
Journal of Arti�cial Intelligence Research 12 (2000) 219-234 Submitted 5/99; published 5/00

Randomized Algorithms for the Loop Cutset Problem

Ann Becker anyuta@cs.technion.ac.il

Reuven Bar-Yehuda reuven@cs.technion.ac.il

Dan Geiger dang@cs.technion.ac.il

Computer Science Department

Technion, Haifa, 32000, Israel

Abstract

We show how to �nd a minimum weight loop cutset in a Bayesian network with high

probability. Finding such a loop cutset is the �rst step in the method of conditioning for

inference. Our randomized algorithm for �nding a loop cutset outputs a minimum loop

cutset after O(c 6kkn) steps with probability at least 1 � (1 � 1
6k
)c6

k

, where c > 1 is a

constant speci�ed by the user, k is the minimal size of a minimumweight loop cutset, and

n is the number of vertices. We also show empirically that a variant of this algorithm often

�nds a loop cutset that is closer to the minimum weight loop cutset than the ones found

by the best deterministic algorithms known.

1. Introduction

The method of conditioning is a well known inference method for the computation of pos-

terior probabilities in general Bayesian networks (Pearl, 1986, 1988; Suermondt & Cooper,

1990; Peot & Shachter, 1991) as well as for �nding MAP values and solving constraint sat-

isfaction problems (Dechter, 1999). This method has two conceptual phases. First to �nd

an optimal or close to optimal loop cutset and then to perform a likelihood computation

for each instance of the variables in the loop cutset. This method is routinely used by

geneticists via several genetic linkage programs (Ott, 1991; Lang, 1997; Becker, Geiger, &

Scha�er, 1998). A variant of this method was developed by Lange and Elston (1975).

Finding a minimum weight loop cutset is NP-complete and thus heuristic methods have

often been applied to �nd a reasonable loop cutset (Suermondt & Cooper, 1990). Most

methods in the past had no guarantee of performance and performed very badly when

presented with an appropriate example. Becker and Geiger (1994, 1996) o�ered an algorithm

that �nds a loop cutset for which the logarithm of the state space is guaranteed to be at most

a constant factor o� the optimal value. An adaptation of these approximation algorithms

has been included in version 4.0 of FASTLINK, a popular software for analyzing large

pedigrees with small number of genetic markers (Becker et al., 1998). Similar algorithms in

the context of undirected graphs are described by Bafna, Berman, and Fujito (1995) and

Fujito (1996).

While approximation algorithms for the loop cutset problem are quite useful, it is still

worthwhile to invest in �nding a minimum loop cutset rather than an approximation be-

cause the cost of �nding such a loop cutset is amortized over the many iterations of the

conditioning method. In fact, one may invest an e�ort of complexity exponential in the size

of the loop cutset in �nding a minimum weight loop cutset because the second phase of

the conditioning algorithm, which is repeated for many iterations, uses a procedure of such

c
2000 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.



Becker, Bar-Yehuda, & Geiger

complexity. The same considerations apply also to constraint satisfaction problems as well

as other problems in which the method of conditioning is useful (Dechter, 1990, 1999).

In this paper we describe several randomized algorithms that compute a loop cutset. As

done by Bar-Yehuda, Geiger, Naor, and Roth (1994), our solution is based on a reduction

to the weighted feedback vertex set problem. A feedback vertex set (FVS) F is a set of

vertices of an undirected graph G = (V;E) such that by removing F from G, along with

all the edges incident with F , a set of trees is obtained. The Weighted Feedback Vertex Set

(WFVS) problem is to �nd a feedback vertex set F of a vertex-weighted graph with a weight

function w : V ! IR+, such that
P

v2F w(v) is minimized. When w(v) � 1, this problem is

called the FVS problem. The decision version associated with the FVS problem is known

to be NP-Complete (Garey & Johnson, 1979, pp. 191{192).

Our randomized algorithm for �nding a WFVS, called RepeatedWGuessI, outputs a

minimum weight FVS after O(c 6kkn) steps with probability at least 1� (1� 1
6k
)c6

k

, where

c > 1 is a constant speci�ed by the user, k is the minimal size of a minimum weight FVS,

and n is the number of vertices. For unweighted graphs we present an algorithm that �nds

a minimum FVS of a graph G after O(c 4kkn) steps with probability at least 1� (1� 1

4k
)c4

k

.

In comparison, several deterministic algorithms for �nding a minimum FVS are described

in the literature. One has a complexity O((2k + 1)kn2) (Downey & Fellows, 1995b) and

others have a complexity O((17k4)!n) (Bodlaender, 1990; Downey & Fellows, 1995a).

A �nal variant of our randomized algorithms, called WRA, has the best performance

because it utilizes information from previous runs. This algorithm is harder to analyze

and its investigation is mostly experimental. We show empirically that the actual run time

of WRA is comparable to a Modi�ed Greedy Algorithm (MGA), described by Becker and

Geiger (1996), which is the best available deterministic algorithm for �nding close to optimal

loop cutsets, and yet, the output of WRA is often closer to the minimum weight loop cutest

than the output of MGA.

The rest of the paper is organized as follows. In Section 2 we outline the method of

conditioning, explain the related loop cutset problem and describe the reduction from the

loop cutset problem to the WFVS Problem. In Section 3 we present three randomized algo-

rithms for the WFVS problem and their analysis. In Section 4 we compare experimentally

WRA and MGA with respect to output quality and run time.

