X

Y

X Y

XX YX Y

PO(X; Y) EQ(X; Y) NTPP(X; Y) NTPP�1(X; Y)

Figure 1: Two-dimensional examples for the eight base relations of RCC-8

The Region Connection Calculus RCC-8 is a constraint language formed by the eight
jointly exhaustive and pairwise disjoint base relations DC, EC, PO, EQ, TPP, NTPP, TPP�1,
and NTPP�1 de�nable in the RCC-theory and by all possible unions of the base relations|
giving a total number of 28 = 256 di�erent relations. The base relations have the meaning
of DisConnected, Externally Connected, Partial Overlap, EQual, Tangential Proper Part,
Non-Tangential Proper Part, and their converses. Examples for these relations are shown
in Figure 1. Constraints are written in the form xRy where x; y are variables for spatial
regions and R is an RCC-8 relation. We write the union of base relations as fR;Sg. The
union of all base relations, the universal relation, is written as f�g. Apart from union
([), other operations on relations are de�ned, namely, converse (^), intersection (\), and
composition (Æ). The formal de�nitions of these operations are:

8x; y : x(R [S)y $ xRy _ xSy,
8x; y : x(R \ S)y $ xRy ^ xSy,
8x; y : xR^y $ yRx,
8x; y : x(R Æ S)y $ 9z : (xRz ^ zSy):

The composition of base relations can be computed from the semantics of the relations and is
usually provided as a composition table (Randell, Cohn, & Cui, 1992a; Bennett, 1994). The
RCC-8 composition table corresponds to the given extensional de�nition of composition only
if the universal region is not permitted (Bennett, 1997). Based on this table, compositions
of disjunctive relations can be easily computed. In the following, bS denotes the closure of
a set of RCC-8 relations S under composition, intersection, and converse.

A �nite set of RCC-8 constraints � describing the topological relationships of n di�erent
regions can be represented by an n�nmatrixM , where each entryMij represents the RCC-8
relation holding between region i and region j. Without loss of generality, Mii = fEQg and
Mji = M^

ij can be assumed. The fundamental reasoning problem (named RSAT) in this
framework is deciding consistency of a set of spatial formulas �, i.e., whether there is a
spatial con�guration where the relations between the regions can be described by �. All
other interesting reasoning problem can be reduced to it in polynomial time (Golumbic
& Shamir, 1993). Unfortunately, RSAT is NP-complete (Renz & Nebel, 1999), i.e., it is
unlikely that there is any polynomial algorithm for deciding consistency. However, it was
shown in Nebel's (1995) paper that there are subsets S of RCC-8 for which the consistency

291

Renz & Nebel

problem (written RSAT(S)) can be decided in polynomial time.2 In particular the set of
eight base relations B was shown to be tractable. From that it follows that bB consisting of
32 relations is also tractable. An even larger tractable subset containing all base relations
is bH8 (Renz & Nebel, 1999), which contains 148 out of the 256 RCC-8 relations. This set
was also shown to be maximal with respect to tractability, i.e., if any other RCC-8 relation
is added, the consistency problem becomes NP-complete. Renz (1999) made a complete
analysis of tractability of RSAT by identifying all maximal tractable subsets which contain
all base relations, altogether three subsets bH8, Q8 (160 relations), and C8 (158 relations).
NP8 is the set of relations that by themselves result in NP-completeness when combined
with the set of base relations. It contains the following 76 relations which are not contained
in one of bH8;Q8; or C8 (Renz, 1999):

NP8 = fR j fPOg 6� R and (fNTPPg � R or fTPPg � R)

and (fNTPP�1g � R or fTPP�1g � R)g

[ffEC;NTPP;EQg; fDC;EC;NTPP;EQg;

fEC;NTPP�1;EQg; fDC;EC;NTPP�1;EQgg:

The maximal tractable subsets contain the following relations (Renz, 1999):

bH8 = (RCC-8 n NP8) n fR j (fEQ;NTPPg � R and fTPPg 6� R)

or (fEQ;NTPP�1g � R and fTPP�1g 6� R)g

C8 = (RCC-8 n NP8) n fR j fECg � R and fPOg 6� R and

R \ fTPP;NTPP;TPP�1;NTPP�1;EQg 6= ;g

Q8 = (RCC-8 n NP8) n fR j fEQg � R and fPOg 6� R and

R \ fTPP;NTPP;TPP�1;NTPP�1g 6= ;g

All relations of Q8 are contained in one of bH8 or C8, i.e., bH8 [C8 = RCC-8 n NP8.
Although bH8 is the smallest of the three maximal tractable subsets, it best decomposes the
RCC-8 relations: When decomposing an RCC-8 relation R into sub-relations Si of one of the
maximal tractable subsets, i.e., R = S1[: : :[Sk, one needs on average 1.4375 bH8 relations,
1.516 Q8 relations, and 1.523 C8 relations for decomposing all RCC-8 relations. Renz (2000)
gives a detailed enumeration of the relations of the three sets.

2.1 The Path-Consistency Algorithm

As in the area of qualitative temporal reasoning based on Allen's interval calculus (Allen,
1983), the path-consistency algorithm (Montanari, 1974; Mackworth, 1977; Mackworth &
Freuder, 1985) can be used to approximate consistency and to realize forward-checking
(Haralick & Elliot, 1980) in a backtracking algorithm.

The path-consistency algorithm checks the consistency of all triples of relations and
eliminates relations that are impossible. This is done by iteratively performing the following
operation

Mij Mij \Mik ÆMkj

2. Strictly speaking, this applies only to systems of regions that do not require regularity.

292

Efficient Methods for Qualitative Spatial Reasoning

Algorithm: Path-consistency
Input: A set � of binary constraints over the variables x1; x2; : : : ; xn of �

represented by an n� n matrix M .
Output: path-consistent set equivalent to �; fail, if such a set does not

exist.

1. Q := f(i; j; k); (k; i; j) j 1 � i; j; k � n; i < j; k 6= i; k 6= jg;
(i indicates the i-th variable of �. Analogously for j and k)

2. while Q 6= ; do
3. select and delete a path (p; r; q) from Q;
4. if revise(p; r; q) then
5. if Mpq = ; then return fail

6. else Q := Q [f(p; q; s); (s; p; q) j 1 � s � n; s 6= p; s 6= qg.

Function: revise(i; k; j)
Input: three labels i, k and j indicating the variables xi; xj ; xk of �
Output: true, if Mij is revised; false otherwise.
Side e�ects: Mij and Mji revised using the operations \ and Æ

over the constraints involving xi, xk, and xj.

1. oldM := Mij ;
2. Mij := Mij\ (Mik ÆMkj);
3. if (oldM = Mij) then return false;
4. Mji := M^

ij ;

5. return true.

Figure 2: Path-consistency algorithm.

for all triples of regions i; j; k until a �xed point M is reached. If M ij = ; for a pair
i; j, then we know that M is inconsistent, otherwise M is path-consistent. Computing M
can be done in O(n3) time (see Figure 2). This is achieved by using a queue of triples of
regions for which the relations should be recomputed (Mackworth & Freuder, 1985). Path-
consistency does not imply consistency. For instance, the following set of spatial constraints
is path-consistent but not consistent:

l l

l l

-

-

? ?

H
H
H
H
H
H
HHj

�
�
�

�
�
�

���
Z

X Y

W
EQ _ NTPP

TPP _ TPP�1

DC _ TPP EC _ NTPP

EC _ TPP

EC _ TPP

On the other hand, consistency does not imply path-consistency, since path-consistency is
not a form of consistency (in its logical sense), but a form of disjunctive non-redundancy.
Nevertheless, path-consistency can be enforced to any consistent set of constraints by ap-

293

Renz & Nebel

Algorithm: Consistency
Input: A set � of RCC-8 constraints over the variables x1; x2; : : : ; xn

and a subset S � RCC-8 that contains all base relations
and for which Decide is a sound and complete decision
procedure.

Output: true, i� � is consistent.

1. Path-Consistency(�)
2. if � contains the empty relation then return false

3. else choose an unprocessed constraint xiRxj and
split R into S1; : : : ; Sk 2 S such that S1 [: : : [Sk = R

4. if no constraint can be split then return Decide(�)
5. for all re�nements Sl (1 � l � k) do
6. replace xiRxj with xiSlxj in �
7. if Consistency(�) then return true

Figure 3: Backtracking algorithm for deciding consistency.

plying a path-consistency algorithm. If only relations in bH8, Q8, or C8 are used, however,
the path-consistency algorithm is suÆcient for deciding consistency, i.e., path-consistency
decides RSAT(bH8), RSAT(Q8), and RSAT(C8), (Renz & Nebel, 1999; Renz, 1999).

