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Abstract

This paper presentsrR3, a domain-independent heuristic planning system f&iPS worlds.
GRT solves problems in two phases. In the pre-processing phase, it estimates the distance between
each fact and the goals of the problem, in a backward direction. Then, in the search phase, these
estimates are used in order to further estimate the distance between each intermediate state and the
goals, guiding so the search process in a forward direction and on a best-first basis. The paper
presents the benefits from the adoption of opposite directions between the preprocessing and the
search phases, discusses some difficulties that arise in the pre-processing phase and introduces
techniques to cope with them. Moreover, it presents several methods of improving the efficiency of
the heuristic, by enriching the representation and by reducing the size of the problem. Finally, a
method of overcoming local optimal states, based on domain axioms, is proposed. According to it,
difficult problems are decomposed into easier sub-problems that have to be solved sequentially. The
performance results from various domains, including those of the recent planning competitions,
show that @T is among the fastest planners.

1. Introduction

So far, planning problems have been considered as a special kind of particularly difficult search
problems (Newell & Simon, 1972) and many algorithms for decomposition, abstraction, least
commitment etc. have been proposed to cope with them. In the early 90's, researchers were arguing
that plan-space planning is more efficient than state-space planning (Barrett & Weld, 1994;
McAllester & Rosenblitt, 1991; Minton, Bresina & Drummond, 1994; Penberthy & Weld, 1992).

In the mid 90's, new algorithms appeared that achieved even better performance by transforming
planning problems either into graph solving problems (Blum & Furst, 1995, 1997) or into
satisfiability ones (Kautz & Selman, 1992, 1996, 1998). However, it has been shown that simple
search strategies with the use of domain-dependent heuristics can solve large problems (Gupta &
Nau, 1992; Korf & Taylor, 1996; Pearl, 1983; Slaney & Thiebaux, 1996).

In recent years, part of the planning community turned towards heuristic planning, adopting
known search strategies and developing powerful domain-independent heuristics that achieve
significant performance. The first planner wasPdr (McDermott 1996, 1999) and was followed
by Asp (Bonet, Loerings & Geffner, 1997) 94 (Bonet & Geffner, 1998), str (Bonet & Geffner,

1999), RT (Refanidis & Vlahavas, 1999b)FKHoffmann & Nebel, 2000) and&ALT (Nigenda,

Nguyen & Kambhampati, 2000). These domain independent heuristic planners search for solutions
either in the state-space or in the regression space. Most of them use variations of a relatively
simple idea as a guide: they estimate the distance between two states, based on estimates of the
distances between each fact of the problem and one of the two states.
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The above planners can primarily be classified based on the forward or backward direction, in
which the heuristic is constructed and the state-space is traversed. We distinguish the following
three categories:

= Forward heuristic construction, forward searcs#AHSP, FF).
= Forward heuristic construction, backward searcb{HALTALT).
= Backward heuristic construction, forward searcRNEOR, GRT).

Generally, the forward direction seems to be more advantageous than the backward one, both
when constructing the heuristic and when searching, because in the backward direction and in case
of incomplete goal states, problems with invalid states and unreachable facts usually arise.
However, using the forward direction for both tasks requires reconstructing the heuristic function
for each visited state, spending in this way a significant portion of the processing time, while using
opposite directions for both tasks allows constructing the heuristic once, in a pre-processing phase.

This paper presents theRG planning system. It is the only domain independent heuristic
planner that constructs the heuristic once, in a backward direction and in a pre-processing phase.
UNPOR, although it uses the same directions, reconstructs the heuristic from scratch for each visited
state. ®&T, in a pre-processing phase estimates the distance between each fact and the goals of the
problem. During the search phase, these estimates are used in order to further estimate the distance
between each visited state and the goals, guiding so the search process in a forward direction and
on a best-first basis. Constructing the heuristic once offers the ability to evaluate states very
quickly, while traversing the state-space in a forward direction allows the planner to avoid invalid
states that arise in the regression space.

The paper substantially extends previous work (Refanidis & Vlahavas, 1999b, 1999c, 2000a
and 2000b), in that it presents and proves the fundamental theory of the planner, along with many
new techniques developed on it, it extensively tests the contribution of each technique to its overall
performance and provides a thorough comparison to other planning systems.

The rest of the paper is organized as follows: Section 2 presents the data structures and the main
algorithms of the planner. Section 3 discusses the difficulties that incomplete goal states cause to
the backward direction of the construction of the heuristic and presents methods to cope with them.
The same methods are also applied to identify and enrich poor domain representations.

Two approaches to reduce the problem's size are presented in Section 4. The first one deals with
the identification and elimination of irrelevant objects and the second one concerns the adoption of
a numerical representation of resources.

Section 5 deals with the problem of local optimal states and proposes a method to cope with
them. Specifically, the XOR-constraints are introduced and used in order to decompose difficult
problems into easier sub-problems that have to be solved sequentially. Section 6 presents the
operation of @T, Section 7 presents the related work and Section 8 presents performance results,
which show that &T is among the fastest domain-independent planners. Finally, Section 9
concludes the paper and poses future directions.

2. The GRT Heuristic

In STRIPS (Fikes & Nilsson, 1971), each actianis represented by three sets of facts: the
precondition listPre(a), the add-listAdd@) and the delete-lidbel(a), whereDel(a) O Pre(a). A
stateSis defined as a finite set of facts. An actais applicableto a statesif:

Pre(a) 0 S (1)

The state resulting from the application of an actida stateSis defined as:
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S =reqSa) =S\ Del(a) 0 Adda) (2)

Inductively we can define the state resulting from the application of a sequence of agtions (
a, ...,ay) to a stat&S as:

S =reqS,(ay, a, ...,an)) =req reqS (ay, az, ...,an-1)), a) 3)

with the requirement that each actiaris applicable to the stateqS (a;, &, ..., a.1)), for each
i=1, 2, ..., N. In the formalization used henceforth, the set of problem constants is assumed to be
finite and no function symbols are used, so the set of actions is finite.

A planning problenP is a tripletP=(O, Initial, Goalg, whereO is the set of ground actions,
Initial is the initial state an@oalsis a set of facts. The task is to find a sequence of adipag
..., ay that can be applied to the initial state, so that the state resulting from their application will be
a superset oGoals The sequences of actions are cafdahs A plan that can be applied to the
initial state is called &alid plan A valid plan that achieves th&oalsis called asolutionof the
planning problem. A planning problem may have several or no solutions. In the latter case the
problem is described amsolvable

The next sub-section gives a brief presentation of reh&uristic, which was our motivation
and helps to understand the following concepts, whereas the subsequent sub-sections present the
GRT heuristic in detalil.

2.1 The ASP Heuristic

In the Asp heuristic, for each actiomand for each fagt 0 Adda), a ruleC- p is formed, where
C=Pre(a). Assuming a set of rules, it is said that a fa¢$ reachablefrom a stateSif p 0 Sor
there is a rul€€ — p such that each faqtd] C is reachable frors.

So, a functiorg(p,9) is defined, which inductively assigns a numbtr each facp, wherei is
an estimate of the number of steps needed to achireen S, i.e. the distance qf from S More
specifically,g(p,S) is set to O for every fagt 0 S while g(p,S) is set toi+1, i = 0, for each facp
for which a ruleC - p exists, such tha§ g(r,s)=i. Thus:

ri

0, ifpOS
def i+1, if for someC - p, r,S) =i
9(p,S) = 2,909 ()
0, if p is not reachable fror8

In the case where there are more than one @iep for a factp, the rule with the minimum
cost is chosen. Note that a facthat was initially achieved by a ru® — p, may be re-achieved,
later, by another rul€, - p with smaller cost. That is because not all the preconditions of the
second rule had been achieved at the time when the first rule was applied. The task of applying
rules continues until no rule that can achieve a fact with smaller cost exists. The distances
computed in this way are unique.

For a set of factB, their distance frorsis defined as:

a(P, S)dgz a(p,S) (5)

ptP

The Aspplanner useg(P,S) to estimate the distances between each intermediat&stadethe
Goals So, the Apheuristic function is defined as:
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def

H .-(S) =9(Goals S) (6)

The Asp heuristic does not take into account the delete lists of the actions. The simplified
problem that is created by ignoring the delete lists is referred to asléxed problemand the
corresponding actions are referred to as rflaxed actions The complexity for constructing
Hase(S) is linear, with respect to the number of ground actions and the number of ground facts.

2.2 Backward Heuristic Construction

Instead of estimating the distance between each fact and the current state in a forward direction, as
Aspdoes, @T estimates the distance between each fact and the goals in a backward direction. This
task is performed once, in a pre-processing phase. During the search phase, these estimates are
used to estimate the distance between each intermediate state and the goals. The backward or
forward estimation of the distance between two states often results in different values, since no
heuristic is precise. However, the two directions result in estimates of equal quality on average.

The estimates of the distances between each fact and the goals are stored in a table, the records
of which are indexed by the facts. We call this table the Greedy Regression Table (by which the
acronym @&T comes from), since its estimates are obtained through greedy regression from the
goals.

In order to construct the heuristic backwards, the actions of the problem have to be inverted. Let
a be an action an® andS be two states, such thatis applicable inSandS = reqSa). The
inverted action aof a is an action applicable ii, such thaS=redS, a). The inverted action is
defined by the original action as follows:

Pre(a’)=Adda) [1 Pre(a) \ Del(a)
Del(a’)=Adda) (7)
Adda)=Del(a)
The inverted ground actions are applied to the goals, assigning progressively to each ground
factp an estimate of its distance from the goals, in a way similaskoApplying inverted actions

to the goals presupposes that the goals form a complete state. In Section 2 it is assumed that this is
always the case, whereas in Section 3 the case of incomplete goal states is treated.

2.3 Related Facts

In order to obtain more precise estimater;r Geuristic tries to track the interactions that arise
when estimating the distances between each fact and the goals. By the word 'interaction' we mean
that achieving a fact may affect achieving other facts positively or negatively. In order to track
these interactions the notion of tfledated factgs introduced.

Definition 1 (Related facts).A factq is related to another fapt if achievingp causes faqj to be
achieved as well.

We will use the notatior<  p to denote thad is related tgp. The set of all facts related to a
specific factp is denoted aeel(p), i.e.:

rel(p) ={d:a<,, P} (8)

The set of related facts of a set of fdetis defined as the union of the related factB-ddcts:
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rel(P) = Urel(p) (9)

pOP
Proposition 1.For an inverted actioa achieving a fagp, the related facts gf are defined as:

rel(p) = Pre(a) O rel(Pre(a)) O Adda) \ Del(a) (20)

Proof: Formula 10 is inductive, since it defines the related facts of gpfaased on the related

facts of the preconditions of the action achieving the fact. Thus, we prove it by induction. The
formula holds for the goal facts, for which we suppose that there is a hypothetical inverted action
without preconditions achieving them. So, the goal facts are related to each other. Then, suppose
that Formula 10 holds for the preconditions of an inverted aetidhis enough to prove that it

holds also for the facts that acti@nadds. Letp be such a fact. The facts that hold after the
application of the action, which are the related factgp,0fre the same that hold before its
application, i.e. the preconditions of the action together with their related facts, plus the facts that
the action achieves, minus the facts that the action deletes, exactly as Formula 1(8states.

According to Formula 10, facts achieved by the same action have the same related facts.
Moreover, each fact is at least related to itself.

If there was a single path to achieve a specific fact, then its related facts would be defined in a
unique way. However, this is a rare situation. Thus, there are many actions that achieve a fact,
many paths that achieve the preconditions of these actions; therefore, there is an extremely large
number of possible combinations. Storing, for each fact, the related facts for all the possible ways
of achieving it, requires huge amounts of time and space. For efficiency reasons we decided to
store only one set of related facts for each fact, the set that corresponds to the shortest path that
achieves the fact, according to the heuristic.

Proposition 2. The relation_<rel is reflexive, but it is neither symmetric, nor transitive.

Proof: The relation_<rel is reflexive, since each fact is related to itself. The relar.g)rg iS not
symmetric, since for a fagf, which is pre-requisite to achiegeq<  p may hold (if the action
achievingp does not deletg) while p< _ g may not hold, sincg may have been achieved before
p. Finally, the relation<  is not transitive, since from the relatiogsg  p andp< 1 we

cannot conclude that<  r holds, since it is possible for the action achievitg deleteg. ®

For a factp, dist(p) denotes its estimated distance from the goals. Next, we present some axioms
concerning the distances of the facts.