2. Background: The Loop Cutset Problem

A short overview of the method of conditioning and de�nitions related to Bayesian networks

are given below. See the book by Pearl (1988) for more details. We then de�ne the loop

cutset problem.

Let P (u1; : : : ; un) be a probability distribution where each variable ui has a �nite set

of possible values called the domain of ui. A directed graph D with no directed cycles is

called a Bayesian network of P if there is a 1{1 mapping between fu1; : : : ; ung and vertices

in D, such that ui is associated with vertex i and P can be written as follows:

P (u1; : : : ; un) =
nY
i=1

P (ui j ui1 ; : : : ; uij(i)) (1)

where i1; : : : ; ij(i) are the source vertices of the incoming edges to vertex i in D.

220



Randomized Algorithms for the Loop Cutset Problem

Suppose now that some variables fv1; : : : ; vlg among fu1; : : : ; ung are assigned speci�c

values fv1; : : : ;vlg respectively. The updating problem is to compute the probability P (ui j

v1 = v1; : : : ; vl = vl) for i = 1; : : : ; n.

A trail in a Bayesian network is a subgraph whose underlying graph is a simple path. A

vertex b is called a sink with respect to a trail t if there exist two consecutive edges a ! b

and b  c on t. A trail t is active by a set of vertices Z if (1) every sink with respect to

t either is in Z or has a descendant in Z and (2) every other vertex along t is outside Z.

Otherwise, the trail is said to be blocked (d-separated) by Z.

Verma and Pearl proved that if D is a Bayesian network of P (u1; : : : ; un) and all trails

between a vertex in fr1; : : : ; rlg and a vertex in fs1; : : : ; skg are blocked by ft1; : : : ; tmg,

then the corresponding sets of variables fur1 ; : : : ; urlg and fus1 ; : : : ; uskg are independent

conditioned on fut1 ; : : : ; utmg (Verma & Pearl, 1988). Furthermore, Geiger and Pearl proved

that this result cannot be enhanced (Geiger & Pearl, 1990). Both results were presented

and extended by Geiger, Verma, and Pearl (1990).

Using the close relationship between blocked trails and conditional independence, Kim

and Pearl developed an algorithm update-tree that solves the updating problem on

Bayesian networks in which every two vertices are connected with at most one trail (Kim

& Pearl, 1983). Pearl then solved the updating problem on any Bayesian network as fol-

lows (Pearl, 1986). First, a set of vertices S is selected such that any two vertices in the

network are connected by at most one active trail in S [ Z, where Z is any subset of ver-

tices. Then, update-tree is applied once for each combination of value assignments to

the variables corresponding to S, and, �nally, the results are combined. This algorithm is

called the method of conditioning and its complexity grows exponentially with the size of

S. The set S is called a loop cutset. Note that when the domain size of the variables varies,

then update-tree is called a number of times equal to the product of the domain sizes

of the variables whose corresponding vertices participate in the loop cutset. If we take the

logarithm of the domain size (number of values) as the weight of a vertex, then �nding a

loop cutset such that the sum of its vertices weights is minimum optimizes Pearl's updating

algorithm in the case where the domain sizes may vary.

We now give an alternative de�nition for a loop cutset S and then provide a probabilistic

algorithm for �nding it. This de�nition is borrowed from a paper by Bar-Yehuda et al.

(1994). The underlying graph G of a directed graph D is the undirected graph formed

by ignoring the directions of the edges in D. A cycle in G is a path whose two terminal

vertices coincide. A loop in D is a subgraph of D whose underlying graph is a cycle. A

vertex v is a sink with respect to a loop � if the two edges adjacent to v in � are directed

into v. Every loop must contain at least one vertex that is not a sink with respect to that

loop. Each vertex that is not a sink with respect to a loop � is called an allowed vertex

with respect to �. A loop cutset of a directed graph D is a set of vertices that contains at

least one allowed vertex with respect to each loop in D. The weight of a set of vertices X

is denoted by w(X) and is equal to
P

v2X w(v) where w(x) = log(jxj) and jxj is the size of

the domain associated with vertex x. A minimum weight loop cutset of a weighted directed

graph D is a loop cutset F � of D for which w(F �) is minimum over all loop cutsets of G.

The Loop Cutset Problem is de�ned as �nding a minimum weight loop cutset of a given

weighted directed graph D.

221



Becker, Bar-Yehuda, & Geiger

The approach we take is to reduce the loop cutset problem to the weighted feedback

vertex set problem, as done by Bar-Yehuda et al. (1994). We now de�ne the weighted

feedback vertex set problem and then the reduction.

Let G = (V;E) be an undirected graph, and let w : V ! IR+ be a weight function

on the vertices of G. A feedback vertex set of G is a subset of vertices F � V such that

each cycle in G passes through at least one vertex in F . In other words, a feedback vertex

set F is a set of vertices of G such that by removing F from G, along with all the edges

incident with F , we obtain a set of trees (i.e., a forest). The weight of a set of vertices X

is denoted (as before) by w(X) and is equal to
P

v2X w(v). A minimum feedback vertex set

of a weighted graph G with a weight function w is a feedback vertex set F � of G for which

w(F �) is minimum over all feedback vertex sets of G. The Weighted Feedback Vertex Set

(WFVS) Problem is de�ned as �nding a minimum feedback vertex set of a given weighted

graph G having a weight function w.

