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Abstract

Planning under uncertainty is a central problem in the study of automated sequential
decision making, and has been addressed by researchers in many di�erent �elds, including
AI planning, decision analysis, operations research, control theory and economics. While
the assumptions and perspectives adopted in these areas often di�er in substantial ways,
many planning problems of interest to researchers in these �elds can be modeled asMarkov

decision processes (MDPs) and analyzed using the techniques of decision theory.
This paper presents an overview and synthesis of MDP-related methods, showing how

they provide a unifying framework for modeling many classes of planning problems studied
in AI. It also describes structural properties of MDPs that, when exhibited by particu-
lar classes of problems, can be exploited in the construction of optimal or approximately
optimal policies or plans. Planning problems commonly possess structure in the reward
and value functions used to describe performance criteria, in the functions used to describe
state transitions and observations, and in the relationships among features used to describe
states, actions, rewards, and observations.

Specialized representations, and algorithms employing these representations, can achieve
computational leverage by exploiting these various forms of structure. Certain AI techniques|
in particular those based on the use of structured, intensional representations|can be
viewed in this way. This paper surveys several types of representations for both classical
and decision-theoretic planning problems, and planning algorithms that exploit these rep-
resentations in a number of di�erent ways to ease the computational burden of constructing
policies or plans. It focuses primarily on abstraction, aggregation and decomposition tech-
niques based on AI-style representations.

1. Introduction

Planning using decision-theoretic notions to represent domain uncertainty and plan quality
has recently drawn considerable attention in arti�cial intelligence (AI).1 Decision-theoretic

planning (DTP) is an attractive extension of the classical AI planning paradigm because it
allows one to model problems in which actions have uncertain e�ects, the decision maker has

1. See, for example, the recent texts (Dean, Allen, & Aloimonos, 1995; Dean & Wellman, 1991; Russell &
Norvig, 1995) and the research reported in (Hanks, Russell, & Wellman, 1994).
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incomplete information about the world, where factors such as resource consumption lead to
solutions of varying quality, and where there may not be an absolute or well-de�ned \goal"
state. Roughly, the aim of DTP is to form courses of action (plans or policies) that have
high expected utility rather than plans that are guaranteed to achieve certain goals. When
AI planning is viewed as a particular approach to solving sequential decision problems of
this type, the connections between DTP and models used in other �elds of research|such
as decision analysis, economics and operations research (OR)|become more apparent. At
a conceptual level, most sequential decision problems can be viewed as instances of Markov

decision processes (MDPs), and we will use the MDP framework to make the connections
explicit.

Much recent research on DTP has explicitly adopted the MDP framework as an under-
lying model (Barto, Bradtke, & Singh, 1995; Boutilier & Dearden, 1994; Boutilier, Dearden,
& Goldszmidt, 1995; Dean, Kaelbling, Kirman, & Nicholson, 1993; Koenig, 1991; Simmons
& Koenig, 1995; Tash & Russell, 1994), allowing the adaptation of existing results and algo-
rithms for solving MDPs (e.g., from the �eld of OR) to be applied to planning problems. In
doing so, however, this work has departed from the traditional de�nition of the \planning
problem" in the AI planning community|one goal of this paper is to make explicit the
connection between these two lines of work.

Adopting the MDP framework as a model for posing and solving planning problems
has illuminated a number of interesting connections among techniques for solving decision
problems, drawing on work from AI planning, reasoning under uncertainty, decision analysis
and OR. One of the most interesting insights to emerge from this body of work is that many
DTP problems exhibit considerable structure, and thus can be solved using special-purpose
methods that recognize and exploit that structure. In particular, the use of feature-based
representations to describe problems, as is the typical practice in AI, often highlights the
problem's special structure and allows it to be exploited computationally with little e�ort.

There are two general impediments to the more widespread acceptance of MDPs within
AI as a general model of planning. The �rst is the absence of explanations of the MDP model
that make the connections to current planning research explicit, at either the conceptual
or computational level. This may be due in large part to the fact that MDPs have been
developed and studied primarily in OR, where the dominant concerns are, naturally, rather
di�erent. One aim of this paper is to make the connections clear: we provide a brief
description of MDPs as a conceptual model for planning that emphasizes the connection
to AI planning, and explore the relationship between MDP solution algorithms and AI
planning algorithms. In particular, we emphasize that most AI planning models can be
viewed as special cases of MDPs, and that classical planning algorithms have been designed
to exploit the problem characteristics associated with these cases.

