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Abstract

This paper presents a new approach to hierarchical reinforcement learning based on de-
composing the target Markov decision process (MDP) into a hierarchy of smaller MDPs
and decomposing the value function of the target MDP into an additive combination of the
value functions of the smaller MDPs. The decomposition, known as the MAXQ decom-
position, has both a procedural semantics|as a subroutine hierarchy|and a declarative
semantics|as a representation of the value function of a hierarchical policy. MAXQ uni�es
and extends previous work on hierarchical reinforcement learning by Singh, Kaelbling, and
Dayan and Hinton. It is based on the assumption that the programmer can identify useful
subgoals and de�ne subtasks that achieve these subgoals. By de�ning such subgoals, the
programmer constrains the set of policies that need to be considered during reinforcement
learning. The MAXQ value function decomposition can represent the value function of any
policy that is consistent with the given hierarchy. The decomposition also creates oppor-
tunities to exploit state abstractions, so that individual MDPs within the hierarchy can
ignore large parts of the state space. This is important for the practical application of the
method. This paper de�nes the MAXQ hierarchy, proves formal results on its representa-
tional power, and establishes �ve conditions for the safe use of state abstractions. The paper
presents an online model-free learning algorithm, MAXQ-Q, and proves that it converges
with probability 1 to a kind of locally-optimal policy known as a recursively optimal policy,
even in the presence of the �ve kinds of state abstraction. The paper evaluates the MAXQ
representation and MAXQ-Q through a series of experiments in three domains and shows
experimentally that MAXQ-Q (with state abstractions) converges to a recursively optimal
policy much faster than 
at Q learning. The fact that MAXQ learns a representation of
the value function has an important bene�t: it makes it possible to compute and execute
an improved, non-hierarchical policy via a procedure similar to the policy improvement
step of policy iteration. The paper demonstrates the e�ectiveness of this non-hierarchical
execution experimentally. Finally, the paper concludes with a comparison to related work
and a discussion of the design tradeo�s in hierarchical reinforcement learning.
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1. Introduction

The area of Reinforcement Learning (Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998)
studies methods by which an agent can learn optimal or near-optimal plans by interacting
directly with the external environment. The basic methods in reinforcement learning are
based on the classical dynamic programming algorithms that were developed in the late
1950s (Bellman, 1957; Howard, 1960). However, reinforcement learning methods o�er two
important advantages over classical dynamic programming. First, the methods are online.
This permits them to focus their attention on the parts of the state space that are important
and to ignore the rest of the space. Second, the methods can employ function approxima-
tion algorithms (e.g., neural networks) to represent their knowledge. This allows them to
generalize across the state space so that the learning time scales much better.

Despite recent advances in reinforcement learning, there are still many shortcomings.
The biggest of these is the lack of a fully satisfactory method for incorporating hierarchies
into reinforcement learning algorithms. Research in classical planning has shown that hier-
archical methods such as hierarchical task networks (Currie & Tate, 1991), macro actions
(Fikes, Hart, & Nilsson, 1972; Korf, 1985), and state abstraction methods (Sacerdoti, 1974;
Knoblock, 1990) can provide exponential reductions in the computational cost of �nding
good plans. However, all of the basic algorithms for probabilistic planning and reinforce-
ment learning are \
at" methods|they treat the state space as one huge 
at search space.
This means that the paths from the start state to the goal state are very long, and the
length of these paths determines the cost of learning and planning, because information
about future rewards must be propagated backward along these paths.

Many researchers (Singh, 1992; Lin, 1993; Kaelbling, 1993; Dayan & Hinton, 1993;
Hauskrecht, et al., 1998; Parr & Russell, 1998; Sutton, Precup, & Singh, 1998) have ex-
perimented with di�erent methods of hierarchical reinforcement learning and hierarchical
probabilistic planning. This research has explored many di�erent points in the design space
of hierarchical methods, but several of these systems were designed for speci�c situations.
We lack crisp de�nitions of the main approaches and a clear understanding of the relative
merits of the di�erent methods.

This paper formalizes and clari�es one approach and attempts to understand how it
compares with the other techniques. The approach, called the MAXQ method, provides a
hierarchical decomposition of the given reinforcement learning problem into a set of sub-
problems. It simultaneously provides a decomposition of the value function for the given
problem into a set of value functions for the subproblems. Hence, it has both a declarative
semantics (as a value function decomposition) and a procedural semantics (as a subroutine
hierarchy).

The decomposition into subproblems has many advantages. First, policies learned in
subproblems can be shared (reused) for multiple parent tasks. Second, the value functions
learned in subproblems can be shared, so when the subproblem is reused in a new task,
learning of the overall value function for the new task is accelerated. Third, if state ab-
stractions can be applied, then the overall value function can be represented compactly as
the sum of separate terms that each depends on only a subset of the state variables. This
more compact representation of the value function will require less data to learn, and hence,
learning will be faster.
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Previous research shows that there are several important design decisions that must
be made when constructing a hierarchical reinforcement learning system. To provide an
overview of the results in this paper, let us review these issues and see how the MAXQ
method approaches each of them.

The �rst issue is how to specify subtasks. Hierarchical reinforcement learning involves
breaking the target Markov decision problem into a hierarchy of subproblems or subtasks.
There are three general approaches to de�ning these subtasks. One approach is to de�ne
each subtask in terms of a �xed policy that is provided by the programmer (or that has
been learned in some separate process). The \option" method of Sutton, Precup, and Singh
(1998) takes this approach. The second approach is to de�ne each subtask in terms of a non-
deterministic �nite-state controller. The Hierarchy of Abstract Machines (HAM) method
of Parr and Russell (1998) takes this approach. This method permits the programmer to
provide a \partial policy" that constrains the set of permitted actions at each point, but
does not specify a complete policy for each subtask. The third approach is to de�ne each
subtask in terms of a termination predicate and a local reward function. These de�ne what
it means for the subtask to be completed and what the �nal reward should be for completing
the subtask. The MAXQ method described in this paper follows this approach, building
upon previous work by Singh (1992), Kaelbling (1993), Dayan and Hinton (1993), and Dean
and Lin (1995).

An advantage of the \option" and partial policy approaches is that the subtask can
be de�ned in terms of an amount of e�ort or a course of action rather than in terms of
achieving a particular goal condition. However, the \option" approach (at least in the
simple form described in this paper), requires the programmer to provide complete policies
for the subtasks, which can be a di�cult programming task in real-world problems. On the
other hand, the termination predicate method requires the programmer to guess the relative
desirability of the di�erent states in which the subtask might terminate. This can also be
di�cult, although Dean and Lin show how these guesses can be revised automatically by
the learning algorithm.

A potential drawback of all hierarchical methods is that the learned policy may be
suboptimal. The hierarchy constrains the set of possible policies that can be considered. If
these constraints are poorly chosen, the resulting policy will be suboptimal. Nonetheless, the
learning algorithms that have been developed for the \option" and partial policy approaches
guarantee that the learned policy will be the best possible policy consistent with these
constraints.

The termination predicate method su�ers from an additional source of suboptimality.
The learning algorithm described in this paper converges to a form of local optimality that
we call recursive optimality. This means that the policy of each subtask is locally optimal
given the policies of its children. But there might exist better hierarchical policies where
the policy for a subtask must be locally suboptimal so that the overall policy is optimal.
For example, a subtask of buying milk might be performed suboptimally (at a more distant
store) because the larger problem also involves buying �lm (at the same store). This problem
can be avoided by careful de�nition of termination predicates and local reward functions,
but this is an added burden on the programmer. (It is interesting to note that this problem
of recursive optimality has not been noticed previously. This is because previous work
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focused on subtasks with a single terminal state, and in such cases, the problem does not
arise.)

The second design issue is whether to employ state abstractions within subtasks. A
subtask employs state abstraction if it ignores some aspects of the state of the environment.
For example, in many robot navigation problems, choices about what route to take to
reach a goal location are independent of what the robot is currently carrying. With few
exceptions, state abstraction has not been explored previously. We will see that the MAXQ
method creates many opportunities to exploit state abstraction, and that these abstractions
can have a huge impact in accelerating learning. We will also see that there is an important
design tradeo�: the successful use of state abstraction requires that subtasks be de�ned
in terms of termination predicates rather than using the option or partial policy methods.
This is why the MAXQ method must employ termination predicates, despite the problems
that this can create.

The third design issue concerns the non-hierarchical \execution" of a learned hierar-
chical policy. Kaelbling (1993) was the �rst to point out that a value function learned
from a hierarchical policy could be evaluated incrementally to yield a potentially much
better non-hierarchical policy. Dietterich (1998) and Sutton, et al. (1999) generalized this
to show how arbitrary subroutines could be executed non-hierarchically to yield improved
policies. However, in order to support this non-hierarchical execution, extra learning is
required. Ordinarily, in hierarchical reinforcement learning, the only states where learning
is required at the higher levels of the hierarchy are states where one or more of the sub-
routines could terminate (plus all possible initial states). But to support non-hierarchical
execution, learning is required in all states (and at all levels of the hierarchy). In general,
this requires additional exploration as well as additional computation and memory. As a
consequence of the hierarchical decomposition of the value function, the MAXQ method
is able to support either form of execution, and we will see that there are many problems
where the improvement from non-hierarchical execution is worth the added cost.

The fourth and �nal issue is what form of learning algorithm to employ. An impor-
tant advantage of reinforcement learning algorithms is that they typically operate online.
However, �nding online algorithms that work for general hierarchical reinforcement learning
has been di�cult, particularly within the termination predicate family of methods. Singh's
method relied on each subtask having a unique terminal state; Kaelbling employed a mix of
online and batch algorithms to train her hierarchy; and work within the \options" frame-
work usually assumes that the policies for the subproblems are given and do not need to be
learned at all. The best previous online algorithms are the HAMQ Q learning algorithm of
Parr and Russell (for the partial policy method) and the Feudal Q algorithm of Dayan and
Hinton. Unfortunately, the HAMQ method requires \
attening" the hierarchy, and this has
several undesirable consequences. The Feudal Q algorithm is tailored to a speci�c kind of
problem, and it does not converge to any well-de�ned optimal policy.

In this paper, we present a general algorithm, called MAXQ-Q, for fully-online learning
of a hierarchical value function. This algorithm enables all subtasks within the hierarchy to
be learned simultaneously and online. We show experimentally and theoretically that the
algorithm converges to a recursively optimal policy. We also show that it is substantially
faster than \
at" (i.e., non-hierarchical) Q learning when state abstractions are employed.
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The remainder of this paper is organized as follows. After introducing our notation in
Section 2, we de�ne the MAXQ value function decomposition in Section 3 and illustrate
it with a simple example Markov decision problem. Section 4 presents an analytically
tractable version of the MAXQ-Q learning algorithm called the MAXQ-0 algorithm and
proves its convergence to a recursively optimal policy. It then shows how to extend MAXQ-
0 to produce the MAXQ-Q algorithm, and shows how to extend the theorem similarly.
Section 5 takes up the issue of state abstraction and formalizes a series of �ve conditions
under which state abstractions can be safely incorporated into the MAXQ representation.
State abstraction can give rise to a hierarchical credit assignment problem, and the paper
brie
y discusses one solution to this problem. Finally, Section 7 presents experiments with
three example domains. These experiments give some idea of the generality of the MAXQ
representation. They also provide results on the relative importance of temporal and state
abstractions and on the importance of non-hierarchical execution. The paper concludes with
further discussion of the design issues that were brie
y described above, and in particular, it
addresses the tradeo� between the method of de�ning subtasks (via termination predicates)
and the ability to exploit state abstractions.

Some readers may be disappointed that MAXQ provides no way of learning the struc-
ture of the hierarchy. Our philosophy in developing MAXQ (which we share with other
reinforcement learning researchers, notably Parr and Russell) has been to draw inspiration
from the development of Belief Networks (Pearl, 1988). Belief networks were �rst introduced
as a formalism in which the knowledge engineer would describe the structure of the net-
works and domain experts would provide the necessary probability estimates. Subsequently,
methods were developed for learning the probability values directly from observational data.
Most recently, several methods have been developed for learning the structure of the belief
networks from data, so that the dependence on the knowledge engineer is reduced.

In this paper, we will likewise require that the programmer provide the structure of the
hierarchy. The programmer will also need to make several important design decisions. We
will see below that a MAXQ representation is very much like a computer program, and
we will rely on the programmer to design each of the modules and indicate the permissible
ways in which the modules can invoke each other. Our learning algorithms will �ll in
\implementations" of each module in such a way that the overall program will work well.
We believe that this approach will provide a practical tool for solving large real-world
MDPs. We also believe that it will help us understand the structure of hierarchical learning
algorithms. It is our hope that subsequent research will be able to automate most of the
work that we are currently requiring the programmer to do.

2. Formal De�nitions

We begin by introducing de�nitions for Markov Decision Problems and Semi-Markov Deci-
sion Problems.

2.1 Markov Decision Problems

We employ the standard de�nition for Markov Decision Problems (also known as Markov
decision processes). In this paper, we restrict our attention to situations in which an agent
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is interacting with a fully-observable stochastic environment. This situation can be modeled
as a Markov Decision Problem (MDP) hS;A; P;R; P0i de�ned as follows:

� S: the �nite set of states of the environment. At each point in time, the agent can
observe the complete state of the environment.

� A: a �nite set of actions. Technically, the set of available actions depends on the
current state s, but we will suppress this dependence in our notation.

� P : When an action a 2 A is performed, the environment makes a probabilistic tran-
sition from its current state s to a resulting state s0 according to the probability
distribution P (s0js; a).

� R: Similarly, when action a is performed and the environment makes its transition
from s to s0, the agent receives a real-valued (possibly stochastic) reward r whose
expected value is R(s0js; a). To simplify the notation, it is customary to treat this
reward as being given at the time that action a is initiated, even though it may in
general depend on s0 as well as on s and a.

� P0: The starting state distribution. When the MDP is initialized, it is in state s with
probability P0(s).

A policy, �, is a mapping from states to actions that tells what action a = �(s) to perform
when the environment is in state s.

We will consider two settings: episodic and in�nite-horizon.
In the episodic setting, all rewards are �nite and there is at least one zero-cost absorbing

terminal state. An absorbing terminal state is a state in which all actions lead back to the
same state with probability 1 and zero reward. For technical reasons, we will only consider
problems where all deterministic policies are \proper"|that is, all deterministic policies
have a non-zero probability of reaching a terminal state when started in an arbitrary state.
(We believe this condition can be relaxed, but we have not veri�ed this formally.) In the
episodic setting, the goal of the agent is to �nd a policy that maximizes the expected
cumulative reward. In the special case where all rewards are non-positive, these problems
are referred to as stochastic shortest path problems, because the rewards can be viewed as
costs (i.e., lengths), and the policy attempts to move the agent along the path of minimum
expected cost.

In the in�nite horizon setting, all rewards are also �nite. In addition, there is a discount
factor 
, and the agent's goal is to �nd a policy that minimizes the in�nite discounted sum
of future rewards.

The value function V � for policy � is a function that tells, for each state s, what the
expected cumulative reward will be of executing policy � starting in state s. Let rt be a
random variable that tells the reward that the agent receives at time step t while following
policy �. We can de�ne the value function in the episodic setting as

V �(s) = E frt + rt+1 + rt+2 + � � � jst = s; �g :

In the discounted setting, the value function is

V �(s) = E
n
rt + 
rt+1 + 
2rt+2 + � � �

��� st = s; �
o
:
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We can see that this equation reduces to the previous one when 
 = 1. However, in in�nite-
horizon MDPs this sum may not converge when 
 = 1.

The value function satis�es the Bellman equation for a �xed policy:

V �(s) =
X
s0

P (s0js; �(s))
�
R(s0js; �(s)) + 
V �(s0)

�
:

The quantity on the right-hand side is called the backed-up value of performing action a in
state s. For each possible successor state s0, it computes the reward that would be received
and the value of the resulting state and then weights those according to the probability of
ending up in s0.

The optimal value function V � is the value function that simultaneously maximizes the
expected cumulative reward in all states s 2 S. Bellman (1957) proved that it is the unique
solution to what is now known as the Bellman equation:

V �(s) = max
a

X
s0

P (s0js; a)
�
R(s0js; a) + 
V �(s0)

�
: (1)

There may be many optimal policies that achieve this value. Any policy that chooses a
in s to achieve the maximum on the right-hand side of this equation is an optimal policy.
We will denote an optimal policy by ��. Note that all optimal policies are \greedy" with
respect to the backed-up value of the available actions.

Closely related to the value function is the so-called action-value function, or Q function
(Watkins, 1989). This function, Q�(s; a), gives the expected cumulative reward of perform-
ing action a in state s and then following policy � thereafter. The Q function also satis�es
a Bellman equation:

Q�(s; a) =
X
s0

P (s0js; a)
�
R(s0js; a) + 
Q�(s0; �(s0))

�
:

The optimal action-value function is written Q�(s; a), and it satis�es the equation

Q�(s; a) =
X
s0

P (s0js; a)

�
R(s0js; a) + 
max

a0
Q�(s0; a0)

�
: (2)

Note that any policy that is greedy with respect to Q� is an optimal policy. There may be
many such optimal policies|they di�er only in how they break ties between actions with
identical Q� values.

An action order, denoted !, is a total order over the actions within an MDP. That is, !
is an anti-symmetric, transitive relation such that !(a1; a2) is true i� a1 is strictly preferred
to a2. An ordered greedy policy, �! is a greedy policy that breaks ties using !. For example,
suppose that the two best actions at state s are a1 and a2, that Q(s; a1) = Q(s; a2), and
that !(a1; a2). Then the ordered greedy policy �! will choose a1: �!(s) = a1. Note that
although there may be many optimal policies for a given MDP, the ordered greedy policy,
��!, is unique.
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2.2 Semi-Markov Decision Processes

In order to introduce and prove some of the properties of the MAXQ decomposition, we
need to consider a simple generalization of MDPs|the semi-Markov decision process.

A discrete-time semi-Markov Decision Process (SMDP) is a generalization of the Markov
Decision Process in which the actions can take a variable amount of time to complete. In
particular, let the random variable N denote the number of time steps that action a takes
when it is executed in state s. We can extend the state transition probability function to
be the joint distribution of the result states s0 and the number of time steps N when action
a is performed in state s: P (s0; N js; a). Similarly, the expected reward can be changed to
be R(s0; N js; a).1

It is straightforward to modify the Bellman equation to de�ne the value function for a
�xed policy � as

V �(s) =
X
s0;N

P (s0; N js; �(s))
h
R(s0; N js; �(s)) + 
NV �(s0)

i
:

The only change is that the expected value on the right-hand side is taken with respect to
both s0 and N , and 
 is raised to the power N to re
ect the variable amount of time that
may elapse while executing action a.

Note that because expectation is a linear operator, we can write each of these Bellman
equations as the sum of the expected reward for performing action a and the expected value
of the resulting state s0. For example, we can rewrite the equation above as

V �(s) = R(s; �(s)) +
X
s0;N

P (s0; N js; �(s))
NV �(s0): (3)

where R(s; �(s)) is the expected reward of performing action �(s) in state s, and the ex-
pectation is taken with respect to s0 and N .

All of the results given in this paper can be generalized to apply to discrete-time semi-
Markov Decision Processes. A consequence of this is that whenever this paper talks of
executing a primitive action, it could just as easily talk of executing a hand-coded open-
loop \subroutine". These subroutines would not be learned, and nor could their execution
be interrupted as discussed below in Section 6. But in many applications (e.g., robot
control with limited sensors), open-loop controllers can be very useful (e.g., to hide partial-
observability). For an example, see Kalm�ar, Szepesv�ari, and A. L�orincz (1998).

Note that for the episodic case, there is no di�erence between a MDP and a Semi-Markov
Decision Process, because the discount factor 
 is 1, and therefore neither the optimal policy
nor the optimal value function depend on the amount of time each action takes.

2.3 Reinforcement Learning Algorithms

A reinforcement learning algorithm is an algorithm that tries to construct an optimal policy
for an unknown MDP. The algorithm is given access to the unknown MDP via the following

1. This formalization is slightly di�erent from the standard formulation of SMDPs, which separates
P (s0js; a) and F (tjs; a), where F is the cumulative distribution function for the probability that a will
terminate in t time units, and t is real-valued rather than integer-valued. In our case, it is important
to consider the joint distribution of s0 and N , but we do not need to consider actions with arbitrary
real-valued durations.
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reinforcement learning protocol. At each time step t, the algorithm is told the current state
s of the MDP and the set of actions A(s) � A that are executable in that state. The
algorithm chooses an action a 2 A(s), and the MDP executes this action (which causes it to
move to state s') and returns a real-valued reward r. If s is an absorbing terminal state, the
set of actions A(s) contains only the special action reset, which causes the MDP to move
to one of its initial states, drawn according to P0.

In this paper, we will make use of two well-known learning algorithms: Q learning
(Watkins, 1989; Watkins & Dayan, 1992) and SARSA(0) (Rummery & Niranjan, 1994). We
will apply these algorithms to the case where the action value function Q(s; a) is represented
as a table with one entry for each pair of state and action. Every entry of the table is
initialized arbitrarily.

In Q learning, after the algorithm has observed s, chosen a, received r, and observed s0,
it performs the following update:

Qt(s; a) := (1� �t)Qt�1(s; a) + �t[r + 
max
a0

Qt�1(s
0; a0)];

where �t is a learning rate parameter.

Jaakkola, Jordan and Singh (1994) and Bertsekas and Tsitsiklis (1996) prove that if the
agent follows an \exploration policy" that tries every action in every state in�nitely often
and if

lim
T!1

TX
t=1

�t =1 and lim
T!1

TX
t=1

�2t <1 (4)

then Qt converges to the optimal action-value function Q� with probability 1. Their proof
holds in both settings discussed in this paper (episodic and in�nite-horizon).