The reduction is as follows. Given a weighted directed graph (D;w) (e.g., a Bayesian

network), we de�ne the splitting weighted undirected graph Ds with a weight function ws as

follows. Split each vertex v in D into two vertices vin and vout in Ds such that all incoming

edges to v in D become undirected incident edges with vin in Ds, and all outgoing edges

from v in D become undirected incident edges with vout in Ds. In addition, connect vin and

vout in Ds by an undirected edge. Now set ws(vin) = 1 and ws(vout) = w(v). For a set of

vertices X in Ds, we de�ne  (X) as the set obtained by replacing each vertex vin or vout in

X by the respective vertex v in D from which these vertices originated. Note that if X is a

cycle in Ds, then  (X) is a loop in D, and if Y is a loop in D, then  �1(Y ) =
S
v2Y  

�1(v)

is a cycle in Ds where

 �1(v) =

8><
>:
vin v is a sink on Y

vout v is a source on Y

fvin; voutg otherwise

(A vertex v is a source with respect to a loop Y if the two edges adjacent to v in Y originate

from v). This mapping between loops in D and cycles in Ds is one-to-one and onto.

Our algorithm can now be easily stated.

ALGORITHM LoopCutset

Input: A Bayesian network D

Output: A loop cutset of D

1. Construct the splitting graph Ds

with weight function ws

2. Find a feedback vertex set F for (Ds; ws)

using the Weighted Randomized Algorithm (WRA)

3. Output  (F ).

It is immediately seen that if WRA (developed in later sections) outputs a feedback

vertex set F of Ds whose weight is minimum with high probability, then  (F ) is a loop

cutset of D with minimum weight with the same probability. This observation holds due to

the one-to-one and onto correspondence between loops in D and cycles in Ds and because

WRA never chooses a vertex that has an in�nite weight.

222



Randomized Algorithms for the Loop Cutset Problem

3. Algorithms for the WFVS Problem

Recall that a feedback vertex set of G is a subset of vertices F � V such that each cycle

in G passes through at least one vertex in F . In Section 3.1 we address the problem of

�nding a FVS with a minimum number of vertices and in Sections 3.2 and 3.3 we address

the problem of �nding a FVS with a minimum weight. Throughout, we allow G to have

parallel edges. If two vertices u and v have parallel edges between them, then every FVS

of G includes either u, v, or both.

3.1 The Basic Algorithms

In this section we present a randomized algorithm for the FVS problem. First we introduce

some additional terminology and notation. Let G = (V;E) be an undirected graph. The

degree of a vertex v in G, denoted by d(v), is the number of vertices adjacent to v. A

self-loop is an edge with two endpoints at the same vertex. A leaf is a vertex with degree

less or equal 1, a linkpoint is a vertex with degree 2 and a branchpoint is a vertex with

degree strictly higher than 2. The cardinality of a set X is denoted by jX j.

A graph is called rich if every vertex is a branchpoint and it has no self-loops. Given

a graph G, by repeatedly removing all leaves, and bypassing with an edge every linkpoint,

a graph G0 is obtained such that the size of a minimum FVS in G0 and in G are equal

and every minimum FVS of G0 is a minimum FVS of G. Since every vertex involved in

a self-loop belongs to every FVS, we can transform G0 to a rich graph Gr by adding the

vertices involved in self loops to the output of the algorithm.

Our algorithm is based on the observation that if we pick an edge at random from a rich

graph there is a probability of at least 1=2 that at least one endpoint of the edge belongs

to any given FVS F . A precise formulation of this claim is given by Lemma 1 whose proof

is given implicitly by Voss (1968, Lemma 4).

Lemma 1 Let G = (V;E) be a rich graph, F be a feedback vertex set of G and X = V nF .

Let EX denote the set of edges in E whose endpoints are all vertices in X and EF;X denote

the set of edges in G that connect vertices in F with vertices in X. Then, jEX j � jEF;X j.

Proof. The graph obtained by deleting a feedback vertex set F of a graph G(V;E) is

a forest with vertices X = V n F . Hence, jEX j < jX j. However, each vertex in X is a

branchpoint in G, and so,

3 jX j �
X
v2X

d(v) = jEF;X j + 2 jEXj:

Thus, jEX j � jEF;Xj. 2

Lemma 1 implies that when picking an edge at random from a rich graph, it is at least

as likely to pick an edge in EF;X than an edge in EX . Consequently, selecting a vertex

at random from a randomly selected edge has a probability of at least 1=4 to belong to a

minimum FVS. This idea yields a simple algorithm to �nd a FVS.

223



Becker, Bar-Yehuda, & Geiger

ALGORITHM SingleGuess(G,j)

Input: An undirected graph G0 and an integer j > 0.

Output: A feedback vertex set F of size � j, or "Fail" otherwise.

For i = 1; : : : ; j

1. Reduce Gi�1 to a rich graph Gi

while placing self loop vertices in F .

2. If Gi is the empty graph Return F

3. Pick an edge e = (u; v) at random from Ei

4. Pick a vertex vi at random from (u; v)

5. F  F [ fvig

6. V  V n fvig

Return "Fail"

Due to Lemma 1, when SingleGuess(G; j) terminates with a FVS of size j, there is a

probability of at least 1=4j that the output is a minimum FVS.