2.2 The Backtracking Algorithm

In order to solve an instance � of RSAT, we have to explore the corresponding search space
using some sort of backtracking. In our experiments, we used a backtracking algorithm
employed for solving qualitative temporal reasoning problems (Nebel, 1997), which is based
on the algorithm proposed by Ladkin and Reinefeld (1992). For this algorithm (see Figure 3)
it is necessary to have a subset S � RCC-8 for which consistency can be decided by using a
sound and complete (and preferably polynomial) decision procedure Decide. If S contains
all base relations, then each relation R 2 RCC-8 can be decomposed into sub-relations
Si 2 S such that R =

S
i Si. The size of a particular decomposition is the minimal number

of sub-relations Si which is used to decompose R. The backtracking algorithm successively
selects constraints of �, backtracks over all sub-relations of the constraints according to
their decomposition and decides sub-instances which contain only constraints over S using
Decide.

The (optional) procedure Path-consistency in line 1 is used for forward-checking
and restricts the remaining search space. Nebel (1997) showed that this restriction does
not e�ect soundness and completeness of the algorithm. If enforcing path-consistency is
suÆcient for deciding RSAT(S), Decide(�) in line 5 is not necessary. Instead it is possible
to always return true there.

The eÆciency of the backtracking algorithm depends on several factors. One of them is,
of course, the size of the search space which has to be explored. A common way of measuring

294

Efficient Methods for Qualitative Spatial Reasoning

the size of the search space is the average branching factor b of the search space, i.e., the
average number of branches each node in the search space has (a node is a recursive call of
Consistency). Then the average size of the search space can be computed as b(n

2�n)=2,
where (n2 � n)=2 is the number of constraints which have to be split when n variables are
given. For the backtracking algorithm described in Figure 3 the branching factor depends
on the average number of relations of the split set S into which a relation has to be split.
The less splits on average the better, i.e., it is to be expected that the eÆciency of the
backtracking algorithm depends on the split set S and its branching factor. Another factor
is how the search space is explored. The backtracking algorithm of Figure 3 o�ers two
possibilities for applying heuristics. One is in line 3 where the next unprocessed constraint
can be chosen, the other is in line 5 where the next re�nement can be chosen. These two
choices in
uence the search space and the path through the search space.

3. Test Instances, Heuristics, and Measurement

There is no previous work on empirical evaluation of algorithms for reasoning with RCC-8
and no benchmark problems are known. Therefore we randomly generated our test instances
with a given number of regions n, an average label-size l, and an average degree d of
the constraint graph. Further, we used two di�erent sets of relations for generating test
instances, the set of all RCC-8 relations and the set of hard RCC-8 relations NP8, i.e., those
76 relations which are not contained in any of the maximal tractable subsets bH8, C8, or
Q8. Based on these sets of relations, we used two models to generate instances, denoted
by A(n; d; l) and H(n; d; l). The former model uses all relations to generate instances, the
latter only the relations in NP8. The instances are generated as follows:

1. A constraint graph with n nodes and an average degree of d for each node is generated.
This is accomplished by selecting nd=2 out of the n(n � 1)=2 possible edges using a
uniform distribution.

2. If there is no edge between the ith and jth node, we setMij =Mji to be the universal
relation.

3. Otherwise a non-universal relation is selected according to the parameter l such that
the average size of relations for selected edges is l. This is accomplished by selecting
one of the base relations with uniform distribution and out of the remaining 7 relations
each one with probability (l�1)=7.3 If this results in an allowed relation (i.e., a relation
of NP8 for H(n; d; l), any RCC-8 relation for A(n; d; l)), we assign this relation to the
edge. Otherwise we repeat the process.

The reason for also generating instances using only relations of NP8 is that we assume
that these instances are diÆcult to solve since every relation has to be split during the
backtracking search, even if we use a maximal tractable subclass as the split set. We only
generated instances of average label size l = 4:0, since in this case the relations are equally
distributed.

3. This method could result in the assignment of a universal constraint to a selected link, thereby changing
the degree of the node. However, since the probability of getting the universal relation is very low, we
ignore this in the following.

295

Renz & Nebel

This way of generating random instances is very similar to the way random CSP in-
stances over �nite domains are usually generated (Gent, MacIntyre, Prosser, Smith, &
Walsh, 2001). Achlioptas et al. (1997) found that the standard models for generating
random CSP instances over �nite domains lead to trivially
awed instances for n ! 1,
i.e., instances become locally inconsistent without having to propagate constraints. Since
we are using CSP instances over in�nite domains, Achlioptas et al.'s result does not nec-
essarily hold for our random instances. We, therefore, analyze in the following whether
our instances are also trivially
awed for n ! 1. In order to obtain a CSP over a �-
nite domain, we �rst have to transform our constraint graph into its dual graph where
each of the n(n � 1)=2 edges Mij of our constraint graph corresponds to a node in the
dual graph. Moreover, each of the n variables of the constraint graph corresponds to
n� 1 edges in the dual graph, i.e., the dual graph contains n(n� 1) edges and n(n� 1)=2
nodes. In the dual graph, each node corresponds to a variable over the eight-valued domain
D = fDC;EC;PO;TPP;TPP�1;NTPP;NTPP�1;EQg. Ternary constraints over these vari-
ables are imposed by the composition table, i.e., the composition rules Mij � Mik ÆMkj

must hold for all connected triples of nodes Mij;Mik;Mkj of the dual graph (Mij = M^
ji

for all i; j). There are

�
n
3

�
= n(n� 1)(n � 2)=6 connected triples in the dual graph. The

overall number of triples in the dual graph is

�
n(n� 1)=2

3

�
. nd=2 unary constraints on

the domain of the variables Mij are given, i.e., there are

�
nd=2
3

�
triples in the dual graph

where all nodes are restricted by unary constraints. Therefore, the expected number En
CT

of connected triples for which unary constraints are given can be computed as

En
CT =

n
3

!
�

nd=2
3

!

n(n� 1)=2

3

! :

For n!1, the expected number of triples E1CT tends to d3=6. For the instances generated
according to the model A(n; d; l), the probability that the unary constraints which are
assigned to a triple lead to a local inconsistency is about 0; 0036% (only 58,989 out of the
2553 = 16; 581; 375 possible assignments are inconsistent). Since one locally inconsistent
triple makes the whole instance inconsistent, we are interested in the average degree d for
which the expected number En

IT of locally inconsistent triples is equal to one. For the model
A(n; d; l) this occurs for a value of d = 11:90, and E1IT = 0:5 for d = 9:44. For n = 100,
the expected number of locally inconsistent triples is one for d = 13:98, and E100

IT = 0:5 for
d = 11:10. For the model H(n; d; l), none of the possible assignments of the triples leads to
a local inconsistency, i.e., all triples of the randomly generated instances of the H(n; d; l)
model are locally consistent.4 This analysis shows that contrary to what Achlioptas et
al. found for randomly generated CSP instances over �nite domains, the model H(n; d; l),
and the model A(n; d; l) for d small do not su�er from trivial local inconsistencies.

4. This is similar to the result for CSPs over �nite domains that by restricting the constraint type, e.g., if
only \not-equal" constraints as in graph-coloring are used, it is possible to ensure that problems cannot
be trivially
awed.

296

Efficient Methods for Qualitative Spatial Reasoning

We solve the randomly generated instances using the backtracking algorithm described
in the previous section. The search space on which backtracking is performed depends on
the split set, i.e., the set of sub-relations that is allowed in the decompositions. Choosing the
right split-set in
uences the search noticeably as it in
uences the average branching factor
of the search space. We choose �ve di�erent split sets, the three maximal tractable subsetsbH8;Q8; and C8, the set of base relations B and the closure of this set bB which consists of
38 relations. These sets have the following branching factors B: 4.0, bB: 2.50 , bH8: 1.438,
C8: 1.523, Q8: 1.516. This is, of course, a worst case measure because the interleaved path-
consistency computations reduce the branching factor considerably (Ladkin & Reinefeld,
1997).

Apart from the choice of the split set there are other heuristics which in
uence the eÆ-
ciency of the search. In general it is the best search strategy to proceed with the constraint
with the most constraining relation (line 3 of Figure 3) and the least constraining choice of
a sub-relation (line 5 of Figure 3). We investigated two di�erent aspects for choosing the
next constraint to be processed (Nebel, 1997).

static/dynamic: Constraints are processed according to a heuristic evaluation of their
constrainedness which is determined statically before the backtracking starts or dy-
namically during the search.

local/global: The evaluation of the constrainedness is based on a local heuristic weight
criterion or on a global heuristic criterion (van Beek & Manchak, 1996).

This gives us four possibilities we can combine with the �ve di�erent split sets, i.e., a
total number of 20 di�erent heuristics. The evaluation of constrainedness as well as how
relations are decomposed into relations of di�erent split sets depends on the restrictiveness
of relations, which is a heuristic criterion (van Beek & Manchak, 1996). Restrictiveness
of a relation is a measure of how a relation restricts its neighborhood. For instance, the
universal relation given in a constraint network does not restrict its neighboring relations at
all, the result of the composition of any relation with the universal relation is the universal
relation. The identity relation, in contrast, restricts its neighborhood a lot. In every triple
of variables where one relation is the identity relation, the other two relations must be equal.
Therefore, the universal relation is usually the least restricting relation, while the identity
relation is usually the most restricting relation. Restrictiveness of relations is represented
as a weight in the range of 1 to 16 assigned to every relation, where 1 is the value of the
most and 16 the value of the least restricting relation. We discuss in the following section
in detail how the restrictiveness and the weight of a relation is determined.