The SARSA(0) algorithm is very similar. After observing s, choosing a, observing r,
observing s0, and choosing a0, the algorithm performs the following update:

Qt(s; a) := (1� �t)Qt�1(s; a) + �t[r + 
Qt�1(s
0; a0)];

where �t is a learning rate parameter. The key di�erence is that the Q value of the chosen
action a0, Q(s0; a0), appears on the right-hand side in the place where Q learning uses the
Q value of the best action. Singh, et al. (1998) provide two important convergence results:
First, if a �xed policy � is employed to choose actions, SARSA(0) will converge to the
value function of that policy provided �t decreases according to Equations (4). Second, if a
so-called GLIE policy is employed to choose actions, SARSA(0) will converge to the value
function of the optimal policy, provided again that �t decreases according to Equations (4).
A GLIE policy is de�ned as follows:

De�nition 1 A GLIE (Greedy in the Limit with In�nite Exploration) policy is any policy
satisfying

1. Each action is executed in�nitely often in every state that is visited in�nitely often.

2. In the limit, the policy is greedy with respect to the Q-value function with probability

1.
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Figure 1: The Taxi Domain.

3. The MAXQ Value Function Decomposition

At the center of the MAXQ method for hierarchical reinforcement learning is the MAXQ
value function decomposition. MAXQ describes how to decompose the overall value function
for a policy into a collection of value functions for individual subtasks (and subsubtasks,
recursively).

3.1 A Motivating Example

To make the discussion concrete, let us consider the following simple example. Figure 1
shows a 5-by-5 grid world inhabited by a taxi agent. There are four specially-designated
locations in this world, marked as R(ed), B(lue), G(reen), and Y(ellow). The taxi problem
is episodic. In each episode, the taxi starts in a randomly-chosen square. There is a
passenger at one of the four locations (chosen randomly), and that passenger wishes to be
transported to one of the four locations (also chosen randomly). The taxi must go to the
passenger's location (the \source"), pick up the passenger, go to the destination location
(the \destination"), and put down the passenger there. (To keep things uniform, the taxi
must pick up and drop o� the passenger even if he/she is already located at the destination!)
The episode ends when the passenger is deposited at the destination location.

There are six primitive actions in this domain: (a) four navigation actions that move the
taxi one square North, South, East, or West, (b) a Pickup action, and (c) a Putdown action.
There is a reward of �1 for each action and an additional reward of +20 for successfully
delivering the passenger. There is a reward of �10 if the taxi attempts to execute the
Putdown or Pickup actions illegally. If a navigation action would cause the taxi to hit a
wall, the action is a no-op, and there is only the usual reward of �1.

To simplify the examples throughout this section, we will make the six primitive ac-
tions deterministic. Later, we will make the actions stochastic in order to create a greater
challenge for our learning algorithms.

We seek a policy that maximizes the total reward per episode. There are 500 possible
states: 25 squares, 5 locations for the passenger (counting the four starting locations and
the taxi), and 4 destinations.

This task has a simple hierarchical structure in which there are two main sub-tasks:
Get the passenger and Deliver the passenger. Each of these subtasks in turn involves the
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subtask of navigating to one of the four locations and then performing a Pickup or Putdown
action.

This task illustrates the need to support temporal abstraction, state abstraction, and
subtask sharing. The temporal abstraction is obvious|for example, the process of navi-
gating to the passenger's location and picking up the passenger is a temporally extended
action that can take di�erent numbers of steps to complete depending on the distance to
the target. The top level policy (get passenger; deliver passenger) can be expressed very
simply if these temporal abstractions can be employed.

The need for state abstraction is perhaps less obvious. Consider the subtask of getting
the passenger. While this subtask is being solved, the destination of the passenger is
completely irrelevant|it cannot a�ect any of the nagivation or pickup decisions. Perhaps
more importantly, when navigating to a target location (either the source or destination
location of the passenger), only the target location is important. The fact that in some
cases the taxi is carrying the passenger and in other cases it is not is irrelevant.

Finally, support for subtask sharing is critical. If the system could learn how to solve the
navigation subtask once, then the solution could be shared by both the \Get the passenger"
and \Deliver the passenger" subtasks. We will show below that the MAXQ method provides
a value function representation and learning algorithm that supports temporal abstraction,
state abstraction, and subtask sharing.

To construct a MAXQ decomposition for the taxi problem, we must identify a set of
individual subtasks that we believe will be important for solving the overall task. In this
case, let us de�ne the following four tasks:

� Navigate(t). In this subtask, the goal is to move the taxi from its current location to
one of the four target locations, which will be indicated by the formal parameter t.

� Get. In this subtask, the goal is to move the taxi from its current location to the
passenger's current location and pick up the passenger.

� Put. The goal of this subtask is to move the taxi from the current location to the
passenger's destination location and drop o� the passenger.

� Root. This is the whole taxi task.

Each of these subtasks is de�ned by a subgoal, and each subtask terminates when the
subgoal is achieved.

After de�ning these subtasks, we must indicate for each subtask which other subtasks or
primitive actions it should employ to reach its goal. For example, the Navigate(t) subtask
should use the four primitive actions North, South, East, and West. The Get subtask should
use the Navigate subtask and the Pickup primitive action, and so on.

All of this information can be summarized by a directed acyclic graph called the task

graph, which is shown in Figure 2. In this graph, each node corresponds to a subtask or a
primitive action, and each edge corresponds to a potential way in which one subtask can
\call" one of its child tasks. The notation formal=actual (e.g., t=source) tells how a formal
parameter is to be bound to an actual parameter.

Now suppose that for each of these subtasks, we write a policy (e.g., as a computer
program) to achieve the subtask. We will refer to the policy for a subtask as a \subrou-
tine", and we can view the parent subroutine as invoking the child subroutine via ordinary
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Figure 2: A task graph for the Taxi problem.

subroutine-call-and-return semantics. If we have a policy for each subtask, then this gives
us an overall policy for the Taxi MDP. The Root subtask executes its policy by calling
subroutines that are policies for the Get and Put subtasks. The Get policy calls subroutines
for the Navigate(t) subtask and the Pickup primitive action. And so on. We will call this
collection of policies a hierarchical policy. In a hierarchical policy, each subroutine executes
until it enters a terminal state for its subtask.

3.2 De�nitions

Let us formalize the discussion so far.
The MAXQ decomposition takes a given MDP M and decomposes it into a �nite set of

subtasks fM0;M1; : : : ;Mng with the convention that M0 is the root subtask (i.e., solving
M0 solves the entire original MDP M).

De�nition 2 An unparameterized subtask is a three-tuple, hTi; Ai; ~Rii, de�ned as follows:

1. Ti is a termination predicate that partitions S into a set of active states, Si, and a set
of terminal states, Ti: The policy for subtask Mi can only be executed if the current

state s is in Si. If, at any time that subtask Mi is being executed, the MDP enters a

state in Ti, then Mi terminates immediately (even if it is still executing a subtask, see

below).

2. Ai is a set of actions that can be performed to achieve subtask Mi. These actions can

either be primitive actions from A, the set of primitive actions for the MDP, or they

can be other subtasks, which we will denote by their indexes i. We will refer to these

actions as the \children" of subtask i. The sets Ai de�ne a directed graph over the

subtasks M0; : : : ;Mn, and this graph may not contain any cycles. Stated another way,

no subtask can invoke itself recursively either directly or indirectly.

If a child subtask Mj has formal parameters, then this is interpreted as if the subtask

occurred multiple times in Ai, with one occurrence for each possible tuple of actual
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values that could be bound to the formal parameters. The set of actions Ai may di�er
from one state to another and from one set of actual parameter values to another, so

technically, Ai is a function of s and the actual parameters. However, we will suppress

this dependence in our notation.

3. ~Ri(s
0) is the pseudo-reward function, which speci�es a (deterministic) pseudo-reward

for each transition to a terminal state s0 2 Ti. This pseudo-reward tells how desirable

each of the terminal states is for this subtask. It is typically employed to give goal
terminal states a pseudo-reward of 0 and any non-goal terminal states a negative

reward. By de�nition, the pseudo-reward ~Ri(s) is also zero for all non-terminal states
s. The pseudo-reward is only used during learning, so it will not be mentioned further

until Section 4.

Each primitive action a from M is a primitive subtask in the MAXQ decomposition

such that a is always executable, it always terminates immediately after execution, and its

pseudo-reward function is uniformly zero.

If a subtask has formal parameters, then each possible binding of actual values to the
formal parameters speci�es a distinct subtask. We can think of the values of the formal
parameters as being part of the \name" of the subtask. In practice, of course, we implement
a parameterized subtask by parameterizing the various components of the task. If b speci�es
the actual parameter values for task Mi, then we can de�ne a parameterized termination
predicate Ti(s; b) and a parameterized pseudo-reward function ~Ri(s

0; b). To simplify notation
in the rest of the paper, we will usually omit these parameter bindings. However, it should
be noted that if a parameter of a subtask takes on a large number of possible values, this
is equivalent to creating a large number of di�erent subtasks, each of which will need to be
learned. It will also create a large number of candidate actions for the parent task, which
will make the learning problem more di�cult for the parent task as well.

De�nition 3 A hierarchical policy, �, is a set containing a policy for each of the subtasks

in the problem: � = f�0; : : : ; �ng:

Each subtask policy �i takes a state and returns the name of a primitive action to
execute or the name of a subroutine (and bindings for its formal parameters) to invoke. In
the terminology of Sutton, Precup, and Singh (1998), a subtask policy is a deterministic
\option", and its probability of terminating in state s (which they denote by �(s)) is 0 if
s 2 Si, and 1 if s 2 Ti.

In a parameterized task, the policy must be parameterized as well so that � takes a
state and the bindings of formal parameters and returns a chosen action and the bindings
(if any) of its formal parameters.

Table 1 gives a pseudo-code description of the procedure for executing a hierarchical
policy. The hierarchical policy is executed using a stack discipline, similar to ordinary
programming languages. Let Kt denote the contents of the pushdown stack at time t.
When a subroutine is invoked, its name and actual parameters are pushed onto the stack.
When a subroutine terminates, its name and actual parameters are popped o� the stack.
Notice (line 16) that if any subroutine on the stack terminates, then all subroutines below
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Table 1: Pseudo-Code for Execution of a Hierarchical Policy.

Procedure ExecuteHierarchicalPolicy(�)
1 st is the state of the world at time t
2 Kt is the state of the execution stack at time t

3 Let t = 0; Kt = empty stack; observe st
4 push (0; nil) onto stack Kt (invoke the root task with no parameters)

5 repeat

6 while top(Kt) is not a primitive action
7 Let (i; fi) := top(Kt), where
8 i is the name of the \current" subroutine, and
9 fi gives the parameter bindings for i
10 Let (a; fa) := �i(s; fi), where
11 a is the action and fa gives the parameter bindings chosen by policy �i
12 push (a; fa) onto the stack Kt

13 end // while

14 Let (a; nil) := pop(Kt) be the primitive action on the top of the stack.
15 Execute primitive action a, observe st+1, and receive reward R(st+1jst; a)

16 If any subtask on Kt is terminated in st+1 then
17 Let M 0 be the terminated subtask that is highest (closest to the root) on the stack.
18 while top(Kt) 6=M 0 do pop(Kt)
19 pop(Kt)

20 Kt+1 := Kt is the resulting execution stack.
21 until Kt+1 is empty

end ExecuteHierarchicalPolicy

it are immediately aborted, and control returns to the subroutine that had invoked the
terminated subroutine.

It is sometimes useful to think of the contents of the stack as being an additional part of
the state space for the problem. Hence, a hierarchical policy implicitly de�nes a mapping
from the current state st and current stack contentsKt to a primitive action a. This action is
executed, and this yields a resulting state st+1 and a resulting stack contents Kt+1. Because
of the added state information in the stack, the hierarchical policy is non-Markovian with
respect to the original MDP.

Because a hierarchical policy maps from states s and stack contents K to actions, the
value function for a hierarchical policy must assign values to combinations of states s and
stack contents K.

De�nition 4 A hierarchical value function, denoted V �(hs;Ki), gives the expected cumu-

lative reward of following the hierarchical policy � starting in state s with stack contents

K.

This hierarchical value function is exactly what is learned by Ron Parr's (1998b) HAMQ
algorithm, which we will discuss below. However, in this paper, we will focus on learning
only the projected value functions of each of the subtasks M0; : : : ;Mn in the hierarchy.
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De�nition 5 The projected value function of hierarchical policy � on subtask Mi, denoted
V �(i; s), is the expected cumulative reward of executing �i (and the policies of all descendents
of Mi) starting in state s until Mi terminates.

The purpose of the MAXQ value function decomposition is to decompose V (0; s) (the
projected value function of the root task) in terms of the projected value functions V (i; s)
of all of the subtasks in the MAXQ decomposition.

3.3 Decomposition of the Projected Value Function

Now that we have de�ned a hierarchical policy and its projected value function, we can show
how that value function can be decomposed hierarchically. The decomposition is based on
the following theorem:

Theorem 1 Given a task graph over tasks M0; : : : ;Mn and a hierarchical policy �, each
subtask Mi de�nes a semi-Markov decision process with states Si, actions Ai, probability

transition function P �
i (s

0; N js; a), and expected reward function R(s; a) = V �(a; s), where
V �(a; s) is the projected value function for child task Ma in state s. If a is a primitive

action, V �(a; s) is de�ned as the expected immediate reward of executing a in s: V �(a; s) =P
s0 P (s

0js; a)R(s0js; a).

Proof: Consider all of the subroutines that are descendents of task Mi in the task graph.
Because all of these subroutines are executing �xed policies (speci�ed by hierarchical policy
�), the probability transition function P �

i (s
0; N js; a) is a well de�ned, stationary distribution

for each child subroutine a. The set of states Si and the set of actions Ai are obvious. The
interesting part of this theorem is the fact that the expected reward function R(s; a) of the
SMDP is the projected value function of the child task Ma.

To see this, let us write out the value of V �(i; s):

V �(i; s) = Efrt + 
rt+1 + 
2rt+2 + � � � jst = s; �g (5)

This sum continues until the subroutine for task Mi enters a state in Ti.
Now let us suppose that the �rst action chosen by �i is a subroutine a. This subroutine

is invoked, and it executes for a number of steps N and terminates in state s0 according to
P �
i (s

0; N js; a). We can rewrite Equation (5) as

V �(i; s) = E

(
N�1X
u=0


urt+u +
1X

u=N


urt+u

����� st = s; �

)
(6)

The �rst summation on the right-hand side of Equation (6) is the discounted sum of rewards
for executing subroutine a starting in state s until it terminates, in other words, it is V �(a; s),
the projected value function for the child task Ma. The second term on the right-hand side
of the equation is the value of s0 for the current task i, V �(i; s0), discounted by 
N , where
s0 is the current state when subroutine a terminates. We can write this in the form of a
Bellman equation:

V �(i; s) = V �(�i(s); s) +
X
s0;N

P �
i (s

0; N js; �i(s))

NV �(i; s0) (7)
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This has the same form as Equation (3), which is the Bellman equation for an SMDP, where
the �rst term is the expected reward R(s; �(s)). Q.E.D.

To obtain a hierarchical decomposition of the projected value function, let us switch
to the action-value (or Q) representation. First, we need to extend the Q notation to
handle the task hierarchy. Let Q�(i; s; a) be the expected cumulative reward for subtask
Mi of performing action a in state s and then following hierarchical policy � until subtask
Mi terminates. Action a may be either a primitive action or a child subtask. With this
notation, we can re-state Equation (7) as follows:

Q�(i; s; a) = V �(a; s) +
X
s0;N

P �
i (s

0; N js; a)
NQ�(i; s0; �(s0)); (8)

The right-most term in this equation is the expected discounted reward of completing task
Mi after executing action a in state s. This term only depends on i, s, and a, because the
summation marginalizes away the dependence on s0 and N . Let us de�ne C�(i; s; a) to be
equal to this term:

De�nition 6 The completion function, C�(i; s; a), is the expected discounted cumulative

reward of completing subtask Mi after invoking the subroutine for subtask Ma in state s.
The reward is discounted back to the point in time where a begins execution.

C�(i; s; a) =
X
s0;N

P �
i (s

0; N js; a)
NQ�(i; s0; �(s0)) (9)

With this de�nition, we can express the Q function recursively as

Q�(i; s; a) = V �(a; s) + C�(i; s; a): (10)

Finally, we can re-express the de�nition for V �(i; s) as

V �(i; s) =

(
Q�(i; s; �i(s)) if i is compositeP

s0 P (s
0js; i)R(s0js; i) if i is primitive

(11)

We will refer to equations (9), (10), and (11) as the decomposition equations for the
MAXQ hierarchy under a �xed hierarchical policy �. These equations recursively decompose
the projected value function for the root, V �(0; s) into the projected value functions for
the individual subtasks, M1; : : : ;Mn and the individual completion functions C�(j; s; a)
for j = 1; : : : ; n. The fundamental quantities that must be stored to represent the value
function decomposition are just the C values for all non-primitive subtasks and the V values
for all primitive actions.

To make it easier for programmers to design and debug MAXQ decompositions, we have
developed a graphical representation that we call the MAXQ graph. A MAXQ graph for the
Taxi domain is shown in Figure 3. The graph contains two kinds of nodes, Max nodes and
Q nodes. The Max nodes correspond to the subtasks in the task decomposition|there is
one Max node for each primitive action and one Max node for each subtask (including the
Root) task. Each primitive Max node i stores the value of V �(i; s). The Q nodes correspond
to the actions that are available for each subtask. Each Q node for parent task i, state s
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Figure 3: A MAXQ graph for the Taxi Domain.

and subtask a stores the value of C�(i; s; a). The children of any node are unordered|that
is, the order in which they are drawn in Figure 3 does not imply anything about the order in
which they will be executed. Indeed, a child action may be executed multiple times before
its parent subtask is completed.

In addition to storing information, the Max nodes and Q nodes can be viewed as per-
forming parts of the computation described by the decomposition equations. Speci�cally,
each Max node i can be viewed as computing the projected value function V �(i; s) for its
subtask. For primitive Max nodes, this information is stored in the node. For composite
Max nodes, this information is obtained by \asking" the Q node corresponding to �i(s).
Each Q node with parent task i and child task a can be viewed as computing the value of
Q�(i; s; a). It does this by \asking" its child task a for its projected value function V �(a; s)
and then adding its completion function C�(i; s; a).
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As an example, consider the situation shown in Figure 1, which we will denote by s1.
Suppose that the passenger is at R and wishes to go to B. Let the hierarchical policy we
are evaluating be an optimal policy denoted by � (we will omit the superscript * to reduce
the clutter of the notation). The value of this state under � is 10, because it will cost 1
unit to move the taxi to R, 1 unit to pickup the passenger, 7 units to move the taxi to B,
and 1 unit to putdown the passenger, for a total of 10 units (a reward of �10). When the
passenger is delivered, the agent gets a reward of +20, so the net value is +10.

Figure 4 shows how the MAXQ hierarchy computes this value. To compute the value
V �(Root; s1), MaxRoot consults its policy and �nds that �Root(s1) is Get. Hence, it \asks"
the Q node, QGet to compute Q�(Root; s1;Get). The completion cost for the Root task
after performing a Get, C�(Root; s1;Get), is 12, because it will cost 8 units to deliver the
customer (for a net reward of 20� 8 = 12) after completing the Get subtask. However, this
is just the reward after completing the Get, so it must ask MaxGet to estimate the expected
reward of performing the Get itself.

The policy forMaxGet dictates that in s1, the Navigate subroutine should be invoked with
t bound to R, so MaxGet consults the Q node, QNavigateForGet to compute the expected
reward. QNavigateForGet knows that after completing the Navigate(R) task, one more action
(the Pickup) will be required to complete the Get, so C�(MaxGet; s1;Navigate(R)) = �1.
It then asks MaxNavigate(R) to compute the expected reward of performing a Navigate to
location R.

The policy for MaxNavigate chooses the North action, so MaxNavigate asks QNorth to
compute the value. QNorth looks up its completion cost, and �nds that C�(Navigate; s1;North)
is 0 (i.e., the Navigate task will be completed after performing the North action). It consults
MaxNorth to determine the expected cost of performing the North action itself. Because
MaxNorth is a primitive action, it looks up its expected reward, which is �1.

Now this series of recursive computations can conclude as follows:

� Q�(Navigate(R); s1;North) = �1 + 0

� V �(Navigate(R); s1) = �1

� Q�(Get; s1;Navigate(R)) = �1 +�1
(�1 to perform the Navigate plus �1 to complete the Get.

� V �(Get; s1) = �2

� Q�(Root; s1;Get) = �2 + 12
(�2 to perform the Get plus 12 to complete the Root task and collect the �nal reward).

The end result of all of this is that the value of V �(Root; s1) is decomposed into a sum
of C terms plus the expected reward of the chosen primitive action:

V �(Root; s1) = V �(North; s1) + C�(Navigate(R); s1;North) +

C�(Get; s1;Navigate(R)) + C�(Root; s1;Get)

= �1 + 0 +�1 + 12

= 10
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Figure 4: Computing the value of a state using the MAXQ hierarchy. The C value of each
Q node is shown to the left of the node. All other numbers show the values being
returned up the graph.

In general, the MAXQ value function decomposition has the form

V �(0; s) = V �(am; s) + C�(am�1; s; am) + : : :+ C�(a1; s; a2) + C�(0; s; a1); (12)

where a0; a1; : : : ; am is the \path" of Max nodes chosen by the hierarchical policy going
from the Root down to a primitive leaf node. This is summarized graphically in Figure 5.

We can summarize the presentation of this section by the following theorem:

Theorem 2 Let � = f�i; i = 0; : : : ; ng be a hierarchical policy de�ned for a given MAXQ

graph with subtasks M0; : : : ;Mn; and let i = 0 be the root node of the graph. Then there

exist values for C�(i; s; a) (for internal Max nodes) and V �(i; s) (for primitive, leaf Max
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Figure 5: The MAXQ decomposition; r1; : : : ; r14 denote the sequence of rewards received
from primitive actions at times 1; : : : ; 14.

nodes) such that V �(0; s) (as computed by the decomposition equations (9), (10), and (11))

is the expected discounted cumulative reward of following policy � starting in state s.

Proof: The proof is by induction on the number of levels in the task graph. At each
level i, we compute values for C�(i; s; �(s)) (or V �(i; s); if i is primitive) according to the
decomposition equations. We can apply the decomposition equations again to compute
Q�(i; s; �(s)) and apply Equation (8) and Theorem 1 to conclude that Q�(i; s; �(s)) gives
the value function for level i. When i = 0, we obtain the value function for the entire
hierarchical policy. Q. E. D.