Note that steps 3 and 4 in SingleGuess determine a vertex v by �rst selecting an

arbitrary edge and then selecting an arbitrary endpoint of this edge. An equivalent way of

achieving the same selection rule is to choose a vertex with probability proportional to its

degree:

p(v) =
d(v)P

u2V d(u)
=

d(v)

2 � jEj

To see the equivalence of these two selection methods, de�ne �(v) to be a set of edges whose

one endpoint is v, and note that for graphs without self-loops,

p(v) =
X

e2�(v)

p(vje) � p(e) =
1

2

X
e2�(v)

p(e) =
d(v)

2 � jEj

This equivalent phrasing of the selection criterion is easier to extend to the weighted case

and will be used in the following sections.

An algorithm for �nding a minimum FVS with high probability, which we call Repeat-

edGuess, can now be described as follows: Start with j = 1. Repeat SingleGuess c 4j

times where c > 1 is a parameter de�ned by the user. If in one of the iterations a FVS of

size � j is found, then output this FVS, otherwise, increase j by one and continue.

ALGORITHM RepeatedGuess(G,c)

Input: An undirected graph G

and a constant c > 1.

Output: A feedback vertex set F .

For j = 1; : : : ; jV j

Repeat c 4j times

1. F  SingleGuess(G; j)

2. If F is not "Fail" then Return F

End fRepeatg

End fForg

224



Randomized Algorithms for the Loop Cutset Problem

The main claims about these algorithms are given by the following theorem.

Theorem 2 Let G be an undirected graph and c � 1 be a constant. Then, SingleGuess(G; k)

outputs a FVS whose expected size is no more than 4k, and RepeatedGuess(G; c) outputs,

after O(c 4kkn) steps, a minimum FVS with probability at least 1 � (1� 1
4k
)c4

k

, where k is

the size of a minimum FVS and n is the number of vertices.

The claims about the probability of success and number of steps follow immediately

from the fact that the probability of success of SingleGuess(G; j) is at least (1=4)j and

that, in case of success, O(c 4j) iterations are performed each taking O(jn) steps. The result

follows from the fact that
Pk

j=1 j4
j is of order O(k4k). The proof about the expected size

of a single guess is presented in the next section.

Theorem 2 shows that each guess produces a FVS which, on the average, is not too

far from the minimum, and that after enough iterations, the algorithm converges to the

minimum with high probability. In the weighted case, discussed next, we managed to

achieve each of these two guarantees in separate algorithms, but we were unable to achieve

both guarantees in a single algorithm.

3.2 The Weighted Algorithms

We now turn to the weighted FVS problem (WFVS) of size k which is to �nd a feedback

vertex set F of a vertex-weighted graph (G;w), w : V ! IR+, of size less or equal k such

that w(F ) is minimized.

Note that for the weighted FVS problem we cannot replace each linkpoint v with an

edge because if v has weight lighter than its branchpoint neighbors then v can participate

in a minimum weight FVS of size k.

A graph is called branchy if it has no endpoints, no self loops, and, in addition, each

linkpoint is connected only to branchpoints (Bar-Yehuda, Geiger, Naor, & Roth, 1994).

Given a graph G, by repeatedly removing all leaves, and bypassing with an edge every

linkpoint that has a neighbor with equal or lighter weight, a graph G0 is obtained such

that the weight of a minimum weight FVS (of size k) in G0 and in G are equal and every

minimum WFVS of G0 is a minimum WFVS of G. Since every vertex with a self-loop

belongs to every FVS, we can transform G0 to a branchy graph without self-loops by adding

the vertices involved in self loops to the output of the algorithm.

To address the WFVS problem we o�er two slight modi�cations to the algorithm Sin-

gleGuess presented in the previous section. The �rst algorithm, which we call Sin-

gleWGuessI, is identical to SingleGuess except that in each iteration we make a re-

duction to a branchy graph instead of a reduction to a rich graph. It chooses a vertex

with probability proportional to the degree using p(v) = d(v)=
P

u2V d(u). Note that this

probability does not take the weight of a vertex into account. A second algorithm, which

we call SingleWGuessII, chooses a vertex with probability proportional to the ratio of its

degree over its weight,

p(v) =
d(v)

w(v)
=
X
u2V

d(u)

w(u)
: (2)

225



Becker, Bar-Yehuda, & Geiger

ALGORITHM SingleWGuessI(G,j)

Input: An undirected weighted graph G0

and an integer j > 0.

Output: A feedback vertex set F of size � j,

or "Fail" otherwise.

For i = 1; : : : ; j

1. Reduce Gi�1 to a branchy graph Gi(Vi; Ei)

while placing self loop vertices in F .

2. If Gi is the empty graph Return F

3. Pick a vertex vi 2 Vi at random with

probability pi(v) = di(v)=
P

u2Vi
di(u)

4. F  F [ fvig

5. V  V n fvig

Return "Fail"

The second algorithm uses Eq. 2 for computing p(v) in Line 3. These two algorithms

have remarkably di�erent guarantees of performance. Version I guarantees that choosing a

vertex that belongs to any given FVS is larger than 1=6, however, the expected weight of a

FVS produced by version I cannot be bounded by a constant times the weight of a minimum

WFVS. Version II guarantees that the expected weight of its output is bounded by 6 times

the weight of a minimum WFVS, however, the probability of converging to a minimum

after any �xed number of iterations can be arbitrarily small. We �rst demonstrate via an

example the negative claims. The positive claims are phrased more precisely in Theorem 3

and proven thereafter.