Axiom 1. The cost of achieving a set of facfs.{p., ..., pn} Simultaneously, cannot be lower than
the maximum of their individual distances.

dist({px, Pz -, Pu}) 2 MAX(disi(p) CEY

Axiom 2. If an inverted actiora achieves a facp, the distance op is equal to the cost of
simultaneously achievings preconditions plus one.

dist(p)=dist({ ps.p2, ...})+1, wherep; O Pre(a) (12)
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Proposition 3.1f g<_, pis true for two factg andp, thendist(g)<dist(p).

Proof: We will prove Proposition 3 by induction. Proposition 3 holds forGlels since all the
goal facts have zero distances and are related to each other. Suppose now that Proposition 3 holds
for the set of the currently achieved faEtcts It suffices to prove that for an actiansuch that
Pre(a)Facts Proposition 3 holds for the deactd1Adda).

Suppose that there is a fagflAdda) that has just been achieved, or re-achieved with smaller

cost. If there is another faqtl) Factd]Add(a), such thayj< , p, then eithelq has also just been
achieved bya and hencelist(q)=dist(p), or g is a precondition c& and then, according to Axiom2,
dist(g)<dist(p), or finally g is a related fact of aa's precondition, say' and therdist(q’)<dist(p)
(Axiom 2) anddist(g)<dist(q") (Proposition 3 holds fdfactg, sodist(g)<dist(p).

Let us suppose now that there is anotherdastich thap < g. If g has been achieved ly
then dist(p)=dist(g). If g has not been achieved ly thenq has previously been achieved by
another action, sq [J Facts In this casep would also have been previously achieved by another
action, before being re-achieved by so alsop [0 Facts Since Proposition 3 holds féracts
disto p(p)<dist(q), wheredisto p(p) the previous distance pf But the new distance pfis smaller
than its previous distancdist(p)<disto.p(p), sodist(p)<dist(q). Therefore, Proposition 3 holds in
every case.l

Corollary 1. If <, pandp <, g, thendist(p)=dist(q).
Corollary 2. If <, pbut notp< g, theng has been achieved befqre

The above two corollaries follow directly from Proposition 3. Concerning Corollary 2, the
expression 'has been achieved before' means that in the pre-processing phase, when the distances
from the goals are estimated progressiveigt(q) has been computed before dist(n case where
a fact has been re-achieved with smaller distance, we consider the last time.

Corollary 3. For a sequence of faqgtg, pz, ..., pn, N>2, for whichpi_<rel pi+1, 1=1,2,...,N-1, hold,
withoutpi1 <, Pi @lso holding, it is impossible to hape <, pi.

Corollary 3 follows directly from Corollary's 2 time ordering relation.

Proposition 4. Facts related to each other have been achieved by the same action.

Proof: Letp andq be two facts related to each other, g  p andp< . Leta;, be the action

that achievep anda, the action that achieves soplJAdda;) andgOAdday). We will prove that
a=a,. Suppose tha#a,. Sinceq~<  p, g may be an add effect af, a precondition o&, or a

related fact of ara's precondition. However, according to Corollarydist(p)=dist(q). Thus,q

cannot be anything else than an add effeet dbecause in other case digt€ dist(p) would hold.

In the same way we can prove tipatAdda,;). Thus, {,q} DAdda;)n Adda;). However, in this

case, the first action applied when computing the distances would achieve both facts. So, the facts
have been achieved by the same acti#h.
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The related facts play a critical role when estimating the cost of achieving a set of facts
simultaneously. &T groups the related facts and sums the maximum individual cost of each group.

For example, ilg< P, <, andg< , r hold for three facts, p andr, these three facts are

grouped together and contribute to the total cost only with their maximum cost, whiisk(r)s
However, ifq< ,r does not hold (since the relatiow , is not transitive), thep andr are

grouped together, whilg is not included in the same group. In this cagbgelongs to another
group, which contributes separately to the total cost.

The aggregation process is performed by the functie@rEGATE which is described below.
The function takes a set of facts;{p., ....,pn} as input, together with their distanceist(p;) and
their lists of related factsel(p), and estimates the cost of achieving them simultaneously. The
function is used both in the pre-processing phase, in order to estimate the application cost of the
inverted actions, and in the search phase, in order to estimate the distance of each intermediate state
from the goals.

Function AGGREGATE
Input: A set of factsfs, p2, ...,pn }, their distanceslist(p;) and their lists of related faatsl(p;).
Output: An estimate of the cost of achieving the facts simultaneously.

1.Set M={ pi, p2 ... pn }. Set Cost =0.
2.While( M # 0O)do:
a) Let M be the set of facts pi O M that are not included in any list
of related facts of another fact p; O M, without p; being also

included in their list of related facts. More formally:

M={ p: pp OM Op OM, p Orel (p) O p Orel (p)}
b) Let M be the set of those facts of M that are not included in M,
but are included in at least one of the lists of related facts of
the elements of M.

M={ p: p OMI M, Op OM, p Orel (p)}
c) Divide M in disjoint groups of facts that are related to each
other. For each group add the common cost of its facts to Cost .

dySet M= M\( MIM).
3. Return Cost

The AGGREGATEfunction is illustrated with thelocks-worldproblem of Figure 1. Part of the
Greedy Regression Table for this problem is shown in Table 1. For simplicity, for eaphwiact
do not consider as related the facts that have zero distances (Goalseand the facp itself.
This simplification does not affect the estimated distances.

C
a b c
I |
Initial State Goal State

Figure 1: A 3-blocks problem.
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Let us compute the distance between the initial and the goal state. The initial state consists of
the following set of facts:

((on atablé (clear g (on b tablé (on c B (clear g )

As it results from Table 1, all the initial state facts are relatedria ), whereasdn c b is not
related to any other fact. Thus, in the first iteration of tie&sREGATION loop, M, is set to (¢n ¢
b)) (step 2a) andM; is set to (On a tablg (clear & (on b tablg (clear @) (step 2b). SoCost
becomes equal to the distance oh (c B, i.e. 3 (step 2c) ant; becomes empty. A second
iteration is not performed and value 3, which is the actual distance between the initial and the goal
state, is returned.

Fact Dlstzggfsfrom Related facts
(on c tablé 0 ()
(onbq 0 0
(onah 0 0
(clear g 0 ()
(on a tablg 1 ((clearb)
(clear B) 1 ((on atablg)
(on b tablg 2 ( (©on a tablg (clear g (clear b (clear 9 )
(clear 9 2 ( ©on atable) (clear g (clear b (on b tablg)
(onch 3 ( (©on atable) (clear g (on btable) (clear 9 )

Table 1: Part of the Greedy Regression Table for the 3-blocks problem.

Corollary 3 ensures that sél, (step 2a of function AGREGATE will never be empty.
Proposition 4 ensures thiglt can always be partitioned in groups of facts that have been achieved
by the same action (step 2c). The number of iterations that functt@REGATE performs is
bounded by the initial size d,, however usually a single iteration is performed.

2.4 The Pre-Processing Algorithm

The estimation of the distance between each fact an@dhksand the computation of the lists of
the related facts for each facts of a problem are performed through the following algorithm:

1 For the representation of facts, actions and states we adopt the PDDL (Planning Domain Definition Language) syntax
throughout this paper. A manual for the PDDL language can be found at the URL
http://www.cs.yale.edpub/mcdermott/software/pddl.tar.gz
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The Pre-Processing Algorithm

Input: The action and predicate definitions of a domain and the objects of a problem.

Output: The distance estimate from the gadilst(p) and the related factsl(p) for each
ground facip of a problem.

1. Let Actions be the set of all inverted ground actions in the given

problem. For each a O Actions ,set dist (a)=+ oo,

2.Let  Agenda be a list of inverted actions. Set Agenda=0.

3. Let Facts be the set of all problem's ground facts. For each f 0O
Facts set dist(f)= +00,

4. For each f O Goals set dist(f)= Oand rel (f)= Goals .

5. For each action a 0O Actions , if A  GGREGATEPre( a))<+ o, then set
dist ( o)=A GGREGATEPre ( a))+1 and add a at the end of the Agenda.

6. While  Agenda # O do:
a) Extract the first action from the Agenda, say a.
b) For every fact f OAdd( a),if dist (f)>dist ( a),then:

- dist (f)=dist (Q)
- rel (f)= Pre(a) O rel (Pre(a)) 0O Add(a)\ Del(a)

- For every action b 0O Actions , such that f O Pre(b), if
AGGREGATEPre ( b))+1< dist (b), then dist ( b)=A GGREGATEPre ( b))+1 and
push action b at the end of the Agenda.

The Agendaworks on a FIFO basis. An action can be re-inserted ilPAgendaif its cost
becomes smaller. Thus, each fact can be achieved several times, each time with a smaller cost. The
cost of applying the Pre-Processing Algorithm is polynomial in the number of problem ground
facts and ground actions.

Proposition 5. The Pre-Processing Algorithm preserves Axiom 2.

Proof: In step 6b, the cost of applying an action is set to be equal to the cost of achieving
simultaneously the preconditions of the action plus one. This cost is assigned to the add effects of
the action, except if lower costs have already been assigned to them. Thus, Axiom 2 is preserved.
[ |

Proposition 6. Function AGGREGATEpreserves Axiom 1.

Proof: We will prove Proposition 6 by induction. Axiom 1 holds for tBeals which have zero
distances from themselves and are related to each other. Besides, Propositions 3 and 4 and
Corollaries 1, 2 and 3 hold also for them. Suppose next that Axiom 1 and all the induced
Propositions and Corollaries hold for the currently achieved Faaits It suffices to prove that for
any actiona, such thatPre(a) O Facts Axiom 1 holds for the new set of achieved facts
Facts=Facts] Adda).

Consider a set of facB[] Facts. We will prove that function BGREGATEpreserves Axiom 1,
with regard to the randomly selected Betetp be the fact with the maximum distance among the
facts of P. According to the definition of AGREGATE function, it suffices to prove thai or
another fact of equal distance is includedin
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If p O P\Add@a), then for every other facqIP\Adda), if p< , d, then dist(g)=dist(p)

(according to Proposition 3, which holds feactg and finallydist(q)=dist(p), because has the
maximum distance among the fact®Pafthe same rationale can be used in the case where there is a

sequence of fact, G, ...,q, such thap< o andgi <, 01, =1, 2, ..., N-1). Ifg DAdd(a) and
P<., d P would be a precondition @ or a related fact of a preconditionafHowever, in that

case it would not be possible tpak  q, because the distancegivould be greater than the cost

of p (according to Axiom 2, which holds for the preconditions of ac@prand this is in
contradiction with the hypothesis tfmahas the maximum distance among the fact of
Let us consider the case wherel Adda). If p has just been firstly achieved, then the only facts

q, for whichp <, g hold, are certainly the other just achieved or re-achieved add effects of action

a, which have the same application cosp Has been re-achieved bByvith smaller cost, then it is
impossible to holgp < g for another facy U P\Adda). Actually, in this hypothetical case we

would havedist(g)=distop(p), since Proposition 3 holds fgrand the previous distance mfand
distoLo(p)>distvew(p), so dist(q)>distvew(p), which is in contradiction with the hypothesis tipat
has the maximum distance among the factB. dfherefore, in any casp,or another fact of equal
cost is included iMM, and the cost of achieving simultaneously the fac® isfequal to or higher
than their maximum distancel

We close this section by mentioning the two types of factsstitéc factsand thedynamic
facts that can be found in a problem. The first type concerns the facts that are neither added nor
deleted by any action, while the second concerns the rest of the Rtida&sifies automatically
the facts, by analyzing the action schemas of the domain. All the procedures presented in Section 2,
i.e. the distance estimates and the related facts, concern only the dynamic facts.

3. Detecting and Enhancing Incomplete States

Backward heuristic construction induces a problem: In most of the problems the goals do not
constitute a complete state description, so it is not possible to apply inverted actions to them. For
example, in the commonly usdalyistics problems, where packages have to be moved between
several locations via trucks and planes, the goals do not determine the final locations of the trucks
and the planes. The source of the problem is that Heh@uristic is constructed using a stricter

than usual regression, i.e. it uses actions, the add effects and the non-deleted preconditions of
which (i.e. the preconditions of the corresponding inverted actions) are included within the goals
(in the usual regression, actions with at least one add effect within the goals are used). In this way
GRT succeeds in obtaining more precise estimates and avoiding unreachable facts.