It is important to note that this representation theorem does not mention the pseudo-
reward function, because the pseudo-reward is used only during learning. This theorem
captures the representational power of the MAXQ decomposition, but it does not address
the question of whether there is a learning algorithm that can �nd a given policy. That is
the subject of the next section.

4. A Learning Algorithm for the MAXQ Decomposition

This section presents the central contributions of the paper. First, we discuss what optimal-
ity criteria should be employed in hierarchical reinforcement learning. Then we introduce
the MAXQ-0 learning algorithm, which can learn value functions (and policies) for MAXQ
hierarchies in which there are no pseudo-rewards (i.e., the pseudo-rewards are zero). The
central theoretical result of the paper is that MAXQ-0 converges to a recursively optimal
policy for the given MAXQ hierarchy. This is followed by a brief discussion of ways of
accelerating MAXQ-0 learning. The section concludes with a description of the MAXQ-Q
learning algorithm, which handles non-zero pseudo-reward functions.
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4.1 Two Kinds of Optimality

In order to develop a learning algorithm for the MAXQ decomposition, we must consider
exactly what we are hoping to achieve. Of course, for any MDP M , we would like to �nd
an optimal policy ��. However, in the MAXQ method (and in hierarchical reinforcement
learning in general), the programmer imposes a hierarchy on the problem. This hierarchy
constrains the space of possible policies so that it may not be possible to represent the
optimal policy or its value function.

In the MAXQ method, the constraints take two forms. First, within a subtask, only
some of the possible primitive actions may be permitted. For example, in the taxi task,
during a Navigate(t), only the North, South, East, andWest actions are available|the Pickup
and Putdown actions are not allowed. Second, consider a Max node Mj with child nodes
fMj1 ; : : : ;Mjkg. The policy learned for Mj must involve executing the learned policies of
these child nodes. When the policy for child nodeMji is executed, it will run until it enters
a state in Tji . Hence, any policy learned for Mj must pass through some subset of these
terminal state sets fTj1 ; : : : ; Tjkg.

The HAM method shares these same two constraints and in addition, it imposes a
partial policy on each node, so that the policy for any subtask Mi must be a deterministic
re�nement of the given non-deterministic initial policy for node i.

In the \option" approach, the policy is even further constrained. In this approach, there
are only two non-primitive levels in the hierarchy, and the subtasks at the lower level (i.e.,
whose children are all primitive actions) are given complete policies by the programmer.
Hence, any learned policy at the upper level must be constructed by \concatenating" the
given lower level policies in some order.

The purpose of imposing these constraints on the policy is to incorporate prior knowledge
and thereby reduce the size of the space that must be searched to �nd a good policy.
However, these constraints may make it impossible to learn the optimal policy.

If we can't learn the optimal policy, the next best target would be to learn the best
policy that is consistent with (i.e., can be represented by) the given hierarchy.

De�nition 7 A hierarchically optimal policy for MDP M is a policy that achieves the

highest cumulative reward among all policies consistent with the given hierarchy.

Parr (1998b) proves that his HAMQ learning algorithm converges with probability 1
to a hierarchically optimal policy. Similarly, given a �xed set of options, Sutton, Precup,
and Singh (1998) prove that their SMDP learning algorithm converges to a hierarchically
optimal value function. Incidentally, they also show that if the primitive actions are also
made available as \trivial" options, then their SMDP method converges to the optimal
policy. However, in this case, it is hard to say anything formal about how the options speed
the learning process. They may in fact hinder it (Hauskrecht et al., 1998).

Because the MAXQ decomposition can represent the value function of any hierarchical
policy, we could easily construct a modi�ed version of the HAMQ algorithm and apply it
to learn hierarchically optimal policies for the MAXQ hierarchy. However, we decided to
pursue an even weaker form of optimality, for reasons that will become clear as we proceed.
This form of optimality is called recursive optimality.
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Figure 6: A simple MDP (left) and its associated MAXQ graph (right). The policy shown in
the left diagram is recursively optimal but not hierarchically optimal. The shaded
cells indicate points where the locally-optimal policy is not globally optimal.

De�nition 8 A recursively optimal policy for Markov decision process M with MAXQ

decomposition fM0; : : : ;Mkg is a hierarchical policy � = f�0; : : : ; �kg such that for each

subtask Mi, the corresponding policy �i is optimal for the SMDP de�ned by the set of states

Si, the set of actions Ai, the state transition probability function P �(s0; N js; a), and the

reward function given by the sum of the original reward function R(s0js; a) and the pseudo-

reward function ~Ri(s
0).

Note that the state transition probability distribution, P �(s0; N js; a) for subtask Mi is
de�ned by the locally optimal policies f�jg of all subtasks that are descendents of Mi in
the MAXQ graph. Hence, recursive optimality is a kind of local optimality in which the
policy at each node is optimal given the policies of its children.

The reason to seek recursive optimality rather than hierarchical optimality is that re-
cursive optimality makes it possible to solve each subtask without reference to the context
in which it is executed. This context-free property makes it easier to share and re-use
subtasks. It will also turn out to be essential for the successful use of state abstraction.

Before we proceed to describe our learning algorithm for recursive optimality, let us see
how recursive optimality di�ers from hierarchical optimality.

It is easy to construct examples of policies that are recursively optimal but not hier-
archically optimal (and vice versa). Consider the simple maze problem and its associated
MAXQ graph shown in Figures 6. Suppose a robot starts somewhere in the left room, and
it must reach the goal G in the right room. The robot has three actions, North, South, and
East, and these actions are deterministic. The robot receives a reward of �1 for each move.
Let us de�ne two subtasks:
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� Exit. This task terminates when the robot exits the left room. We can set the pseudo-
reward function ~R to be 0 for the two terminal states (i.e., the two states indicated
by *'s).

� GotoGoal. This task terminates when the robot reaches the goal G.

The arrows in Figure 6 show the locally optimal policy within each room. The arrows
on the left seek to exit the left room by the shortest path, because this is what we speci�ed
when we set the pseudo-reward function to 0. The arrows on the right follow the shortest
path to the goal, which is �ne. However, the resulting policy is neither hierarchically optimal
nor optimal.

There exists a hierarchical policy that would always exit the left room by the upper
door. The MAXQ value function decomposition can represent the value function of this
policy, but such a policy would not be locally optimal (because, for example, the states
in the \shaded" region would not follow the shortest path to a doorway). Hence, this
example illustrates both a recursively optimal policy that is not hierarchically optimal and
a hierarchically optimal policy that is not recursively optimal.

If we consider for a moment, we can see a way to �x this problem. The value of the
upper starred state under the optimal hierarchical policy is �2 and the value of the lower
starred state is �6. Hence, if we changed ~R to have these values (instead of being zero),
then the recursively-optimal policy would be hierarchically optimal (and globally optimal).
In other words, if the programmer can guess the right values for the terminal states of a
subtask, then the recursively optimal policy will be hierarchically optimal.

This basic idea was �rst pointed out by Dean and Lin (1995). They describe an algorithm
that makes initial guesses for the values of these starred states and then updates those
guesses based on the computed values of the starred states under the resulting recursively-
optimal policy. They proved that this will converge to a hierarchically optimal policy. The
drawback of their method is that it requires repeated solution of the resulting hierarchical
learning problem, and this does not always yield a speedup over just solving the original,

at problem.

Parr (1998a) proposed an interesting approach that constructs a set of di�erent ~R func-
tions and computes the recursively optimal policy under each of them for each subtask. His
method chooses the ~R functions in such a way that the hierarchically optimal policy can be
approximated to any desired degree. Unfortunately, the method is quite expensive, because
it relies on solving a series of linear programming problems each of which requires time
polynomial in several parameters, including the number of states jSij within the subtask.

This discussion suggests that while, in principle, it is possible to learn good values for
the pseudo-reward function, in practice, we must rely on the programmer to specify a single
pseudo-reward function, ~R, for each subtask. If the programmer wishes to consider a small
number of alternative pseudo-reward functions, they can be handled by de�ning a small
number of subtasks that are identical except for their ~R functions, and permitting the
learning algorithm to choose the one that gives the best recursively-optimal policy.

In our experiments, we have employed the following simpli�ed approach to de�ning
~R. For each subtask Mi, we de�ne two predicates: the termination predicate, Ti, and a
goal predicate, Gi. The goal predicate de�nes a subset of the terminal states that are \goal
states", and these have a pseudo-reward of 0. All other terminal states have a �xed constant
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pseudo-reward (e.g., �100) that is set so that it is always better to terminate in a goal state
than in a non-goal state. For the problems on which we have tested the MAXQ method,
this worked very well.

In our experiments with MAXQ, we have found that it is easy to make mistakes in
de�ning Ti and Gi. If the goal is not de�ned carefully, it is easy to create a set of subtasks
that lead to in�nite looping. For example, consider again the problem in Figure 6. Suppose
we permit a fourth action, West, in the MDP and let us de�ne the termination and goal
predicates for the right hand room to be satis�ed i� either the robot reaches the goal or it
exits the room. This is a very natural de�nition, since it is quite similar to the de�nition
for the left-hand room. However, the resulting locally-optimal policy for this room will
attempt to move to the nearest of these three locations: the goal, the upper door, or the
lower door. We can easily see that for all but a few states near the goal, the only policies
that can be constructed by MaxRoot will loop forever, �rst trying to leave the left room by
entering the right room, and then trying to leave the right room by entering the left room.
This problem is easily �xed by de�ning the goal predicate Gi for the right room to be true
if and only if the robot reaches the goal G. But avoiding such \undesired termination" bugs
can be hard in more complex domains.

In the worst case, it is possible for the programmer to specify pseudo-rewards such that
the recursively optimal policy can be made arbitrarily worse than the hierarchically optimal
policy. For example, suppose that we change the original MDP in Figure 6 so that the state
immediately to the left of the upper doorway gives a large negative reward �L whenever
the robot visits that square. Because rewards everywhere else are �1, the hierarchically-
optimal policy exits the room by the lower door. But suppose the programmer has chosen
instead to force the robot to exit by the upper door (e.g., by assigning a pseudo-reward of
�10L for leaving via the lower door). In this case, the recursively-optimal policy will leave
by the upper door and su�er the large �L penalty. By making L arbitrarily large, we can
make the di�erence between the hierarchically-optimal policy and the recursively-optimal
policy arbitrarily large.

4.2 The MAXQ-0 Learning Algorithm

Now that we have an understanding of recursively optimal policies, we present two learning
algorithms. The �rst one, called MAXQ-0, applies only in the case when the pseudo-reward
function ~R is always zero. We will �rst prove its convergence properties and then show
how it can be extended to give the second algorithm, MAXQ-Q, which works with general
pseudo-reward functions.

Table 2 gives pseudo-code for MAXQ-0. MAXQ-0 is a recursive function that executes
the current exploration policy starting at Max node i in state s. It performs actions until it
reaches a terminal state, at which point it returns a count of the total number of primitive
actions that have been executed. To execute an action, MAXQ-0 calls itself recursively
(line 9). When the recursive call returns, it updates the value of the completion function
for node i. It uses the count of the number of primitive actions to appropriately discount
the value of the resulting state s0. At leaf nodes, MAXQ-0 updates the estimated one-step
expected reward, V (i; s). The value �t(i) is a \learning rate" parameter that should be
gradually decreased to zero in the limit.
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Table 2: The MAXQ-0 learning algorithm.

function MAXQ-0(MaxNode i, State s)

1 if i is a primitive MaxNode
2 execute i, receive r, and observe result state s0

3 Vt+1(i; s) := (1 � �t(i)) � Vt(i; s) + �t(i) � rt
4 return 1
5 else

6 let count = 0
7 while Ti(s) is false do
8 choose an action a according to the current exploration policy �x(i; s)
9 let N = MAXQ-0(a; s) (recursive call)
10 observe result state s0

11 Ct+1(i; s; a) := (1 � �t(i)) � Ct(i; s; a) + �t(i) � 

NVt(i; s

0)
12 count := count+N

13 s := s0

14 end

15 return count

end MAXQ-0

16 // Main program
17 initialize V (i; s) and C(i; s; j) arbitrarily
18 MAXQ-0(root node 0, starting state s0)

There are three things that must be speci�ed in order to make this algorithm description
complete.

First, to keep the pseudo-code readable, Table 2 does not show how \ancestor termi-
nation" is handled. Recall that after each action, the termination predicates of all of the
subroutines on the calling stack are checked. If the termination predicate of any one of
these is satis�ed, then the calling stack is unwound up to the highest terminated subrou-
tine. In such cases, no C values are updated in any of the subroutines that were interrupted
except as follows. If subroutine i had invoked subroutine j, and j's termination condition
is satis�ed, then subroutine i can update the value of C(i; s; j).

Second, we must specify how to compute Vt(i; s
0) in line 11, since it is not stored in

the Max node. It is computed by the following modi�ed versions of the decomposition
equations:

Vt(i; s) =

(
maxaQt(i; s; a) if i is composite
Vt(i; s) if i is primitive

(13)

Qt(i; s; a) = Vt(a; s) + Ct(i; s; a): (14)

These equations re
ect two important changes compared with Equations (10) and (11).
First, in Equation (13), Vt(i; s) is de�ned in terms of the Q value of the best action a, rather
than of the action chosen by a �xed hierarchical policy. Second, there are no � superscripts,
because the current value function, Vt(i; s), is not based on a �xed hierarchical policy �.

To compute Vt(i; s) using these equations, we must perform a complete search of all
paths through the MAXQ graph starting at node i and ending at the leaf nodes. Table 3
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Table 3: Pseudo-code for Greedy Execution of the MAXQ Graph.

function EvaluateMaxNode(i; s)

1 if i is a primitive Max node
2 return hVt(i; s); ii
3 else
4 for each j 2 Ai,
5 let hVt(j; s); aji = EvaluateMaxNode(j; s)

6 let jhg = argmaxj Vt(j; s) + Ct(i; s; j)

7 return hVt(j
hg ; s); ajhg i

end // EvaluateMaxNode

gives pseudo-code for a recursive function, EvaluateMaxNode, that implements a depth-
�rst search. In addition to returning Vt(i; s), EvaluateMaxNode also returns the action
at the leaf node that achieves this value. This information is not needed for MAXQ-0, but it
will be useful later when we consider non-hierarchical execution of the learned recursively-
optimal policy.

This search can be computationally expensive, and a problem for future research is
to develop more e�cient methods for computing the best path through the graph. One
approach is to perform a best-�rst search and use bounds on the values within subtrees to
prune useless paths through the MAXQ graph. A better approach would be to make the
computation incremental, so that when the state of the environment changes, only those
nodes whose values have changed as a result of the state change are re-considered. It should
be possible to develop an e�cient bottom-up method similar to the RETE algorithm (and
its successors) that is used in the SOAR architecture (Forgy, 1982; Tambe & Rosenbloom,
1994).

The third thing that must be speci�ed to complete our de�nition of MAXQ-0 is the
exploration policy, �x. We require that �x be an ordered GLIE policy.

De�nition 9 An ordered GLIE policy is a GLIE policy (Greedy in the Limit with In�nite

Exploration) that converges in the limit to an ordered greedy policy, which is a greedy policy
that imposes an arbitrary �xed order ! on the available actions and breaks ties in favor of

the action a that appears earliest in that order.

We need this property in order to ensure that MAXQ-0 converges to a uniquely-de�ned
recursively optimal policy. A fundamental problem with recursive optimality is that in
general, each Max node i will have a choice of many di�erent locally optimal policies given
the policies adopted by its descendent nodes. These di�erent locally optimal policies will
all achieve the same locally optimal value function, but they can give rise to di�erent prob-
ability transition functions P (s0; N js; i). The result will be that the Semi-Markov Decision
Problems de�ned at the next level above node i in the MAXQ graph will di�er depending
on which of these various locally optimal policies is chosen by node i. These di�erences may
lead to better or worse policies at higher levels of the MAXQ graph, even though they make
no di�erence inside subtask i. In practice, the designer of the MAXQ graph will need to
design the pseudo-reward function for subtask i to ensure that all locally optimal policies
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are equally valuable for the parent subroutine. But to carry out our formal analysis, we will
just rely on an arbitrary tie-breaking mechanism.2 If we establish a �xed ordering over the
Max nodes in the MAXQ graph (e.g., a left-to-right depth-�rst numbering), and break ties
in favor of the lowest-numbered action, then this de�nes a unique policy at each Max node.
And consequently, by induction, it de�nes a unique policy for the entire MAXQ graph. Let
us call this policy ��r . We will use the r subscript to denote recursively optimal quantities
under an ordered greedy policy. Hence, the corresponding value function is V �r , and C

�
r and

Q�r denote the corresponding completion function and action-value function. We now prove
that the MAXQ-0 algorithm converges to ��r .

Theorem 3 LetM = hS;A; P;R; P0i be either an episodic MDP for which all deterministic
policies are proper or a discounted in�nite horizon MDP with discount factor 
. Let H be

a MAXQ graph de�ned over subtasks fM0; : : : ;Mkg such that the pseudo-reward function
~Ri(s

0) is zero for all i and s0. Let �t(i) > 0 be a sequence of constants for each Max node i
such that

lim
T!1

TX
t=1

�t(i) =1 and lim
T!1

TX
t=1

�2t (i) <1 (15)

Let �x(i; s) be an ordered GLIE policy at each node i and state s and assume that the

immediate rewards are bounded. Then with probability 1, algorithm MAXQ-0 converges to

��r , the unique recursively optimal policy for M consistent with H and �x.

Proof: The proof follows an argument similar to those introduced to prove the convergence
of Q learning and SARSA(0) (Bertsekas & Tsitsiklis, 1996; Jaakkola et al., 1994). We will
employ the following result from stochastic approximation theory, which we state without
proof:

Lemma 1 (Proposition 4.5 from Bertsekas and Tsitsiklis, 1996) Consider the iteration

rt+1(i) := (1� �t(i))rt(i) + �t(i)((Urt)(i) + wt(i) + ut(i)):

Let Ft = fr0(i); : : : ; rt(i); w0(i); : : : ; wt�1(i); �0(i); : : : ; �t(i);8ig be the entire history of the

iteration.

If

(a) The �t(i) � 0 satisfy conditions (15)

(b) For every i and t, the noise terms wt(i) satisfy E[wt(i)jFt] = 0

(c) Given any norm jj � jj on Rn, there exist constants A and B such that E[w2
t (i)jFt] �

A+Bjjrtjj
2.

(d) There exists a vector r�, a positive vector �, and a scalar � 2 [0; 1), such that for all

t,

jjUrt � r�jj� � �jjrt � r�jj�

2. Alternatively, we could break ties by using a stochastic policy that chose randomly among the tied
actions.
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(e) There exists a nonnegative random sequence �t that converges to zero with probability
1 and is such that for all t

jut(i)j � �t(jjrtjj� + 1)

then rt converges to r
� with probability 1. The notation jj � jj� denotes a weighted maximum

norm

jjAjj� = max
i

jA(i)j

�(i)
:

The structure of the proof of Theorem 3 will be inductive, starting at the leaves of the
MAXQ graph and working toward the root. We will employ a di�erent time clock at each
node i to count the number of update steps performed by MAXQ-0 at that node. The
variable t will always refer to the time clock of the current node i.

To prove the base case for any primitive Max node, we note that line 3 of MAXQ-0 is
just the standard stochastic approximation algorithm for computing the expected reward
for performing action a in state s, and therefore it converges under the conditions given
above.

To prove the recursive case, consider any composite Max node i with child node j. Let
Pt(s

0; N js; j) be the transition probability distribution for performing child action j in state
s at time t (i.e., while following the exploration policy in all descendent nodes of node j).
By the inductive assumption, MAXQ-0 applied to j will converge to the (unique) recur-
sively optimal value function V �r (j; s) with probability 1. Furthermore, because MAXQ-0
is following an ordered GLIE policy for j and its descendents, they will all converge to ex-
ecuting a greedy policy with respect to their value functions, so Pt(s

0; N js; j) will converge
to P �r (s

0; N js; j), the unique transition probability function for executing child j under the
locally optimal policy ��r . What remains to be shown is that the update assignment for C
(line 11 of the MAXQ-0 algorithm) converges to the optimal C�r function with probability
1.

To prove this, we will apply Lemma 1. We will identify the x in the lemma with a
state-action pair (s; a). The vector rt will be the completion-cost table Ct(i; s; a) for all
s; a and �xed i after t update steps. The vector r� will be the optimal completion-cost
C�r (i; s; a) (again, for �xed i). De�ne the mapping U to be

(UC)(i; s; a) =
X
s0

P �r (s
0; N js; a)
N

�
max
a0

[C(i; s0; a0) + V �r (a
0; s0)]

�

This is a C update under the MDP Mi assuming that all descendent value functions,
V �r (a; s), and transition probabilities, P �r (s

0; N js; a), have converged.

To apply the lemma, we must �rst express the C update formula in the form of the
update rule in the lemma. Let s be the state that results from performing a in state s. Line
11 can be written

Ct+1(i; s; a) := (1� �t(i)) � Ct(i; s; a) + �t(i) � 

N

�
max
a0

[Ct(i; s; a
0) + Vt(a

0; s)]

�
:= (1� �t(i)) � Ct(i; s; a) + �t(i) � [(UCt)(i; s; a) + wt(i; s; a) + ut(i; s; a)]
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where

wt(i; s; a) = 
N
�
max
a0

[Ct(i; s; a
0) + Vt(a

0; s)]

�
�

X
s0;N

Pt(s
0; N js; a)
N

�
max
a0

[Ct(i; s
0; a0) + Vt(a

0; s0)]

�

ut(i; s; a) =
X
s0;N

Pt(s
0; N js; a)
N

�
max
a0

[Ct(i; s
0; a0) + Vt(a

0; s0)]

�
�

X
s0;N

P �r (s
0; N js; a)
N

�
max
a0

[Ct(i; s
0; a0) + V �r (a

0; s0)]

�

Here wt(i; s; a) is the di�erence between doing an update at node i using the single sample

point s drawn according to Pt(s
0; N js; a) and doing an update using the full distribution

Pt(s
0; N js; a). The value of ut(i; s; a) captures the di�erence between doing an update using

the current probability transitions Pt(s
0; N js; a) and current value functions of the children

Vt(a
0; s0) and doing an update using the optimal probability transitions P �r (s

0; N js; a) and
the optimal values of the children V �r (a

0; s0).
We now verify the conditions of Lemma 1.
Condition (a) is assumed in the conditions of the theorem with �t(s; a) = �t(i).
Condition (b) is satis�ed because s is sampled from Pt(s

0; N js; a), so the expected value
of the di�erence is zero.