Consider the graph shown in Figure 1 with three vertices a,b and c, and corresponding

weights w(a) = 6, w(b) = 3� and w(c) = 3m, with three parallel edges between a and b,

and three parallel edges between a and c. The minimum WFVS F � with size 1 consists of

vertex a. According to Version II, the probability of choosing vertex a is (Eq. 2):

p(a) =
�

(1 + 1=m) � � + 1

So if � is arbitrarily small and m is su�ciently large, then the probability of choosing vertex

a is arbitrarily small. Thus, the probability of choosing a vertex from some F � by the

criterion d(v)=w(v), as done by Version II, can be arbitrarily small. If, on the other hand,

Version I is used, then the probability of choosing a; b, or c is 1=2; 1=4; 1=4, respectively.

Thus, the expected weight of the �rst vertex to be chosen is 3=4 � (� +m + 4), while the

weight of a minimum WFVS is 6. Consequently, if m is su�ciently large, the expected

weight of a WFVS found by Version I can be arbitrarily larger than a minimum WFVS.

The algorithm for repeated guesses, which we call RepeatedWGuessI(G; c; j) is as

follows: repeat SingleWGuessI(G; j) c 6j times, where j is the minimal number of vertices

of a minimum weight FVS we seek. If no FVS is found of size � j, the algorithm outputs

that the size of a minimum WFVS is larger than j with high probability, otherwise, it

outputs the lightest FVS of size less or equal j among those explored. The following

theorem summarizes the main claims.

226



Randomized Algorithms for the Loop Cutset Problem

c a b

w(c) = 3� w(a) = 6 w(b) = 3m

Figure 1: The minimum WFVS F � = fag.

Theorem 3 Let G be a weighted undirected graph and c � 1 be a constant.

a) The algorithm RepeatedWGuessI(G; c; k) outputs after O(c 6kkn) steps a minimum

WFVS with probability at least 1� (1� 1

6k
)c6

k

, where k is the minimal size of a minimum

weight FVS of G and n is the number of vertices.

b) The algorithm SingleWGuessII(G,k) outputs a feedback vertex set whose expected

weight is no more than six times the weight of a minimum weight FVS.

The proof of each part requires a preliminary lemma.

Lemma 4 Let G = (V;E) be a branchy graph, F be a feedback vertex set of G and X =

V n F . Let EX denote the set of edges in E whose endpoints are all vertices in X and

EF;X denote the set of edges in G that connect vertices in F with vertices in X. Then,

jEX j � 2 � jEF;Xj.

Proof. Let Xb be the set of branchpoints in X . We replace every linkpoint in X by an

edge between its neighbors, and denote the resulting set of edges between vertices in Xb by

Eb
Xb and between vertices in Xb and F by Eb

F;Xb . The proof of Lemma 1 shows that

jEb
Xb j � jEb

F;Xb j:

Since every linkpoint in X has both neighbors in the set Xb [ F , the following holds:

jEX j � 2 � jEb
Xb j and jEF;X j = jE

b
F;Xb j:

Hence, jEXj � 2 � jEF;X j. 2

An immediate consequence of Lemma 4 is that the probability of randomly choosing an

edge that has at least one endpoint that belongs to a FVS is greater or equal 1=3. Thus,

selecting a vertex at random from a randomly selected edge has a probability of at least

1=6 to belong to a FVS. Consequently, if the algorithm terminates after c 6k iterations, with

a WFVS of size k, there is a probability of at least 1 � (1 � 1

6k
)c6

k

that the output is a

minimum WFVS of size at most k. This proves part (a) of Theorem 3. Note that since k

is not known in advance, we use RepeatedWGuessI(G; c; j) with increasing values of j

until a FVS is found, say when j=J. When such a set is found it is still possible that there

exists a WFVS with more than J vertices that has a smaller weight than the one found.

This happens when k > J . However, among the WFVSs of size at most J , the algorithm

�nds one with minimum weight with high probability.

The second part requires the following lemma.

227



Becker, Bar-Yehuda, & Geiger

Lemma 5 Let G be a branchy graph and F be a FVS of G. Then,

X
v2V

d(v) � 6
X
v2F

d(v):

Proof. Denote by dY (v) the number of edges between a vertex v and a set of vertices Y .

Then,

X
v2V

d(v) =
X
v2X

d(v) +
X
v2F

d(v) =

X
v2X

dX(v) +
X
v2X

dF (v) +
X
v2F

d(v):

Due to Lemma 4, X
v2X

dX(v) = 2jEXj � 4jEF;Xj = 4
X
v2X

dF (v): (3)

Consequently,

X
v2V

d(v) � 4
X
v2X

dF (v)+

X
v2X

dF (v) +
X
v2F

d(v) � 6
X
v2F

d(v)

as claimed. 2

We can now prove part (b) of Theorem 3 analyzing SingleWGuessII(G,k). Recall

that Vi is the set of vertices in graph Gi in iteration i, di(v) is the degree of vertex v in Gi,

and vi is the vertex chosen in iteration i. Furthermore, recall that pi(v) is the probability

to choose vertex v in iteration i.