The solution adopted byrRG to confront the problem of incomplete goal states is to enhance the
goals with new facts, which are not in contradiction to the existing ones. For example, since the
goals of the 'logistics.a" problem (Veloso, 1992) do not determine the final locations of the two
planes, it is supposed that each one of the planes could be at any of the three airports. So, the
ground facts:

(at planel pgh_ajr(at planelbos_ai) (at planella_air)
(at planeZpgh_ain (at planeZbos_ai) (at plane2a_air)

can be added to the new goal state, which is called hencefoghtthaced goal state
It should be noted that the enhanced goal state is only used in the pre-processing phase, for the
construction of the heuristic. During the search phase, attention is paid only to reach the original
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goals. In this way, completeness is never lost, even in the case where wrong facts have been
selected to enhance th@oals However, selecting wrong facts may significantly affect the
efficiency of the heuristic function.

Two issues arise when trying to enhance the goals: The first one is how to detect the candidate
new goal facts and the second one is which of them to use. Sections 3.1 and 3.2 examine these
issues, while in Section 3.3 a similar technique is used for identifying and enriching poor domain
representations.

3.1 Detecting Missing Goal Facts

Regarding the identification of the candidate facts to enhance the goals, there are two automatic
approaches. The first one consists of a forwarhFGIPLAN-like (Blum & Furst, 1999) pre-
preprocessing phase that computes all binary mutual exclusion relations (or simply "mutex"
relations) among the facts of the problem. A number of optimizations of this approach are
presented in (Refanidis & Vlahavas, 1999c), based primarily on the monotonic behavior of the
mutual exclusion relations (Long & Fox, 1999; Smith & Weld, 1999) and secondly on the fact that
it is not necessary to construct a complete planning graph, since it will not be used for extracting a
plan. After the computation of the mutual exclusion relations, all the facts that are not mutually
exclusive with any goal fact are considered candidates for the enhancement of the goals. Its
advantage is that no extra information is needed, apart from the usB&S Slomain
representation. Moreover, mutual exclusion relations that are not easily recognized by a human
expert can be detected in this way. Finally, this approach can be also exploited as a coarse-grained
reachability analysis for the problem's facts. The disadvantages of this approach are that it is time
consuming and that it does not detect mutual exclusion relations of higher order than two.

The second approach is to use domain specific knowledge in the form of axioms. For example,
an axiom can state that a truck or a plane is always located at some place. So, if the goals do not
determine where a truck is, we can deduce a set of candidate goal facts using this axiom. The
advantage of this approach is that the time needed to deduce the candidate facts is negligible, in
comparison with the time needed for the rest of the planning process. Moreover, more complicated
relations than simple binary mutual exclusion ones can be encoded. The disadvantage is that extra
labor is required in the domain encoding. However, several methods for automatic discovery of
domain axioms have been proposed, e.g. tise@PLAN system (Gerevini & Schubert, 1998) and
the work of Fox and Long on the automated inference of invariants (Fox & Long, 2000), and it is in
our future plans to adopt such a method RTG

The RT planner uses the first approach to detect the missing goal facts. Thus, an overhead in
total solution time is imposed by the extra pre-processing work. The contribution of this work to
the total problem solving time varies from less than 10% in domain$lideks-world to more
than 20% in domains likeogistics The ratio depends on the difficulty of the domain, i.e. how
much time is consumed by the search phase. Logistics problems are easigio¢karworld
problems, so in this domain the overhead is more severe. In the future, we intend to adopt an
automatic method for detecting domain axioms, in order to avoid this overhead.

3.2 Enhancing the Goals

GRT supports three methods of selecting among the candidate new goal facts:

= Select all candidate facts.
= Use the initial state facts.
= Favor the most promising facts.
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The first method considers all the found facts as goal facts and assigns zero distances to them.
In most cases, the enhanced goal state obtained in this way is not a valid state, since the new facts
may be mutually exclusive to each other (but not to the original goals). The advantage of this
approach is that the heuristic construction is very fast, since many facts are achieved at the
beginning and a large number of actions become initially applicable. The disadvantage is that the
obtained heuristic is less informative, since there are small differences between the obtained
estimates. So, the best-first strategy tends towards breadth-first, visits more states, consumes more
time, but generally produces better plans than the other two methods.

The second method enhances the goals with the candidate facts that are also included in the
initial state, whereas the facts that are mutually exclusive with the selected ones, are rejected. The
advantage of this method, compared to the first one, is that it results in greater differences between
the facts' distances, and therefore in faster search phase. On the other hand, a preference for the
initial state facts is a risk, because if these are not or - even worse - they cannot be included within
the goals, the search process may become disoriented, leading to longer plans. This method is more
suitable to problems, where there are objects' properties that are unnecessary to solve the problem
and are left undetermined in the goals.

The third method tries to combine the advantages of the other two. In contrast to them, where
the enhancement of the goals is performed in a single step, prior to the construction of the heuristic,
this method adds facts to the goals progressively, in parallel with the heuristic construction.
Actually, facts are added to the goals only in the case wAgrda(Section 2.4) becomes empty.

In this case, candidate facts are progressively assigned zero distances, until a new inverted action
satisfies its preconditions. Each time a fact is selected, other candidate facts that are mutually
exclusive with the selected one are rejected from the set of candidate facts.

The method favors facts that can be combined with already achieved facts, in order to make an
inverted action applicable. The following four rules are applied in decreasing preference:

— The facts that can be combined with the original goals are selected first.

— Then, the facts that can be combined with other already achieved facts are selected.
— Next, the facts that are included in the initial state are selected.

- Finally, the remaining candidate facts are selected randomly.

Generally, this method results in the best solving speed and, in many cases, produces equal or
even better plans than the first two methods. However, especially in terms of plan quality, there are
many exceptions depending on the specific problem. It is not difficult to create problems such that
any of the methods presented above performs best. The default method far thlarter is the
first one, which is the only method that has been used initg08 competitioh

Note that there are domains, likkocks-world freecellandelevatorof the APs-00 competition,
or thegripper and themoviedomains from the &#s-98 competitiod, where the goals are complete
or near-complete state descriptions; therefore the method used in these domains does not affect
neither solution time nor solution quality. In other domains, asntlgstery (AIPS-98), it is
impossible to predict, without solving the planning problem, which of the candidate facts could
actually be goal facts, so in this case the only acceptable method for goal completion is the first
one.

2 The official WEB page of the IAs-00 competition can be found at the URL httpwiv.cs.toronto.edu/ai@€00/.
3 The official WEB page of the IAs-98 competition can be found at the URL
ftp://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html
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3.3 Domain Enrichment

In this section, we present an approach adopted by ®teplanner, in order to deal with poor
domain descriptions. By the word 'poor' we refer to domains where negative facts are implicitly
present in the initial state and in the actions' preconditiors.f&ed this problem twice, with the
movieand theelevatordomains.

In order to explain the problem, let us considereieeatordomain, where there is one elevator,
several floors and several passengers. Each passenger is located in an initial floor and wants to
move to her/his destination floor. The domain is described by four action schboes, Floor
Passengérand (lepart Floor Passenger for boarding and leaving the elevator amgh Floorl
Floor2) and @lown FloorlFloor2) for moving the elevator.

The action schemddg@ard Floor Passenggis defined by the following PDDL formula:

(:action board
‘parameters (?f ?p)
‘precondition (and (floor ?f) (passenger ?p)
(lift-at ?f) (origin ?p ?f))
-effect (boarded ?p))

The only dynamic predicate in the definition of action schbowd is boarded an add effect
denoting that the passenger has boarded the elevator. There is no precondition requiring that the
passenger is not boarded. The problem with this definition is twofold. Firstly, the action can be
applied several times to the same passenger in the same plan, i.e. a passenger may board the
elevator although she/he has already boarded. Secondly, and specifically, tib i€ not stated
explicitly that the passengers are not initially boarded. Actually, the initial state contains static facts
only, which are not removed in the successive states. Howerertakes into account dynamic
facts only in order to estimate distances. The result is that the initial state and all the subsequent
states are assigned zero distances fronGibeds and the best-first strategy behaves as a breadth-
first one.

What is needed is the definition of a new predicate,nedyboarded Facts of this predicate
should be added to the initial state, denoting that each passenger is initially not boarded, and the
action schemhoardshould be changed accordingly.

GRT performs domain enrichment at run-time. The identification of the above situation is
performed in a way similar to the identification of the incomplete goal states. In this ¢ase, G
looks for dynamic facts of a problem that are not mutually exclusive with any initial state fact. In
case of such facts, the negations of the identified facts are defined at run-time and added to the
initial state. Furthermore, the negations are added to the preconditions lists and the delete lists of
the actions that achieve the identified facts.

In the elevatordomain this is the case with theard anddepartactions and thboardedand
servedpredicates. Thaot_boardedandnot_servedredicates are defined at run-time, the initial
state is enhanced with facts determining that each passenger is neither boarded nor served yet and
the actiondoardanddepartare transformed accordingly. For example, the action scheardis
transformed into the following definition:

(:action board
‘parameters (?f ?p)
:precondition (and (floor ?f) (passenger ?p)(lift-at ?f)
(origin ?p ?f) (not_boarded ?p))
-effect (and (not (not_boarded ?p))(boarded ?p))
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A similar situation arises in thraoviedomain. In this domain, the goal is to have enough snacks
so as to watch a movie. There are several action schemas of the form:

(:action get-chips
:parameters (?X)
‘precondition (and (chips ?x))
-effect (and (have-chips)))

This action schema has the static fattigs 2) as precondition and produces the dynamic fact
(have-chipy The action can be applied several times, however once is enough to achieve the goal
of having chips. The difficulty in this domain is that the initial state implicitly declares that we do
not have chips (and dips and pops etc), but there is not any specific dynamic fact to make this clear.
Therefore, in case no domain enrichment process takes pRtas&igns to the initial state a zero
distance from the goals. With the domain enrichment feature détects that there are facts like
the have-chipshave-dipsetc that are not mutually exclusive with the initial state, defines their
negations rfot_have-chipsnot_have-dipsetc.), adds them to the initial state and transforms the
actions accordingly.

In both of the above domains, without the domain enrichment featurerth@l&ner could
only solve some of the easiest problems. However, with this feature it was able to tackle all
problems very efficiently.

Adding negative predicates in the preconditions of the actions may lead to loss of completeness,
since the actions may not be able to be applied in some states, where otherwise they could. In order
to prevent completenessRGtreats the new preconditions as conditional preconditions, i.e. they
are not necessary for the application of an action to a state, however, if they are present in the
current state they are removed from the successor one.

4. Reducing the Size of the Problems

In this section, two methods to reduce the size of a problem, i.e. the number of ground facts and
actions, are presented. The first method refers to the identification and elimination of objects,
which are certainly not part of any solution. The second method concerns the adoption of a
numerical representation of resources, instead of the problematic atom-based representation of
numbers that has been used in domainsrilgeteryandfreecell Reducing the size of a problem
reduces the effort needed to solve it, especially in the pre-processing phase, where distances for all
facts of a problem have to be computed.

4.1 Eliminating Irrelevant Objects

In many domains, there are objects that are irrelevant to any solution. The most typical examples
can be found in the transportation domains, lib@istics mysteryand elevator where some
packages are initially found in their destinations or for which no specific destination is determined.
So, these objects, together with all the facts and actions containing them, can be removed from the
problem description, without losing completeness.

In GRT we developed a method that detects and removes irrelevant objects. The method
concerns pureRIPs domains without negation in the preconditions of the actions or in the goal
formula; however, it can be easily extended to cover these cases. The objects are identified before
the pre-processing phase using the following two rules:

An object is irrelevant to any solution for a specific planning problem, if:
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= |t does not appear in any goal fact, unless the same fact is also included in the initial state, and

= there is no action containing this object in its preconditions, unless the object is also contained
in all the action's effects.

The above conditions are very strict, but they ensure that any detected object is certainly
irrelevant, so they maintain the completeness of the problem solving process.

Proposition 7. Any object satisfying the above rules can safely be removed from the problem
description, without sacrificing completeness.

Proof: Suppose that an objealj has been identified, for which the above two rules hold. We will
show thatobj is not necessary to achieve any other goal fact, which does not coljtairet us
assume that there is a fart] Goals which does not contaiobj. Suppose that there is an action
that achieveg, with a precondition containingpj. In this case, the second rule is violated, since
there is an action includingbj in its preconditions, withoutbj appearing in an effect. So, fagt

can be achieved only by actions without preconditions contaatipg hus, if we regress the goals
using actions achieving, the established subgoals do not contdijy However, in the same way

we can reject actions includimdpj in their preconditions and achieve the new established subgoals.
So,0bj is not necessary to achieve any goal or subgoal of the problem. Moreover, there is no goal
fact containingobj, which has to be achieved; even if there is one, it is already present in the initial
state. Thereforebj can safely be removed from the problei.