Condition (c) follows directly from the fact that jCt(i; s; a)j and jVt(i; s)j are bounded.
We can show that these are bounded for both the episodic case and the discounted case as
follows. In the episodic case, we have assumed all policies are proper. Hence, all trajectories
terminate in �nite time with a �nite total reward. In the discounted case, the in�nite sum
of future rewards is bounded if the one-step rewards are bounded. The values of C and V
are computed as temporal averages of the cumulative rewards received over a �nite number
of (bounded) updates, and hence, their means, variances, and maximum values are all
bounded.

Condition (d) is the condition that U is a weighted max norm pseudo-contraction. We
can derive this by starting with the weighted max norm for Q learning. It is well known
that Q is a weighted max norm pseudo-contraction (Bertsekas & Tsitsiklis, 1996) in both
the episodic case where all deterministic policies are proper (and the discount factor 
 = 1)
and in the in�nite horizon discounted case (with 
 < 1). That is, there exists a positive
vector � and a scalar � 2 [0; 1), such that for all t,

jjTQt �Q�jj� � �jjQt �Q�jj� ; (16)

where T is the operator

(TQ)(s; a) =
X
s0;N

P (s0; N js; a)
N [R(s0js; a) + max
a0

Q(s0; a0)]:

Now we will show how to derive the pseudo-contraction for the C update operator U . Our
plan is to show �rst how to express the U operator for learning C in terms of the T operator
for updating Q values. Then we will replace TQ in the pseudo-contraction equation for Q
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learning with UC, and show that U is a weighted max-norm pseudo-contraction under the
same weights � and the same �.

Recall from Eqn. (10) that Q(i; s; a) = C(i; s; a)+V (a; s). Furthermore, the U operator
performs its updates using the optimal value functions of the child nodes, so we can write
this as Qt(i; s; a) = Ct(i; s; a) + V �(a; s). Now once the children of node i have converged,
the Q-function version of the Bellman equation for MDP Mi can be written as

Q(i; s; a) =
X
s0;N

P �r (s
0; N js; a)
N [V �r (a; s) + max

a0
Q(i; s0; a0)]:

As we have noted before, V �r (a; s) plays the role of the immediate reward function for Mi.
Therefore, for node i, the T operator can be rewritten as

(TQ)(i; s; a) =
X
s0;N

P �r (s
0js; a)
N [V �r (a; s) + max

a0
Q(i; s0; a0)]:

Now we replace Q(i; s; a) by C(i; s; a) + V �r (a; s), and obtain

(TQ)(i; s; a) =
X
s0;N

P �r (s
0; N js; a)
N (V �r (a; s) +max

a0
[C(i; s0; a0) + V �r (a

0; s0)]):

Note that V �r (a; s) does not depend on s0 or N , so we can move it outside the expectation
and obtain

(TQ)(i; s; a) = V �r (a; s) +
X
s0;N

P �r (s
0; N js; a)
N (max

a0
[C(i; s0; a0) + V �r (a

0; s0)])

= V �r (a; s) + (UC)(i; s; a)

Abusing notation slightly, we will express this in vector form as TQ(i) = V �r + UC(i).
Similarly, we can writeQt(i; s; a) = Ct(i; s; a)+V

�
r (a; s) in vector form as Qt(i) = Ct(i)+V

�
r .

Now we can substitute these two formulas into the max norm pseudo-contraction formula
for T , Eqn. (16) to obtain

jjV �r + UCt(i)� (C�r (i) + V �r )jj� � �jjV �r + Ct(i)� (C�r (i) + V �r )jj� :

Thus, U is a weighted max-norm pseudo-contraction,

jjUCt(i) �C�r (i)jj� � �jjCt(i)� C�r (i)jj� ;

and condition (d) is satis�ed.

Finally, it is easy to verify (e), the most important condition. By assumption, the
ordered GLIE policies in the child nodes converge with probability 1 to locally optimal
policies for the children. Therefore Pt(s

0; N js; a) converges to P �r (s
0; N js; a) for all s0; N; s;

and a with probability 1 and Vt(a; s) converges with probability 1 to V �r (a; s) for all child
actions a. Therefore, jutj converges to zero with probability 1. We can trivially construct a
sequence �t = jutj that bounds this convergence, so

jut(s; a)j � �t � �t(jjCt(s; a)jj� + 1):
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We have veri�ed all of the conditions of Lemma 1, so we can conclude that Ct(i) converges
to C�r (i) with probability 1. By induction, we can conclude that this holds for all nodes in
the MAXQ including the root node, so the value function represented by the MAXQ graph
converges to the unique value function of the recursively optimal policy ��r . Q.E.D.

The most important aspect of this theorem is that it proves that Q learning can take
place at all levels of the MAXQ hierarchy simultaneously|the higher levels do not need to
wait until the lower levels have converged before they begin learning. All that is necessary
is that the lower levels eventually converge to their (locally) optimal policies.

4.3 Techniques for Speeding Up MAXQ-0

Algorithm MAXQ-0 can be extended to accelerate learning in the higher nodes of the graph
by a technique that we call \all-states updating". When an action a is chosen for Max node
i in state s, the execution of a will move the environment through a sequence of states
s = s1; : : : ; sN ; sN+1 = s0. Because all of our subroutines are Markovian, the same resulting
state s0 would have been reached if we had started executing action a in state s2, or s3, or
any state up to and including sN . Hence, we can execute a version of line 11 in MAXQ-0
for each of these intermediate states as shown in this replacement pseudo-code:

11a for j from 1 to N do

11b Ct+1(i; sj ; a) := (1� �t(i)) � Ct(i; sj ; a) + �t(i) � 

(N+1�j)maxa0 Qt(i; s

0; a0)
11c end // for

In our implementation, as each composite action is executed by MAXQ-0, it constructs
a linked list of the sequence of primitive states that were visited. This list is returned when
the composite action terminates. The parent Max node can then process each state in this
list as shown above. The parent Max node concatenates the state lists that it receives from
its children and passes them to its parent when it terminates. All experiments in this paper
employ all-states updating.

Kaelbling (1993) introduced a related, but more powerful, method for accelerating hi-
erarchical reinforcement learning that she calls \all-goals updating." To understand this
method, suppose that for each primitive action, there are several composite tasks that could
have invoked that primitive action. In all-goals updating, whenever a primitive action is
executed, the equivalent of line 11 of MAXQ-0 is applied in every composite task that could
have invoked that primitive action. Sutton, Precup, and Singh (1998) prove that each of
the composite tasks will converge to the optimal Q values under all-goals updating. Fur-
thermore, they point out that the exploration policy employed for choosing the primitive
actions can be di�erent from the policies of any of the subtasks being learned.

It is straightforward to implement a simple form of all-goals updating within the MAXQ
hierarchy for the case where composite tasks invoke primitive actions. Whenever one of the
primitive actions a is executed in state s, we can update the C(i; s; a) value for all parent
tasks i that can invoke a.

However, additional care is required to implement all-goals updating for non-primitive
actions. Suppose that by executing the exploration policy, the following sequence of world
states and actions has been obtained: s0; a0; s1; : : : ; ak�1; sk�1; ak; sk+1. Let j be a compos-
ite task that is terminated in state sk+1, and let sk�n; ak�n; : : : ; ak�1; ak be a sequence of
actions that could have been executed by subtask j and its children. In other words, suppose
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it is possible to \parse" this state-action sequence in terms of a series of subroutine calls and
returns for one invocation of subtask j. Then for each possible parent task i that invokes j,
we can update the value of C(i; sk�n; j). Of course, in order for these updates to be useful,
the exploration policy must be an ordered GLIE policy that will converge to the recursively
optimal policy for subtask j and its descendents. We cannot follow an arbitrary exploration
policy, because this would not produce accurate samples of result states drawn according to
P �(s0; N js; j). Hence, unlike the simple case described by Sutton, Precup, and Singh, the
exploration policy cannot be di�erent from the policies of the subtasks being learned.

Although this considerably reduces the usefulness of all-goals updating, it does not
completely eliminate it. A simple way of implementing non-primitive all-goals updating
would be to perform MAXQ-Q learning as usual, but whenever a subtask j was invoked in
state s and returned, we could update the value of C(i; s; j) for all potential calling subtasks
i. We have not implemented this, however, because of the complexity involved in identifying
the possible actual parameters of the potential calling subroutines.

4.4 The MAXQ-Q Learning Algorithm

Now that we have shown the convergence of MAXQ-0, let us design a learning algorithm that
can work with arbitrary pseudo-reward functions, ~Ri(s

0). We could just add the pseudo-
reward into MAXQ-0, but this would have the e�ect of changing the MDP M to have
a di�erent reward function. The pseudo-rewards \contaminate" the values of all of the
completion functions computed in the hierarchy. The resulting learned policy will not be
recursively optimal for the original MDP.

This problem can be solved by learning one completion function for use \inside" each
Max node and a separate completion function for use \outside" the Max node. The quan-
tities used \inside" a node will be written with a tilde: ~R, ~C, and ~Q. The quantities used
\outside" a node will be written without the tilde.

The \outside" completion function, C(i; s; a) is the completion function that we have
been discussing so far in this paper. It computes the expected reward for completing task
Mi after performing action a in state s and then following the learned policy for Mi. It is
computed without any reference to ~Ri. This completion function will be used by parent
tasks to compute V (i; s), the expected reward for performing action i starting in state s.

The second completion function ~C(i; s; a) is a completion function that we will use only
\inside" node i in order to discover the locally optimal policy for task Mi. This function
will incorporate rewards both from the \real" reward function, R(s0js; a), and from the
pseudo-reward function, ~Ri(s

0). It will also be used by EvaluateMaxNode in line 6 to
choose the best action jhg to execute. Note, however, that EvaluateMaxNode will still
return the \external" value Vt(j

hg; s) of this chosen action.

We will employ two di�erent update rules to learn these two completion functions. The
~C function will be learned using an update rule similar to the Q learning rule in line 11 of
MAXQ-0. But the C function will be learned using an update rule similar to SARSA(0)|
its purpose is to learn the value function for the policy that is discovered by optimizing ~C.
Pseudo-code for the resulting algorithm, MAXQ-Q is shown in Table 4.

The key step is at lines 15 and 16. In line 15, MAXQ-Q �rst updates ~C using the value
of the greedy action, a�, in the resulting state. This update includes the pseudo-reward ~Ri.
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Table 4: The MAXQ-Q learning algorithm.

function MAXQ-Q(MaxNode i, State s)

1 let seq = () be the sequence of states visited while executing i
2 if i is a primitive MaxNode
3 execute i, receive r, and observe result state s0

4 Vt+1(i; s) := (1 � �t(i)) � Vt(i; s) + �t(i) � rt
5 push s onto the beginning of seq
6 else

7 let count = 0
8 while Ti(s) is false do
9 choose an action a according to the current exploration policy �x(i; s)
10 let childSeq = MAXQ-Q(a; s), where childSeq is the sequence of states visited

while executing action a. (in reverse order)
11 observe result state s0

12 let a� = argmaxa0 [ ~Ct(i; s
0; a0) + Vt(a

0; s0)]
13 let N = 1
14 for each s in childSeq do

15 ~Ct+1(i; s; a) := (1� �t(i)) � ~Ct(i; s; a) + �t(i) � 

N [ ~Ri(s

0) + ~Ct(i; s
0; a�) + Vt(a

�; s)]

16 Ct+1(i; s; a) := (1� �t(i)) � Ct(i; s; a) + �t(i) � 

N [Ct(i; s

0; a�) + Vt(a
�; s0)]

17 N := N + 1
18 end // for
19 append childSeq onto the front of seq
20 s := s0

21 end // while
22 end // else
23 return seq

end MAXQ-Q

Then in line 16, MAXQ-Q updates C using this same greedy action a�, even if this would
not be the greedy action according to the \uncontaminated" value function. This update,
of course, does not include the pseudo-reward function.

It is important to note that whereever Vt(a; s) appears in this pseudo-code, it refers to
the \uncontaminated" value function of state s when executing the Max node a. This is
computed recursively in exactly the same way as in MAXQ-0.

Finally, note that the pseudo-code also incorporates all-states updating, so each call
to MAXQ-Q returns a list of all of the states that were visited during its execution, and
the updates of lines 15 and 16 are performed for each of those states. The list of states is
ordered most-recent-�rst, so the states are updated starting with the last state visited and
working backward to the starting state, which helps speed up the algorithm.

When MAXQ-Q has converged, the resulting recursively optimal policy is computed at
each node by choosing the action a that maximizes ~Q(i; s; a) = ~C(i; s; a)+V (a; s) (breaking
ties according to the �xed ordering established by the ordered GLIE policy). It is for this
reason that we gave the name \Max nodes" to the nodes that represent subtasks (and
learned policies) within the MAXQ graph. Each Q node j with parent node i stores both
~C(i; s; j) and C(i; s; j), and it computes both ~Q(i; s; j) and Q(i; s; j) by invoking its child
Max node j. Each Max node i takes the maximum of these Q values and computes either
V (i; s) or computes the best action, a� using ~Q.
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Corollary 1 Under the same conditions as Theorem 3, MAXQ-Q converges to the unique
recursively optimal policy for MDP M de�ned by MAXQ graph H, pseudo-reward functions
~R, and ordered GLIE exploration policy �x.

Proof: The argument is identical to, but more tedious than, the proof of Theorem 3. The
proof of convergence of the ~C values is identical to the original proof for the C values, but
it relies on proving convergence of the \new" C values as well, which follows from the same
weighted max norm pseudo-contraction argument. Q.E.D.

5. State Abstraction

There are many reasons to introduce hierarchical reinforcement learning, but perhaps the
most important reason is to create opportunities for state abstraction. When we introduced
the simple taxi problem in Figure 1, we pointed out that within each subtask, we can ignore
certain aspects of the state space. For example, while performing a MaxNavigate(t), the
taxi should make the same navigation decisions regardless of whether the passenger is in
the taxi. The purpose of this section is to formalize the conditions under which it is safe
to introduce such state abstractions and to show how the convergence proofs for MAXQ-Q
can be extended to prove convergence in the presence of state abstraction. Speci�cally, we
will identify �ve conditions that permit the \safe" introduction of state abstractions.

Throughout this section, we will use the taxi problem as a running example, and we will
see how each of the �ve conditions will permit us to reduce the number of distinct values
that must be stored in order to represent the MAXQ value function decomposition. To
establish a starting point, let us compute the number of values that must be stored for the
taxi problem without any state abstraction.

The MAXQ representation must have tables for each of the C functions at the internal
nodes and the V functions at the leaves. First, at the six leaf nodes, to store V (i; s), we
must store 500 values at each node, because there are 500 states; 25 locations, 4 possible
destinations for the passenger, and 5 possible current locations for the passenger (the four
special locations and inside the taxi itself). Second, at the root node, there are two children,
which requires 2� 500 = 1000 values. Third, at the MaxGet and MaxPut nodes, we have 2
actions each, so each one requires 1000 values, for a total of 2000. Finally, atMaxNavigate(t),
we have four actions, but now we must also consider the target parameter t, which can take
four possible values. Hence, there are e�ectively 2000 combinations of states and t values for
each action, or 8000 total values that must be represented. In total, therefore, the MAXQ
representation requires 14,000 separate quantities to represent the value function.

To place this number in perspective, consider that a 
at Q learning representation must
store a separate value for each of the six primitive actions in each of the 500 possible states,
for a total of 3,000 values. Hence, we can see that without state abstraction, the MAXQ
representation requires more than four times the memory of a 
at Q table!

5.1 Five Conditions that Permit State Abstraction

We now introduce �ve conditions that permit the introduction of state abstractions. For
each condition, we give a de�nition and then prove a lemma which states that if the con-
dition is satis�ed, then the value function for some corresponding class of policies can be
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represented abstractly (i.e., by abstract versions of the V and C functions). For each con-
dition, we then provide some rules for identifying when that condition can be satis�ed and
give examples from the taxi domain.

We begin by introducing some de�nitions and notation.

De�nition 10 Let M be a MDP and H be a MAXQ graph de�ned over M . Suppose that

each state s can be written as a vector of values of a set of state variables. At each Max

node i, suppose the state variables are partitioned into two sets Xi and Yi, and let �i be a

function that projects a state s onto only the values of the variables in Xi. Then H combined

with �i is called a state-abstracted MAXQ graph.

In cases where the state variables can be partitioned, we will often write s = (x; y)
to mean that a state s is represented by a vector of values for the state variables in X
and a vector of values for the state variables in Y . Similarly, we will sometimes write
P (x0; y0; N jx; y; a), V (a; x; y), and ~Ra(x

0; y0) in place of P (s0; N js; a), V (a; s), and ~Ra(s
0),

respectively.

De�nition 11 (Abstract Policy) An abstract hierarchical policy for MDPM with state-

abstracted MAXQ graph H and associated abstraction functions �i, is a hierarchical policy

in which each policy �i (corresponding to subtask Mi) satis�es the condition that for any two

states s1 and s2 such that �i(s1) = �i(s2), �i(s1) = �i(s2). (When �i is a stochastic policy,
such as an exploration policy, this is interpreted to mean that the probability distributions

for choosing actions are the same in both states.)

In order for MAXQ-Q to converge in the presence of state abstractions, we will require
that at all times t its (instantaneous) exploration policy is an abstract hierarchical policy.
One way to achieve this is to construct the exploration policy so that it only uses informa-
tion from the relevant state variables in deciding what action to perform. Boltzmann ex-
ploration based on the (state-abstracted) Q values, �-greedy exploration, and counter-based
exploration based on abstracted states are all abstract exploration policies. Counter-based
exploration based on the full state space is not an abstract exploration policy.

Now that we have introduced our notation, let us describe and analyze the �ve ab-
straction conditions. We have identi�ed three di�erent kinds of conditions under which
abstractions can be introduced. The �rst kind involves eliminating irrelevant variables
within a subtask of the MAXQ graph. Under this form of abstraction, nodes toward the
leaves of the MAXQ graph tend to have very few relevant variables, and nodes higher in
the graph have more relevant variables. Hence, this kind of abstraction is most useful at
the lower levels of the MAXQ graph.

The second kind of abstraction arises from \funnel" actions. These are macro actions
that move the environment from some large number of initial states to a small number of
resulting states. The completion cost of such subtasks can be represented using a number of
values proportional to the number of resulting states. Funnel actions tend to appear higher
in the MAXQ graph, so this form of abstraction is most useful near the root of the graph.

The third kind of abstraction arises from the structure of the MAXQ graph itself. It
exploits the fact that large parts of the state space for a subtask may not be reachable
because of the termination conditions of its ancestors in the MAXQ graph.
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We begin by describing two abstraction conditions of the �rst type. Then we will present
two conditions of the second type. And �nally, we describe one condition of the third type.

5.1.1 Condition 1: Max Node Irrelevance

The �rst condition arises when a set of state variables is irrelevant to a Max node.

De�nition 12 (Max Node Irrelevance) Let Mi be a Max node in a MAXQ graph H
for MDP M . A set of state variables Y is irrelevant for node i if the state variables of M
can be partitioned into two sets X and Y such that for any stationary abstract hierarchical

policy � executed by the descendents of i, the following two properties hold:

� the state transition probability distribution P �(s0; N js; a) at node i can be factored into

the product of two distributions:

P �(x0; y0; N jx; y; a) = P �(y0jx; y; a) � P �(x0; N jx; a); (17)

where y and y0 give values for the variables in Y , and x and x0 give values for the

variables in X.

� for any pair of states s1 = (x; y1) and s2 = (x; y2) such that �(s1) = �(s2) = x, and
any child action a, V �(a; s1) = V �(a; s2) and ~Ri(s1) = ~Ri(s2).

Note that the two conditions must hold for all stationary abstract policies � executed
by all of the descendents of the subtask i. We will discuss below how these rather strong
requirements can be satis�ed in practice. First, however, we prove that these conditions are
su�cient to permit the C and V tables to be represented using state abstractions.

Lemma 2 Let M be an MDP with full-state MAXQ graph H, and suppose that state vari-

ables Yi are irrelevant for Max node i. Let �i(s) = x be the associated abstraction function

that projects s onto the remaining relevant variables Xi. Let � be any abstract hierarchical
policy. Then the action-value function Q� at node i can be represented compactly, with only

one value of the completion function C�(i; s; j) for each equivalence class of states s that

share the same values on the relevant variables.

Speci�cally Q�(i; s; j) can be computed as follows:

Q�(i; s; j) = V �(j; �i(s)) + C�(i; �i(s); j)

where

C�(i; x; j) =
X
x0;N

P �(x0; N jx; j) � 
N [V �(�(x0); x0) + ~Ri(x
0) + C�(i; x0; �(x0))];

where V �(j0; x0) = V �(j0; x0; y0), ~Ri(x
0) = ~Ri(x

0; y0), and �(x) = �(x; y0) for some arbitrary

value y0 for the irrelevant state variables Yi.
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Proof: De�ne a new MDP �i(Mi) at node i as follows:

� States: X = fx j �i(s) = x; for some s 2 Sg.

� Actions: A.