The expected weight Ei(w(v)) =
P

v2Vi
w(v) � pi(v) of a chosen vertex in iteration i is

denoted with ai. Thus, due to the linearity of the expectation operator, E(w(F )) =
Pk

i=1 ai,

assuming jF j = k. We de�ne a normalization constant for iteration i as follows:


i =

"X
u2Vi

di(u)

w(u)

#�1

Then, pi(v) = 
i �
di(v)

w(v)
and

ai =
X
v2Vi

w(v) �
di(v)

w(v)
� 
i = 
i �

X
v2Vi

di(v)

Let F � be a minimum FVS of G and F �

i be minimum weight FVS of the graph Gi. The

expected weight Ei(w(v)jv 2 F
�

i )) of a vertex chosen from F �

i in iteration i is denoted with

bi. We have,

bi =
X
v2F�

i

w(v) � pi(v) = 
i �
X
v2F�

i

di(v)

By Lemma 5, ai=bi � 6 for every i.

228



Randomized Algorithms for the Loop Cutset Problem

Recall that by de�nition F �

2 is the minimum FVS in the branchy graph G2 obtained

from G1 n fv1g. We get,

E(w(F �)) � E1(w(v)jv 2 F
�

1 )) +E(w(F �

2 ))

because the right hand side is the expected weight of the output F assuming the algorithm

�nds a minimum FVS on G2 and just needs to select one additional vertex, while the left

hand side is the unrestricted expectation. By repeating this argument we get,

E(w(F �)) � b1 + E(w(F �

2 )) � � � � �
kX

i=1

bi

Using
P

i ai=
P

i bi � maxi ai=bi � 6, we obtain

E(w(F )) � 6 �E(w(F �)):

Hence, E(w(F )) � 6 � w(F �) as claimed. 2

The proof that SingleGuess(G; k) outputs a FVS whose expected size is no more

than 4k (Theorem 2) where k is the size of a minimum FVS is analogous to the proof of

Theorem 3 in the following sense. We assign a weight 1 to all vertices and replace the

reference to Lemma 5 by a reference to the following claim: If F is a FVS of a rich graph G,

then
P

v2V d(v) � 4
P

v2F d(v). The proof of this claim is identical to the proof of Lemma 5

except that instead of using Lemma 4 we use Lemma 1.

3.3 The Practical Algorithm

In previous sections we presented several algorithms for �nding minimum FVS with high

probability. The description of these algorithms was geared towards analysis, rather than

as a prescription to a programmer. In particular, the number of iterations used within

RepeatedWGuessI(G; c; k) is not changed as the algorithm is run with j < k. This feature

allowed us to regard each call to SingleWGuessI(G; j) made by RepeatedWGuessI as

an independent process. Furthermore, there is a small probability for a very long run even

when the size of the minimum FVS is small.

We now slightly modify RepeatedWGuessI to obtain an algorithm, termed WRA,

which does not su�er from these de�ciencies. The new algorithm works as follows. Repeat

SingleWGuessI(G; jV j) for min(Max; c 6w(F )) iterations, where w(F ) is the weight of the

lightest WFVS found so far and Max is some speci�ed constant determining the maximum

number of iterations of SingleWGuessI.

ALGORITHM WRA(G; c;Max)

Input: An undirected weighted graph G(V;E) and constants Max and c > 1

Output: A feedback vertex set F

F  SingleWGuessI (G; jV j)

M  min(Max; c 6w(F )); i 1;

While i �M do

1. F 0  SingleWGuessI(G; jV j)

2. If w(F 0) � w(F ) then

229



Becker, Bar-Yehuda, & Geiger

jV j jEj values size MGA WRA Eq.

15 25 2{6 3{6 12 81 7

15 25 2{8 3{6 7 89 4

15 25 2{10 3{6 6 90 4

25 55 2{6 7{12 3 95 2

25 55 2{8 7{12 3 97 0

25 55 2{10 7{12 0 100 0

55 125 2{10 17{22 0 100 0

31 652 17

Figure 2: Number of graphs in which MGA or WRA yield a smaller loop cutset. The last

column records the number of graphs for which the two algorithms produced loop

cutsets of the same weight. Each line in the table is based on 100 graphs.

F  F 0; M  min(Max; c 6w(F ))

3. i i+ 1;

End fWhileg

Return F

Theorem 6 If Max � c6k, where k is the minimal size of a minimum WFVS of an undi-

rected weighted graph G, then WRA(G; c;Max) outputs a minimum WFVS of G with prob-

ability at least 1� (1� 1
6k
)c6

k

.

The proof is an immediate corollary of Theorem 3.

The choice of Max and c depend on the application. A decision-theoretic approach for

selecting such values for any-time algorithms is discussed by Breese and Horvitz (1990).

4. Experimental Results

The experiments compared the outputs of WRA vis-�a-vis a greedy algorithm GA and a

modi�ed greedy algorithm MGA (Becker & Geiger, 1996) based on randomly generated

graphs and on some real graphs contributed by the Hugin group (www.hugin.com).

The random graphs are divided into three sets. Graphs with 15 vertices and 25 edges

where the number of values associated with each vertex is randomly chosen between 2 and

6, 2 and 8, and between 2 and 10. Graphs with 25 vertices and 55 edges where the number

of values associated with each vertex is randomly chosen between 2 and 6, 2 and 8, and

between 2 and 10. Graphs with 55 vertices and 125 edges where the number of values

associated with each vertex is randomly chosen between 2 and 10. Each instance of the

three classes is based on 100 random graphs generated as described by Suermondt and

Cooper (1990). The total number of random graphs we used is 700.