The application of the above rules for the elimination of irrelevant objects can be done
progressively. Let us consider an enharlogisticsdomain, where we added colors. Specifically,
we define a dynamic predicatpafnted ?object?color) denoting the color of a package, a static
predicate ¢olor ?color) declaring the available colors, and an action schemaint(?object
?0ld_color Znew_coloj for painting a package. Let us assume that the goal state does not
determine the colors of the packages. In this case, the colors are irrelevant objects and can be safely
removed, together with all the facts and actions that include colors.

Suppose also that there are brushes that are used to perform the paint operation. There are two
new action schemasgét ?brush and (eave?brush and a predicatehfve Prush), which is an
effect of thegetaction and a precondition in the enhanced acpam{ ?package?color ?brush.

In this case, brushes are also irrelevant and should be eliminated. However, since thpaittion
needs brushes and has effects not containing thenp@iatéd?package?color) ), the brushes are

not removed, due to the second rule. However, after removing aibtbeobjects, all the paint

actions are removed; thus, brushes do not violate the second rule for the remaining actions and can
be safely removed.

The disadvantage of this approach for the elimination of irrelevant objects is that it does not
remove objects that can eventually appear in a plan, but there are other better (i.e. shorter) plans not
using them. For example, in thagisticsdomain, suppose that we have three citiggl, city2 and
city3and a package that has to be transferred from one locatitglofo another location afity2.

In this casecity3, together with its locations and its truck, are not necessary to solve the planning
problem, since the package can be transferred directlyditythto city2, without going viacity3.
However, it is not easy to identify the irrelevancecivy3. Actually, there are plans that transport
packages frontityl to city2 via city3. If we decide to removeity3 and its objects from the
problem representation, we take the risk of sacrificing completeness, since the problem may
become unsolvable. Deciding safely, without loss of completenessititgand its objects can be
removed, can be as hard as solving the original problem.
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Other approaches on the elimination of irrelevant or redundant information, in order to achieve
better performance, have been proposed by Nebel, Dimopoulos & Koehler (1997), Scholz (1999)
and Haslum & Jonsson (2000). The work of Nebel, Dimopoulos & Koehler concerns ignoring
irrelevant facts and actions (not objects), based on heuristics that approximate a plan by
backchaining from the goals without taking into account any conflicts. Although this approach is
more powerful, in terms of elimination, than the one presented in this section, it is not solution
preserving. Furthermore, it may be more time-consuming, since it demands the construction of an
initial approximate plan.

Scholz introduceaction constraintsi.e. patterns of action sequences that can be applied to the
same states and produce the same overall effects. Action constraints can be used for pruning
purposes by the state-space planners, reducing the size of the search space to the levels of the
partial-order planners (Minton, Bresina & Drummond, 1994), without losing completeness. The
work of Scholz is actually a re-investigation of thieep setof actions that were originally
presented by Godefroid & Kabanza (1991) and have been also examined by us, under the name
prohibited actionsin an earlier version of & (1999a). The experience of the authors is that
detecting and pruning redundant actions sequences is time consuming, while a more effective
approach is to employ a closed list of visited states, paying however a cost in terms of memory.
The latter approach is adopted by ther@lanning system. However Scholz considers only action
sequences of length two, which makes his approach fast enough but less effective than a closed list
of visited states structure.

Haslum and Jonsson compute a reduced set of actions for a problem, by ignoring actions that
can be equivalently replaced by sequences of other actions. Their approach is solution preserving,
it can be adopted by anyr®@Ps planner that pre-instantiates all the actions of a problem, and
results, for some planners, in considerable speed-up but also in longer plans.

4.2 Numerical Representation of Resources

In this section, we present an enhanceai$s formalism, where resources are represented by
numbers, instead of atoms. The work has been motivated Imyyiterydomain, but it is suitable
for any domain with resources. Moreover, it can easily be extended to cover domains where
reasoning with numbers is required.

GRT supports an explicit representation of resources in the most natural format, i.e. the
numerical format. According to this, resources are distinguished from other types of objects and are
separately declared using the following statement:

(: resources R1R2 .. RN)

whereRi are the various resources. Furthermore, declarations of the following form are added to
the initial state description :

(amountR1 V1 )( amountR2V2 )...( amount RN VN )

denoting the initial quantity of each resource. Moreover, it is allowed for resources to participate in
relations with other atomic facts. Finally, action definitions are enhanced, so as to declare explicitly
the consumed resources.

As an example, we consider thg/sterydomain, which comprises some cities, connected via
edges, some packages that have to be transferred from their initial locations to their destinations
and some trucks. In the beginning, each city has an amount of fuel. For a truck to travel from a city
clto an adjacent citg2, c1 must have at least one unit of fuel. After the journey, the fuel of
decreased by one.
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In the original domain representation, the different fuel quantities are represented by relations of
the formt:

(fuel fuelo ) ( fuel fuell )( fuel fuel2 ) etc.
while the orderings between these quantities are represented by relations as follows:
(‘adjacent _fuel fuelO fuell ) ( adjacent fuel fuell fuel2 ) etc.
and the initial amount of resources in each city as:
( city_fuel cityl fuel3 ) etc.
Finally, the actions that consume resources, e.g. moving a truck, are of the following form:

(: action move

. parameters  ( ?tr ?c1 ?c2 ?f1 72 )

. precondition (and (truck?tr ) ( city?cl )( city?c2 )
(adjacent_cities ?c1 ?c2 )( fuel?2f1 ) ( fuel?f2 )( at?tr?cl )
(adjacent fuel 21 212 ) ( city_fuels ?c1 ?2f2 )

ceffect (and (not (at?tr?cl ))( not (city fuel ?cl 212 )
(at?tr?c2 ) ( city_fuel ?c1 ?f1 )

In order to have an idea of how resources are representerirjiebus consider theTRIPS
MYSTY-X-1 problem of thanysterydomain. This problem has 6 cities, so 6 resource objects are
declared:

(: resourcesrlr2r3r4r5r6 )
The resources are related with their corresponding cities:

( city_fuel cityl r1 ) ( city_fuel city2 r1 ). ( city_fuel city6 r6 )
Propositions are added to the initial state, denoting the initial availability of each resource:
(amountri1 )( amountr22 )... ( amountré 3 )

Finally, actionmoveis defined in a way that separates the resource requirements from the
precondition and the effect lists:

(: action move

: parameters  ( ?tr ?c1 ?c2 ?f )

. precondition (and (truck?tr )( city?cl )( city?c2 )( at?tr?cl )
(adjacent cities ?c1 ?c2 ) ( city_fuel ?2c1 ?f )

ceffect (and (not (at?tr?cl ))( at?rr?c2 ))

s resources ( amount?f1 ))

Table 2 shows the number of ground facts and ground actions for the first five problems of the
mysterydistribution, for the two alternative resource representations. As it is clear from this table,
through the numerical representation of resources there is an important reduction in the number of
ground facts, which is more considerable in the case of ground actions. What is even more
important is that the size of the problem in the atom-based representation can grow illimitably, if
more levels of resource availability are added, whereas in the numerical representation the size of
the problem remains constant.

4 In the APs-98 competition, different predicate and object names have been used; however, in this paper we have
translated them into more meaningful ones for simplicity.
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Atom representation Numerical Representation
Problem ground facts ground actions ground facts$ ground actions
strips-mysty-x-1 101 150 56 48
strips-mysty-x-2 359 3596 310 1200
strips-mysty-x-3 277 1676 230 816
strips-mysty-x-4 178 210 144 168
strips-mysty-x-5 299 2325 269 1032

Table 2: Size of the problem (number of ground facts and actions)
for the two alternative resource representations.

5. Using XOR Constraints to avoid Local Optimal States

In this section, we tackle the problem of local optimal states. Firstly, we illustrate the problem, then
we introduce XOR-constraints and finally we present how these are exploiteRitiayp Grder to
avoid local optima.

5.1 Local Optimal States

During the search phaseRGalways selects to expand the most promising state, according to its
heuristic. If the various facts of a problem were independent or everrilays managed to

track their interactions through the related facts, this strategy would be optimal. However, this is
not always the case and some times the search is led to local optimal states. Therefore, the planner
should temporarily backtrack to less promising states, before selecting the most promising ones.
Figure 2 presents an example situation:

Initial state Goal state
2 K 2 K
1 1
0 R 0 R
0 1 2 0 1 2

Figure 2:A 3x3 grid problem.

The problem refers togrid-like domain (McDermott, 1999), whekeis a key andR is a robot.
The robot can only proceed to adjacent positions. The valid actiogetaedleavethe key and
movethe robot. Table 3 shows part of the Greedy Regression Table for the problem of Figure 2.
According to this Table, the distance between the initial and the goal state is 10. There are two
applicable to the initial state actions, moviRgo n1_0Oand movingR to n0_1 After movingR to
nl_Othe resulting state has a distance from the goals equal to 9, whereas after Riouiig 1
the resulting state has a distance from the goals equal to 11. So the planner decidesRttcomove
nl_0 and subsequently to2_Q However, it is obvious that the optimal first movements are
moving the robot tm0_1, next ton0_2 getting the key etc.
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Fact Distance Related Facts
from Goals

(at Rn2_0
(at Kn2_2
(atRn1_0
(at Rn0_0
(at Rn0_J)
(at Rn2_1)
(at Rn2_2
(in RK)
(atRnl_2
(atKnl_2
(at Rn0_2
(at Kn0 2

AN AN AN AN AN AN
N N N N N N N

(@Rn2_2)

()
(@Rn1_2)

()
(@Rn0_2)

Table 3: Part of the Greedy Regression Table for the 3x3 grid problem.

ORh~NWWNPFPWNRPFL, OO

Initially the planner does not select the optimal action, since it leads to a state with a greater
distance from the goals, according to the heuristic. In order to decide to move the robot towards the
key, the planner should go through all the other valid plans, then backtrack and move the robot to
worse states (this requires that the planner maintains a closed list of visited states and does not
revisit them). In difficult problems, the number of states that the planner has to visit before
following the optimal direction, is extremely large. This is the main reason Wy lBe many
other heuristic planners, does not hargtld-like domains efficiently.

For the 3x3grid problem of Figure 2, an ideal planner should detect that, in order to move the
key fromn0_2ton2_2 it is necessary that the robot gets the key, so thedbB0_2 should be
achieved before the facat(R n2_0. However, the planner does not know that the faamttsR(
n0_0, (at Rn2_0 and &t Rn0_2 are related in some way, because the domain definition does not
provide this piece of information. Therefore, it is necessary to provide the planner with information
about relations that hold between the facts of the problem.

5.2 Defining XOR-constraints
In order to avoid local optimal states, we provider®ith knowledge of relations between facts,

where exactly one of the facts can hold in each state. We call these relations XOR-constraints.

Definition 2 (XOR-constraint). An XOR-constraint is a relation between ground facts. The
relation is valid in a state, if exactly one of the participating facts holds in that state.

The general form of an XOR-constraint schema is the following:
((xor f; f5...) ¢ €2 ...)

where f; are the facts that cannot co-appear in any statecaade static facts that provide
supplementary conditions such as type constraints, relations between objects, etc.

XOR-constraints can be formalized for almost any domain. For example Jagistecsdomain
we could define the following XOR-constraints:

((xor (at ?Truck *)) (truck ?Truck))
( (xor (at ?Plane *) ) (plane ?Plang )
( (xor (at ?Package ¥ (in ?Package ¥ ) ( package?Package)
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Question marks (?) precede named variables, whereas asterisks (*) denote no-named ones. The
definitions mean that for every instantiation of the named variables that appear in an XOR-
constraint and for all the valid instantiations of the no-named variables, according to the predicate
definitions, exactly one ground fact can hold in each valid and complete state. The above XOR-
constraints schemas are general definitions that can be grounded in several ways, according to the
different ways in which their named variables can be instantiated.

In some cases, it is possible to have XOR-constraints that incorporate AND relations. For
example, if in thdogistics domain the predicate(t ?Packaggis defined, which means that a
package is not loaded either in a truck or in a plane, then the relevant constraint should be written:

((xor (and( (at ?Packagée ) (out ?Package) (in ?Package )) (package ?Package)

Note that some facts may not appear in any XOR-constraint, while some others may appear in
more than one. Henceforth, we refer to facts that appear in at least one XOR-consX&mR- as
constrained facts

It is a requirement of the current version a¢1Ghat the XOR-constraints are included in the
domain definition. However, they could be computed analytically, based on the mutual exclusion
relations between the facts of a problem, since mutually exclusive facts cannot appear
simultaneously in any valid state. However, providing them manually allows for some form of
guidance, since the domain engineer can leave out some of them, since they would lead to pointless
decompositions.