Given the weights assigned to every relation, we compute decompositions and estimate
constrainedness as follows. For each split set S and for each RCC-8 relation R we compute
the smallest decomposition of R into sub-relations of S, i.e., the decomposition which re-
quires the least number of sub-relations of S. If there is more than one possibility, we choose
the decomposition with the least restricting sub-relations. In line 5 of the backtracking al-
gorithm (see Figure 3), the least restricting sub-relation of each decomposition is processed
�rst. For the local strategy, the constrainedness of a constraint is determined by the size of
its decomposition (which can be di�erent for every split set) and by its weight. We choose
the constraint with the smallest decomposition larger than one and, if there is more than

297

Renz & Nebel

one such constraint, the one with the smallest weight. The reason for choosing the relation
with the smallest decomposition is that it is expected that forward-checking re�nes rela-
tions with a larger decomposition into relations with a smaller decomposition. This reduces
the backtracking e�ort. For the global strategy, the constrainedness of a constraint xRy is
determined by adding the weights of all neighboring relations S; T with xSz and zTy to
the weight of R. The idea behind this strategy is that when re�ning the relation R with
the most restricted neighborhood, an inconsistency is detected faster than when re�ning a
relation with a less restricted neighborhood.

In order to evaluate the quality of the di�erent heuristics, we measured the run-time used
for solving instances as well as the number of visited nodes in the search space. Comparing
di�erent approaches by their run-time is often not very reliable as it depends on several
factors such as the implementation of the algorithms, the used hardware, or the current
load of the used machine which makes results sometimes not reproducible. For this reason,
we ran all our run-time experiments on the same machine, a Sun Ultra 1 with 128 MB of
main memory. Nevertheless, we suggest to use the run-time results mainly for qualitatively
comparing di�erent heuristics and for getting a rough idea of the order of magnitude for
which instances can be solved.

In contrast to this, the number of visited nodes for solving an instance with a particular
heuristic is always the same on every machine. This allows comparing the path through the
search space taken by the single heuristics and to judge which heuristic makes the better
choices on average. However, this does not take into account the time that is needed to make
a choice at a single node. Computing the local constrainedness of a constraint is certainly
faster than computing its global constrainedness. Similarly, computing constrainedness
statically should be faster than computing it dynamically. Furthermore, larger instances
require more time at the nodes than smaller instances, be it for computing path-consistency
or for computing the constrainedness. Taking running-time and the number of visited nodes
together gives good indications of the quality of the heuristics.

A further choice we make in evaluating our measurements is that of how to aggregate
the measurements of the single instances to a total picture. Some possibilities are to use
either the average or di�erent percentiles such as the median, i.e., the 50% percentile. The
d% percentile for a value 0 < d < 100 is obtained by sorting the measurements in increasing
order and picking the measurement of the d% element, i.e., d% of the values are less than
that value. Suppose that most instances have a low value (e.g. running time) and only a
few instances have a very large value. Then the average might be larger than the values of
almost all instances, while in this case the median is a better indication of the distribution
of the values. In this case the 99% percentile, for instance, gives a good indication of the
value of the hardest among the \normal" instances. We have chosen to use the average
value when the measurements are well distributed and to use both 50% and 99% percentile
when there are only a few exceptional values in the distribution of the measurements.

4. Empirical Evaluation of the Path-Consistency Algorithm

Since the eÆciency of the backtracking algorithm depends on the eÆciency of the underlying
path-consistency algorithm, we will �rst compare di�erent implementations of the path-
consistency algorithm. In previous empirical investigations (van Beek & Manchak, 1996) of

298

Efficient Methods for Qualitative Spatial Reasoning

reasoning with Allen's interval relations (Allen, 1983), di�erent methods for computing the
composition of two relations were evaluated. This was mainly because the full composition
table for the interval relations contains 213 � 213 = 67108864 entries, which was too large
at that time to be stored in the main memory. In our setting, we simply use a composition
table that speci�es the compositions of all RCC-8 relations, which is a 256 � 256 table
consuming approximately 128 KB of main memory. This means that the composition of
two arbitrary relations is done by a simple table lookup.

Van Beek and Manchak (1996) also studied the e�ect of weighting the relations in
the queue according to their restrictiveness and process the most restricting relation �rst.
Restrictiveness was measured for each base relation by successively composing the base
relation with every possible label, summing up the cardinalities, i.e., the number of base
relations contained in the result of the composition, and suitably scaling the result. The
reason for doing so is that the most restricting relation restricts the other relations on
average most and therefore decreases the probability that they have to be processed again.
Restrictiveness of a complex relation was approximated by summing up the restrictiveness
of the involved base relations. Van Beek and Manchak (1996) found that their method of
weighting the triples in the queue is much more eÆcient than randomly picking an arbitrary
triple. Because of the relatively small number of RCC-8 relations, we computed the exact
restrictiveness by composing each relation with every other relation and summing up the
cardinalities of the resulting compositions. We scaled the result into weights from 1 (the
most restricting relation) to 16 (the least restricting relations).

This gives us three di�erent implementations of the path-consistency algorithm. One in
which the entries in the queue are not weighted, one with approximated restrictiveness as
done by van Beek and Manchak, and one with exact restrictiveness.5 In order to compare
these implementations, we randomly generated instances with 50 to 1,000 regions. For
each value of the average degree ranging from 8.0 stepping with 0.5 to 11.0 we generated
10 di�erent instances. Figure 4 displays the average CPU time of the di�erent methods
for applying the path-consistency algorithm to the same generated instances. It can be
seen that the positive e�ect of using a weighted queue is much greater for our problem
than for the temporal problem (about 10� faster than using an ordinary queue without
weights compared to only about 2� faster (van Beek & Manchak, 1996)). Determining the
weights of every relation using their exact restrictiveness does not have much advantage over
approximating their restrictiveness using the approach by van Beek and Manchak (1996),
however. For our further experiments we always used the \exact weights" method because
determining the restrictiveness amounts to just one table lookup.

As mentioned in the previous section, one way of measuring the quality of the heuristics
is to count the number of visited nodes in the backtrack search. In our backtracking
algorithm, path-consistency is enforced in every visited node. Note that it is not adequate
to multiply the average running-time for enforcing path-consistency of an instance of a
particular size with the number of visited nodes in order to obtain an approximation of
the required running time for that instance. The average running-time for enforcing path-
consistency as given in Figure 4 holds only when all possible paths are entered into the
queue at the beginning of the computation (see line 1 of Figure 2). These are the paths

5. For the weighted versions we select a path (i; k; j) from the queue Q in line 3 of the algorithm of Figure 2
according to the weights of the di�erent paths in Q which are computed as speci�ed above.

299

Renz & Nebel

0.001

0.01

0.1

1

10

100

1000

100 200 300 400 500 600 700 800 900 1000

C
P

U
 ti

m
e

(s
ec

)

nodes

Average CPU time of PCA using different queue methods for A(n,d,4.0)

"exact" weights
"approx." weights

no weights

Figure 4: Comparing the performance of the path-consistency algorithm using di�erent
methods for weighting the queue (70 instances/data point, d = 8:0 � 11:0)

which have to be checked by the algorithm. The path-consistency computation during the
backtracking search is di�erent, however. There, only the paths involving the currently
changed constraint are entered in the queue, since only these paths might result in changes
of the constraint graph. This is much faster than the full computation of path-consistency
which is only done once at the beginning of the backtrack search.

5. The Phase-Transition of RCC-8

When randomly generating problem instances there is usually a problem-dependent param-
eter which determines the solubility of the instances. In one parameter range instances are
underconstrained and are therefore soluble with a very high probability. In another range,
problems are overconstrained and soluble with a very low probability. In between these
ranges is the phase-transition region where the probability of solubility changes abruptly
from very high to very low values (Cheeseman et al., 1991). In order to study the quality
of di�erent heuristics and algorithms with randomly generated instances of an NP-complete
problem, it is very important to be aware of the phase-transition behavior of the problem.
This is because instances which are not contained in the phase-transition region are often
very easily solvable by most algorithms and heuristics and are, thus, not very useful for
comparing their quality. Conversely, hard instances which are better suited for comparing
the quality of algorithms and heuristics are usually found in the phase-transition region.