The results are summarized in the table of Figure 2. WRA is run with Max = 300 and

c = 1. The two algorithms, MGA and WRA, output loop cutsets of the same size in only

230



Randomized Algorithms for the Loop Cutset Problem

Name jV j jEj jF �
j GA MGA WRA

Water 32 123 16 40.7 42.7 29.5

Mildew 35 80 14 48.1 40.5 39.3

Barley 48 126 20 72.1 76.3 57.3

Munin1 189 366 59 159.4 167.5 122.6

Figure 3: Log size (base 2) of the loop cutsets found by GA, MGA, and WRA.

17 graphs and when the algorithms disagree, then in 95% of these graphs WRA performed

better than MGA.

The actual run time of WRA(G; 1; 300) is about 300 times slower than GA (or MGA)

on G. On the largest random graph we used, it took 4.5 minutes. Most of the time is spend

in the last improvement of WRA. Considerable run time can be saved by letting Max = 5.

For all 700 graphs, WRA(G,1,5) has already obtained a better loop cutset than MGA. The

largest improvement, with Max = 300, was from a weight of 58.0 (log2 scale) to a weight

of 35.9. The improvements in this case were obtained in iterations 1, 2, 36, 83, 189 with

respective weights of 46.7, 38.8, 37.5, 37.3, 35.9 and respective sizes of 22, 18, 17, 18, and

17 nodes. On the average, after 300 iterations, the improvement for the larger 100 graphs

was from a weight of 52 to 39 and from size 22 to 20. The improvement for the smaller 600

graphs was from a weight of 15 to 12.2 and from size 9 to 6.7.

The second experiment compared between GA, MGA and WRA on four real Bayesian

networks showing that WRA outperformed both GA and MGA after a single call to Sin-

gleWGuessI. The weight of the output continued to decrease logarithmically with the

number of iterations. We report the results with Max = 1000 and c = 1. Run time was

between 3 minutes for Water and 15 minutes for Munin1 on a Pentium 133 with 32M RAM.

5. Discussion

Our randomized algorithm, WRA, has been incorporated into the popular genetic software

FASTLINK 4.1 by Alejandro Sch�a�er who develops and maintains this software at the

National Institute of Health. WRA replaced previous approximation algorithms for �nding

FVS because with a small Max value it already matched or improved FASTLINK 4.0 on

most datasets examined. The datasets used for comparison are described by Becker et

al. (1998). The main characteristics of these datasets is that they were all collected by

geneticists, they have a small number of loops, and a large number of values at each node

(tens to hundreds depending on the genetic analysis). For such networks the method of

conditioning is widely used by geneticists.

The leading inference algorithm, however, for Bayesian networks is the clique-tree algo-

rithm (Lauritzen & Spiegelhalter, 1988) which has been further developed in several papers

(Jensen, Lauritzen, & Olsen, 1990a; Jensen, Olsen, & Andersen, 1990b). For the networks

presented in Table 3 conditioning is not a feasible method while the clique tree algorithm

can and is being used to compute posterior probabilities in these networks. Furthermore,

it has been shown that the weight of the largest clique is bounded by the weight of the

loop cutset union the largest parent set of a vertex in a Bayesian network implying that the

231



Becker, Bar-Yehuda, & Geiger

clique tree algorithm is always superior in time performance over the conditioning algorithm

(Shachter, Andersen, & Szolovits, 1994). The two methods, however, can be combined to

strike a balance between time and space requirements as done within the bucket elimination

framework (Dechter, 1999).

The algorithmic ideas behind the randomized algorithms presented herein can also be

applied for constructing good clique trees and initial experiments con�rm that an improve-

ment over deterministic algorithms is often obtained. The idea is that instead of greedily

selecting the smallest clique when constructing a clique tree, one would randomly select the

next clique according to the relative weights of the candidate cliques. It remains to develop

the theory behind random choices of clique trees before a solid assessment can be presented.

Currently, there is no algorithm for �nding a clique tree such that its size is guaranteed to

be close to optimal with high probability.

Horvitz et al. (1989) show that the method of conditioning can be useful for approximate

inference. In particular, they show how to rank the instances of a loop cutset according

to their prior probabilities assuming all variables in the cutset are marginally independent.

The conditioning algorithm can then be run according to this ranking and the answer to

a query be given as an interval that shrinks towards the exact solution as more instances

of the loop cutset are considered (Horvitz, Suermondt, & Cooper, 1989; Horvitz, 1990).

Applying this idea without making independence assumptions is described by Darwiche

(1994). So if the maximal clique is too large to store one can still perform approximate

inferences using the conditioning algorithm.

Acknowledgment

We thank Se� Naor for fruitful discussions. Part of this work was done while the third

author was on sabbatical at Microsoft Research. A variant of this work has been presented

at the �fteenth conference on uncertainty in arti�cial intelligence, July 1999, Sweden.

References

Bafna, V., Berman, P., & Fujito, T. (1995). Constant ratio approximations of the weighted

feedback vertex set problem for undirected graphs. In Proceedings of the Sixth Annual

Symposium on Algorithms and Computation (ISAAC95), pp. 142{151.