The notion of XOR-constraints is not new in planning. Gerevini and Schubert (1998) proposed
a method for the automatic inference of state constraints from the action definitions and the initial
state.Single valuedness constraimssv constraintsare the closest to the XOR-constraints. 8ut
constraintsconcern instantiations of the same predicate, while XOR-constraints can be relations
between ground facts of different predicates. However, in more recent work (2000a, 2000b), they
extended their work to also infer XOR-constraints.

The object oriented domain specification formalism introduced by McCluskey & Porteous
(1997) is similar to XOR-constraints. According to this, states are not defined as collections of
facts but as collections of objects, each object having its own internal status. So, XOR-constraints
can be implicitly defined from the requirement that all object attributes are single valued.

5.3 Decomposing Problems into Sub-problems using XOR-constraints

In this section we illustrate howRG exploits XOR-constraints within the pre-processing phase, in
order to avoid local optimal states. Specifically, using theam Banages to establish new ordered
subgoals that have to be achieved before achieving the original goals. These subgoals are grouped
into ordered intermediate states, thus the original difficult problem is decomposed in a sequence of
easier subproblems that have to be solved sequentially.

We will present the steps of the problem decomposition process through the example of Figure
3, a 4x4grid problem with two keys1 andK2) and two robotsR1andR2).

Initial State Goal State
3 K2 3| R4 K3
2 R2 2
1 1 K1
0 R1 K1 0| R1
o 1 2 3 o 1 2 3

Figure 3: A 4x4grid problem.

134



BACKWARD HEURISTIC CONSTRUCTION INFORWARD STATE-SPACE PLANNING

distances3

(atR2n0_3 (atR2n1_3 @ R2n2 3 (move R2n2 2 n2)B
distance0 [ distancel [P distance2 @ R2n3_3

- (move R2nl_3n0)B  |(move R1n2_3nl1)B distance3
(move R2 n3_3 n2

Goal facts !
. \
(aR1n0_Q |, (@atR1nl_0 (@atR1nl_) (atR1n2_0 (atR1n3_0
distanceO ¥  distancel —» distance2 distance2 —¥ distance3
- ! (move R1 n1_0n0) (move R1nl 1n1)p (move R1n2 0nl)p (move R1 n3 0 n2)p
|
! v
(atkinl ) | (holding R1 K1) (atK1n3_0Q
distance0 , » distance3 distance7
- ! | R1 K1 n1) et R1 K1 n3
! eave R K1 i) @RrR2n2 3 L D
|
1
1
1

W

A

B i it T R

(atk2nl_3 (holding R2 K2
distance0 > distance2 (Z}Sgn’;i%fi
- (leave RX2 n1_3 (get R2 K2 3 3

Figure 4: Part of the Greedy Regression Graph for the 4x4 Grid problem.

For this domain the following XOR-constraints can be defined:

((xor(at ?Robot *) ) (robot ?Robo) )
( (xor(at ?Key *) (holding ?Key) ) (key ?Key) )
The above definitions have four ground instantiations, one forkRalobtand one for eacKey.
Henceforth the notation XQJg; will refer to the ground XOR-constraint concerning object OBJ.
The first information that can be extracted is pairs of facts, one from the initial state and one
from the goals, which belong to the same ground XOR-constraint. For the problem of Figure 3 the
following pairs can be identified:

XORgi: (@tR1N1L D - @R1N0O D
XORg2 (@atR2n2_2 - @ R2n0_3
XORk;: (atK1n3 0 - @ Kinl )
XORyo: (atK2n3 3 - @ K2nl_ 3

The original RT planner did not store information about the inverted actions, which achieved
the various facts in the heuristic construction phase. However, in order to exploit the XOR-
constraints, this information has to be stored. By storing these actions, the table structure used by
the RT heuristic is transformed to a directed acyclic graph. We call this structure Greedy
Regression Graph or simply GRG.

The nodes of this graph are labeled with the facts of the problem. Each node retains also the
estimated distance between its fact and the goalshe corresponding related facts. It retains also
the name of the inverted action that achieved its fact. The arcs that point to a node originate from
the nodes of the preconditions of the inverted action that achieved the node's fact. Figure 4 shows
part of the GRG structure for the 4gAd problem (the related facts are omitted).

Based on GRG, for every ground XOR-constraint, a sequence of actions which is able to
transform the initial state fact to the corresponding goal state fact can be derived. We are interested
only in the actions that change the XOR-constraint's facts and not in actions that provide auxiliary
preconditions. For the problem of Figure 3, the actions' sequences are shown in Table 4:
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Initial state Intermediate goals Goal state
fpinletstetsinils § =
XORg; | (atR1n1_Q » (at R1n3_0 (atR1nl) ! (atR1n0 0 |i
| ! N X ! :
: : p A AN ' !
: s e —— :
XORg; 1 | (atR2n2_3 [ - £yl (atR2n3_3 //' (atR2nl_3 \ '» (atR2n0_3 |1
| VA il
XORk; i (atK1n3_Q i i v s »{(holding R1 KJ / \ i | (atK1n1_) i
i N | |
XOR2 || (atk2n3_ 3 (= »|(holding R2 K3 N (atkanl 3 ||
"_F-i_g-u_r-e_ 5: _fhe)rdering graphfor the 4x4 grid problem.
XOR Initial State Goal State .
. Sequences of actions
constraints Facts Facts
XORgr; | (@tR1nl1 ®| (@ R1n0 D [(move R1nl O 0
XORgr, | (@tR2n2 2| (@ R2n0_3 |(move R2n2_2 n2_3 (move R2n2_3nl_3}
(move R2n1_3n0_3
XORk; | (atK1n3 0| (atKinl_ ) |(get R1 K1 n3 P (leave R1Khl 1)
XORk; | (atK2n3 3| (atK2nl 3 |(get R2K2n3_3 (leave R2 K2nl1 3

Table 4: Sequences of actions that transform the initial state facts
to the corresponding goal facts.

Checking the preconditions of the above actions, we can find facts that are members of foreign
XOR-constraints. These facts are subgoals that have to be temporarily established, before
achieving the original goals, in the forward search phase. In Table 4, the agébRd (K1 n3_)0
and (eave R1 K1 nl)lof the XOR; sequence haveaf R1 n3_) and at R1 nl_) as
preconditions respectively, which are members of the g@&ation. Similarly, the actiongét
R2 K2 n3_3and {eave R2 K2 nl)3of the XOR; sequence havat R2 n3_}and at R2 n1_3}
as preconditions respectively, which are members of thegX2Rtion.

There are two types of subgoals. These are the XOR-constrained facts that are either:

()
(I

preconditions of a ground action in a foreign XOR sequence, or
add-effects of an action, in their own XOR sequence, which has a foreign precondition.

From the identified subgoals, we can construct a graph, conjoining the new subgoals with arcs
that denote ordering constraints, using the following rules:

1. All the subgoals are ordered after their initial state fact and before their goal fact (if any).

2. Subgoals of type (ll) that are members of the same XOR-constraint are ordered according to
the ordering of their actions.

3. Subgoals of type (I) are ordered together with the corresponding subgoals of type (Il), which
have resulted by the same action.

4. For a specific XOR-constraint, subgoals of type (I) are ordered before the subgoals of type (II).
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We call the resulted graph tlmedering graphof the problem, since it denotes the order in
which the subgoals have to be achieved. Figure 5 showsrdieeing graphfor the problem of
Figure 3. Lines with arcs denote ordering constraints. Double-lines without arcs denote that the two
facts are ordered together.

Proposition 8 The ordering graph is an acyclic graph.

Proof sketch: The proof can be based on the way in which the facts are achieved in the Pre-
Processing Algorithm (Section 2.4). Actually, facts are achieved in a specific time order (in case
where a fact has been re-achieved with smaller cost, we consider the last time it has been
achieved). We define the ordering relation < between facts, denoting that a fact has been achieved
before another in the Pre-Processing Algorithm. Similarly we defing tation.

Ordering relations between the subgoals originate in two ways. Firstly, subgoals of type (ll) of
the same XOR-constraint are ordered explicitly to each other, according to the time they have been
achieved (in Figure 5 these ordering relations are denoted with non-dashed lines with arcs).
Secondly, each subgoal of type (I) is ordered before than or at least at the same time with the
previous one of its corresponding type (Il) subgoal (in Figure 5 these ordering relations are denoted
with dashed lines with arcs). Using the above equivalences, we can transform the ordering graph to
an equivalent time-ordering graph. Since a time-ordering relation cannot include cycles, the same
happens for the ordering graptm

The ordering graph makes it possible to construct intermediate, possibly incomplete, states,
which have to be achieved sequentially. Starting from the initial st&teatBempts to insert one
subgoal from each XOR-constraint in each intermediate state. This fact must have the following
properties:

= |t has not been inserted in a previous intermediate state,

= jtis not ordered after some other fact of the same XOR-constraint that has not yet been inserted
in a previous intermediate state, and finally

= it is not ordered together with a fact of another XOR-constraint that cannot be inserted in the
current intermediate state.

In case where there are more than one facts with the above properties for a single XOR-
constraint, the selection among them is done arbitrarily. Finally, in case where no fact with the
above properties exists for an XOR-constraint, the intermediate state is left incomplete.

Corollary 4. It is always possible to construct the intermediate states.

Corollary 4 follows from Proposition 8. Since the ordering graph is a directed acyclic graph, it
is always possible to find at least one subgoal to be included in the next intermediate state. The
number of subgoals is an upper bound for the number of the intermediate states that will be
constructed.

From the ordering graph of Figure 5, the following intermediate states can be extracted:

Intermediate state 1: (@ R1n3 D (@ R2n3_3 (inKLR) (inK2RI)
Intermediate state 2: (@ R1nl_) (@atR2nl_3P (atK1nl ) (atkK2ni_3)
Intermediate state 3: ((@ R1n0_ Y (@t R2n0_3P (at Kinl 3 (atK2nl_3)

where the last state is the goal state.
After the construction of the intermediate states, the planner has to solve three sub-problems,
which are easier than the original one; thus, the overall time to solve them is shorter than the time
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needed to solve the original problem. Note, however, that this decomposition may lead to loss of
completeness. In domains where no deadlock exists, some solutions may be pruned. In domains
where deadlocks do exist, the decomposition may produce unsolvable sub-problems. In order to
maintain completeness, the algorithm should backtrack to all the possible inverted actions that
could achieve the facts in the Pre-Processing Algorithm, even those with large application costs.
However, due to the combinatorial explosion problem, this approach is not adopted.by G

A usual situation is the case where the sub-problems need further decomposition. This situation
arises in two cases. The first is when two objects need each other to achieve their goals, as in the
case ofgrid domain, with the keys and the robot, and the second case is when there is a sequential
interaction between three or more objects. In these cases, the ordering graph of the initial problem
encodes one aspect of the interaction, while the ordering graphs of the sub-problems encode other
aspects. However, in order to avoid infinite decompositions, a cutoff level is defined.

6. The GRT Operation

GRT has been implemented in C+Hs operation consists of several stages, which are shown in
Figure 6a.

Domain file . Fact_s and Mutex Domain Problem
Problem fil Parsing—s| Actions |t - iatiof ™ |enrichmenf{processinf*P'an
roblem file computatior P 'I P )

(a) The RT operation stages

Problem processing

Irrelevant - Partial
objects Goals Heuristic Problem State-space solution
gl P "completion'> constructior] ™ decomposition™|  search g : v
»| Elimination merging

(b) The problem processing stage

Figure 6: The overall operation of th&Gplanning system.

In the first stage the domain and problem files are parsed and the initial data structures are
constructed. The second stage consists of computing the facts and the actions of the problem. The
facts are stored in a tree structure, which is indexed by their predicates and their objects and allows
for fast access, while the actions are stored in a linked list. Moreover, multiple pointers connect
each fact with the actions, where the fact appears. The computation of the facts and actions is
performed incrementally, by repeatedly applying the following steps:
= |f a fact has been reached, create new actions that include this fact and others already reached,

in their preconditions.
= |f an action has been created, add its add effects in the tree structure.

The process starts with the initial state facts and continues until no more facts and actions can
be reached. This approach is time efficient and succeeds in not generating many unreachable facts
and actions. For example, in tlogisticsdomain, the facts denoting that a truck is located in a city

5 GRT is available on-line at http://www.csd.auth.gr/~Ipis/GRT/main.html.
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different than its initial location, and the corresponding actions, are not created. Note that in this
stage, both the normal and the inverted actions are computed; the former are used in the mutex
computation stage, while the latter are used in the heuristic construction stage. However, no pre-
instantiated actions are used during the state-space search, where the applicable actions to each
state are computed by progressively instantiating the action schemas, using constraint satisfaction
techniques (forward checking and intelligent backtracking).