In this section we identify the phase-transition region of randomly generated instances
of the RSAT problem, both for instances using all RCC-8 relations and for instances using
only relations of NP8. Similarly to the empirical analysis of qualitative temporal reasoning
problems (Nebel, 1997), it turns out that the phase-transition depends most strongly on the
average degree d of the nodes in the constraint graph. If all relations are allowed, the phase-

300

Efficient Methods for Qualitative Spatial Reasoning

Probability of satisfiability for A(n,d,4.0)

4 6 8 10 12 14 16 18
20

40
60

80
100

50

100

average degree

nodes

Probability (%)

Median CPU time for A(n,d,4.0)

4 6 8 10 12 14 16 18
20

40
60

80
100

0
0.1
0.2
0.3
0.4
0.5
0.6

average degree

nodes

CPU time(s)

Figure 5: Probability of satis�ability and median CPU time for A(n; d; 4:0) using thebH8/static/global heuristic (500 instances per data point)

transition is around d = 8 to d = 10 depending on the instance size (see Figure 5). Because
of the result of our theoretical analysis of the occurrence of trivial
aws (see Section 3), it can
be expected that for larger instance sizes the phase-transition behavior will be overlaid and
mainly determined by the expected number of locally inconsistent triples which also depends
on the average degree d. Thus, although it seems that the phase-transition shifts towards
larger values of d as the instance size increases, the phase-transition is asymptotically below
d = 9:44, the theoretical value for n ! 1 (see Section 3). Instances which are not path-
consistent can be solved very fast by just one application of the path-consistency algorithm
without further need for backtracking. When looking at the median CPU times given in
Figure 5, one notices that there is a sharp decline of the median CPU times at the phase
transition. This indicates that for values of the average degree which are higher than where
the phase-transition occurs, at least 50% of the instances are not path-consistent.

When using only \hard" relations, i.e., relations in NP8, the phase-transition appears
at higher values for d, namely, between d = 10 and d = 15 (see Figure 6). As the median
runtime shows, these instances are much harder in the phase-transition than in the former
case. As in the previous case, but even more strongly, it seems that the phase-transition
shifts towards larger values of d as the instance size increases, and also that the phase-
transition region narrows.

In order to evaluate the quality of the path-consistency method as an approximation to
consistency, we counted the number of instances that are inconsistent but path-consistent
(see Figure 7), i.e., those instances where the approximation of the path-consistency algo-
rithm to consistency is wrong. First of all, one notes that all such instances are close to the
phase transition region. In the general case, i.e., when constraints over all RCC-8 relations
are employed, only a very low percentage of instances are path-consistent but inconsistent.
Therefore, the �gure looks very erratic. More data points would be required in order to
obtain a smooth curve. However, a few important observations can be made from this
�gure, namely, that path-consistency gives an excellent approximation to consistency even
for instances of a large size. Except for very few instances in the phase-transition region,
almost all instances which are path-consistent are also consistent. This picture changes

301

Renz & Nebel

Probability of satisfiability for H(n,d,4.0)

6 8 10 12 14 16 18 20
20

40

60

80
50

100

average degree

nodes

Probability (%)

Median CPU time for H(n,d,4.0)

6 8 10 12 14 16 18 20
20

40

60

80

0

0.5

1

1.5

2

average degree

nodes

CPU time(s)

Figure 6: Probability of satis�ability and median CPU time for H(n; d; 4:0) using thebH8/static/global heuristic (500 instances per data point)

Percentage points of incorrect PCA answers for A(n,d,4.0)

4 6 8 10 12 14 16 18
20

40
60

80
100

0

0.1

0.2

0.3

0.4

0.5

0.6

average degree

nodes

PC-Failures (%)

Percentage points of incorrect PCA answers for H(n,d,4.0)

6 8 10 12 14 16 18 20
20

40

60

80

0
10
20
30
40
50
60
70
80

average degree

nodes

PC-Failures (%)

Figure 7: Percentage points of incorrect answers of the path-consistency algorithm for
A(n; d; 4:0) and H(n; d; 4:0)

when looking at the H(n; d; 4:0) case. Here almost all instances in the phase-transition
region and many instances in the mostly insoluble region are path-consistent, though only
a few of them are consistent.

For the following evaluation of the di�erent heuristics we will randomly generate in-
stances with an average degree between d = 2 and d = 18 in the A(n; d; 4:0) case and
between d = 4 and d = 20 in the H(n; d; 4:0) case. This covers a large area around the
phase-transition. We expect the instances in the phase-transition region of H(n; d; 4:0) to
be particularly hard which makes them very interesting for comparing the quality of the
di�erent heuristics.

6. Empirical Evaluation of the Heuristics

In this section we compare the di�erent heuristics by running them on the same randomly
generated instances. For the instances of A(n; d; 4:0) we ran all 20 di�erent heuristics

302

Efficient Methods for Qualitative Spatial Reasoning

Number of hard instances for A(n,d,4.0)

4 6 8 10 12 14 16 18 20
20

40
60

80
100

0
1
2
3
4
5
6
7
8
9

10

average degree

nodes

#Hard Instances

Number of hard instances for H(n,d,4.0)

6 8 10 12 14 16 18 20
20

40

60

80

0
50

100
150
200
250
300
350
400
450

average degree

nodes

#Hard Instances

Figure 8: Number of instances using more than 10,000 visited nodes for some heuristic for
A(n; d; 4:0) and H(n; d; 4:0)

(static/dynamic and local/global combined with the �ve split sets B; bB; bH8; C8;Q8) on the
same randomly generated instances of size n = 10 up to n = 100. For the instances of
H(n; d; 4:0) we restricted ourselves to instances with up to n = 80 regions because larger
ones appeared to be too diÆcult.

In �rst experiments we found that most of the instances were solved very fast with
less than 1,000 visited nodes in the search space when using one of the maximal tractable
subsets for splitting. However, some instances turned out to be extremely hard, they could
not be solved within our limit of 2 million visited nodes, which is about 1.5 hours of CPU
time. Therefore, we ran all our programs up to a maximal number of 10,000 visited nodes
and stored all instances for which at least one of the di�erent heuristics used more than
10,000 visited nodes for further experiments (see next section). We call those instances
the hard instances. The distribution of the hard instances is shown in Figure 8. It turned
out that for the heuristics using B as a split set and for the heuristics using dynamic and
global evaluation of the constrainedness many more instances were hard than for the other
combinations of heuristics. We, therefore, did not include in Figure 8 the hard instances
of the B/dynamic/global heuristic for A(n; d; 4:0) and the hard instances for the heuristics
using B as a split set and the bB/dynamic/global heuristic for H(n; d; 4:0).

As Figure 8 shows, almost all of the hard instances are in the phase-transition region.
For A(n; d; 4:0) only a few of the 500 instances per data point are hard while for H(n; d; 4:0)
almost all instances in the phase-transition are hard. Altogether there are 788 hard instances
for A(n; d; 4:0) (out of a total number of 759,000 generated instances) and 75,081 hard
instances for H(n; d; 4:0) (out of a total number of 594,000 generated instances). Table 1
shows the number of hard instances for each heuristic except for those which were excluded
as mentioned above. The heuristics using bH8 as a split set solve more instances than the
heuristics using other split sets. Using C8 or Q8 as a split set does not seem to be an
improvement over using bB. Among the di�erent ways of computing constrainedness, static
and global appears to be the most e�ective combination when using one of the maximal
tractable subsets as a split set. For some split sets, dynamic and local also seems to be an

303

Renz & Nebel

Heuristics A(n; d; 4:0) H(n; d; 4:0) H(80; 14:0; 4:0)bH8/sta/loc 64 21; 129 331bH8/sta/glo 42 10; 826 227bH8/dyn/loc 52 9; 967 217bH8/dyn/glo 100 24; 038 345

C8/sta/loc 81 28; 830 373

C8/sta/glo 58 15; 457 277

C8/dyn/loc 78 32; 926 412

C8/dyn/glo 108 41; 565 428

Q8/sta/loc 81 24; 189 346

Q8/sta/glo 54 13; 189 239

Q8/dyn/loc 74 13; 727 255

Q8/dyn/glo 104 29; 448 368bB/sta/loc 68 23; 711 344bB/sta/glo 89 13; 831 249bB/dyn/loc 70 29; 790 379bB/dyn/glo 162 { {

B/sta/loc 163 { {

B/sta/glo 222 { {

B/dyn/loc 209 { {

B/dyn/glo (303) { {

total 788 75; 081 486

Table 1: Number of hard instances for each heuristic

e�ective combination while combining dynamic and global is in all cases the worst choice
with respect to the number of solved instances.

In Figure 9 we compare the 50% and 99% percentiles of the di�erent heuristics on
A(n; d; 4:0). We do not give the average run times since we ran all heuristics only up to at
most 10,000 visited nodes which reduces the real average run time values. Each data point
is the average of the values for d = 8 to d = 10. We took the average of the di�erent degrees
in order to cover the whole phase-transition region which is about d = 8 for instances of
size n = 10 and d = 10 for instances of size n = 100. For all di�erent combinations of
computing constrainedness, the ordering of the run times is the same for the di�erent split
sets: B � bB > C8; bH8;Q8. The run times of using static/local, static/global, or dynamic/local
for computing constrainedness are almost the same when combined with the same split set
while they are longer for all split sets when using dynamic/global (about 3 times longer
when using bB as a split set and about 1.5 times longer when using the other split sets).
The 99% percentile run times are only about 1.5 times longer than the 50% percentile run
times. Thus, even the harder among the \normal" instances can be solved easily, i.e., apart
from a few hard instances, most instances can be solved eÆciently within the size range
we analyzed. The erratic behavior of the median curves results from an aggregation of the
e�ect which can be observed in Figure 5, namely, that some of the median elements in the
phase-transition are inconsistent and easily solvable.