Bar-Yehuda, R., Geiger, D., Naor, J., & Roth, R. (1994). Approximation algorithms for the

feedback vertex set problems with applications to constraint satisfaction and Bayesian

inference. In Proceedings of the 5th Annual ACM-Siam Symposium On Discrete Al-

gorithms, pp. 344{354.

Becker, A., & Geiger, D. (1994). Approximation algorithms for the loop cutset problem. In

Proceedings of the 10th conference on Uncertainty in Arti�cial Intelligence, pp. 60{68.

Becker, A., & Geiger, D. (1996). Optimization of pearl's method of conditioning and greedy-

like approximation algorithms for the feedback vertex set problem. Arti�cial Intelli-

gence, 83, 167{188.

232



Randomized Algorithms for the Loop Cutset Problem

Becker, A., Geiger, D., & Scha�er, A. (1998). Automatic selection of loop breakers for

genetic linkage analysis. Human Heredity, 48, 47{60.

Bodlaender, H. (1990). On disjoint cycles. International Journal of Foundations of Com-

puter Science (IJFCS), 5, 59{68.

Breese, J., & Horvitz, E. (1990). Ideal reformulation of belief netwroks. In Proceedings of

the 6th conference on Uncertainty in Arti�cial Intelligence, pp. 64{72.

Darwiche, A. (1994). �-bounded conditioning: A method for the approximate updating of

causal networks. Research note, Rockwell Science Center.

Dechter, R. (1990). Enhancement schemes for constraint processing: backjumping, learning,

and cutset decomposition. Arti�cial Intelligence, 41, 273{312.

Dechter, R. (1999). Bucket elimination: A unifying framework for structure-driven infer-

ence. Arti�cial Intelligence, To appear.

Downey, R., & Fellows, M. (1995a). Fixed-parameter tractability and completeness I: Basic

results. SIAM Journal on Computing, 24 (4), 873{921.

Downey, R., & Fellows, M. (1995b). Parameterized computational feasibility. In P. Clote, .

J. R. (Ed.), Feasible Mathematics II, pp. 219{244. Birkhauser, Boston.

Fujito, T. (1996). A note on approximation of the vertex cover and feedback vertex set

problems - uni�ed approach. Information Processing Letters, 59, 59{63.

Garey, M., & Johnson, D. (1979). Computers and Intractability: A Guide to the Theory of

NP-completeness. W. H. Freeman, San Francisco, California.

Geiger, D., & Pearl, J. (1990). On the logic of causal models. In Uncertainty in Arti�cial

Intelligence 4, pp. 3{14 New York. North-Holland.

Geiger, D., Verma, T., & Pearl, J. (1990). Identifying independence in bayesian networks.

Networks, 20, 507{534.

Horvitz, E. J. (1990). Computation and action under bounded resources. Ph.D dissertation,

Stanford university.

Horvitz, E. J., Suermondt, H. J., & Cooper, G. H. (1989). Bounded conditioning: Flexible

inference for decisions under scarce resources. In Proceedings of 5th conference on

Uncertainty in Arti�cial Intelligence, pp. 182{193. Morgan Kaufmann.

Jensen, F., Lauritzen, S. L., & Olsen, K. (1990a). Bayesian updating in causal probabilisitic

networks by local computations. Computational Statistics Quarterly, 4, 269{282.

Jensen, F., Olsen, K., & Andersen, S. (1990b). An algebra of bayesian belief universes for

knowledge-based systems. Networks, 20, 637{659.

Kim, H., & Pearl, J. (1983). A computational model for combined causal and diagnos-

tic reasoning in inference systems. In Proceedings of the Eighth International Joint

Conference on Arti�cial Intelligence (IJCAI83), pp. 190{193.

233



Becker, Bar-Yehuda, & Geiger

Lang, K. (1997). Mathematical and statistical methods for genetic analysis. Springer.

Lange, K., & Elston, R. (1975). Extensions to pedigree analysis. I. likelihood calculation

for simple and complex pedigrees. Human Heredity, 25, 95{105.

Lauritzen, S., & Spiegelhalter, D. (1988). Local computations with probabilities on graphical

structures and their application to expert systems (with discussion). Journal Royal

Statistical Society, B, 50, 157{224.

Ott, J. (1991). Analysis of human genetic linkage (revised edition). The Johns Hopkins

University Press.

Pearl, J. (1986). Fusion, propagation and structuring in belief networks. Arti�cial Intelli-

gence, 29, 241{288.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible infer-

ence. Morgan Kaufmann, San Mateo, California.

Peot, M., & Shachter, R. (1991). Fusion and propagation with multiple observations in

belief networks. Arti�cial Intelligence, 48, 299{318.

Shachter, R., Andersen, S., & Szolovits, P. (1994). Global conditioning for probabilistic

inference in belief networks. In Proceedings of the tenth conference on Uncertainty in

Arti�cial Intelligence, pp. 514{522. Morgan Kaufmann.

Suermondt, H., & Cooper, G. (1990). Probabilistic inference in multiply connected belief

networks using loop cutsets. International Journal of Approximate Reasoning, 4, 283{

306.

Verma, T., & Pearl, J. (1988). Causal networks: Semantics and expressiveness. In Proceed-

ings of 4th Workshop on Uncertainty in Arti�cial Intelligence, pp. 352{359.

Voss, H. (1968). Some properties of graphs containing k independent circuits. In Proceedings

of Colloquium Tihany, pp. 321{334 New York. Academic Press.

234