The stages that follow are the computation of the mutual exclusion relations, the enrichment of
the domain, and the problem processing. The latter stage consists of several sub-stages, as it is
shown in Figure 6b, where the most important ones are the construction of the heuristic and the
state-space search. Note that when we refer to the pre-processing phasevwd @Gean all stages
that precede the state-space search.

In the case where XOR-constraints are providedT @ttempts to decompose the current
problem into sub-problems. If this attempt is successful, the problem processing stage is executed
recursively for each sub-problem, otherwise the current problem is solved. Finally, in the case of
decompositions, the partial solutions are merged and the overall solution is returned.

7. Related Work

This section briefly presents other domain independent heuristic state-space planning systems, by
emphasizing their similarities and differences ®r@n terms of the way in which they construct

their heuristic and the direction they traverse the state-space. We omit certain pieces of related
work that concern specific pre-processing techniques implemente@&tinaS for example the
elimination of irrelevant objects, since they have already been presented in previous sections.

The recent evolvement of the domain independent heuristic planning started with the work of
Drew McDermott (1996, 1999) onNeop (UN-Partial Order Planner, UN- stands for non-).
McDermott's planner is not restricted to purgRIBS representations, supporting the more
expressive languageDA (Pednault, 1989). The planner proceeds forward in the state-space.
Distance estimates between states are based on the so-called regression graph, which is built from
the goals using non fully-instantiated actionsiPdp does not consider subgoals interactions and
reconstructs the regression graph from scratch for each intermediate state. Although this planner is
not competitive enough, compared to the subsequent heuristic planners, it was the faster one at the
time of its appearance. However, we have to note tkabBhas been developed in LISP, whereas
the other heuristic planners are highly optimized C or C++ programs.

Although WINPOPwas the first domain independent heuristic planner, the area has been pushed
forward by the AP (Action Selection PlannerBonet, Loerings & Geffner, 1997) andski
(Heuristic Search PlannerBonet & Geffner, 1998) planners. The attractive feature of these
planners is the simple way the heuristic is constructed, presented in SectiosFuted a best-
first strategy with limited agenda, whilesHuses a hill-climbing one with limited plateau search
and restarts (an in-depth presentation of the state-space search algorithms is given by Zhang, 1999).

Both Asp and Hsp reconstruct their heuristic from scratch for each intermediate state. A
variation, called B (r stands forregressiof, constructs the heuristic only once (Bonet &
Geffner, 1999). This approach resembles Glthough P constructs the heuristic forward and
searches backwards. Both approaches have the problem of incomplete goal states, however it arises
in different phases of the planning processT @&ces this problem in the pre-processing phase, by
enhancing the goals, as it has been described in Section Serirthé problem arises in the search
phase, in the form of invalid states in the regression state space. To cope with the preblem, H
computes mutual exclusion relations and checks each state in the regression state space for any
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possible violation of these relations. The disadvantage of this approach is that it is considerably
more time consuming than th&kGapproach, since theds has to check each visited state.

A variation of HsP, named IBP-2, changed the hill-climbing strategy to a best-first one, thus
preserving completeness and producing better plans (Bonet & Geffner, 2001). Mores»2r, H
uses a weighted A* algorithm (WA¥*) (Pearl, 1983) of the fd{®=g(S+W-h(S), whereSis an
intermediate statey(S) is the accumulated cost from the initial sté&) is the estimated cost to
reach theGoalsandW is a parameter. FON=0, the search algorithm behaves as a breadth-first
one, forW=1 it behaves as the typical A* and fd/> it behaves as best-first. For th¢s)
function, HsP-2 supports several heuristic functions, apart from the one presented in Section 2.1.

Recently, two new planners,FRand ALTALT, appeared, which use arR&PHPLAN-based
approach to estimate distances between the intermediate states and theLgaafs (A Little of
This, A Little of Tha} is a regression planner based @pilwhich faces the same problems with
invalid states as sfr (Nigenda, Nguyen & Kambhampati, 2000L.TALT creates a planning graph
in a pre-processing phase and uses several techniques to extract heuristic estimates of the distances
between the intermediate states and the initial state. For example, one of them returns the level in
the planning graph, where all the facts of the intermediate state appear, without any mutual
exclusion relation between them.

FF (Fast Forward is a forward heuristic planner (Hoffmann & Nebel, 2001). In order to
estimate the distance between an intermediate state and the gaatates a planning graph from
the state to the goals, using relaxed actions. Since there are no delete effects, there are no mutual
exclusion relations in the planning graph. From this graplexkacts aelaxed planthe length of
which is the distance estimate. Note that, since there are no mutual exclusion relations, no
backtracking occurs during the extraction of the relaxed plan, thus the extraction is accomplished
fast enough. Thefheuristic resembles therRGone, in that both aim in obtaining under-estimates,
but they adopt different approaches. The relaxations tRapefforms are stronger, since it
completely ignores the delete effects. So theegtimates are usually smaller than tier'& ones
and most of the times are underestimates, wherrasi@-rarely produces overestimates.

FF adopts a variation of the hill-climbing strategy, cakedorced hill climbingaccording to
which, the planner always seeks to move to a state closer to the goals, according to its heuristic. F
achieves that by performing a bounded breadth-first search from the current state, with a maximum
depth defined by the user; so the improving state does not have to be a direct successor of the
current state. Once that an improving state is found, the new actions are added to the end of the
current plan and the hill-climbing search continues from the new state. In the case where the
bounded breadth-first search does not find an improving statestarts the search from the initial
state adopting a best-first search strategy.

FF exhibited distinguishable performance at thesf0 planning competition. One of the
features of F resulting in its good performance is that it does not compute the applicable actions
for each intermediate state. Actually; gives priority to the first level actions of the relaxed plan.
Once that an action that produces a better state is found, it is applied and the next state is processed.
Moreover, at most of the times, no new relaxed plan has to be constructed, since it suffices to
remove the lastly applied action from the beginning of the previous relaxed plam. sseccEeds
in reducing drastically the cost of processing each intermediate state, paying however the cost of
loosing completeness.

The bottleneck that occurs while determining the applicable actions for each intermediate state
has also been identified by Vrakas et al. (1999, 2000). In this work, the process of finding and
applying the applicable actions has been parallelized, resulting in almost linear speedup.
Parallelizing the process of finding the applicable actions, instead of ignoring most of them, as F
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does, presents the advantage of preserving completeness; however, the cost is that a parallel
machine is required.

We close the reference to other heuristic state-space planners withath@I&nning system
(Fox & Long, 1998; Long & Fox, 1999).T&N is not a heuristic state-space planner, at least in its
basic architecture, but a graph-based planner, which uses several pre-processing techniques for
extracting useful domain information that is exploited for more efficient graph construction and
solution extraction. However, in thar&-00 competition a hybrid architecture was used (Long &

Fox, 2000; Fox & Long, 2001), where a heuristic state-space planning module was employed to
solve specific identified sub-problems. ThusAS succeeded in improving its performance,
especially in cases of transportation domains.

Concerning problem decomposition, work has been done on goal ordering (Cheng & Irani,
1989; Drummond & Currie, 1989). Recently a similar approach has been proposed by Koehler
(1998) and has been extended by Koehler and Hoffmann (2000). This approach automatically
derives an ordering relation between the goal facts, which can be used by any planner to search for
increasing sets of subgoals. The advantage of this approach is that no extra information is needed,
except for the usual domain definition, while the disadvantage, with respect to the XOR-constraints
approach, is that only the goal facts are taken into account in the intermediate states that are
constructed. This approach has been adopted bythRining system.

8. Performance Results

In this section, we present performance results from several domains, taken from the literature and
from the two planning competitions. First, we investigate how the several techniquesr of G
contribute to its overall performance and then we comparmet&other planners.

The measurements that follow were taken on a SUN Enterprise 3000 machine running at
167MHz, with 256 MB main memory and operating system Solaris 2.5.1. In the experiments we
set a 5 minutes time limit for all experiments and plariners

8.1 Measuring the Effectiveness of the Related Facts

In order to measure the contribution of the related facts to the overall performanee, ofiés
tested the planner, with and without related facts, on problems from various domains. The results
(solution length and time) are presented in Figure 7 (a-f).
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(a) Logisticsproblems (the goals have been enhanced witmtist promisindacts selection method)

6 In the URLhttp://www.csd.auth.gr/~Ipis/GRT/JAIR/OnlineAppendix1.html
it can be found the executable files of all planners that took part in the comparison, the source esdéthefdatailed
results (in MS-Excel format), the original data files, the problem description files and the script files for each planner.
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Figure 7: Solution length and time (in msecs) with and without the use of related facts
for problems from several domains.
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We can classify the above domains in three groups. The first group includes the domains where
the use of related facts clearly improves both the solution length and time. This group comprises
thelogisticsdomain (6a), thelocks-world when a 3-action schemas representatiooveactions)
is used (6¢), and thpuzzledomain (6f). In these domains, there were many cases wirare G
without related facts did not solve the problems, while with the related facts it did. Moreover, in
most cases when both versions solved a problem, the version with the related facts was faster and
came up with a shorter plan.

The second group includes domains where the use of related facts does not affect the
effectiveness of the planning process. This group comprisesdhatordomain, along with the
gripper, themovieand themysteryones. In these domains, there is usually a single way to achieve
the goals, so both versions produce identical plans. However, due to the processing overhead,
imposed by the computation of the related facts, the version with the related facts is slightly slower
than the version without them.

Finally, the third group includes the domains where there is no apparent predominance between
the two versions. Théreecell domain and thélocks-worlddomain, when a 4-action schemas
representation is usegdush pop, pick-up put-down), fall into this class. In these domains the two
versions do not have equal performance, but there are problems where one version surpasses the
other and vice-versa.

The conclusion drawn from the above measurements is that the effectiveness of the related facts
depends on the domain. They are more suitable in domains where there are several ways to achieve
the goals, akgisticsor blocks-world

Additionally, their efficiency depends on the way the domain is codified. A typical example is
the blocks-worlddomain and the 4- and 3-action schemas representations. The problem with the 4-
action schemas representation is fhaghingandstackinga block anywhere has always the same
fact as precondition, i.e. that the block is held by the arm. The consequence is that neither the
related facts, nor the distances are computed correctly. However this is not a problem of the related
facts, it is a common problem in domain independent heuristic planning, as it results from the last
planning competition. On the other hand, if a 3-action schemas representation is used, then the
paths to achieve the facts of the domain are better tracked, so larger problems can be solved and the
contribution of the related facts is significant. We believe, finally, that also ifrebeelldomain
there is a representation inefficiency, however we have not yet tried to construct an alternative one.

8.2 Using Several Methods to Enhance the Goals

In order to measure the effectiveness of the three proposed methods to enhance the goals, we ran
GRT using them in thédogistics problems of the &#s00 competition. We selected this domain,

since in the other domains of the competition the goal state is either complete, or near complete, so
there is no difference among the three methods. Figure 8 shows the solution length and time for the
easiest of théogisticsproblems.

With regard to solution length, the first method, which considers all the candidate facts as goal
facts, always came up with better plans. As we mentioned in Section 3.2, this method produces
small differences among the estimated distances, so the search process tends to be breadth-first.
However, in most of the cases, the third method found plans of equal quality. With regard to the
solution time, the last two methods work faster, since they produce greater differences between the
distances.

In Section 3.3 we also presented a method of enriching the domain representation. As already
mentioned, we were motivated by the need to treat domains likedbieor theelevator We do
not present comparative performance results between the domain enrichment method and the pure
GRT planner for these domains, since without this technique it is impossibleRfotoGolve the
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problems. However, it would be interesting to test the efficiency of this method to other heuristic
state space planners.
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Figure 8: Results fdogisticsproblems using different methods to complete the goals.
All = Consider all the candidate facts as goal facts.
Initial = Select the initial state facts.
Greedy = Favor the most promising facts.

8.3 Reducing the Size of the Problem

The work of detecting and eliminating irrelevant objects has been motivated by the need to
simplify the sub-problems resulting after the decomposition of a problem, when using XOR-
constraints. Performance results for this case are presented in Section 8.4. This section presents
indicative results concerning the effectiveness of the technique oolthreed logisticsdomain that

has been mentioned in Section 4.1. For this purpose we enhanced the first glogigtios
problems of the #s00 competition with the required predicates and actions and we added
propositions defining the original color of each package to the initial states. Figure 9 presents the
time needed to solve the problems, with and without the irrelevant objects elimination technique.
As it results from the experimental data, there is an improvement in the solution time of about 20%.
Note that in both cases the same plans have been found; however, this would probably not be the
case in other domains.