304

Efficient Methods for Qualitative Spatial Reasoning

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
ec

)

nodes

Median CPU time using STATIC,LOCAL for A(n,d,4.0)

B-split
B^-split
C-split

H^8-split
Q-split

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
ec

)

nodes

99%-Percentile CPU time using STATIC,LOCAL for A(n,d,4.0)

B-split
B^-split
C-split

H^8-split
Q-split

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
ec

)

nodes

Median CPU time using STATIC,GLOBAL for A(n,d,4.0)

B-split
B^-split
C-split

H^8-split
Q-split

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
ec

)

nodes

99%-Percentile CPU time using STATIC,GLOBAL for A(n,d,4.0)

B-split
B^-split
C-split

H^8-split
Q-split

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
ec

)

nodes

Median CPU time using DYNAMIC,LOCAL for A(n,d,4.0)

B-split
B^-split
C-split

H^8-split
Q-split

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
ec

)

nodes

99%-Percentile CPU time using DYNAMIC,LOCAL for A(n,d,4.0)

B-split
B^-split
C-split

H^8-split
Q-split

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
ec

)

nodes

Median CPU time using DYNAMIC,GLOBAL for A(n,d,4.0)

B-split
B^-split
C-split

H^8-split
Q-split

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
ec

)

nodes

99%-Percentile CPU time using DYNAMIC,GLOBAL for A(n,d,4.0)

B-split
B^-split
C-split

H^8-split
Q-split

Figure 9: Percentile 50% and 99% CPU time of the di�erent heuristics for solving
A(n; d; 4:0) (d = 8:0 to d = 10:0, 2,500 instances per data point)

305

Renz & Nebel

For the runtime studies for H(n; d; 4:0) we noticed that there are many hard instances
for n > 40 (see Figure 8), for n = 80 almost all instances in the phase-transition region are
hard (see last column of Table 1). Also, as Table 1 shows, the number of hard instances
varies a lot for the di�erent heuristics. Therefore, it is not possible to compare the percentile
running times of the di�erent heuristics for n > 40. For n = 80 and d = 14 (see last column
of Table 1), for instance, the 50% and 99% percentile element of the C8/dynamic/global
heuristic is element no.36 and element no.72, while it is element no.141 and element no.280
of the bH8/dynamic/local heuristic (out of the 500 sorted elements), respectively.

For this reason we show the results only up to a size of n = 40 (see Figure 10). Again, we
took the average of the di�erent degrees from d = 10 to d = 15 in order to cover the whole
phase-transition region. The order of the run times is the same for di�erent combinations
of computing constrainedness: B � bB; C8 � Q8; bH8, while bH8 is in most cases the fastest.
As for the A(n; d; 4:0) instances, the run times for dynamic/global were much longer than
the other combinations. The 99% percentile run times of the static/global combination
and for bH8 and Q8 of the dynamic/local combination are faster than those of the other
combinations. Although the median CPU times are about the same as for A(n; d; 4:0) for
n < 40, the percentile 99% CPU times are much longer. As it was already shown in Figure 7
and 8, this is further evidence that there are very hard instances in the phase-transition
region of H(n; d; 4:0).

7. Orthogonal Combination of the Heuristics

In the previous section we studied the quality of di�erent heuristics for solving randomly
generated RSAT instances. We found that several instances which are mainly located in the
phase-transition region could not be solved by some heuristics within our limit of 10,000
visited nodes in the search space. Since the di�erent heuristics have a di�erent search space
(depending on the split set) and use a di�erent path through the search space (determined
by the di�erent possibilities of computing constrainedness), it is possible that instances are
hard for some heuristics but easily solvable for other heuristics. Nebel (1997) observed that
running di�erent heuristics in parallel can solve more instances of a particular hard set of
temporal reasoning instances proposed by van Beek and Manchak (1996) than any single
heuristic alone can solve, when using altogether the same number of visited nodes as for
each heuristic alone. An open question of Nebel's investigation (Nebel, 1997) was whether
this is also the case for the hard instances in the phase-transition region.

In this section we evaluate the power of \orthogonally combining" the di�erent heuristics
for solving RSAT instances, i.e., running the di�erent heuristics for each instance in parallel
until one of the heuristics solves the instance. There are di�erent ways for simulating
this parallel processing on a single processor machine. One is to use time slicing between
the di�erent heuristics, another is to run the heuristics in a �xed or random order until
a certain number of nodes in the search space is visited and if unsuccessful try the next
heuristic (cf. Huberman, Lukose, & Hogg, 1997). Which possibility is chosen and with
which parameters (e.g., the order in which the heuristics are run and the number of visited
nodes which is spent for each heuristic) determines the eÆciency of the single processor
simulation of the orthogonal combination. In order to �nd the best parameters, we ran all
heuristics using at most 10,000 visited nodes for each heuristic on the set of hard instances

306

Efficient Methods for Qualitative Spatial Reasoning

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

10 15 20 25 30 35 40

C
P

U
 ti

m
e

(s
ec

)

nodes

Median CPU time using STATIC,LOCAL for H(n,d,4.0)

B-split
C-split

B^-split
Q-split

H^8-split

0

1

2

3

4

5

10 15 20 25 30 35 40

C
P

U
 ti

m
e

(s
ec

)

nodes

99%-Percentile CPU time using STATIC,LOCAL for H(n,d,4.0)

B-split
C-split

B^-split
Q-split

H^8-split

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

10 15 20 25 30 35 40

C
P

U
 ti

m
e

(s
ec

)

nodes

Median CPU time using STATIC,GLOBAL for H(n,d,4.0)

B-split
C-split

B^-split
Q-split

H^8-split

0

1

2

3

4

5

10 15 20 25 30 35 40

C
P

U
 ti

m
e

(s
ec

)

nodes

99%-Percentile CPU time using STATIC,GLOBAL for H(n,d,4.0)

B-split
C-split

B^-split
Q-split

H^8-split

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

10 15 20 25 30 35 40

C
P

U
 ti

m
e

(s
ec

)

nodes

Median CPU time using DYNAMIC,LOCAL for H(n,d,4.0)

B-split
C-split

B^-split
Q-split

H^8-split

0

1

2

3

4

5

10 15 20 25 30 35 40

C
P

U
 ti

m
e

(s
ec

)

nodes

99%-Percentile CPU time using DYNAMIC,LOCAL for H(n,d,4.0)

B-split
C-split

B^-split
Q-split

H^8-split

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

10 15 20 25 30 35 40

C
P

U
 ti

m
e

(s
ec

)

nodes

Median CPU time using DYNAMIC,GLOBAL for H(n,d,4.0)

B-split
C-split

B^-split
Q-split

H^8-split

0

1

2

3

4

5

10 15 20 25 30 35 40

C
P

U
 ti

m
e

(s
ec

)

nodes

99%-Percentile CPU time using DYNAMIC,GLOBAL for H(n,d,4.0)

B-split
C-split

B^-split
Q-split

H^8-split

Figure 10: Percentile 50% and 99% CPU time of the di�erent heuristics for solving
H(n; d; 4:0) (d = 10:0 to d = 15:0, 5,500 instances per data point)

307

Renz & Nebel

A(n; d; 4:0) H(n; d; 4:0)

Heuristics Solved Instances 1. Response Solved Instances 1. ResponsebH8/sta/loc 91:88% 19:80% 71:86% 6:92%bH8/sta/glo 94:67% 12:56% 85:58% 14:26%bH8/dyn/loc 93:40% 24:37% 86:73% 22:28%bH8/dyn/glo 87:31% 13:58% 67:98% 15:00%

C8/sta/loc 89:72% 6:35% 61:60% 1:47%

C8/sta/glo 92:64% 5:20% 79:41% 5:04%

C8/dyn/loc 90:10% 5:96% 56:15% 2:26%

C8/dyn/glo 86:63% 6:60% 44:64% 2:40%

Q8/sta/loc 89:72% 9:77% 67:78% 1:63%

Q8/sta/glo 93:15% 12:06% 82:43% 3:61%

Q8/dyn/loc 90:61% 10:15% 81:72% 1:83%

Q8/dyn/glo 86:80% 12:82% 60:78% 4:61%bB/sta/loc 91:37% 1:40% 68:42% 1:84%bB/sta/glo 88:71% 1:27% 81:58% 5:22%bB/dyn/loc 91:12% 0:89% 60:32% 2:56%bB/dyn/glo 79:44% 0:89% { 1:83%

B/sta/loc 79:31% 0:51% { 1:67%

B/sta/glo 71:83% 0:25% { 1:13%

B/dyn/loc 73:48% 0:51% { 0:42%

B/dyn/glo { 0:13% { 0:49%

combined 99:87% 96:48%

Table 2: Percentage of solved hard instances for each heuristic and percentage of �rst re-
sponse when orthogonally running all heuristics. Note that sometimes di�erent
heuristics are equally fast. Therefore the sum is more than 100%.

identi�ed in the previous section (those instances for which at least one heuristic required
more than 10,000 visited nodes) and compared their behavior. Since we ran all heuristics
on all instances already for the experiments of the previous section, we only had to evaluate
their outcomes. This led to a very surprising result for the A(n; d; 4:0) instances, namely, all
of the 788 hard instances except for a single one were solved by at least one of the heuristics
using less than 10,000 visited nodes. In Table 2 we list the percentage of hard instances
that could be solved by the di�erent heuristics and the percentage of �rst response by each
of them when running the heuristics in parallel (i.e., which heuristic required the smallest
number of visited nodes for solving the instance). It turns out that the heuristics using bH8

as a split set did not only solve more instances than the other heuristics, they were also
more often the fastest in �nding a solution. Although the heuristics using the other two
maximal tractable subsets Q8 and C8 as a split set did not solve signi�cantly more instances
than the heuristics using bB, they were much faster in �nding a solution. Despite solving
the least number of instances, the heuristics using B as a split set were in some cases the
fastest in producing a solution.