� Transition probabilities: P �(x0; N jx; a)

� Reward function: V �(a; x) + ~Ri(x
0)

Because � is an abstract policy, its decisions are the same for all states s such that �i(s) = x
for some x. Therefore, it is also a well-de�ned policy over �i(Mi). The action-value function
for � over �i(Mi) is the unique solution to the following Bellman equation:

Q�(i; x; j) = V �(j; x) +
X
x0;N

P �(x0; N jx; j) � 
N [ ~Ri(x
0) +Q�(i; x0; �(x0))] (18)

Compare this to the Bellman equation over Mi:

Q�(i; s; j) = V �(j; s) +
X
s0;N

P �(s0; N js; j) � 
N [ ~Ri(s
0) +Q�(i; s0; �(s0))] (19)

and note that V �(j; s) = V �(j; �(s)) = V �(j; x) and ~Ri(s
0) = ~Ri(�(s

0)) = ~Ri(x
0). Further-

more, we know that the distribution P � can be factored into separate distributions for Yi
and Xi. Hence, we can rewrite (19) as

Q�(i; s; j) = V �(j; x) +
X
y0

P (y0jx; y; j)
X
x0;N

P �(x0; N jx; j) � 
N [ ~Ri(x
0) +Q�(i; s0; �(s0))]

The right-most sum does not depend on y or y0, so the sum over y0 evaluates to 1, and can
be eliminated to give

Q�(i; s; j) = V �(j; x) +
X
x0;N

P �(x0; N jx; j) � 
N [ ~Ri(x
0) +Q�(i; s0; �(s0))]: (20)

Finally, note that equations (18) and (20) are identical except for the expressions for
the Q values. Since the solution to the Bellman equation is unique, we must conclude that

Q�(i; s; j) = Q�(i; �(s); j):

We can rewrite the right-hand side to obtain

Q�(i; s; j) = V �(j; �(s)) + C�(i; �(s); j);

where

C�(i; x; j) =
X
x0;N

P (x0; N jx; j) � 
N [V �(�(x0); x0) + ~Ri(x
0) +C�(i; x0; �(x0))]:

Q.E.D.

Of course we are primarily interested in being able to discover and represent the optimal

policy at each node i. The following corollary shows that the optimal policy is an abstract
policy, and hence, that it can be represented abstractly.

263



Dietterich

Corollary 2 Consider the same conditions as Lemma 2, but with the change that the ab-
stract hierarchical policy � is executed only by the descendents of node i, but not by node

i. Let ! be an ordering over actions. Then the optimal ordered policy ��! at node i is an
abstract policy, and its action-value function can be represented abstractly.

Proof: De�ne the policy ��! to be the optimal ordered policy over the abstract MDP
�(M), and let Q�(i; x; j) be the corresponding optimal action-value function. Then by the
same argument given above, Q� is also a solution to the optimal Bellman equation for the
original MDP. This means that the policy ��! de�ned by ��!(s) = ��(�(s)) is an optimal
ordered policy, and by construction, it is an abstract policy. Q.E.D.

As stated, the Max node irrelevance condition appears quite di�cult to satisfy, since it
requires that the state transition probability distribution factor into X and Y components
for all possible abstract hierarchical policies. However, in practice, this condition is often
satis�ed.

For example, let us consider the Navigate(t) subtask. The source and destination of
the passenger are irrelevant to the achievement of this subtask. Any policy that success-
fully completes this subtask will have the same value function regardless of the source and
destination locations of the passenger. By abstracting away the passenger source and des-
tination, we obtain a huge savings in space. Instead of requiring 8000 values to represent
the C functions for this task, we require only 400 values (4 actions, 25 locations, 4 possible
values for t).

The advantages of this form of abstraction are similar to those obtained by Boutilier,
Dearden and Goldszmidt (1995) in which belief network models of actions are exploited
to simplify value iteration in stochastic planning. Indeed, one way of understanding the
conditions of De�nition 12 is to express them in the form of a decision diagram, as shown
in Figure 7. The diagram shows that the irrelevant variables Y do not a�ect the rewards
either directly or indirectly, and therefore, they do not a�ect either the value function or
the optimal policy.

One rule for noticing cases where this abstraction condition holds is to examine the
subgraph rooted at the given Max node i. If a set of state variables is irrelevant to the leaf
state transition probabilities and reward functions and also to all pseudo-reward functions
and termination conditions in the subgraph, then those variables satisfy the Max Node
Irrelevance condition:

Lemma 3 Let M be an MDP with associated MAXQ graph H, and let i be a Max node in

H. Let Xi and Yi be a partition of the state variables for M . A set of state variables Yi is
irrelevant to node i if

� For each primitive leaf node a that is a descendent of i,

P (x0; y0jx; y; a) = P (y0jx; y; a)P (x0jx; a) and
R(x0; y0jx; y; a) = R(x0jx; a),

� For each internal node j that is equal to node i or is a descendent of i , ~Rj(x
0; y0) =

~Rj(x
0) and the termination predicate Tj(x

0; y0) is true i� Tj(x
0).
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X

Y

X’

Y’

j V

Figure 7: A dynamic decision diagram that represents the conditions of De�nition 12. The
probabilistic nodes X and Y represent the state variables at time t, and the nodes
X 0 and Y 0 represent the state variables at a later time t+N . The square action
node j is the chosen child subroutine, and the utility node V represents the value
function V (j; x) of that child action. Note that while X may in
uence Y 0, Y
cannot a�ect X 0, and therefore, it cannot a�ect V .

Proof: We must show that any abstract hierarchical policy will give rise to an SMDP at
node i whose transition probability distribution factors and whose reward function depends
only on Xi. By de�nition, any abstract hierarchical policy will choose actions based only
upon information in Xi. Because the primitive probability transition functions factor into
an independent component for Xi and since the termination conditions at all nodes below i
are based only on the variables in Xi, the probability transition function Pi(x

0; y0; N jx; y; a)
must also factor into Pi(y

0jx; y; a) and Pi(x
0; N jx; a). Similarly, all of the reward functions

V (j; x; y) must be equal to V (j; x), because all rewards received within the subtree (either
at the leaves or through pseudo-rewards) depend only on the variables in Xi. Therefore,
the variables in Yi are irrelevant for Max node i. Q.E.D.

In the Taxi task, the primitive navigation actions, North, South, East, and West only
depend on the location of the taxi and not on the location of the passenger. The pseudo-
reward function and termination condition for the MaxNavigate(t) node only depend on the
location of the taxi (and the parameter t). Hence, this lemma applies, and the passenger
source and destination are irrelevant for the MaxNavigate node.

5.1.2 Condition 2: Leaf Irrelevance

The second abstraction condition describes situations under which we can apply state ab-
stractions to leaf nodes of the MAXQ graph. For leaf nodes, we can obtain a stronger result
than Lemma 2 by using a slightly weaker de�nition of irrelevance.
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De�nition 13 (Leaf Irrelevance) A set of state variables Y is irrelevant for a primitive
action a of a MAXQ graph if for all states s the expected value of the reward function,

V (a; s) =
X
s0

P (s0js; a)R(s0js; a)

does not depend on any of the values of the state variables in Y . In other words, for any

pair of states s1 and s2 that di�er only in their values for the variables in Y ,X
s01

P (s01js1; a)R(s
0
1js1; a) =

X
s02

P (s02js2; a)R(s
0
2js2; a):

If this condition is satis�ed at leaf a, then the following lemma shows that we can
represent its value function V (a; s) compactly.

Lemma 4 Let M be an MDP with full-state MAXQ graph H, and suppose that state vari-

ables Y are irrelevant for leaf node a. Let �(s) = x be the associated abstraction function

that projects s onto the remaining relevant variables X. Then we can represent V (a; s) for
any state s by an abstracted value function V (a; �(s)) = V (a; x).

Proof: According to the de�nition of Leaf Irrelevance, any two states that di�er only on
the irrelevant state variables have the same value for V (a; s). Hence, we can represent this
unique value by V (a; x). Q.E.D.

Here are two rules for �nding cases where Leaf Irrelevance applies. The �rst rule shows
that if the probability distribution factors, then we have Leaf Irrelevance.

Lemma 5 Suppose the probability transition function for primitive action a, P (s0js; a), fac-
tors as P (x0; y0jx; y; a) = P (y0jx; y; a)P (x0jx; a) and the reward function satis�es R(s0js; a) =
R(x0jx; a). Then the variables in Y are irrelevant to the leaf node a.

Proof: Plug in to the de�nition of V (a; s) and simplify.

V (a; s) =
X
s0

P (s0js; a)R(s0js; a)

=
X
x0;y0

P (y0jx; y; a)P (x0jx; a)R(x0jx; a)

=
X
y0

P (y0jx; y; a)
X
x0

P (x0jx; a)R(x0jx; a)

=
X
x0

P (x0jx; a)R(x0jx; a)

Hence, the expected reward for the action a depends only on the variables in X and not on
the variables in Y . Q.E.D.

The second rule shows that if the reward function for a primitive action is constant,
then we can apply state abstractions even if P (s0js; a) does not factor.

Lemma 6 Suppose R(s0js; a) (the reward function for action a in MDP M) is always equal

to a constant ra. Then the entire state s is irrelevant to the primitive action a.
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Proof:

V (a; s) =
X
s0

P (s0js; a)R(s0js; a)

=
X
s0

P (s0js; a)ra

= ra:

This does not depend on s, so the entire state is irrelevant to the primitive action a. Q.E.D.

This lemma is satis�ed by the four leaf nodes North, South, East, and West in the taxi
task, because their one-step reward is a constant (�1). Hence, instead of requiring 2000
values to store the V functions, we only need 4 values|one for each action. Similarly, the
expected rewards of the Pickup and Putdown actions each require only 2 values, depending
on whether the corresponding actions are legal or illegal. Hence, together, they require 4
values, instead of 1000 values.

5.1.3 Condition 3: Result Distribution Irrelevance

Now we consider a condition that results from \funnel" actions.

De�nition 14 (Result Distribution Irrelevance). A set of state variables Yj is irrele-
vant for the result distribution of action j if, for all abstract policies � executed by node j
and its descendents in the MAXQ hierarchy, the following holds: for all pairs of states s1
and s2 that di�er only in their values for the state variables in Yj,

P �(s0; N js1; j) = P �(s0; N js2; j)

for all s0 and N .

If this condition is satis�ed for subtask j, then the C value of its parent task i can be
represented compactly:

Lemma 7 Let M be an MDP with full-state MAXQ graph H, and suppose that the set of

state variables Yj is irrelevant to the result distribution of action j, which is a child of Max

node i. Let �ij be the associated abstraction function: �ij(s) = x. Then we can de�ne an

abstract completion cost function C�(i; �ij(s); j) such that for all states s,

C�(i; s; j) = C�(i; �ij(s); j):

Proof: The completion function for �xed policy � is de�ned as follows:

C�(i; s; j) =
X
s0;N

P (s0; N js; j) � 
NQ�(i; s0): (21)

Consider any two states s1 and s2, such that �ij(s1) = �ij(s2) = x. Under Result Dis-
tribution Irrelevance, their transition probability distributions are the same. Hence, the
right-hand sides of (21) have the same value, and we can conclude that

C�(i; s1; j) = C�(i; s2; j):
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Therefore, we can de�ne an abstract completion function, C�(i; x; j) to represent this quan-
tity. Q.E.D.

In undiscounted cumulative reward problems, the de�nition of result distribution ir-
relevance can be weakened to eliminate N , the number of steps. All that is needed is
that for all pairs of states s1 and s2 that di�er only in the irrelevant state variables,
P �(s0js1; j) = P �(s0js2; j) (for all s

0). In the undiscounted case, Lemma 7 still holds under
this revised de�nition.

It might appear that the result distribution irrelevance condition would rarely be sat-
is�ed, but we often �nd cases where the condition is true. Consider, for example, the Get
subroutine for the taxi task. No matter what location the taxi has in state s, the taxi
will be at the passenger's starting location when the Get �nishes executing (i.e., because
the taxi will have just completed picking up the passenger). Hence, the starting location
is irrelevant to the resulting location of the taxi, and P (s0js1;Get) = P (s0js2;Get) for all
states s1 and s2 that di�er only in the taxi's location.

Note, however, that if we were maximizing discounted reward, the taxi's location would
not be irrelevant, because the probability that Get will terminate in exactly N steps would
depend on the location of the taxi, which could di�er in states s1 and s2. Di�erent values
of N will produce di�erent amounts of discounting in (21), and hence, we cannot ignore the
taxi location when representing the completion function for Get.

But in the undiscounted case, by applying Lemma 7, we can represent C(Root; s;Get)
using 16 distinct values, because there are 16 equivalence classes of states (4 source locations
times 4 destination locations). This is much less than the 500 quantities in the unabstracted
representation.

Note that although state variables Y may be irrelevant to the result distribution of a
subtask j, they may be important within subtask j. In the Taxi task, the location of the
taxi is critical for representing the value of V (Get; s), but it is irrelevant to the result state
distribution for Get, and therefore it is irrelevant for representing C(Root; s;Get). Hence, the
MAXQ decomposition is essential for obtaining the bene�ts of result distribution irrelevance.

\Funnel" actions arise in many hierarchical reinforcement learning problems. For exam-
ple, abstract actions that move a robot to a doorway or that move a car onto the entrance
ramp of a freeway have this property. The Result Distribution Irrelevance condition is
applicable in all such situations as long as we are in the undiscounted setting.

5.1.4 Condition 4: Termination

The fourth condition is closely related to the \funnel" property. It applies when a subtask
is guaranteed to cause its parent task to terminate in a goal state. In a sense, the subtask
is funneling the environment into the set of states described by the goal predicate of the
parent task.

Lemma 8 (Termination). Let Mi be a task in a MAXQ graph such that for all states s
where the goal predicate Gi(s) is true, the pseudo-reward function ~Ri(s) = 0. Suppose there

is a child task a and state s such that for all hierarchical policies �,

8 s0 P �
i (s

0; N js; a) > 0 ) Gi(s
0):
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(i.e., every possible state s0 that results from applying a in s will make the goal predicate,
Gi, true.)

Then for any policy executed at node i, the completion cost C(i; s; a) is zero and does

not need to be explicitly represented.

Proof: When action a is executed in state s, it is guaranteed to result in a state s0 such
that Gi(s) is true. By de�nition, goal states also satisfy the termination predicate Ti(s), so
task i will terminate. Because Gi(s) is true, the terminal pseudo-reward will be zero, and
hence, the completion function will always be zero. Q.E.D.

For example, in the Taxi task, in all states where the taxi is holding the passenger, the
Put subroutine will succeed and result in a goal terminal state for Root. This is because the
termination predicate for Put (i.e., that the passenger is at his or her destination location)
implies the goal condition for Root (which is the same). This means that C(Root; s;Put) is
uniformly zero, for all states s where Put is not terminated.

It is easy to detect cases where the Termination condition is satis�ed. We only need to
compare the termination predicate Ta of a subtask with the goal predicate Gi of the parent
task. If the �rst implies the second, then the termination lemma is satis�ed.

5.1.5 Condition 5: Shielding

The shielding condition arises from the structure of the MAXQ graph.

Lemma 9 (Shielding). Let Mi be a task in a MAXQ graph and s be a state such that in

all paths from the root of the graph down to node Mi there is a subtask j (possibly equal to i)
whose termination predicate Tj(s) is true, then the Q nodes of Mi do not need to represent

C values for state s.

Proof: In order for task i to be executed in state s, there must exist some path of ancestors
of task i leading up to the root of the graph such that all of those ancestor tasks are not
terminated. The condition of the lemma guarantees that this is false, and hence that task
i cannot be executed in state s. Therefore, no C values need to be represented. Q.E.D.

As with the Termination condition, the Shielding condition can be veri�ed by analyzing
the structure of the MAXQ graph and identifying nodes whose ancestor tasks are termi-
nated.

In the Taxi domain, a simple example of this arises in the Put task, which is terminated
in all states where the passenger is not in the taxi. This means that we do not need
to represent C(Root; s;Put) in these states. The result is that, when combined with the
Termination condition above, we do not need to explicitly represent the completion function
for Put at all!

5.1.6 Dicussion

By applying these �ve abstraction conditions, we obtain the following \safe" state abstrac-
tions for the Taxi task:

� North, South, East, and West. These terminal nodes require one quantity each, for a
total of four values. (Leaf Irrelevance).
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� Pickup and Putdown each require 2 values (legal and illegal states), for a total of four.
(Leaf Irrelevance.)

� QNorth(t), QSouth(t), QEast(t), and QWest(t) each require 100 values (four values for
t and 25 locations). (Max Node Irrelevance.)

� QNavigateForGet requires 4 values (for the four possible source locations). (The pas-
senger destination is Max Node Irrelevant for MaxGet, and the taxi starting location
is Result Distribution Irrelevant for the Navigate action.)

� QPickup requires 100 possible values, 4 possible source locations and 25 possible taxi
locations. (Passenger destination is Max Node Irrelevant to MaxGet.)

� QGet requires 16 possible values (4 source locations, 4 destination locations). (Result
Distribution Irrelevance.)

� QNavigateForPut requires only 4 values (for the four possible destination locations).
(The passenger source and destination are Max Node Irrelevant to MaxPut; the taxi
location is Result Distribution Irrelevant for the Navigate action.)

� QPutdown requires 100 possible values (25 taxi locations, 4 possible destination loca-
tions). (Passenger source is Max Node Irrelevant for MaxPut.)

� QPut requires 0 values. (Termination and Shielding.)

This gives a total of 632 distinct values, which is much less than the 3000 values required
by 
at Q learning. Hence, we can see that by applying state abstractions, the MAXQ
representation can give a much more compact representation of the value function.

A key thing to note is that with these state abstractions, the value function is decom-
posed into a sum of terms such that no single term depends on the entire state of the MDP,
even though the value function as a whole does depend on the entire state of the MDP. For
example, consider again the state described in Figures 1 and 4. There, we showed that the
value of a state s1 with the passenger at R, the destination at B, and the taxi at (0,3) can
be decomposed as

V (Root; s1) = V (North; s1) +C(Navigate(R); s1;North) +

C(Get; s1;Navigate(R)) + C(Root; s1;Get)

With state abstractions, we can see that each term on the right-hand side only depends on
a subset of the features:

� V (North; s1) is a constant

� C(Navigate(R); s1;North) depends only on the taxi location and the passenger's source
location.

� C(Get; s1;Navigate(R)) depends only on the source location.

� C(Root; s1;Get) depends only on the passenger's source and destination.
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Without the MAXQ decomposition, no features are irrelevant, and the value function de-
pends on the entire state.

What prior knowledge is required on the part of a programmer in order to identify
these state abstractions? It su�ces to know some qualitative constraints on the one-step
reward functions, the one-step transition probabilities, and termination predicates, goal
predicates, and pseudo-reward functions within the MAXQ graph. Speci�cally, the Max
Node Irrelevance and Leaf Irrelevance conditions require simple analysis of the one-step
transition function and the reward and pseudo-reward functions. Opportunities to apply
the Result Distribution Irrelevance condition can be found by identifying \funnel" e�ects
that result from the de�nitions of the termination conditions for operators. Similarly, the
Shielding and Termination conditions only require analysis of the termination predicates of
the various subtasks. Hence, applying these �ve conditions to introduce state abstractions is
a straightforward process, and once a model of the one-step transition and reward functions
has been learned, the abstraction conditions can be checked to see if they are satis�ed.

5.2 Convergence of MAXQ-Q with State Abstraction

We have shown that state abstractions can be safely introduced into the MAXQ value
function decomposition under the �ve conditions described above. However, these condi-
tions only guarantee that the value function of any �xed abstract hierarchical policy can be
represented|they do not show that recursively optimal policies can be represented, nor do
they show that the MAXQ-Q learning algorithm will �nd a recursively optimal policy when
it is forced to use these state abstractions. The goal of this section is to prove these two
results: (a) that the ordered recursively-optimal policy is an abstract policy (and, hence,
can be represented using state abstractions) and (b) that MAXQ-Q will converge to this
policy when applied to a MAXQ graph with safe state abstractions.

Lemma 10 Let M be an MDP with full-state MAXQ graph H and abstract-state MAXQ

graph �(H) where the abstractions satisfy the �ve conditions given above. Let ! be an

ordering over all actions in the MAXQ graph. Then the following statements are true:

� The unique ordered recursively-optimal policy ��r de�ned by M , H, and ! is an ab-

stract policy (i.e., it depends only on the relevant state variables at each node; see

De�nition 11),

� The C and V functions in �(H) can represent the projected value function of ��r .

Proof: The �ve abstraction lemmas tell us that if the ordered recursively-optimal policy
is abstract, then the C and V functions of �(H) can represent its value function. Hence,
the heart of this lemma is the �rst claim. The last two forms of abstraction (Shielding and
Termination) do not place any restrictions on abstract policies, so we ignore them in this
proof.

The proof is by induction on the levels of the MAXQ graph, starting at the leaves. As
a base case, let us consider a Max node i all of whose children are primitive actions. In this
case, there are no policies executed within the children of the Max node. Hence if variables
Yi are irrelevant for node i, then we can apply our abstraction lemmas to represent the
value function of any policy at node i|not just abstract policies. Consequently, the value
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function of any optimal policy for node i can be represented, and it will have the property
that

Q�(i; s1; a) = Q�(i; s2; a) (22)

for any states s1 and s2 such that �i(s1) = �i(s2).
Now let us impose the action ordering ! to compute the optimal ordered policy. Consider

two actions a1 and a2 such that !(a1; a2) (i.e., ! prefers a1), and suppose that there is a
\tie" in the Q� function at state s1 such that the values

Q�(i; s1; a1) = Q�(i; s1; a2)

and they are the only two actions that maximize Q� in this state. Then the optimal ordered
policy must choose a1. Now in all other states s2 such that �i(s1) = �i(s2), we have just
established in (22) that the Q� values will be the same. Hence, the same tie will exist
between a1 and a2, and hence, the optimal ordered policy must make the same choice in all
such states. Hence, the optimal ordered policy for node i is an abstract policy.

Now let us turn to the recursive case at Max node i. Make the inductive assumption that
the ordered recursively-optimal policy is abstract within all descendent nodes and consider
the locally optimal policy at node i. If Y is a set of state variables that are irrelevant to
node i, Corollary 2 tells us that Q�(i; s1; j) = Q�(i; s2; j) for all states s1 and s2 such that
�i(s1) = �i(s2). Similarly, if Y is a set of variables irrelevant to the result distribution of
a particular action j, then Lemma 7 tells us the same thing. Hence, by the same ordering
argument given above, the ordered optimal policy at node i must be abstract. By induction,
this proves the lemma. Q.E.D.

With this lemma, we have established that the combination of an MDP M , an abstract
MAXQ graph H, and an action ordering de�nes a unique recursively-optimal ordered ab-
stract policy. We are now ready to prove that MAXQ-Q will converge to this policy.