In order to measure the efficiency of the numerical representation of resources, wa baothG
in the originalmysterydomain and in a modified domain, where resources have been represented
by numbers. Figure 10 presents the time needed to solve the problems with both cases of G
Note that in these experiments only the solvabjsteryproblems have been taken into account.

As it results from Figure 10,83 was significantly faster, when a numerical representation is used.
The improvement is 65% on average. As for the solution length, in both cases the same have been
found again.

Both techniques evaluated in this section gain their speedup mainly from the pre-processing
phase, since distances for a significantly smaller number of facts have to be estimated. As for the
search phase, there is also a speedup, but is less important. Actually, the number of applicable
actions to each state is the same with the two alternative representations of resources, since these
are equivalent. Moreover, the detection of the applicable actions in the atom-based representation
takes about the same time, due to the effective constraint-satisfaction techniquesTthises
when instantiating the action schemata. Concerning the elimination of irrelevant objects, without
this technique, there are more applicable actions to a state, which however are usually not selected,
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since they do not lead to an improving state. However, the time spent in the detection of these
actions may be not negligible.

The significance of the two techniques lies in that the overall time needed to solve the problems
remains about the same, in the case where more irrelevant objects are used, and exactly the same,
in the case where more resource levels are used. In the case of more irrelevant objects, these are
detected (in negligible cost) and eliminated from the subsequent stages (Figure 6). However, there
is some overhead imposed by the stages that precede the irrelevant objects elimination stage, from
where these objects have not been eliminated.

In the case of more resource levels, these do not lead to the generation of new ground facts and
actions, so all the pre-processing stages consume exactly the same time. As for the state-space
search, this is also executed in the same time, but only in the case where neither the initial
availability of resources, nor their consumption by the actions, nor finally the constraints over them
have been changed. If this is not the case, then we are dealing with a different planning problem,
which may be harder to solve.
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------- Eliminating irrelevant objects
Using all objects

100

4 5 6 8 10 12 14

Figure 9: Time (in msecs) needed to solvedblered logisticgproblems,
with and without the irrelevant object elimination technique.

100000

Atom based representation Time

--------- Numerical representation

10000

1000

100

10

1 2 3 9 11 17 25 27 28 29 30

Figure 10: Time (in msecs) needed to solve the solvapsteryproblems,
when the original atom-based or a number-based representation for resources is used.

8.4 XOR Constraints

We tested the efficiency of the XOR-constraints based decomposition in two domainmglified
mystery domain, where resources have been removed, andjridedomain of the As98
competition. We did not use thegistics domain for these experiments, sirlagistics problems
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are not difficult for the original 81 and the small profit from solving the easier sub-problems is
compensated by the extra pre-processing cost of each sub-problem.

We removed resources from the origimaystery domain because otherwise it would be
probable to obtain unsolvable subproblems. As it has been noted in Section 5, decomposing a
problem may lead to loss of completeness, thus the technique is unsuitable for domains where
deadlocks may arise, as the originaysteryone. Note that by removing resources,njistery
problems become solvable.

The XOR-constraints that have been defined for simeplified mysterydomain were the
following:

( (xor (at?Truck* ) ) (truck ?Truck))
( (xor (at ?Package’) (in ?Package* ) ) ( package?Package )

while for thegrid domain were the following ones:

( (xor (at-robot*)))
( (xor (locked?Place) (open?Place) ) (place?Place) )
( (xor (at ?Key*) ( holding?Key) ) (key?Key) )

Note that in the grid domain an XOR-constraint denoting that the arm is either empty, or the
robot holds a key has not been defined, since this would lead to pointless decompositions.

In both domains, we ran R& with and without the problem decomposition technique.
Additionally, in order to demonstrate the contribution of the irrelevant objects elimination
technique when solving the sub-problems, we conducted experiments for this casenplified
mysterydomain. We did not consider this case indhd domain, because no irrelevant objects
can be detected there. Figure 11 presents the results.
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Figure 11: Solution time (in msecs) and length with and without
the XOR-constraints based problem decomposition technique.
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As for the simplified mystery domain, RG without the problem decomposition technique
generally produced shorter plans, as expected. On the other hand, the use of the XOR-constraints
accelerated the problem decomposition process, especially in case of difficult problems. Actually,
if we only consider the seven most difficult problems, the improvement achieved by the
decomposition is 60% on average. Note however that, when the irrelevant objects elimination
technique was not used, there was no improvement. In not difficult problems there is no
acceleration, since, as in the case ofltigéstics problems, the small profit from the faster solution
of the easier sub-problems is compensated by the cost of repeating the pre-processing phase for
each one of them.

The grid domain was the most difficult one of thap&98 competition. The contestants
managed to solve only the first problenrR1Gnithout XOR-constraints could only solve the first
problem, too. On the other hand, with the XOR-constraints based decompositiona&able to
solve the first four problems in the time limit of 5 minutes, while in the fifth problem it ran out of
memory. It is worth noting that this domain produces multiple levels of decompositions. Figure 12
presents these levels for the strips-grid-y-2 problem.

As far as we know, the only planner that can cope witlytiteproblems effectively is# We
ran F in the fivegrid problems and it solved the first four, within the time limit of 5 minutes, with
the following results (length/time): 14/230, 39/840, 40/7810 and 45/3280, which are considerably
better compared to the performance effG

Main problem

| Sub-problem 1 r | Sub-problem 2 | | Sub-problem 3 | | Sub-problem 4

| Subproblem 3.I| | Subproblem 3.2| | Subproblem 3.3|

\

| Sub-problemﬂproblem mub-problem 3_1_;* | Subproblem 4.1| | Subproblem 4.2| | Subproblem 4.3

| Sub-problem 3.1.1.1| | Sub-problem 3.1.1.2| | Sub-problem 3.1.1.3|

Figure 12: Decomposition for the strips-grid-y-2 problem using XOR-constraints.

8.5 Best-First and Hill-Climbing Strategies

Recently we equippedr3 planner with two new features: a second optional search strategy, the
well known hill-climbing, and a closed-list of visited states, in order to avoid revisiting them.

GRT adopts theenforced hill-climbingstrategy, originally presented in Hoffmann & Nebel
(2001), according to which, from each intermediate state a limited breadth first search is
performed, until an improving state is reached. When an improving state cannot be frRund, G
restarts the search from the initial state with the typical best-first strategy.

Moreover, the hill-climbing strategy has been enhanced with a fast action selection mechanism.
As it has been presented in Section 5.3, when &timates the distances between the problem's
facts and the goals in the pre-processing phase, it stores in the GRG structure the action that
achieved each fact. So, in order to find an improving successor state quickly, the hill-climbing
search strategy first attempts to apply the actions that achieved the current state's facts. Once that
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an improving successor state is found, the remaining of the actions are not processed, thus avoiding
to compute all the applicable to the current state actions. Note however that it is not guaranteed that
these actions can always be applied to the current state. In case where no improving state can be
found, the remaining of the applicable to the current state actions are taken into account.

Figure 13 presents comparative performance resultsgiatics and elevatorproblems, using
both search strategies. In thagistics problems, thanost promising factselection method of
enhancing the goals has been used. As it results from the experimental datalowistics
problems and with the use of the hill-climbing strategy, there is a significant reduction in the
solution time of about 52%. The cost is an increment of about 3% in the length of the plans. In the
elevator problems, there is also a reduction in the solution time of about 29%, whereas the
produced plans are identical.
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(b) Elevatordomain
Figure 13: Comparative results (solution length and time) between the hill-climbing
and the best-first strategies.

We tested the efficiency of the fast action selection mechanism, by also rumriingité the
hill-climbing strategy but without this mechanism in the sdaggstics and elevator problems.
Concerning théogisticsproblems, the speedup was about 47%, while the increment in the solution
length was 3% on average again. Concerning the elevator problems, the speedup was 28%, whereas
the produced plans were again identical. The conclusion from these additional measurements is that
the speedup is primarily due to the hill-climbing strategy and secondly due to the fast action
selection mechanism. The contribution of this mechanism depends on the domain and it is more
important in thdogisticsand less in thelevator Its inefficiency in theelevatordomain means that
the actions that are selected by this mechanism do not usually lead to an improving state or they are
not applicable, so all the applicable actions have to be computed.

Results for other domains, likeocks-worldand freecell are not presented, since in these
domains hill-climbing usually fails to find a plan and1@estarts on a best-first basis. However, in
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these domains the closed-list of states has been proved invaluable, improving drastically the
performance of &T. For example, in thé&eecelldomain and without the closed list of visited
states, the &1 planner in the #s-00 planning competition succeeded in solving problems with up

to 6 cards per suit, while with this data structure it can solve some of the more difficult ones (13
cards per suit). Note that for an efficient implementation of the closed-list of visited states a hash-
table data structure has been adopted.

8.6 Comparison to other Planners

In this section, we present comparative results between riigl@anner and other planners. We
decided to use P2 (Bonet & Geffner, 2001),FHHoffman & Nebel, 2001), 8N (Long & Fox,
2000; Fox & Long, 2000, 2001) and-2aLT (Nigenda, Nguyen & Kambhampati, 200031l these
planners took part in the domain independent track of the-00 planning competition. We
selected these planners because-Hand SAN are state-of—the-art planning systenshis been
awarded for its outstanding performance in the last competition andLA is a new but very
promising domain-independent state-space heuristic planner.

The aim of our experiments is to have an overall view of the performance of the evaluated
systems. Performing pair wise comparisons between specific optimization techniques is not
possible, since these techniques are implemented on top of different systems. Moreover, this kind
of comparisons is out of the scope of this paper, which focuses in the use of specific directions for
constructing the heuristic and traversing the space of the states, in the area of domain-independent
heuristic state-space planning, and not in the evaluation of the numerous pre-processing
optimization techniques. However, in the cases where we identify the contribution of a specific
feature in the performance of a planner, we comment on this.

In order to have fair comparisons, we used exactly the same problem and domain description
files for all planners. So, & ran without XOR-constraints or numerical representation of
resources. Moreover, although the irrelevant object elimination technique is an integral feature of
GRT, it had no contribution in these domains, since there were not irrelevant objects. We believe
that the absence of irrelevant objects in these domains does not mean that this technique has limited
applicability, but it is an indication that more real domains for testing purposes have to be used in
the future, since the planning tasks in our real-life are full of irrelevant objects. Finally, the domain
enrichment technique proved valuable for #ghevatordomain only. However, this technique, as
well as the goal enhancement one, has not to be seen as an optimization technique, but as a way to
overcome the problems that arise from the backward direction of the heuristic construction.

We tested the planners in several domains taken from the planning competitions and from the
literature, in the same workstation and within the 5 minutes time limit. The results are presented in
the following.

8.6.1 LoaGlIsTICS

For thelogisticsdomain we used the test suite of thesf00 competition. The results are shown in
Figure 14. In this domain /&, as well as Fand SAN, performed well, solving all the problems.
Hspand ALTALT failed to solve the large problems within the time-limit. In general, best plans are
found by AN, which uses special domain-dependent heuristics for problems identified as

7 STAN is available at http://www.dur.ac.uk/~dcsOwww/research/stanstuff/stanpage.html
FF is available at http://www.informatik.uni-freiburg.de/~hoffmann/ff.html
Hsk-2 is available at http://www.ldc.usb.ve/~hector/
ALTALT is available at http://rakaposhi.eas.asu.edu/altweb/altalt.html
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transportation problems. Best solution times are achievedlané SAN in the small problems
and by &T in the large ones.
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Figure 14: Solution length and time (msecs) forltygsticsproblems of the #s-00 competition.

The logistics problems in Figure 14 have incomplete goal statest @an with themost
promising factsgoals-completion method and with the hill-climbing strategy. However, the
incompleteness of the goal state is an advantage for the planners that construct the heuristic in a
forward direction. Motivated by this remark, we forced all the planners to Egjigticsproblems
with complete goal states, requiring all the trucks and planes to return to their initial location. The
results are shown in Figure 15.
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Figure 15: Solution length and time (msecs)légisticsproblems with complete goal states.
In the newlogistics problems, @&T, STAN and Hsr-2 exhibited stable performance, solving the

problems in about the same time. F&T(3this means that the goal completion mechanism behaves
well, at least in this domain.FHailed to solve the large problems. Finally,TALT solved some
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more problems and this is because the regression mechanism did not encounter invalid states. Note
that, although the goal state was complete in this care,t®ated these problems as usual,
attempting to enhance the goals.