308

Efficient Methods for Qualitative Spatial Reasoning

0

5

10

15

20

1 10 100 1000 10000

N
um

be
r

of
 s

ol
ve

d
in

st
an

ce
s

Minimal number of visited nodes

First Response for Solving the Hard Instances of A(n,d,4.0)

inconsistent
consistent

0

100

200

300

400

500

600

700

1 10 100 1000 10000

N
um

be
r

of
 s

ol
ve

d
in

st
an

ce
s

Minimal number of visited nodes

First Response for Solving the Hard Instances of H(n,d,4.0)

inconsistent
consistent

Figure 11: Fastest solution of the hard instances when running all heuristics in parallel

When comparing the minimal number of visited nodes of all the heuristics for all the
hard instances, we found that only �ve of them (which were all inconsistent) required
more than 150 visited nodes. This is particularly remarkable as all these instances are
from the phase-transition region of an NP-hard problem, i.e., instances which are usually
considered to be the most diÆcult ones. Further note that about 15% (120) of the 788 (path-
consistent) instances were inconsistent, which is much higher than usual (cf. Figure 7).
Interestingly, most of those inconsistent instances were solved faster than the consistent
instances. At this point, it should be noted that combining heuristics orthogonally is very
similar to randomized search techniques with restarts (Selman, Levesque, & Mitchell, 1992).
However, in contrast to randomized search, our method can also determine whether an
instance is inconsistent. In Figure 11 we chart the number of hard instances solved with the
smallest number of visited nodes with respect to their solubility. Due to the low number
of hard instances of A(n; d; 4:0), the �gure on the left looks a bit ugly but one can at least
approximate the behavior of the curves when comparing it with the second �gure on the
right which is the same curve for H(n; d; 4:0) (see below). The oscillating behavior of the
inconsistent instances (more instances are solved with an odd than with an even number
of visited nodes) might be due to the sizes of the instances|we generated instances with
an even number of nodes only. The most diÆcult instance (n = 56; d = 10) was solved
as inconsistent with the bB/static/global heuristic using about 91,000 visited nodes while all
heuristics using one of the maximal tractable subsets as a split set failed to solve it even
when each was allowed to visit 20,000,000 nodes in the search space.

We did the same examination for the set of 75,081 hard instances of H(n; d; 4:0). 2,640 of
these instances could not be solved by any of the 20 di�erent heuristics using 10,000 visited
nodes each. Their distribution is shown in Figure 12(a). Similar to the hard instances
of A(n; d; 4:0), the heuristics using bH8 as a split set were the most successful ones for
solving the hard instances of H(n; d; 4:0), as shown in Table 2. They solved more of the
hard instances than any other heuristics and produced the fastest response of more than
50% of the hard instances. There is no signi�cant di�erence between using C8;Q8; or bB
as a split set, neither in the number of solved instances nor in the percentage of �rst
response. Like in the previous case, computing constrainedness using the static/global or the
dynamic/local heuristics resulted in more successful paths through the search space by which

309

Renz & Nebel

Number of hard instances for H(n,d,4.0) using orthogonal combination

6 8 10 12 14 16 18 20
20

40

60

80

0
20
40
60
80

100

average degree

nodes

#Hard Instances

0

20

40

60

80

100

20000 40000 60000 80000 100000

N
um

be
r

of
 s

ol
ve

d
in

st
an

ce
s

Number of visited nodes

First Response for Solving the Hard Instances of H(n,d,4.0)

inconsistent
consistent

(a) (b)

Figure 12: Hard instances using orthogonal combination of all heuristic for H(n; d; 4:0),
(a) shows their distribution, (b) shows their fastest solution when using up to
100,000 visited nodes per heuristic

more instances were solved within 10,000 visited nodes than by the other combinations. On
average they produced faster solutions than the other combinations.

The same observations as for A(n; d; 4:0) can be made when charting the fastest solutions
of the hard instances of H(n; d; 4:0) (see Figure 11). About 29% (21,307) of the solved
instances are inconsistent. Most of them were, again, solved faster than the consistent
instances. More than 75% of the hard instances can be solved with at most 150 visited nodes.
90% can be solved with at most 1,300 visited nodes. Since the bH8/dynamic/local heuristic
alone solves more than 86% of the instances, it seems diÆcult to combine di�erent heuristics
in a way that more hard instances can be solved while using not more than 10,000 visited
nodes altogether. However, when orthogonally combining the two best performing heuristics
(bH8/dynamic/local and bH8/static/global) allowing each of them a maximal number of 5,000
visitable nodes, we can solve 92% (69,056) of the hard instances.

We tried to solve the 2,640 hard instances of H(n; d; 4:0) which are not solvable using
orthogonal combination of heuristics with at most 10,000 visited nodes by using a maximal
number of 100,000 visited nodes. 471 of these instances are still not solvable, more than
75% of the solved instances are inconsistent. The fastest response for the solved instances
is charted in Figure 12(b). The most successful heuristics in giving the fastest response
are bH8/dynamic/local (42.5%) and bH8/static/global (26.6%). The three heuristics using
static/global computation of constrainedness combined with using Q8; C8; and bB as a split
set gave the fastest response for 15.9% of the solved instances where the bB strategy was by
far the best among the three (9.4%).

8. Combining Heuristics for Solving Large Instances

In the previous section we found that combining di�erent heuristics orthogonally can solve
more instances using the same amount of visited nodes than any heuristic alone can solve. In
this section we use these results in order to identify the size of randomly generated instances

310

Efficient Methods for Qualitative Spatial Reasoning

up to which almost all of them, especially those in the phase-transition region, can still be
solved in acceptable time. Since many instances of H(n; d; 4:0) are already too diÆcult for
a size of n = 80 (see Figure 12), we restrict our analysis to the instances of A(n; d; 4:0) and
study randomly generated instances with a size of more than n = 100 nodes.

For instances of a large size allowing a maximal number of 10,000 visited nodes in
the search space is too much for obtaining an acceptable runtime. 10,000 visited nodes for
instances of size n = 100 corresponds to a runtime of more than 10 seconds on a Sun Ultra1,
for larger instances it gets much slower. Therefore, we have to restrict the maximal number
of visited nodes in order to achieve an acceptable runtime. Given a multi-processor machine,
the di�erent heuristics can be run orthogonally on di�erent processors using the maximal
number of visited nodes each. If the orthogonal combination of the di�erent heuristics is
simulated on a single-processor machine, the maximal number of nodes has to be divided
by the number of used heuristics to obtain the available number of visitable nodes for each
heuristic. Thus, the more di�erent heuristics we use, the less visitable nodes are available
for each heuristic. Therefore, in order to achieve the best performance, we have to �nd
the combination of heuristics that solves most instances within a given number of visitable
nodes. The chosen heuristics should not only solve many instances alone, they should also
complement each other well, i.e., instances which cannot be solved by one heuristic should
be solvable by the other heuristic.

We started by �nding the optimal combination of heuristics for the set of 788 hard
instances of A(n; d; 4:0). From our empirical evaluation given in Section 6 we know how
many visited nodes each heuristic needs in order to solve each of the 788 hard instances.
Therefore, we computed the number of solved instances for all 220 possible combinations
of the heuristics using an increasing maximal number of visitable nodes for all heuristics
together. Since we only tried to �nd the combination which solves the most instances,
this can be computed quite fast. The results are given in Table 3. They show that a
good performance can be obtained with a maximal number of 600 visited nodes. In this
case four heuristics were involved, i.e., 150 visitable nodes are spent on each of the four
heuristics. Since the same combination of heuristics (bH8/static/global, bH8/dynamic/local,
C8/dynamic/local, bB/static/local) is also the best for up to 1,000 visitable nodes, we choose
this combination for our further analysis. We choose the order in which they are processed to
be 1. bH8/dynamic/local, 2. bH8/static/global, 3. C8/dynamic/local, 4. bB/static/local according
to their �rst response behavior given in Table 2. Note that although the two heuristics
C8/dynamic/local and bB/static/local do not show a particularly good performance when
running them alone (see Table 2), they seem to best complement the other two heuristics.