Theorem 4 LetM = hS;A; P;R; P0i be either an episodic MDP for which all deterministic

policies are proper or a discounted in�nite horizon MDP with discount factor 
 < 1. Let H
be an unabstracted MAXQ graph de�ned over subtasks fM0; : : : ;Mkg with pseudo-reward

functions ~Ri(s
0). Let �(H) be a state-abstracted MAXQ graph de�ned by applying state

abstractions �i to each node i of H under the �ve conditions given above. Let �x(i; �i(s))
be an abstract ordered GLIE exploration policy at each node i and state s whose decisions

depend only on the \relevant" state variables at each node i. Let ��r be the unique recursively-
optimal hierarchical policy de�ned by �x, M , and ~R. Then with probability 1, algorithm

MAXQ-Q applied to �(H) converges to ��r provided that the learning rates �t(i) satisfy

Equation (15) and the one-step rewards are bounded.

Proof: Rather than repeating the entire proof for MAXQ-Q, we will only describe what
must change under state abstraction. The last two forms of state abstraction refer to states
whose values can be inferred from the structure of the MAXQ graph, and therefore do not
need to be represented at all. Since these values are not updated by MAXQ-Q, we can
ignore them. We will now consider the �rst three forms of state abstraction in turn.

We begin by considering primitive leaf nodes. Let a be a leaf node and let Y be a set of
state variables that are Leaf Irrelevant for a. Let s1 = (x; y1) and s2 = (x; y2) be two states
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that di�er only in their values for Y . Under Leaf Irrelevance, the probability transitions
P (s01js1; a) and P (s

0
2js2; a) need not be the same, but the expected reward of performing a

in both states must be the same. When MAXQ-Q visits an abstract state x, it does not
\know" the value of y, the part of the state that has been abstracted away. Nonetheless,
it draws a sample according to P (s0jx; y; a), receives a reward R(s0jx; y; a), and updates
its estimate of V (a; x) (line 4 of MAXQ-Q). Let Pt(y) be the probability that MAXQ-Q is
visiting (x; y) given that the unabstracted part of the state is x. Then Line 4 of MAXQ-Q
is computing a stochastic approximation toX

s0;N;y

Pt(y)Pt(s
0; N jx; y; a)R(s0jx; y; a):

We can write this as X
y

Pt(y)
X
s0;N

Pt(s
0; N jx; y; a)R(s0jx; y; a):

According to Leaf Irrelevance, the inner sum has the same value for all states s such that
�(s) = x. Call this value r0(x). This givesX

y

Pt(y)r0(x);

which is equal to r0(x) for any distribution Pt(y). Hence, MAXQ-Q converges under Leaf
Irrelevance abstractions.

Now let us turn to the two forms of abstraction that apply to internal nodes: Max Node
Irrelevance and Result Distribution Irrelevance. Consider the SMDP de�ned at each node i
of the abstracted MAXQ graph at time t duringMAXQ-Q. This would be an ordinary SMDP
with transition probability function Pt(x

0; N jx; a) and reward function Vt(a; x) + ~Ri(x
0)

except that when MAXQ-Q draws samples of state transitions, they are drawn according to
the distribution Pt(s

0; N js; a) over the original state space. To prove the theorem, we must
show that drawing (s0; N) according to this second distribution is equivalent to drawing
(x0; N) according to the �rst distribution.

For Max Node Irrelevance, we know that for all abstract policies applied to node i and
its descendents, the transition probability distribution factors as

P (s0; N js; a) = P (y0jx; y; a)P (x0; N jx; a):

Because the exploration policy is an abstract policy, Pt(s
0; N js; a) factors in this way. This

means that the Yi components of the state cannot a�ect the Xi components, and hence,
sampling from Pt(s

0; N js; a) and discarding the Yi values gives samples for Pt(x
0; N jx; a).

Therefore, MAXQ-Q will converge under Max Node Irrelevance abstractions.
Finally, consider Result Distribution Irrelevance. Let j be a child of node i, and suppose

Yj is a set of state variables that are irrelevant to the result distribution of j. When
the SMDP at node i wishes to draw a sample from Pt(x

0; N jx; j), it does not \know"
the current value of y, the irrelevant part of the current state. However, this does not
matter, because Result Distribution Irrelevance means that for all possible values of y,
Pt(x

0; y0; N jx; y; j) is the same. Hence, MAXQ-Q will converge under Result Distribution
Irrelevance abstractions.

273



Dietterich

In each of these three cases, MAXQ-Q will converge to a locally-optimal ordered policy
at node i in the MAXQ graph. By Lemma 10, this produces a locally-optimal ordered
policy for the unabstracted SMDP at node i. Hence, by induction, MAXQ-Q will converge
to the unique ordered recursively optimal policy ��r de�ned by MAXQ-Q H, MDP M , and
ordered exploration policy �x. Q.E.D.

5.3 The Hierarchical Credit Assignment Problem

There are still some situations where we would like to introduce state abstractions but
where the �ve properties described above do not permit them. Consider the following
modi�cation of the taxi problem. Suppose that the taxi has a fuel tank and that each time
the taxi moves one square, it costs one unit of fuel. If the taxi runs out of fuel before
delivering the passenger to his or her destination, it receives a reward of �20, and the trial
ends. Fortunately, there is a �lling station where the taxi can execute a Fillup action to �ll
the fuel tank.

To solve this modi�ed problem using the MAXQ hierarchy, we can introduce another
subtask, Refuel, which has the goal of moving the taxi to the �lling station and �lling the
tank. MaxRefuel is a child of MaxRoot, and it invokes Navigate(t) (with t bound to the
location of the �lling station) to move the taxi to the �lling station.

The introduction of fuel and the possibility that we might run out of fuel means that
we must include the current amount of fuel as a feature in representing every C value
(for internal nodes) and V value (for leaf nodes) throughout the MAXQ graph. This is
unfortunate, because our intuition tells us that the amount of fuel should have no in
uence
on our decisions inside the Navigate(t) subtask. That is, either the taxi will have enough
fuel to reach the target t (in which case, the chosen navigation actions do not depend on the
fuel), or else the taxi will not have enough fuel, and hence, it will fail to reach t regardless
of what navigation actions are taken. In other words, the Navigate(t) subtask should not
need to worry about the amount of fuel, because even if there is not enough fuel, there is
no action that Navigate(t) can take to get more fuel. Instead, it is the top-level subtasks
that should be monitoring the amount of fuel and deciding whether to go refuel, to go pick
up the passenger, or to go deliver the passenger.

Given this intuition, it is natural to try abstracting away the \amount of remaining
fuel" within the Navigate(t) subtask. However, this doesn't work, because when the taxi
runs out of fuel and a �20 reward is given, the QNorth, QSouth, QEast, and QWest nodes
cannot \explain" why this reward was received|that is, they have no consistent way of
setting their C tables to predict when this negative reward will occur, because their C
values ignore the amount of fuel in the tank. Stated more formally, the di�culty is that
the Max Node Irrelevance condition is not satis�ed because the one-step reward function
R(s0js; a) for these actions depends on the amount of fuel.

We call this the hierarchical credit assignment problem. The fundamental issue here is
that in the MAXQ decomposition all information about rewards is stored in the leaf nodes
of the hierarchy. We would like to separate out the basic rewards received for navigation
(i.e., �1 for each action) from the reward received for exhausting fuel (�20). If we make the
reward at the leaves only depend on the location of the taxi, then the Max Node Irrelevance
condition will be satis�ed.
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One way to do this is to have the programmer manually decompose the reward function
and indicate which nodes in the hierarchy will \receive" each reward. Let R(s0js; a) =P

iR(i; s
0js; a) be a decomposition of the reward function, such that R(i; s0js; a) speci�es

that part of the reward that must be handled by Max node i. In the modi�ed taxi problem,
for example, we can decompose the reward so that the leaf nodes receive all of the original
penalties, but the out-of-fuel rewards must be handled by MaxRoot. Lines 15 and 16 of the
MAXQ-Q algorithm are easily modi�ed to include R(i; s0js; a).

In most domains, we believe it will be easy for the designer of the hierarchy to decompose
the reward function. It has been straightforward in all of the problems we have studied.
However, an interesting problem for future research is to develop an algorithm that can
solve the hierarchical credit assignment problem autonomously.

6. Non-Hierarchical Execution of the MAXQ Hierarchy

Up to this point in the paper, we have focused exclusively on representing and learning
hierarchical policies. However, often the optimal policy for a MDP is not strictly hierarchi-
cal. Kaelbling (1993) �rst introduced the idea of deriving a non-hierarchical policy from the
value function of a hierarchical policy. In this section, we exploit the MAXQ decomposition
to generalize her ideas and apply them recursively at all levels of the hierarchy. We will
describe two methods for non-hierarchical execution.

The �rst method is based on the dynamic programming algorithm known as policy
iteration. The policy iteration algorithm starts with an initial policy �0. It then repeats
the following two steps until the policy converges. In the policy evaluation step, it computes
the value function V �k of the current policy �k. Then, in the policy improvement step, it
computes a new policy, �k+1 according to the rule

�k+1(s) := argmax
a

X
s0

P (s0js; a)[R(s0js; a) + 
V �k(s0)]: (23)

Howard (1960) proved that if �k is not an optimal policy, then �k+1 is guaranteed to be
an improvement. Note that in order to apply this method, we need to know the transition
probability distribution P (s0js; a) and the reward function R(s0js; a).

If we know P (s0js; a) and R(s0js; a), we can use the MAXQ representation of the value
function to perform one step of policy iteration. We start with a hierarchical policy � and
represent its value function using the MAXQ hierarchy (e.g., � could have been learned via
MAXQ-Q). Then, we can perform one step of policy improvement by applying Equation (23)
using V �(0; s0) (computed by the MAXQ hierarchy) to compute V �(s0).

Corollary 3 Let �g(s) = argmaxa
P

s0 P (s
0js; a)[R(s0js; a) + 
V �(0; s)], where V �(0; s) is

the value function computed by the MAXQ hierarchy and a is a primitive action. Then, if

� was not an optimal policy, �g is strictly better for at least one state in S.

Proof: This is a direct consequence of Howard's policy improvement theorem. Q.E.D.

Unfortunately, we can't iterate this policy improvement process, because the new policy,
�g is very unlikely to be a hierarchical policy (i.e., it is unlikely to be representable in
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Table 5: The procedure for executing the one-step greedy policy.

procedure ExecuteHGPolicy(s)

1 repeat

2 Let hV (0; s); ai := EvaluateMaxNode(0; s)
3 execute primitive action a

4 Let s be the resulting state
end // ExecuteHGPolicy

terms of local policies for each node of the MAXQ graph). Nonetheless, one step of policy
improvement can give very signi�cant improvements.

This approach to non-hierarchical execution ignores the internal structure of the MAXQ
graph. In e�ect, the MAXQ hierarchy is just viewed as a way to represent V �|any other
representation would give the same one-step improved policy �g.

The second approach to non-hierarchical execution borrows an idea from Q learning.
One of the great beauties of the Q representation for value functions is that we can compute
one step of policy improvement without knowing P (s0js; a), simply by taking the new policy
to be �g(s) := argmaxaQ(s; a). This gives us the same one-step greedy policy as we
computed above using one-step lookahead. With the MAXQ decomposition, we can perform
these policy improvement steps at all levels of the hierarchy.

We have already de�ned the function that we need. In Table 3 we presented the function
EvaluateMaxNode, which, given the current state s, conducts a search along all paths
from a given Max node i to the leaves of the MAXQ graph and �nds the path with the
best value (i.e., with the maximum sum of C values along the path, plus the V value at
the leaf). This is equivalent to computing the best action greedily at each level of the
MAXQ graph. In addition, EvaluateMaxNode returns the primitive action a at the end
of this best path. This action a would be the �rst primitive action to be executed if the
learned hierarchical policy were executed starting in the current state s. Our second method
for non-hierarchical execution of the MAXQ graph is to call EvaluateMaxNode in each
state, and execute the primitive action a that is returned. The pseudo-code is shown in
Table 5.

We will call the policy computed by ExecuteHGPolicy the hierarchical greedy policy,
and denote it �hg�, where the superscript * indicates that we are computing the greedy
action at each time step. The following theorem shows that this can give a better policy
than the original, hierarchical policy.

Theorem 5 Let G be a MAXQ graph representing the value function of hierarchical policy

� (i.e., in terms of C�(i; s; j), computed for all i; s, and j). Let V hg(0; s) be the value

computed by ExecuteHGPolicy (line 2), and let �hg� be the resulting policy. De�ne

V hg� to be the value function of �hg�. Then for all states s, it is the case that

V �(s) � V hg(0; s) � V hg�(s): (24)

Proof: (sketch) The left inequality in Equation (24) is satis�ed by construction by line 6
of EvaluateMaxNode. To see this, consider that the original hierarchical policy, �, can
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be viewed as choosing a \path" through the MAXQ graph running from the root to one of
the leaf nodes, and V �(0; s) is the sum of the C� values along this chosen path (plus the
V � value at the leaf node). In contrast, EvaluateMaxNode performs a traversal of all
paths through the MAXQ graph and �nds the best path, that is, the path with the largest
sum of C� (and leaf V �) values. Hence, V hg(0; s) must be at least as large as V �(0; s).

To establish the right inequality, note that by construction V hg(0; s) is the value function
of a policy, call it �hg, that chooses one action greedily at each level of the MAXQ graph
(recursively), and then follows � thereafter. This is a consequence of the fact that line
6 of EvaluateMaxNode has C� on its right-hand side, and C� represents the cost of
\completing" each subroutine by following �, not by following some other, greedier, policy.
(In Table 3, C� is written as Ct.) However, when we execute ExecuteHGPolicy (and
hence, execute �hg�), we have an opportunity to improve upon � and �hg at each time step.
Hence, V hg(0; s) is an underestimate of the actual value of �hg�. Q.E.D.

Note that this theorem only works in one direction. It says that if we can �nd a state
where V hg(0; s) > V �(s), then the greedy policy, �hg�, will be strictly better than �.
However, it could be that � is not an optimal policy and yet the structure of the MAXQ
graph prevents us from considering an action (either primitive or composite) that would
improve �. Hence, unlike the policy improvement theorem of Howard (where all primitive
actions are always eligible to be chosen), we do not have a guarantee that if � is suboptimal,
then the hierarchically greedy policy is a strict improvement.

In contrast, if we perform one-step policy improvement as discussed at the start of this
section, Corollary 3 guarantees that we will improve the policy. So we can see that in
general, neither of these two methods for non-hierarchical execution is always better than
the other. Nonetheless, the �rst method only operates at the level of individual primitive
actions, so it is not able to produce very large improvements in the policy. In contrast, the
hierarchical greedy method can obtain very large improvements in the policy by changing
which actions (i.e., subroutines) are chosen near the root of the hierarchy. Hence, in general,
hierarchical greedy execution is probably the better method. (Of course, the value functions
of both methods could be computed, and the one with the better estimated value could be
executed.)

Sutton, et al. (1999) have simultaneously developed a closely-related method for non-
hierarchical execution of macros. Their method is equivalent to ExecuteHGPolicy for
the special case where the MAXQ hierarchy has only one level of subtasks. The interesting
aspect of ExecuteHGPolicy is that it permits greedy improvements at all levels of the
tree to in
uence which action is chosen.

Some care must be taken in applying Theorem 5 to a MAXQ hierarchy whose C values
have been learned via MAXQ-Q. Being an online algorithm, MAXQ-Q will not have cor-
rectly learned the values of all states at all nodes of the MAXQ graph. For example, in the
taxi problem, the value of C(Put; s;QPutdown) will not have been learned very well except
at the four special locations R, G, B, and Y. This is because the Put subtask cannot be
executed until the passenger is in the taxi, and this usually means that a Get has just been
completed, so the taxi is at the passenger's source location. During exploration, both chil-
dren of Put will be tried in such states. The PutDown will usually fail (and receive a negative
reward), whereas the Navigate will eventually succeed (perhaps after lengthy exploration)
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and take the taxi to the destination location. Now because of all-states updating, the values
for C(Put; s;Navigate(t)) will have been learned at all of the states along the path to the
passenger's destination, but the C values for the Putdown action will only be learned for
the passenger's source and destination locations. Hence, if we train the MAXQ representa-
tion using hierarchical execution (as in MAXQ-Q), and then switch to hierarchically-greedy
execution, the results will be quite bad. In particular, we need to introduce hierarchically-
greedy execution early enough so that the exploration policy is still actively exploring. (In
theory, a GLIE exploration policy never ceases to explore, but in practice, we want to �nd
a good policy quickly, not just asymptotically).

Of course an alternative would be to use hierarchically-greedy execution from the very
beginning of learning. However, remember that the higher nodes in the MAXQ hierarchy
need to obtain samples of P (s0; N js; a) for each child action a. If the hierarchical greedy
execution interrupts child a before it has reached a terminal state (i.e., because at some state
along the way, another subtask appears better to EvaluateMaxNode), then these samples
cannot be obtained. Hence, it is important to begin with purely hierarchical execution
during training, and make a transition to greedy execution at some point.

The approach we have taken is to implement MAXQ-Q in such a way that we can
specify a number of primitive actions L that can be taken hierarchically before the hierar-
chical execution is \interrupted" and control returns to the top level (where a new action
can be chosen greedily). We start with L set very large, so that execution is completely
hierarchical|when a child action is invoked, we are committed to execute that action until
it terminates. However, gradually, we reduce L until it becomes 1, at which point we have
hierarchical greedy execution. We time this so that it reaches 1 at about the same time our
Boltzmann exploration cools to a temperature of 0.1 (which is where exploration e�ectively
has halted). As the experimental results will show, this generally gives excellent results
with very little added exploration cost.

7. Experimental Evaluation of the MAXQ Method

We have performed a series of experiments with the MAXQ method with three goals in
mind: (a) to understand the expressive power of the value function decomposition, (b) to
characterize the behavior of the MAXQ-Q learning algorithm, and (c) to assess the relative
importance of temporal abstraction, state abstraction, and non-hierarchical execution. In
this section, we describe these experiments and present the results.

7.1 The Fickle Taxi Task

Our �rst experiments were performed on a modi�ed version of the taxi task. This version
incorporates two changes to the task described in Section 3.1. First, each of the four
navigation actions is noisy, so that with probability 0.8 it moves in the intended direction,
but with probability 0.1 it instead moves to the right (of the intended direction) and with
probability 0.1 it moves to the left. The purpose of this change is to create a more realistic
and more di�cult challenge for the learning algorithms. The second change is that after the
taxi has picked up the passenger and moved one square away from the passenger's source
location, the passenger changes his or her destination location with probability 0.3. The
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purpose of this change is to create a situation where the optimal policy is not a hierarchical
policy so that the e�ectiveness of non-hierarchical execution can be measured.

We compared four di�erent con�gurations of the learning algorithm: (a) 
at Q learning,
(b) MAXQ-Q learning without any form of state abstraction, (c) MAXQ-Q learning with
state abstraction, and (d) MAXQ-Q learning with state abstraction and greedy execution.
These con�gurations are controlled by many parameters. These include the following: (a)
the initial values of the Q and C functions, (b) the learning rate (we employed a �xed
learning rate), (c) the cooling schedule for Boltzmann exploration (the GLIE policy that we
employed), and (d) for non-hierarchical execution, the schedule for decreasing L, the number
of steps of consecutive hierarchical execution. We optimized these settings separately for
each con�guration with the goal of matching or exceeding (with as few primitive training
actions as possible) the best policy that we could code by hand. For Boltzmann exploration,
we established an initial temperature and then a cooling rate. A separate temperature is
maintained for each Max node in the MAXQ graph, and its temperature is reduced by
multiplying by the cooling rate each time that subtask terminates in a goal state.

The process of optimizing the parameter settings for each algorithm is time-consuming,
both for 
at Q learning and for MAXQ-Q. The most critical parameter is the schedule
for cooling the temperature of Boltzmann exploration: if this is cooled too rapidly, then
the algorithms will converge to a suboptimal policy. In each case, we tested nine di�erent
cooling rates. To choose the di�erent cooling rates for the various subtasks, we started by
using �xed policies (e.g., either random or hand-coded) for all subtasks except the subtasks
closest to the leaves. Then, once we had chosen schedules for those subtasks, we allowed
their parent tasks to learn their policies while we tuned their cooling rates, and so on. One
nice e�ect of our method of cooling the temperature only when a subtask terminates is that
it naturally causes the subtasks higher in the MAXQ graph to cool more slowly. This meant
that good results could often be obtained just by using the same cooling rate for all Max
nodes.

The choice of learning rate is easier, since it is determined primarily by the degree
of stochasticity in the environment. We only tested three or four di�erent rates for each
con�guration. The initial values for the Q and C functions were set based on our knowledge
of the problems|no experiments were required.

We took more care in tuning these parameters for these experiments than one would
normally take in a real application, because we wanted to ensure that each method was
compared under the best possible conditions. The general form of the results (particularly
the speed of learning) is the same for wide ranges of the cooling rate and learning rate
parameter settings.

The following parameters were selected based on the tuning experiments. For 
at Q
learning: initial Q values of 0.123 in all states, learning rate 0.25, and Boltzmann exploration
with an initial temperature of 50 and a cooling rate of 0.9879. (We use initial values that
end in .123 as a \signature" during debugging to detect when a weight has been modi�ed.)

For MAXQ-Q learning without state abstraction, we used initial values of 0.123, a learn-
ing rate of 0.50, and Boltzmann exploration with an initial temperature of 50 and cooling
rates of 0.9996 at MaxRoot and MaxPut, 0.9939 at MaxGet, and 0.9879 at MaxNavigate.
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Figure 8: Comparison of performance of hierarchical MAXQ-Q learning (without state ab-
stractions, with state abstractions, and with state abstractions combined with
hierarchical greedy evaluation) to 
at Q learning.

For MAXQ-Q learning with state abstraction, we used initial values of 0.123, a learning
rate of 0.25, and Boltzmann exploration with an initial temperature of 50 and cooling rates
of 0.9074 at MaxRoot, 0.9526 at MaxPut, 0.9526 at MaxGet, and 0.9879 at MaxNavigate.

For MAXQ-Q learning with non-hierarchical execution, we used the same settings as
with state abstraction. In addition, we initialized L to 500 and decreased it by 10 with each
trial until it reached 1. So after 50 trials, execution was completely greedy.