8.6.2 B.OCKS-WORLD

For blocks-worldproblems in the #s-00 competition a four-actions representation was used, i.e.
actionspush pop stack and unstack This representation is unsuitable for1G as it has been
explained in Section 7.1. So,R® did not solve most of thblocks-world problems. Figure 16
presents the results of all planners inbédicks-worldproblems.

As shown in Figure 16,Aexhibits the best performance, solving the majority of the problems
and producing better plans than the other planners. The superiorityirofhHts domain is due to a
technique called\dded Goal Deletionaccording to which the goal facts are ordered and achieved
in a progressive manner (Hoffmann & Nebel, 2001; Koehler and Hoffmann, 2000). This technique
is especially suited for tHalocks-worlddomain and the 4-action schemas representation. However,
this technigque does not always succeeds to produce good orderings and this is the reason why F
fails to solve some of the easiest problems, which have been solved by the other planners.

As for the remaining planners,sA2 succeeded in solving all problems with up to 18 blocks
and one problem with 24 blocksRGand A TALT solved problems up to 14 blocks anth§ up
to 12 blocks. Moreover, & produced plans of low quality.
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Figure 16: Solution length and time (msecs) forliloeks-worldproblems
using the 4-action schemas domain representation.

In order to demonstrate the influence of the domain representation in the efficiernry, ofes
ran all the planners in the same problems using the alternative 3-action schemas domain
representation. The results are shown in Figure 17.

The performance of & is significantly improved, solving problems with up to 33 blocks and
producing better plans than the other planners. Moreover, with the exception of the smallest
problems, @T is faster than the other planners, bat Fhe latter solved less large problems, but
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solved all the smallest onessk2 solved all the problems with up to 19 blocks, whilgA. T and
STAN stopped at 14 blocks.
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Figure 17: Solution length and time (msecs) forlileeks-worldproblems
using the 3-action schemas domain representation.

8.6.3 REECELL

Freecellis the famous card game taken from the MS-Windows 98 distribution. The domain was
initially introduced in the As-00 competition and proved one of the most difficult domains.
Figure 18 presents the performance results in this domain. Notelth@trAcould not solve these
problems and this was also the case in the competition.

In thefreecelldomain, the only planners that succeeded to solve some of the difficult problems
were QRT and F. Actually, these planners solved some problems with 12 and 13 cards per suit.
Hsk-2 solved problems with up to 6 cards per suit anaNSup to 3 cards per suit. Regarding the
solution quality, @T produced better plans thar. Regarding the solution timeFkvas faster in
the small problems, whereas in the big ones the two planners had equal performance.

8.6.4 HEVATOR

The elevator(or miconic-1Q domain has been presented in Section 3.3. At least in its prIesS
version, it is a relatively easy domain. So, all planners found plans of equal quality (with the
exception of B¥R-2, which produced slightly more lengthy plans). However, the planners have
different performance in terms of solution time.

Specifically, - was the fastest, followed byr&\, then &RT, then Hsp-2 and finally ATALT.
This domain favors I because the relaxed plan produced by its heuristic mechanism for the initial
state is actually the solution, since the original actions of the domain do not contain any delete lists.
STAN identifies this domain as a transportation domain and uses suitable techniques to solve the
problem. Finally, @T is faster than B2 and ATALT, since ®RT constructs its heuristic faster
than HsP-2. The results are presented in Figure 19.
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Figure 18: Solution length and time (msecs) infteecelldomain.
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Figure 19: Solution time (in msecs) in thlevatordomain.

8.6.5 RIPPER

The gripper domain was introduced in thars-98 planning competition. The domain concerns a
robot with two grippers that must transport a set of balls from one room to another. IRHS8 A
competition, only I8P managed to solve the 20 problems. Figure 20 presents the results in this
domain.
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Figure 20: Solution length and time (msecs) inghpper domain.

Regarding the solution length, the five planners have been divided into two graps: G
ALTALT and SAN produced identical plans of higher quality, while &d HsP-2 produced
identical plans of lower quality. Regarding solution time@& the fastest planner in all problems
apart from some of the easiest, followed closely yNS next comes I next ALTALT and last
Hskr-2. Note that in this domainT&N takes advantage of its symmetry analysis, which identifies
the set of the balls and the two grippers as symmetric objects (Fox and Long, 1999).

8.6.6 HANOI

We ran the planners in l&anoi problems, taken by Bonet and Geffner (2001). The six problems
have three to eight disks respectively. Figure 21 presents the results.
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Figure 21: Solution length and time (msecs) inttheoidomain.
Regarding the solution length, all the planners found identical plans, with the exception of the

last two problems, whereR3 found worse plans. Regarding the solution tinrew&s the faster,
then came &T and HsR-2, then ATALT and last cameT3N.

154



BACKWARD HEURISTIC CONSTRUCTION INFORWARD STATE-SPACE PLANNING

8.6.7 RzzLE

We ran the planners in four 8-puzzle problems and in two 15-puzzle ones, taken by Bonet and
Geffner (2001). Two of the four 8-puzzle are hard and their optimal solution involves 31 actions,
the maximum plan length in this domain. The 15-puzzle problems are of medium difficulty. Figure
22 presents the results.
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Figure 22: Solution length and time (msecs) inghezledomain.

STAN solved only the 8-puzzle instances, but it produced the best plans. The other planners
solved all the problems, but they presented variations in the quality of their plans, with the F
planning system producing worst plans in most of the cases. Regarding solutiorrtivees fhe
fastest in the easier problems anelt@ the more difficult ones, followed byd#2 and ATALT.

STAN was the slowest planner in this domain.

9. Conclusion and Future Work

In this paper we presented ther1Gplanning system, a heuristic state-space planner, which
constructs its heuristic in a domain-independent way. The fundamental difference bemween G
and other heuristic state-space planners is tR&tdBnstructs its heuristic once, in a pre-processing
phase and in a backward direction, using regression from the gealsat®mpts to track the
positive and negative interactions that occur between the problem facts when trying to achieve
them, in order to produce better estimates.

GRT employs several new techniques that improve its efficiency. These are the automated
identification of incomplete goal states, the identification and enrichment of inadequate domain
representations, the elimination of irrelevant objects and the adoption of a numerical representation
of resources. Finally, a knowledge-based method that uses domain axioms in the form of XOR-
constraints, in order to decompose difficult problems into easier sub-problems that have to be
solved sequentially, has adopted.

The paper presented extensive comparative results in a large number of domains. In the
comparisons, besidesr@ four of the most powerful domain independent planners took part. The
results showed that no planner clearly outperforms all the others.

Concerning solution time, in most of the domairsr@nd F were the fastest planners. The
explanation behind this observation lies in that these planners construct their heuristic either once
(in the case of &T1), or a few times only (in the case ¢f)FFor example, in thelevatordomain,
where delete effects do not exist andl donstructs a relaxed planning graph only once, it is
extremely fast. On the contrary, in tlygipper and thepuzzle domains, where Fneeds to
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reconstruct the relaxed planning graphs, its efficiency decreases drastically with respect to the
GRT's one.

Hskr-2 was not faster than the other planners in any domain, being always outperfornfed by F
This was expected, since the two planners use the forward direction both for the construction of
their heuristics and for traversing the state-space, howewristructs its heuristic less times than
Hsk-2. Our impression is that thes Reuristic is also more informative and more accurate than the
one of HsP-2. Concerning ATALT, although it constructs its heuristic once, it did not manage to be
faster than the others in any domain and this is (we believe) due to the problems that arise from the
backward direction in which it traverses the state-space. So, this is an indication that in the case
where opposite directions are used for the heuristic construction and the search phage, as G
ALTALT and Hspr do, it is preferable to use the backward direction for the heuristic construction
and the forward direction for the search phase. This is why the problems that arise when
constructing the heuristic backwards may be confronted more easily than the problems that arise
when traversing the state-space backwards.

Domain analysis techniques, which occur in pre-processing phase, also play an important role.
STAN, which is primarily based on these techniques, had many variations in its performance. In
transportation domains, like thegisticsand theelevatorones, where B\ exploits specialized
heuristics, it was among the fastest planners. Ingtipper domain, where BN exploits its
symmetry analysis, its performance was also excellent. In other domains, as for example the
freecellor theblocks it was not competitive due to itR&HPLAN basic architecture, which is not
considered a fast technology any more.

FF also employed a domain analysis technique concerning goal ordering, which played an
important role in the blocks problems. It would be very interesting to see the adaptation and the
impact of this technique to other planners as well. As far as we knem2 Bnd ATALT are not
using any domain analysis technigu&T@&xploited only the domain enrichment technique in the
elevatordomain, however this technique is an integral part of its heuristic mechanism, in order to
overcome some problems that arise from the backward heuristic construction.

An interesting observation concerns the performance rof iG the bigger problems of the
logistics freecell gripper andpuzzledomains, where &r exhibited better performance than in the
smaller problems of the same domains, compared to the other planners. We believe that this is due
to the fact that &T constructs its heuristic once, while the repeated construction of the heuristics
for the other planners is an inhibitory factor in the bigger problems.

The conclusions drawn above ignore a significant factor, which is the specific implementation,
i.e. the approaches adopted by the various planners for "trivial" tasks, such as the computation of
all the ground facts and actions of a problem or the computation of the applicable actions to a given
state, the optimization of the code and of course potential "bugs". For example, in order to find the
applicable actions to a stateRGuses constraint satisfaction techniques to progressively instantiate
the action schemas for each state, whereas most of the other planners exploit connectivity graphs
between the facts of a problem and the pre-instantiated actions. Our experimentgmitiave
shown that a significant portion of the processing time is spent in the determination of the
applicable actions to a state. This is the reason why we have developed a parallel versinpn of G
named PGRT (Vrakas et. al., 1999; 2000), which makes use of this observation and has been
proved very efficient in all domains. However, it is in our future plans to develop a connectivity
graph also in &T and to compare it to the existent approach.

Differences that are due to the code optimization or potential "bugs" cannot be easily detected,
but we believe that all the planners, both the oldest and the newest ones are well-optimized
programs. In the future we would like to see theoretical comparisons between the computational
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complexities of the various techniques and algorithms, apart from their experimental evaluation
that is usually adopted.

Concerning plan length, &8 produced better plans than the other planners infrdezell
domain, in thegripper domain (along with other planners), in margcks problems when a 3-
action schemas representation was used and in legisécs problems. $AN exhibited the best
behavior in most of the domains and we believe this is due t(RUSHPLAN basic architecture,
which always produces optimal parallel plans and, in many cases, sequential plarstabavEd
well in thelogisticsand theblocksproblems, with the 4-action schemas representation (in the latter
case probably due to the goal ordering technique), however it produced lengthy plans in other
domains, as thizeecel| thegripper and thepuzzleones.

Hsk2 produced longer plans tharRGin many domains, as for example tlogistics the
freecelland thegripper domains and thelocksone, when a 3-actions representation was used.
This observation means that in these domains the related facts employed I®TtheuBstic
proved more valuable than the forward and repeated reconstruction cfrehEuristic. Finally,
ALTALT has not been distinguished for the quality of its plans in any domain.

Our general impression from the experiments is that there are specific domains that favor
specific planners. So, what is important is to investigate the reasons for that. We are currently
working in exploring the internal characteristics of each domain, classifying them into more
general categories that share common features, and associate these features with specific heuristic
search techniques. A first attempt for a domain classification can also be found in (Hoffmann,
2001).

An alternative view of the above problem concerns the way a domain is encoded. The same
planner in the same domain may alter its performance when a different representation is adopted.
We faced this problem with thelocks-world with the 4- and 3-actions schemas domain
representations, where the performance f @ries significantly, while the performance of other
planners is also altered. We also faced this problem witkl#watorandmoviedomains, which
were the motivation for the development of the domain enrichment technique. Our conviction is
that domain-independent planning is strongly domain-representation dependent.

Concerning @&T, we plan to extend it so as to handle more expressive domains, supporting most
of the features of the PDDL language (types, quantifications, negations, disjunctions, etc). At this
time we are working with an extension oRG which has the ability to take into account multiple
criteria (i.e. solution time, resources, safety, profit etc.). We are also interested in incorporating
domain analysis techniques, as they have been developgaNraBd DSCOPLAN, in order to take
advantage of specialized methods for handling specific types of problems or sub-problems. Finally,
we will investigate the possibility and the utility of combining domain independent planning
techniques with domain dependent ones, without loosing the generality of the planning system.
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