What we have to �nd next is the maximal number of visitable nodes we spend for the
heuristics. For this we ran the best performing heuristic (bH8/dynamic/local) on instances
of the phase-transition region of varying sizes. It turned out that for almost all consistent
instances the number of visited nodes required for solving them was slightly less than twice
the size of the instances while most inconsistent instances are also not path-consistent and,
thus, solvable with only one visited node. Therefore, we ran the four heuristics in the
following allowing 2n visited nodes each, where n is the size of the instance, i.e., together
we allow at most 8n visitable nodes. We randomly generated test instances according to
the A(n; d; 4:0) model for a size of n = 110 regions up to a size of n = 500 regions with
a step of 10 regions and 100 instances for each size and each average degree ranging from

311

Renz & Nebel

Max Nodes Solved Instances Combination of Heuristics

100 516 bH8-d-l

200 705 bH8-s-g

300 759 bH8-s-g, bH8-d-l

400 769 bH8-s-g, C8-d-l

500 774 bH8-s-g, bH8-d-l, C8-d-l

600 778 bH8-s-g, bH8-d-l, C8-d-l, bB-s-l
700 780 bH8-s-g, bH8-d-l, C8-d-l, bB-s-l
800 783 bH8-s-g, bH8-d-l, C8-d-l, bB-s-l
900 784 bH8-s-g, bH8-d-l, C8-d-l, bB-s-l
1100 785 bH8-s-g, bH8-d-l, C8-d-l, bB-s-l, bB-s-g
1300 786 bH8-s-g, bH8-d-l, bB-s-l, bB-s-g
3900 787 bH8-s-g, bH8-d-l, bB-d-l

Table 3: Best performance of combining di�erent heuristics for solving the 787 solvable hard
instances of A(n; d; 4:0) with a �xed maximal number of visited nodes

Probability of satisfiability for A(n,d,4.0)

4 6 8 10 12 14 16 18
150

200
250

300
350

400
450

500
50

100

average degree

nodes

Probability (%)

Average number of visited nodes for A(n,d,4.0)

4 6 8 10 12 14 16 18
150

200
250

300
350

400
450

500

100
200
300
400
500
600
700
800
900

1000

average degree

nodes

Visited nodes

Figure 13: Probability of satis�ability for A(n; d; 4:0) (100 instances per data point) and
average number of visited nodes of the path-consistent instances when using
orthogonal combination of the four selected heuristics

d = 2:0 to d = 18:0 with a step of 0.5, a total number of 132,000 instances. Since solving
large instances using backtracking requires a lot of memory, we solved the instances on a
Sun Ultra60 with 1GB of main memory.

The generated instances display a phase-transition behavior which continues the one
given in Figure 5. The phase-transition ranges from d = 10:0 for n = 110 to d = 10:5
for n = 500 (see Figure 13). Apart from 112 instances, all other instances we gen-
erated were solvable by orthogonal combination of the four heuristics (bH8/static/global,bH8/dynamic/local, C8/dynamic/local, bB/static/local) spending less than 2n visited nodes

312

Efficient Methods for Qualitative Spatial Reasoning

Percentile 70% CPU time using orthogonal combination for A(n,d,4.0)

4 6 8 10 12 14 16 18
150

200
250

300
350

400
450

500

0
5

10
15
20
25

average degree

nodes

CPU time (s)

Percentile 99% CPU time using orthogonal combination for A(n,d,4.0)

4 6 8 10 12 14 16 18
150

200
250

300
350

400
450

500

0

20

40

60

80

100

average degree

nodes

CPU time (s)

Figure 14: Percentile 70% and 99% CPU time of the orthogonal combination of four di�er-
ent heuristics for solving large randomly generated instances of A(n; d; 4:0)

each. In Figure 13 we give the average number of visited nodes of the path-consistent
instances. It can be seen that for our test instances the average number of visited nodes
is linear in the size of the instances. The percentile 70% CPU time for instances of the
phase-transition with a size of n = 500 regions is about 20 seconds, the percentile 99% CPU
time is about 90 seconds. Up to a size of n = 400 regions, the percentile 99% CPU time is
less than a minute (see Figure 14).

131,240 of our test instances were already solved by the bH8/static/global heuristic,
for 71 instances the bH8/dynamic/local heuristic was required and for 577 instances the
C8/dynamic/local heuristic produced the solution. None of the 112 instances which were
not solved by one of those three heuristics were solved by the bB/static/local heuristic. We
tried to solve these instances using the other heuristics, again using a maximal number of 2n
visited nodes each. The best performing among those heuristics was the C8/dynamic/global
heuristic which solved 87 of the 112 instances followed by the C8/static/global heuristic (83)
and the Q8/dynamic/global heuristic (63). 7 instances were not solved by any heuristic
within a maximal number of 2n visited nodes.

9. Discussion

We empirically studied the behavior of solving randomly generated RSAT instances using
di�erent backtracking heuristics some of which make use of the maximal tractable subsets
identi�ed in previous work. We generated instances according to two di�erent models of
which the \general model" A allows all 256 RCC-8 relations to be used while the \hard
model" H allows only relations which are not contained in any of the maximal tractable
subsets. A theoretical analysis of the two models showed that the model H and the model
A for a small average degree of the nodes in the constraint graph do not su�er from trivial
local inconsistencies as it is the case for similar generation procedures for CSPs with �nite
domains (Achlioptas et al., 1997). It turned out that randomly generated instances of
both models show a phase-transition behavior which depends most strongly on the average
degree of the instances. While most instances outside the phase-transition region can be

313

Renz & Nebel

solved eÆciently by each of our heuristics, instances in the phase-transition region can be
extremely hard. For the instances of the general model, most path-consistent instances
are also consistent. Conversely, path-consistency is a bad approximation to consistency for
instances of the hard model. These instances are also much harder to solve than instances
of the general model.

When comparing the di�erent heuristics, we found that the heuristics using one of the
maximal tractable subsets as a split set are not as much faster in deciding consistency of
RSAT instances as their theoretical advantage given by the reduced average branching factor
and the resulting exponentially smaller size of the search space indicates. This is because
using path-consistency as a forward checking method considerably reduces the search space
in all cases. Nevertheless, using one of the maximal tractable subsets as a split set, in
particular bH8, still leads to a much faster solution and solves more instances in reasonable
time than the other heuristics. Although the two maximal tractable subsets Q8 and C8
contain more relations than bH8, their average branching factor is lower, i.e., when usingbH8 one has to decompose more relations (256 � 148 = 108) than when using the other two
sets (96 and 98 relations, respectively), but bH8 splits the relations better than the other
two sets. Most relations can be decomposed into only two bH8 sub-relations, while many
relations must be decomposed into three C8 sub-relations or into three Q8 sub-relations.
This explains the superior performance of heuristics involving bH8 for decomposition.

Among the instances we generated, we stored those which could not be solved by all
heuristics within a maximum number of 10,000 visited nodes in the search space in order to
�nd out how the di�erent heuristics perform on these hard instances. We found that almost
all hard instances are located in the phase-transition region and that there are many more
hard instances in the hard model than in the general model. We orthogonally combined all
heuristics and ran them on all hard instances. This turned out to be very successful. Apart
from one instance, all hard instances of the general model could be solved, most of them
with a very low number of visited nodes. The hard instances of the hard model were much
more diÆcult: many of them could not be solved by any of the heuristics. Nevertheless,
many more instances were solved by orthogonally combining the heuristics than by each
heuristic alone. Again, most of them were solved using a low number of visited nodes.

Based on our observations on orthogonally combining di�erent heuristics, we tried to
identify the combination of heuristics which is most successful in eÆciently solving many
instances and used this combination for solving very large instances. It turned out that
the best combination involves only heuristics which use maximal tractable subsets for de-
composition. With this combination we were able to solve almost all randomly generated
instances of the phase-transition region of the general model up to a size of n = 500 regions
very eÆciently. This seems to be impossible when considering the enormous size of the
search space, which is on average 1039323 for instances of size n = 500 when using bH8 as a
split set.

Our results show that despite its NP-hardness, we were able to solve almost all ran-
domly generated RSAT instances of the general model eÆciently. This is neither due to the
low number of di�erent RCC-8 relations (instances generated according to the hard model
are very hard in the phase-transition region) nor to our generation procedure for random
instances which does not lead to trivially
awed instances asymptotically. It is mainly due
to the maximal tractable subsets which cover a large fraction of RCC-8 and which lead

314

Efficient Methods for Qualitative Spatial Reasoning

to extremely low branching factors. Since there are di�erent maximal tractable subsets,
they allow choosing between many di�erent backtracking heuristics which further increases
eÆciency: some instances can be solved easily by one heuristic, other instances by other
heuristics. Heuristics involving maximal tractable subclasses showed the best behavior but
some instances can be solved faster when other tractable subsets are used. The full classi-
�cation of tractable subsets gives the possibility of generating hard instances with a high
probability. Many randomly generated instances of the phase-transition region are very
hard when using only relations which are not contained in any of the tractable subsets
and consist of more than n = 60 regions. The next step in developing eÆcient reasoning
methods for RCC-8 is to �nd methods which are also successful in solving most of the hard
instances of the hard model.