Figure 8 shows the averaged results of 100 training runs. Each training run involves
performing repeated trials until convergence. Because the di�erent trials execute di�erent
numbers of primitive actions, we have just plotted the number of primitive actions on the
horizontal axis rather than the number of trials.

The �rst thing to note is that all forms of MAXQ learning have better initial performance
than 
at Q learning. This is because of the constraints introduced by the MAXQ hierarchy.
For example, while the agent is executing a Navigate subtask, it will never attempt to pickup
or putdown the passenger, because those actions are not available to Navigate. Similarly, the
agent will never attempt to putdown the passenger until it has �rst picked up the passenger
(and vice versa) because of the termination conditions of the Get and Put subtasks.

The second thing to notice is that without state abstractions, MAXQ-Q learning actu-
ally takes longer to converge, so that the Flat Q curve crosses the MAXQ/no abstraction
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curve. This shows that without state abstraction, the cost of learning the huge number
of parameters in the MAXQ representation is not really worth the bene�ts. We suspect
this is a consequence of the model-free nature of the MAXQ-Q algorithm. The MAXQ de-
composition represents some information redundantly. For example, the cost of performing
a Put subtask is computed both as C(Root; s;Get) and also as V (Put; s). A model-based
algorithm could compute both of these from a learned model, but MAXQ-Q must learn
each of them separately from experience.

The third thing to notice is that with state abstractions, MAXQ-Q converges very
quickly to a hierarchically optimal policy. This can be seen more clearly in Figure 9, which
focuses on the range of reward values in the neighborhood of the optimal policy. Here
we can see that MAXQ with abstractions attains the hierarchically optimal policy after
approximately 40,000 steps, whereas 
at Q learning requires roughly twice as long to reach
the same level. However, 
at Q learning, of course, can continue onward and reach optimal
performance, whereas with the MAXQ hierarchy, the best hierarchical policy is slow to
respond to the \�ckle" behavior of the passenger when he/she changes the destination.

The last thing to notice is that with greedy execution, the MAXQ policy is also able
to attain optimal performance. But as the execution becomes \more greedy", there is a
temporary drop in performance, because MAXQ-Q must learn C values in new regions
of the state space that were not visited by the recursively optimal policy. Despite this
drop in performance, greedy MAXQ-Q recovers rapidly and reaches hierarchically optimal
performance faster than purely-hierarchical MAXQ-Q learning. Hence, there is no added
cost|in terms of exploration|for introducing greedy execution.

This experiment presents evidence in favor of three claims: �rst, that hierarchical rein-
forcement learning can be much faster than 
at Q learning; second, that state abstraction
is required by MAXQ-Q learning for good performance; and third, that non-hierarchical
execution can produce signi�cant improvements in performance with little or no added
exploration cost.

7.2 Kaelbling's HDG Method

The second task that we will consider is a simple maze task introduced by Leslie Kaelbling
(1993) and shown in Figure 11. In each trial of this task, the agent starts in a randomly-
chosen state and must move to a randomly-chosen goal state using the usual North, South,
East, and West operators (we employed deterministic operators). There is a small cost for
each move, and the agent must minimize the undiscounted sum of these costs.

Because the goal state can be in any of 100 di�erent locations, there are actually 100
di�erent MDPs. Kaelbling's HDG method starts by choosing an arbitrary set of landmark
states and de�ning a Voronoi partition of the state space based on the Manhattan distances
to these landmarks (i.e., two states belong to the same Voronoi cell i� they have the same
nearest landmark). The method then de�nes one subtask for each landmark l. The subtask
is to move from any state in the current Voronoi cell or in any neighboring Voronoi cell to
the landmark l. Optimal policies for these subtasks are then computed.

Once HDG has the policies for these subtasks, it can solve the abstract Markov Decision
Problem of moving from each landmark state to any other landmark state using the subtask
solutions as macro actions (subroutines). So it computes a value function for this MDP.
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Figure 9: Close-up view of the previous �gure. This �gure also shows two horizontal lines
indicating optimal performance and hierarchically optimal performance in this
domain. To make this �gure more readable, we have applied a 100-step moving
average to the data points (which are themselves the average of 100 runs).

Finally, for each possible destination location g within a Voronoi cell for landmark l, the
HDG method computes the optimal policy of getting from l to g.

By combining these subtasks, the HDG method can construct a good approximation
to the optimal policy as follows. In addition to the value functions discussed above, the
agent maintains two other functions: NL(s), the name of the landmark nearest to state s,
and N(l), a list of the landmarks of the cells that are immediate neighbors of cell l. By
combining these, the agent can build a list for each state s of the current landmark and the
landmarks of the neighboring cells. For each such landmark, the agent computes the sum
of three terms:

(t1) the expected cost of reaching that landmark,

(t2) the expected cost of moving from that landmark to the landmark in the goal cell, and

(t3) the expected cost of moving from the goal-cell landmark to the goal state.

Note that while terms (t1) and (t3) can be exact estimates, term (t2) is computed using
the landmark subtasks as subroutines. This means that the corresponding path must pass
through the intermediate landmark states rather than going directly to the goal landmark.
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Figure 10: Kaelbling's 10-by-10 navigation task. Each circled state is a landmark state,
and the heavy lines show the boundaries of the Voronoi cells. In each episode, a
start state and a goal state are chosen at random. In this �gure, the start state
is shown by the black square, and the goal state is shown by the black hexagon.

Hence, term (t2) is typically an overestimate of the required distance. (Also note that (t3)
is the same for all choices of the intermediate landmarks, so it does not need to be explicitly
included in the computation of the best action until the agent enters the cell containing the
goal.)

Given this information, the agent then chooses to move toward the best of the landmarks
(unless the agent is already in the goal Voronoi cell, in which case the agent moves toward
the goal state). For example, in Figure 10, term (t1) is the cost of reaching the landmark
in row 6, column 6, which is 4. Term (t2) is the cost of getting from row 6, column 6 to
the landmark at row 1 column 4 (by going from one landmark to another). In this case,
the best landmark-to-landmark path is to go directly from row 6 column 6 to row 1 column
4. Hence, term (t2) is 6. Term (t3) is the cost of getting from row 1 column 4 to the goal,
which is 1. The sum of these is 4 + 6 + 1 = 11. For comparison, the optimal path has
length 9.

In Kaelbling's experiments, she employed a variation of Q learning to learn terms (t1)
and (t3), and she computed (t2) at regular intervals via the Floyd-Warshall all-sources
shortest paths algorithm.

Figure 11 shows a MAXQ approach to solving this problem. The overall task Root,
takes one argument g, which speci�es the goal cell. There are three subtasks:
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Figure 11: A MAXQ graph for the HDG navigation task.

� GotoGoalLmk, go to the landmark nearest to the goal location. The termination
predicate for this subtask is true if the agent reaches the landmark nearest to the
goal. The goal predicate is the same as the termination predicate.

� GotoLmk(l), go to landmark l. The termination predicate for this is true if either (a)
the agent reaches landmark l or (b) the agent is outside of the region de�ned by the
Voronoi cell for l and the neighboring Voronoi cells, N(l). The goal predicate for this
subtask is true only for condition (a).

� GotoGoal(g), go to the goal location g. The termination predicate for this subtask is
true if either the agent is in the goal location or the agent is outside of the Voronoi
cell NL(g) that contains g. The goal predicate for this subtask is true if the agent is
in the goal location.
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The MAXQ decomposition is essentially the same as Kaelbling's method, but somewhat
redundant. Consider a state where the agent is not inside the same Voronoi cell as the goal
g. In such states, HDG decomposes the value function into three terms (t1), (t2), and (t3).
Similarly, MAXQ also decomposes it into these same three terms:

� V (GotoLmk(l); s; a) the cost of getting to landmark l. This is represented as the sum
of V (a; s) and C(GotoLmk(l); s; a).

� C(GotoGoalLmk(gl); s;MaxGotoLmk(l)) the cost of getting from landmark l to the
landmark gl nearest the goal.

� C(Root; s;GotoGoalLmk(gl)) the cost of getting to the goal location after reaching gl
(i.e., the cost of completing the Root task after reaching gl).

When the agent is inside the goal Voronoi cell, then again HDG and MAXQ store
essentially the same information. HDG stores Q(GotoGoal(g); s; a), while MAXQ breaks
this into two terms: C(GotoGoal(g); s; a) and V (a; s) and then sums these two quantities to
compute the Q value.

Note that this MAXQ decomposition stores some information twice|speci�cally, the
cost of getting from the goal landmark gl to the goal is stored both as C(Root; s;GotoGoalLmk(gl))
and as C(GotoGoal(g); s; a) + V (a; s).

Let us compare the amount of memory required by 
at Q learning, HDG, and MAXQ.
There are 100 locations, 4 possible actions, and 100 possible goal states, so 
at Q learning
must store 40,000 values.

To compute quantity (t1), HDG must store 4 Q values (for the four actions) for each
state s with respect to its own landmark and the landmarks in N(NL(s)). This gives a
total of 2,028 values that must be stored.

To compute quantity (t2), HDG must store, for each landmark, information on the
shortest path to every other landmark. There are 12 landmarks. Consider the landmark at
row 6, column 1. It has 5 neighboring landmarks which constitute the �ve macro actions
that the agent can perform to move to another landmark. The nearest landmark to the
goal cell could be any of the other 11 landmarks, so this gives a total of 55 Q values that
must be stored. Similar computations for all 12 landmarks give a total of 506 values that
must be stored.

Finally, to compute quantity (t3), HDG must store information, for each square inside
each Voronoi cell, about how to get to each of the other squares inside the same Voronoi
cell. This requires 3,536 values.

Hence, the grand total for HDG is 6,070, which is a huge savings over 
at Q learning.
Now let's consider the MAXQ hierarchy with and without state abstractions.

� V (a; s): This is the expected reward of each primitive action in each state. There are
100 states and 4 primitive actions, so this requires 400 values. However, because the
reward is constant (�1), we can apply Leaf Irrelevance to store only a single value.

� C(GotoLmk(l); s; a), where a is one of the four primitive actions. This requires the
same amount of space as (t1) in Kaelbling's representation|indeed, combined with
V (a; s), this represents exactly the same information as (t1). It requires 2,028 values.
No state abstractions can be applied.
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� C(GotoGoalLmk(gl); s;GotoLmk(l)): This is the cost of completing the GotoGoalLmk
task after going to landmark l. If the primitive actions are deterministic, then
GotoLmk(l) will always terminate at location l, and hence, we only need to store
this for each pair of l and gl. This is exactly the same as Kaelbling's quantity (t2),
which requires 506 values. However, if the primitive actions are stochastic|as they
were in Kaelbling's original paper|then we must store this value for each possible
terminal state of each GotoLmk action. Each of these actions could terminate at its
target landmark l or in one of the states bordering the set of Voronoi cells that are
the neighbors of the cell for l. This requires 6,600 values. When Kaelbling stores
values only for (t2), she is e�ectively making the assumption that GotoLmk(l) will
never fail to reach landmark l. This is an approximation which we can introduce into
the MAXQ representation by our choice of state abstraction at this node.

� C(GotoGoal; s; a): This is the cost of completing the GotoGoal task after executing one
of the primitive actions a. This is the same as quantity (t3) in the HDG representation,
and it requires the same amount of space: 3,536 values.

� C(Root; s;GotoGoalLmk): This is the cost of reaching the goal once we have reached
the landmark nearest the goal. MAXQ must represent this for all combinations of
goal landmarks and goals. This requires 100 values. Note that these values are the
same as the values of C(GotoGoal(g); s; a) + V (a; s) for each of the primitive actions.
This means that the MAXQ representation stores this information twice, whereas the
HDG representation only stores it once (as term (t3)).

� C(Root; s;GotoGoal). This is the cost of completing the Root task after we have exe-
cuted the GotoGoal task. If the primitive action are deterministic, this is always zero,
because GotoGoal will have reached the goal. Hence, we can apply the Termination
condition and not store any values at all. However, if the primitive actions are stochas-
tic, then we must store this value for each possible state that borders the Voronoi cell
that contains the goal. This requires 96 di�erent values. Again, in Kaelbling's HDG
representation of the value function, she is ignoring the probability that GotoGoal will
terminate in a non-goal state. Because MAXQ is an exact representation of the value
function, it does not ignore this possibility. If we (incorrectly) apply the Termination
condition in this case, the MAXQ representation becomes a function approximation.

In the stochastic case, without state abstractions, the MAXQ representation requires
12,760 values. With safe state abstractions, it requires 12,361 values. With the approxi-
mations employed by Kaelbling (or equivalently, if the primitive actions are deterministic),
the MAXQ representation with state abstractions requires 6,171 values. These numbers are
summarized in Table 6. We can see that, with the unsafe state abstractions, the MAXQ
representation requires only slightly more space than the HDG representation (because of
the redundancy in storing C(Root; s;GotoGoalLmk).

This example shows that for the HDG task, we can start with the fully-general for-
mulation provided by MAXQ and impose assumptions to obtain a method that is similar
to HDG. The MAXQ formulation guarantees that the value function of the hierarchical
policy will be represented exactly. The assumptions will introduce approximations into the
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Table 6: Comparison of the number of values that must be stored to represent the value
function using the HDG and MAXQ methods.

HDG MAXQ HDG MAXQ MAXQ MAXQ
item item values no abs safe abs unsafe abs

V (a; s) 0 400 1 1
(t1) C(GotoLmk(l); s; a) 2,028 2,028 2,028 2,028
(t2) C(GotoGoalLmk; s;GotoLmk(l)) 506 6,600 6,600 506
(t3) C(GotoGoal(g); s; a) 3,536 3,536 3,536 3,536

C(Root; s;GotoGoalLmk) 0 100 100 100
C(Root; s;GotoGoal) 0 96 96 0

Total Number of Values Required 6,070 12,760 12,361 6,171

value function representation. This might be useful as a general design methodology for
building application-speci�c hierarchical representations. Our long-term goal is to develop
such methods so that each new application does not require inventing a new set of tech-
niques. Instead, o�-the-shelf tools (e.g., based on MAXQ) could be specialized by imposing
assumptions and state abstractions to produce more e�cient special-purpose systems.

One of the most important contributions of the HDG method was that it introduced
a form of non-hierarchical execution. As soon as the agent crosses from one Voronoi cell
into another, the current subtask of reaching the landmark in that cell is \interrupted",
and the agent recomputes the \current target landmark". The e�ect of this is that (until
it reaches the goal Voronoi cell), the agent is always aiming for a landmark outside of its
current Voronoi cell. Hence, although the agent \aims for" a sequence of landmark states, it
typically does not visit many of these states on its way to the goal. The states just provide
a convenient set of intermediate targets. By taking these \shortcuts", HDG compensates
for the fact that, in general, it has overestimated the cost of getting to the goal, because its
computed value function is based on a policy where the agent goes from one landmark to
another.

The same e�ect is obtained by hierarchical greedy execution of the MAXQ graph (which
was directly inspired by the HDG method). Note that by storing the NL (nearest landmark)
function, Kaelbing's HDG method can detect very e�ciently when the current subtask
should be interrupted. This technique only works for navigation problems in a space with
a distance metric. In contrast, ExecuteHGPolicy performs a kind of \polling", because
it checks after each primitive action whether it should interrupt the current subroutine and
invoke a new one. An important goal for future research on MAXQ is to �nd a general
purpose mechanism for avoiding unnecessary \polling"|that is, a mechanism that can
discover e�ciently-evaluable interrupt conditions.

Figure 12 shows the results of our experiments with HDG using the MAXQ-Q learn-
ing algorithm. We employed the following parameters: for Flat Q learning, initial values
of 0.123, a learning rate of 1.0, initial temperature of 50, and cooling rate of 0.9074; for
MAXQ-Q without state abstractions: initial values of �25:123, learning rate of 1.0, initial
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Figure 12: Comparison of Flat Q learning with MAXQ-Q learning with and without state
abstraction. (Average of 100 runs.)

temperature of 50, and cooling rates of 0.9074 for MaxRoot, 0.9999 for MaxGotoGoalLmk,
0.9074 forMaxGotoGoal, and 0.9526 for MaxGotoLmk; for MAXQ-Q with state abstractions:
initial values of �20:123, learning rate of 1.0, initial temperature of 50, and cooling rates of
0.9760 for MaxRoot, 0.9969 for MaxGotoGoal, 0.9984 for MaxGotoGoalLmk, and 0.9969 for
MaxGotoLmk. Hierarchical greedy execution was introduced by starting with 3000 primi-
tive actions per trial, and reducing this every trial by 2 actions, so that after 1500 trials,
execution is completely greedy.

The �gure con�rms the observations made in our experiments with the Fickle Taxi task.
Without state abstractions, MAXQ-Q converges much more slowly than 
at Q learning.
With state abstractions, it converges roughly three times as fast. Figure 13 shows a close-up
view of Figure 12 that allows us to compare the di�erences in the �nal levels of performance
of the methods. Here, we can see that MAXQ-Q with no state abstractions was not able to
reach the quality of our hand-coded hierarchical policy|presumably even more exploration
would be required to achieve this, whereas with state abstractions, MAXQ-Q is able to do
slightly better than our hand-coded policy. With hierarchical greedy execution, MAXQ-Q
is able to reach the goal using one fewer action, on the average|so that it approaches the
performance of the best hierarchical greedy policy (as computed by value iteration). Notice
however, that the best performance that can be obtained by hierarchical greedy execution
of the best recursively-optimal policy cannot match optimal performance. Hence, Flat Q
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Figure 13: Expanded view comparing Flat Q learning with MAXQ-Q learning with and
without state abstraction and with and without hierarchical greedy execution.
(Average of 100 runs.)

learning achieves a policy that reaches the goal state, on the average, with about one fewer
primitive action. Finally notice that as in the taxi domain, there was no added exploration
cost for shifting to greedy execution.

Kaelbling's HDG work has recently been extended and generalized by Moore, Baird
and Kaelbling (1999) to any sparse MDP where the overall task is to get from any given
start state to any desired goal state. The key to the success of their approach is that each
landmark subtask is guaranteed to terminate in a single resulting state. This makes it
possible to identify a sequence of good intermediate landmark states and then assemble a
policy that visits them in sequence. Moore, Baird and Kaelbling show how to construct a
hierarchy of landmarks (the \airport" hierarchy) that makes this planning process e�cient.
Note that if each subtask did not terminate in a single state (as in general MDPs), then
the airport method would not work, because there would be a combinatorial explosion of
potential intermediate states that would need to be considered.

7.3 Parr and Russell: Hierarchies of Abstract Machines

In his (1998b) dissertation work, Ron Parr considered an approach to hierarchical reinforce-
ment learning in which the programmer encodes prior knowledge in the form of a hierarchy
of �nite-state controllers called a HAM (Hierarchy of Abstract Machines). The hierarchy
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Goal

Vertical Hallway

Horizontal Hallway

Intersection

Figure 14: Parr's maze problem (on left). The start state is in the upper left corner, and
all states in the lower right-hand room are terminal states. The smaller diagram
on the right shows the hallway and intersection structure of the maze.

is executed using a procedure-call-and-return discipline, and it provides a partial policy for
the task. The policy is partial because each machine can include non-deterministic \choice"
machine states, in which the machine lists several options for action but does not specify
which one should be chosen. The programmer puts \choice" states at any point where
he/she does not know what action should be performed. Given this partial policy, Parr's
goal is to �nd the best policy for making choices in the choice states. In other words, his
goal is to learn a hierarchical value function V (hs;mi), where s is a state (of the external
environment) and m contains all of the internal state of the hierarchy (i.e., the contents
of the procedure call stack and the values of the current machine states for all machines
appearing in the stack). A key observation is that it is only necessary to learn this value
function at choice states hs;mi. Parr's algorithm does not learn a decomposition of the value
function. Instead, it \
attens" the hierarchy to create a new Markov decision problem over
the choice states hs;mi. Hence, it is hierarchical primarily in the sense that the programmer
structures the prior knowledge hierarchically. An advantage of this is that Parr's method
can �nd the optimal hierarchical policy subject to constraints provided by the programmer.
A disadvantage is that the method cannot be executed \non-hierarchically" to produce a
better policy.

Parr illustrated his work using the maze shown in Figure 14. This maze has a large-scale
structure (as a series of hallways and intersections), and a small-scale structure (a series of
obstacles that must be avoided in order to move through the hallways and intersections).
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In each trial, the agent starts in the top left corner, and it must move to any state in the
bottom right corner room. The agent has the usual four primitive actions, North, South,
East, and West. The actions are stochastic: with probability 0.8, they succeed, but with
probability 0.1 the action will move to the \left" and with probability 0.1 the action will
move to the \right" instead (e.g., a North action will move east with probability 0.1 and
west with probability 0.1). If an action would collide with a wall or an obstacle, it has no
e�ect.

The maze is structured as a series of \rooms", each containing a 12-by-12 block of states
(and various obstacles). Some rooms are parts of \hallways", because they are connected
to two other rooms on opposite sides. Other rooms are \intersections", where two or more
hallways meet.

To test the representational power of the MAXQ hierarchy, we want to see how well it
can represent the prior knowledge that Parr is able to represent using the HAM. We begin
by describing Parr's HAM for his maze task, and then we will present a MAXQ hierarchy
that captures much of the same prior knowledge.3

Parr's top level machine, MRoot, consists of a loop with a single choice state that
chooses among four possible child machines: MGo(East), MGo(South), MGo(West), and
MGo(North). The loop terminates when the agent reaches a goal state. MRoot will only
invoke a particular machine if there is a hallway in the speci�ed direction. Hence, in the
start state, it will only consider MGo(South) and MGo(East).

The MGo(d) machine begins executing when the agent is in an intersection. So the �rst
thing it tries to do is to exit the intersection into a hallway in the speci�ed direction d. Then
it attempts to traverse the hallway until it reaches another intersection. It does this by �rst
invoking an MExitIntersection(d) machine. When that machine returns, it then invokes an
MExitHallway(d) machine. When that machine returns, MGo also returns.

The MExitIntersection and MExitHallway machines are identical except for their termina-
tion conditions. Both machines consist of a loop with one choice state that chooses among
four possible subroutines. To simplify their description, suppose that MGo(East) has cho-
sen MExitIntersection(East). Then the four possible subroutines are MSni�(East;North),
MSni�(East; South), MBack(East;North), and MBack(East; South).