The results of our empirical evaluation of reasoning with RCC-8 suggest that analyzing
the computational properties of a reasoning problem and identifying tractable subclasses of
the problem is an excellent way for achieving eÆcient reasoning mechanisms. In particular
maximal tractable subclasses can be used to develop more eÆcient methods for solving
the full problem since their average branching factor is the lowest. Using the re�nement
method developed in Renz's (1999) paper, tractable subclasses of a set of relations forming
a relation algebra can be identi�ed almost automatically. This method makes it very easy
to develop eÆcient algorithms. A further indication of our empirical evaluation is that it
can be much more e�ective (even and especially for hard instances of the phase-transition
region) to orthogonally combine di�erent heuristics than to try to get the �nal epsilon out of
a single heuristic. This answers a question raised by Nebel (1997) of whether the orthogonal
combination of heuristics is also useful in the phase-transition region. In our experiments
this lead to much better results even when simulating the orthogonal combination of di�erent
heuristics on a single processor machine and spending altogether the same resources as
for any one heuristic alone. In contrast to the method of time slicing between di�erent
heuristics, we started a new heuristic only if the previous heuristic failed after a certain
number of visited nodes in the search space. The order in which we ran the heuristics
depended on their performance and on how well they complemented each other, more
successful heuristics were used �rst. This is similar to using algorithm portfolios as proposed
by Huberman et al. (1997). Which heuristics perform better and which combination is the
most successful one is a matter of empirical evaluation and depends on the particular
problem. Heuristics depending on maximal tractable subclasses, however, should lead to
the best performance.

For CSPs with �nite domains there are many theoretical results about localizing the
phase-transition behavior and about predicting where hard instances are located. In con-
trast to this, there are basically no such theoretical results for CSPs with in�nite domains
as used in spatial and temporal reasoning. As our initial theoretical analysis shows, theo-
retical results on CSPs with �nite domains do not necessarily extend to CSPs with in�nite
domains. It would be very interesting to develop a more general theory for CSPs with
in�nite domains, possibly similar to Williams and Hogg's \Deep Structure" (Williams &
Hogg, 1994) or Gent et al.'s \Kappa" theory (Gent, MacIntyre, Prosser, & Walsh, 1996).

315

Renz & Nebel

Acknowledgments

We would like to thank Ronny Fehling for his assistance in developing the programs, Malte
Helmert for proof reading the paper, and the three anonymous reviewers for their very
helpful comments.
This research has been supported by DFG as part of the project fast-qual-space, which
is part of the DFG special research e�ort on \Spatial Cognition". The �rst author has been
partially supported by a Marie Curie Fellowship of the European Community programme
\Improving Human Potential" under contract number HPMF-CT-2000-00667. A prelimi-
nary version of this paper appeared in the Proceedings of the 13th European Conference on
Arti�cial Intelligence (Renz & Nebel, 1998).

References

Achlioptas, D., Kirousis, L., Kranakis, E., Krizanc, D., Molloy, M., & Stamatiou, Y. (1997).
Random constraint satisfaction: a more accurate picture. In 3rd Conference on the
Principles and Practice of Constraint Programming (CP'97), Vol. 1330 of LNCS, pp.
107{120. Springer-Verlag.

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of
the ACM, 26 (11), 832{843.

Bennett, B. (1994). Spatial reasoning with propositional logic. In Doyle, J., Sandewall,
E., & Torasso, P. (Eds.), Principles of Knowledge Representation and Reasoning:
Proceedings of the 4th International Conference, pp. 51{62, Bonn, Germany. Morgan
Kaufmann.

Bennett, B. (1997). Logical Representations for Automated Reasoning about Spatial Rela-
tionships. Ph.D. thesis, School of Computer Studies, The University of Leeds.

Cheeseman, P., Kanefsky, B., & Taylor, W. M. (1991). Where the really hard problems are.
In Proceedings of the 12th International Joint Conference on Arti�cial Intelligence,
pp. 331{337, Sydney, Australia. Morgan Kaufmann.

Gent, I., MacIntyre, E., Prosser, P., Smith, B., & Walsh, T. (2001). Random constraint
satisfaction: Flaws and structure. CONSTRAINTS, 6 (4), 345{372.

Gent, I., MacIntyre, E., Prosser, P., & Walsh, T. (1996). The constrainedness of search. In
Proceedings of the 13th National Conference on AI (AAAI'96), pp. 246{252.

Golumbic, M. C., & Shamir, R. (1993). Complexity and algorithms for reasoning about time:
A graph-theoretic approach. Journal of the Association for Computing Machinery,
40 (5), 1128{1133.

Grigni, M., Papadias, D., & Papadimitriou, C. (1995). Topological inference. In Proceedings
of the 14th International Joint Conference on Arti�cial Intelligence, pp. 901{906,
Montreal, Canada.

316

Efficient Methods for Qualitative Spatial Reasoning

Haralick, R. M., & Elliot, G. L. (1980). Increasing tree search eÆciency for constraint
satisfaction problems. Arti�cial Intelligence, 14, 263{313.

Huberman, B., Lukose, R., & Hogg, T. (1997). An economics approach to hard computa-
tional problems. Science, 275, 51{54.

Ladkin, P. B., & Reinefeld, A. (1992). E�ective solution of qualitative interval constraint
problems. Arti�cial Intelligence, 57 (1), 105{124.

Ladkin, P. B., & Reinefeld, A. (1997). Fast algebraic methods for interval constraint prob-
lems. Annals of Mathematics and Arti�cial Intelligence, 19 (3,4).

Mackworth, A. K. (1977). Consistency in networks of relations. Arti�cial Intelligence, 8,
99{118.

Mackworth, A. K., & Freuder, E. C. (1985). The complexity of some polynomial network
consistency algorithms for constraint satisfaction problems. Arti�cial Intelligence, 25,
65{73.

Montanari, U. (1974). Networks of constraints: fundamental properties and applications to
picture processing. Information Science, 7, 95{132.

Nebel, B. (1995). Computational properties of qualitative spatial reasoning: First results. In
Wachsmuth, I., Rollinger, C.-R., & Brauer, W. (Eds.), KI-95: Advances in Arti�cial
Intelligence, Vol. 981 of Lecture Notes in Arti�cial Intelligence, pp. 233{244, Bielefeld,
Germany. Springer-Verlag.

Nebel, B. (1997). Solving hard qualitative temporal reasoning problems: Evaluating the
eÆciency of using the ORD-Horn class. CONSTRAINTS, 3 (1), 175{190.

Randell, D. A., Cohn, A. G., & Cui, Z. (1992a). Computing transitivity tables: A challenge
for automated theorem provers. In Proceedings of the 11th CADE. Springer-Verlag.

Randell, D. A., Cui, Z., & Cohn, A. G. (1992b). A spatial logic based on regions and
connection. In Nebel, B., Swartout, W., & Rich, C. (Eds.), Principles of Knowledge
Representation and Reasoning: Proceedings of the 3rd International Conference, pp.
165{176, Cambridge, MA. Morgan Kaufmann.

Renz, J. (1999). Maximal tractable fragments of the Region Connection Calculus: A com-
plete analysis. In Proceedings of the 16th International Joint Conference on Arti�cial
Intelligence, pp. 448{454, Stockholm, Sweden.

Renz, J. (2000). Qualitative Spatial Reasoning with Topological Information. Ph.D. thesis,
Institut f�ur Informatik, Albert-Ludwigs-Universit�at Freiburg.

Renz, J., & Nebel, B. (1998). EÆcient methods for qualitative spatial reasoning. In Pro-
ceedings of the 13th European Conference on Arti�cial Intelligence, pp. 562{566, Am-
sterdam, The Netherlands. Wiley.

317

Renz & Nebel

Renz, J., & Nebel, B. (1999). On the complexity of qualitative spatial reasoning: A maximal
tractable fragment of the Region Connection Calculus. Arti�cial Intelligence, 108 (1-
2), 69{123.

Selman, B., Levesque, H. J., & Mitchell, D. (1992). A new method for solving hard sat-
is�ability problems. In Proceedings of the 10th National Conference of the American
Association for Arti�cial Intelligence, pp. 440{446, San Jose, CA. MIT Press.

van Beek, P., & Manchak, D. W. (1996). The design and experimental analysis of algorithms
for temporal reasoning. Journal of Arti�cial Intelligence Research, 4, 1{18.

Williams, C. P., & Hogg, T. (1994). Exploiting the deep structure of constraint problems.
Arti�cial Intelligence, 70, 73{117.

318