The MSni�(d; p) machine always moves in direction d until it encounters a wall (either
part of an obstacle or part of the walls of the maze). Then it moves in perpendicular
direction p until it reaches the end of the wall. A wall can \end" in two ways: either the
agent is now trapped in a corner with walls in both directions d and p or else there is no
longer a wall in direction d. In the �rst case, the MSni� machine terminates; in the second
case, it resumes moving in direction d.

The MBack(d; p) machine moves one step backwards (in the direction opposite from d)
and then moves �ve steps in direction p. These moves may or may not succeed, because the
actions are stochastic and there may be walls blocking the way. But the actions are carried
out in any case, and then the MBack machine returns.

The MSni� and MBack machines also terminate if they reach the end of a hall or the
end of an intersection.

3. The author thanks Ron Parr for providing the details of the HAM for this task.
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These �nite-state controllers de�ne a highly constrained partial policy. The MBack,
MSni�, and MGo machines contain no choice states at all. The only choice points are
in MRoot, which must choose the direction in which to move, and in MExitIntersection

and MExitHall, which must decide when to call MSni�, when to call MBack, and which
\perpendicular" direction to tell these machines to try when they cannot move forward.

MaxFollowWall(d,p) MaxToWall(d)

QFollowWall(d,p) QToWall(d) QBackOne(d)

MaxPerpThree(p)

QPerpThree(p)

MaxBackOne(d)

MaxSniff(d,p)

MaxRoot

d/p d/d d/Inv(d) d/p

QMoveFW(d) QMoveTW(d) QMoveBO(d) QMoveP3(d)
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MaxBack(d,p,x,y)

x/X
y/Y
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y/Y

Go(d)

MaxGo(d,r)

QExitInter(d,r) QExitHall(d,r)

MaxExitHall(d,r)MaxExitInter(d,r)

QBackEI(d,p) QSniffEH(d,p) QBackEH(d,p)QSniffEI(d,p)

r/ROOM

Figure 15: MAXQ graph for Parr's maze task.

Figure 15 shows a MAXQ graph that encodes a similar set of constraints on the policy.
The subtasks are de�ned as follows:
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� Root. This is exactly the same as the MRoot machine. It must choose a direction d
and invoke Go. It terminates when the agent enters a terminal state. This is also its
goal condition (of course).

� Go(d; r). (Go in direction d leaving room r.) The parameter r is bound to an identi-
�cation number corresponding to the current 12-by-12 \room" in which the agent is
located. Go terminates when the agent enters the room at the end of the hallway in
direction d or when it leaves the desired hallway (e.g., in the wrong direction). The
goal condition for Go is satis�ed only if the agent reaches the desired intersection.

� ExitInter(d; r). This terminates when the agent has exited room r. The goal condition
is that the agent exit room r in direction d.

� ExitHall(d; r). This terminates when the agent has exited the current hall (into some
intersection). The goal condition is that the agent has entered the desired intersection
in direction d.

� Sni�(d; r). This encodes a subtask that is equivalent to the MSni� machine. However,
Sni� must have two child subtasks, ToWall and FollowWall, that were simply internal
states of MSni�. This is necessary, because a subtask in the MAXQ framework cannot
contain any internal state, whereas a �nite-state controller in the HAM representation
can contain as many internal states as necessary. In particular, it can have one state
for when it is moving forward and another state for when it is following a wall sideways.

� ToWall(d). This is equivalent to one part of MSni�. It terminates when there is a
wall in \front" of the agent in direction d. The goal condition is the same as the
termination condition.

� FollowWall(d; p). This is equivalent to the other part of MSni�. It moves in direction
p until the wall in direction d ends (or until it is stuck in a corner with walls in both
directions d and p). The goal condition is the same as the termination condition.

� Back(d; p; x; y). This attempts to encode the same information as the MBack machine,
but this is a case where the MAXQ hierarchy cannot capture the same information.
MBack simply executes a sequence of 6 primitive actions (one step back, �ve steps in
direction p). But to do this, MBack must have 6 internal states, which MAXQ does
not allow. Instead, the Back subtask has the subgoal of moving the agent at least
one square backwards and at least 3 squares in the direction p. In order to determine
whether it has achieved this subgoal, it must remember the x and y position where
it started to execute, so these are bound as parameters to Back. Back terminates if
it achieves the desired change in position or if it runs into walls that prevent it from
achieving the subgoal. The goal condition is the same as the termination condition.

� BackOne(d; x; y). This moves the agent one step backwards (in the direction opposite
to d. It needs the starting x and y position in order to tell when it has succeeded. It
terminates if it has moved at least one unit in direction d or if there is a wall in this
direction. Its goal condition is the same as its termination condition.
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� PerpThree(p; x; y). This moves the agent three steps in the direction p. It needs the
starting x and y positions in order to tell when it has succeeded. It terminates when it
has moved at least three units in the direction p or if there is a wall in that direction.
The goal condition is the same as the termination condition.

� Move(d). This is a \parameterized primitive" action. It executes one primitive move
in direction d and terminates immediately.

From this, we can see that there are three major di�erences between the MAXQ rep-
resentation and the HAM representation. First, a HAM �nite-state controller can contain
internal states. To convert them into a MAXQ subtask graph, we must make a separate
subtask for each internal state in the HAM. Second, a HAM can terminate based on an
\amount of e�ort" (e.g., performing 5 actions), whereas a MAXQ subtask must terminate
based on some change in the state of the world. It is impossible to de�ne a MAXQ sub-
task that performs k steps and then terminate regardless of the e�ects of those steps (i.e.,
without adding some kind of \counter" to the state of the MDP). Third, it is more di�cult
to formulate the termination conditions for MAXQ subtasks than for HAM machines. For
example, in the HAM, it was not necessary to specify that the MExitHallway machine termi-
nates when it has entered a di�erent intersection than the one where the MGo was executed.
However, this is important for the MAXQ method, because in MAXQ, each subtask learns
its own value function and policy|independent of its parent tasks. For example, without
the requirement to enter a di�erent intersection, the learning algorithms for MAXQ will
always prefer to have MaxExitHall take one step backward and return to the room in which
the Go action was started (because that is a much easier terminal state to reach). This
problem does not arise in the HAM approach, because the policy learned for a subtask
depends on the whole \
attened" hierarchy of machines, and returning to the state where
the Go action was started does not help solve the overall problem of reaching the goal state
in the lower right corner.

To construct the MAXQ graph for this problem, we have introduced three programming
tricks: (a) binding parameters to aspects of the current state (in order to serve as a kind
of \local memory" for where the subtask began executing), (b) having a parameterized
primitive action (in order to be able to pass a parameter value that speci�es which primitive
action to perform), and (c) employing \inheritance of termination conditions"|that is, each
subtask in this MAXQ graph (but not the others in this paper) inherits the termination
conditions of all its ancestor tasks. Hence, if the agent is in the middle of executing a ToWall

action when it leaves an intersection, the ToWall subroutine terminates because the ExitInter
termination condition is satis�ed. This behavior is very similar to the standard behavior of
MAXQ. Ordinarily, when an ancestor task terminates, all of its descendent tasks are forced
to return without updating their C values. With inheritance of termination conditions, on
the other hand, the descendent tasks are forced to terminate, but after updating their C
values. In other words, the termination condition of each child task is the logical disjuntion
of all of the termination conditions of its ancestors (plus its own termination condition).
This inheritance made it easier to write the MAXQ graph, because the parents did not need
to pass down to their children all of the information necessary for the children to de�ne the
complete termination and goal predicates.
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There are essentially no opportunities for state abstraction in this task, because there
are no irrelevant features of the state. There are some opportunities to apply the Shielding
and Termination properties, however. In particular, ExitHall(d) is guaranteed to cause its
parent task, MaxGo(d), to terminate, so it does not require any stored C values. There are
many states where some subtasks are terminated (e.g., Go(East) in any state where there
is a wall on the east side of the room), and so no C values need to be stored.

Nonetheless, even after applying the state elimination conditions, the MAXQ repre-
sentation for this task requires much more space than a 
at representation. An exact
computation is di�cult, but after applying MAXQ-Q learning, the MAXQ representation
required 52,043 values, whereas 
at Q learning requires fewer than 16,704 values. Parr
states that his method requires only 4,300 values.

To test the relative e�ectiveness of the MAXQ representation, we compare MAXQ-Q
learning with 
at Q learning. Because of the very large negative values that some states
acquire (particularly during the early phases of learning), we were unable to get Boltzmann
exploration to work well|one very bad experience would cause an action to receive such
a low Q value, that it would never be tried again. Hence, we experimented with both
�-greedy exploration and counter-based exploration. The �-greedy exploration policy is an
ordered, abstract GLIE policy in which a random action is chosen with probability �, and �
is gradually decreased over time. The counter-based exploration policy keeps track of how
many times each action a has been executed in each state s. To choose an action in state
s, it selects the action that has been executed the fewest times until all actions have been
executed T times. Then it switches to greedy execution. Hence, it is not a genuine GLIE
policy. Parr employed counter-based exploration policies in his experiments with this task.

As in the other domains, we conducted several experimental runs (e.g., testing Boltz-
mann, �-greedy, and counter-based exploration) to determine the best parameters for each
algorithm. For Flat Q learning, we chose the following parameters: learning rate 0.50, �-
greedy exploration with initial value for � of 1.0, � decreased by 0.001 after each successful
execution of a Max node, and initial Q values of �200:123. For MAXQ-Q learning, we chose
the following parameters: counter-based exploration with T = 10, learning rate equal to the
reciprocal of the number of times an action had been performed, and initial values for the C
values selected carefully to provide underestimates of the true C values. For example, the
initial values for QExitInter were �40:123, because in the worst case, after completing an
ExitInter task, it takes about 40 steps to complete the subsequent ExitHall task and hence,
complete the Go parent task. Performance was quite sensitive to these initial C values,
which is a potential drawback of the MAXQ approach.

Figure 16 plots the results. We can see that MAXQ-Q learning converges about 10
times faster than Flat Q learning. We do not know whether MAXQ-Q has converged to a
recursively optimal policy. For comparison, we also show the performance of a hierarchical
policy that we coded by hand, but in our hand-coded policy, we used knowledge of contextual
information to choose operators, so this policy is surely better than the best recursively
optimal policy. HAMQ learning should converge to a policy equal to or slightly better than
our hand-coded policy.

This experiment demonstrates that the MAXQ representation can capture most|but
not all|of the prior knowledge that can be represented by the HAMQ hierarchy. It also
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Figure 16: Comparison of Flat Q learning and MAXQ-Q learning in the Parr maze task.

shows that the MAXQ representation requires much more care in the design of the goal
conditions for the subtasks.

7.4 Other Domains

In addition to the three domains discussed above, we have developed MAXQ graphs for
Singh's (1992) \
ag task", the treasure hunter task described by Tadepalli and Dietterich
(1997), and Dayan and Hinton's (1993) Feudal-Q learning task. All of these tasks can be
easily and naturally placed into the MAXQ framework|indeed, all of them �t more easily
than the Parr and Russell maze task.

MAXQ is able to exactly duplicate Singh's work and his decomposition of the value
function|while using exactly the same amount of space to represent the value function.
MAXQ can also duplicate the results from Tadepalli and Dietterich|however, because
MAXQ is not an explanation-based method, it is considerably slower and requires substan-
tially more space to represent the value function.

In the Feudal-Q task, MAXQ is able to give better performance than Feudal-Q learning.
The reason is that in Feudal-Q learning, each subroutine makes decisions using only a Q
function learned at its own level of the hierarchy|that is, without information about the
estimated costs of the actions of its descendents. In contrast, the MAXQ value function
decomposition permits each Max node to make decisions based on the sum of its completion
function, C(i; s; j), and the costs estimated by its descendents, V (j; s). Of course, MAXQ
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also supports non-hierarchical execution, which is not possible for Feudal-Q, because it does
not learn a value function decomposition.

8. Discussion

Before concluding this paper, we wish to discuss two issues: (a) design tradeo�s in hi-
erarchical reinforcement learning and (b) methods for automatically learning (or at least
improving) MAXQ hierarchies.

8.1 Design Tradeo�s in Hierarchical Reinforcement Learning

In the introduction to this paper, we discussed four issues concerning the design of hierar-
chical reinforcement learning architectures: (a) the method for de�ning subtasks, (b) the
use of state abstraction, (c) non-hierarchical execution, and (d) the design of learning al-
gorithms. In this subsection, we want to highlight a tradeo� between the �rst two of these
issues.

MAXQ de�nes subtasks using a termination predicate Ti and a pseudo-reward function
~R. There are at least two drawbacks of this method. First, it can be hard for the program-
mer to de�ne Ti and ~R correctly, since this essentially requires guessing the value function
of the optimal policy for the MDP at all states where the subtask terminates. Second, it
leads us to seek a recursively optimal policy rather than a hierarchically optimal policy.
Recursively optimal policies may be much worse than hierarchically optimal ones, so we
may be giving up substantial performance.

However, in return for these two drawbacks, MAXQ obtains a very important bene�t:
the policies and value functions for subtasks become context-free. In other words, they
do not depend on their parent tasks or the larger context in which they are invoked. To
understand this point, consider again the MDP shown in Figure 6. It is clear that the
optimal policy for exiting the left-hand room (the Exit subtask) depends on the location
of the goal. If it is at the top of the right-hand room, then the agent should prefer to
exit via the upper door, whereas if it is at the bottom of the right-hand room, the agent
should prefer to exit by the lower door. However, if we de�ne the subtask of exiting the
left-hand room using a pseudo-reward of zero for both doors, then we obtain a policy that
is not optimal in either case, but a policy that we can re-use in both cases. Furthermore,
this policy does not depend on the location of the goal. Hence, we can apply Max node
irrelevance to solve the Exit subtask using only the location of the robot and ignore the
location of the goal.

This example shows that we obtain the bene�ts of subtask reuse and state abstrac-
tion because we de�ne the subtask using a termination predicate and a pseudo-reward
function. The termination predicate and pseudo-reward function provide a barrier that
prevents \communication" of value information between the Exit subtask and its context.

Compare this to Parr's HAM method. The HAMQ algorithm �nds the best policy
consistent with the hierarchy. To achieve this, it must permit information to propagate
\into" the Exit subtask (i.e., the Exit �nite-state controller) from its environment. But
this means that if any state that is reached after leaving the Exit subtask has di�erent
values depending on the location of the goal, then these di�erent values will propagate
back into the Exit subtask. To represent these di�erent values, the Exit subtask must know
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the location of the goal. In short, to achieve a hierarchically optimal policy within the Exit
subtask, we must (in general) represent its value function using the entire state space. State
abstractions cannot be employed without losing hierarchical optimality.

We can see, therefore, that there is a direct tradeo� between achieving hierarchical
optimality and employing state abstractions. Methods for hierarchical optimality have more
freedom in de�ning subtasks (e.g., using partial policies, as in the HAM approach). But
they cannot (safely) employ state abstractions within subtasks, and in general, they cannot
reuse the solution of one subtask in multiple contexts. Methods for recursive optimality, on
the other hand, must de�ne subtasks using some method (such as pseudo-reward functions
for MAXQ or �xed policies for the options framework) that isolates the subtask from its
context. But in return, they can apply state abstraction and the learned policy can be
reused in many contexts (where it will be more or less optimal).

It is interesting that the iterative method described by Dean and Lin (1995) can be
viewed as a method for moving along this tradeo�. In the Dean and Lin method, the
programmer makes an initial guess for the values of the terminal states of each subtask
(i.e., the doorways in Figure 6). Based on this initial guess, the locally optimal policies
for the subtasks are computed. Then the locally optimal policy for the parent task is
computed|while holding the subtask policies �xed (i.e., treating them as options). At
this point, their algorithm has computed the recursively optimal solution to the original
problem, given the initial guesses. Instead of solving the various subproblems sequentially
via an o�ine algorithm as Dean and Lin suggested, we could use the MAXQ-Q learning
algorithm.

But the method of Dean and Lin does not stop here. Instead, it computes new values
of the terminal states of each subtask based on the learned value function for the entire
problem. This allows it to update its \guesses" for the values of the terminal states. The
entire solution process can now be repeated to obtain a new recursively optimal solution,
based on the new guesses. They prove that if this process is iterated inde�nitely, it will
converge to the hierarchically optimal policy (provided, of course, that no state abstractions
are used within the subtasks).

This suggests an extension to MAXQ-Q learning that adapts the ~R values online. Each
time a subtask terminates, we could update the ~R function based on the computed value
of the terminated state. To be precise, if j is a subtask of i, then when j terminates in
state s0, we should update ~Rj(s

0) to be equal to ~V (i; s0) = maxa0 ~Q(i; s
0; a0). However, this

will only work if ~Rj(s
0) is represented using the full state s0. If subtask j is employing state

abstractions, x = �(s), then ~Rj(x
0) will need to be the average value of ~V (i; s0), where

the average is taken over all states s0 such that x0 = �(s0) (weighted by the probability of
visiting those states). This is easily accomplished by performing a stochastic approximation
update of the form

~Rj(x
0) = (1� �t) ~Rj(x

0) + �t ~V (i; s
0)

each time subtask j terminates. Such an algorithm could be expected to converge to the
best hierarchical policy consistent with the given state abstractions.

This also suggests that in some problems, it may be worthwhile to �rst learn a recursively
optimal policy using very aggressive state abstractions and then use the learned value
function to initialize a MAXQ representation with a more detailed representation of the
states. These progressive re�nements of the state space could be guided by monitoring the

298



MAXQ Hierarchical Reinforcement Learning

degree to which the values of ~V (i; x0) vary for each abstract state x0. If they have a large
variance, this means that the state abstractions are failing to make important distinctions
in the values of the states, and they should be re�ned.

Both of these kinds of adaptive algorithms will take longer to converge than the basic
MAXQ method described in this paper. But for tasks that an agent must solve many times
in its lifetime, it is worthwhile to have learning algorithms that provide an initial useful
solution but then gradually improve that solution until it is optimal. An important goal for
future research is to �nd methods for diagnosing and repairing errors (or sub-optimalities)
in the initial hierarchy so that ultimately the optimal policy will be discovered.

8.2 Automated Discovery of Abstractions

The approach taken in this paper has been to rely upon the programmer to design the
MAXQ hierarchy including the termination conditions, pseudo-reward functions, and state
abstractions. But the results of this paper, particularly concerning state abstraction, suggest
ways in which we might be able to automate the construction of the hierarchy.

The main purpose of the hierarchy is to create opportunities for subtask sharing and
state abstraction. These are actually very closely related. In order for a subtask to be shared
in two di�erent regions of the state space, it must be the case that the value function in those
two di�erent regions is identical except for an additive o�set. In the MAXQ framework,
that additive o�set would be the di�erence in the C values of the parent task. So one way to
�nd reusable subtasks would be to look for regions of state space where the value function
exhibits these additive o�sets.

A second way would be to search for structure in the one-step probability transition
function P (s0js; a). A subtask will be useful if it enables state abstractions such as Max
Node Irrelevance. We can formulate this as the problem of identifying some region of
state space such that, conditioned on being in that region, P (s0js; a) factors according to
Equation 17. A top-down divide-and-conquer algorithm similar to decision-tree algorithms
might be able to do this.

A third way would be to search for funnel actions by looking for bottlenecks in the state
space through which all policies must travel. This would be useful for discovering cases of
Result Distribution Irrelevance.

In some ways, the most di�cult kinds of state abstractions to discover are those in
which arbitrary subgoals are introduced to constrain the policy (and sacri�ce optimality).
For example, how could an algorithm automatically decide to impose landmarks onto the
HDG task? Perhaps by detecting a large region of state space without bottlenecks or
variations in the reward function?

The problem of discovering hierarchies is an important challenge for the future, but at
least this paper has provided some guidelines for what constitute good state abstractions,
and these can serve as objective functions for guiding the automated search for abstractions.

9. Concluding Remarks

This paper has introduced a new representation for the value function in hierarchical re-
inforcement learning|the MAXQ value function decomposition. We have proved that the
MAXQ decomposition can represent the value function of any hierarchical policy under
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both the �nite-horizon undiscounted, cumulative reward criterion and the in�nite-horizon
discounted reward criterion. This representation supports subtask sharing and re-use, be-
cause the overall value function is decomposed into value functions for individual subtasks.

The paper introduced a learning algorithm, MAXQ-Q learning, and proved that it
converges with probability 1 to a recursively optimal policy. The paper argued that although
recursive optimality is weaker than either hierarchical optimality or global optimality, it is
an important form of optimality because it permits each subtask to learn a locally optimal
policy while ignoring the behavior of its ancestors in the MAXQ graph. This increases the
opportunities for subtask sharing and state abstraction.

We have shown that the MAXQ decomposition creates opportunities for state abstrac-
tion, and we identi�ed a set of �ve properties (Max Node Irrelevance, Leaf Irrelevance,
Result Distribution Irrelevance, Shielding, and Termination) that allow us to ignore large
parts of the state space within subtasks. We proved that MAXQ-Q still converges in the
presence of these forms of state abstraction, and we showed experimentally that state ab-
straction is important in practice for the successful application of MAXQ-Q learning|at
least in the Taxi and HDG tasks.

The paper presented two di�erent methods for deriving improved non-hierarchical poli-
cies from the MAXQ value function representation, and it has formalized the conditions
under which these methods can improve over the hierarchical policy. The paper veri�ed
experimentally that non-hierarchical execution gives improved performance in the Fickle
Taxi Task (where it achieves optimal performance) and in the HDG task (where it gives a
substantial improvement).

Finally, the paper has argued that there is a tradeo� governing the design of hierarchical
reinforcement learning methods. At one end of the design spectrum are \context free"
methods such as MAXQ-Q learning. They provide good support for state abstraction and
subtask sharing but they can only learn recursively optimal policies. At the other end
of the spectrum are \context-sensitive" methods such as HAMQ, the options framework,
and the early work of Dean and Lin. These methods can discover hierarchically optimal
policies (or, in some cases, globally optimal policies), but their drawback is that they cannot
easily exploit state abstractions or share subtasks. Because of the great speedups that are
enabled by state abstraction, this paper has argued that the context-free approach is to be
preferred|and that it can be relaxed as needed to obtain improved policies.
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