The second impediment is skepticism among AI researchers regarding the computational
adequacy of MDPs as a planning model: can the techniques scale to solve planning problems
of reasonable size? One di�culty with solution techniques for MDPs is the tendency to rely
on explicit, state-based problem formulations. This can be problematic in AI planning
since state spaces grow exponentially with the number of problem features. State space size
and dimensionality are of somewhat lesser concern in OR and decision analysis. In these
�elds, an operations researcher or decision analyst will often hand-craft a model that ignores
certain problem features deemed irrelevant, or will de�ne other features that summarize a
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wide class of problem states. In AI, the emphasis is on the automatic solution of problems
posed by users who lack the expertise of a decision analyst. Thus, assuming a well-crafted,
compact state space is often not appropriate.

In this paper we show how specialized representations and algorithms from AI planning
and problem solving can be used to design e�cient MDP solution techniques. In particular,
AI planning methods assume a certain structure in the state space, in the actions (or
operators), and in the speci�cation of a goal or other success criteria. Representations and
algorithms have been designed that make the problem structure explicit and exploit that
structure to solve problems e�ectively. We demonstrate how this same process of identifying
structure, making it explicit, and exploiting it algorithmically can be brought to bear in
the solution of MDPs.

This paper has several objectives. First, it provides an overview of DTP and MDPs
suitable for readers familiar with traditional AI planning methods and makes connections
with this work. Second, it describes the types of structure that can be exploited and how
AI representations and methods facilitate computationally e�ective planning with MDPs.
As such, it is a suitable introduction to AI methods for those familiar with the classical
presentation of MDPs. Finally, it surveys recent work on the use of MDPs in AI and
suggests directions for further research in this regard, and should therefore be of interest to
researchers in DTP.

1.1 General Problem De�nition

Roughly speaking, the class of problems we consider are those involving systems whose
dynamics can be modeled as stochastic processes, where the actions of decision maker,
referred to here as the agent , can in
uence the system's behavior. The system's current
state and the choice of action jointly determine a probability distribution over the system's
possible next states. The agent prefers to be in certain system states (e.g., goal states) over
others, and therefore must determine a course of action|also called a \plan" or \policy" in
this paper|that is likely to lead to these target states, possibly avoiding undesirable states
along the way. The agent may not know the system's state exactly in making its decision
on how to act, however|it may have to rely on incomplete and noisy sensors and be forced
to base its choice of action on a probabilistic estimate of the state.

To help illustrate the types of problems in which we are interested, consider the following
example. Imagine that we have a robot agent designed to help someone (the \user") in an
o�ce environment (see Figure 1). There are three activities it might undertake: picking up
the user's mail, getting co�ee, or tidying up the user's research lab. The robot can move
from location to location and perform various actions that tend to achieve certain target
states (e.g., bringing co�ee to the user on demand, or maintaining a minimal level of tidiness
in the lab).

We might associate a certain level of uncertainty with the e�ects of the robot's actions
(e.g., when it tries to move to an adjacent location it might succeed 90% of the time and fail
to move at all the other 10% of the time). The robot might have incomplete access to the
true state of the system in that its sensors might supply it with incomplete information (it
cannot tell whether mail is available for pickup if it is not in the mail room) and incorrect
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Figure 1: A decision-theoretic planning problem

information (even when in the mail room its sensors occasionally fail to detect the presence
of mail).

Finally, the performance of the robot might be measured in various ways: do its actions
guarantee that a goal will be achieved? Do they maximize some objective function de�ned
over possible e�ects of its actions? Do they achieve a goal state with su�cient probabil-
ity while avoiding \disastrous" states with near certainty? The stipulation of optimal or
acceptable behavior is an important part of the problem speci�cation.

The types of problems that can be captured using this general framework include clas-
sical (goal-oriented, deterministic, complete knowledge) planning problems and extensions
such as conditional and probabilistic planning problems, as well as other more general
problem formulations.

The discussion to this point has assumed an extensional representation of the system's
states|one in which each state is explicitly named. In AI research, intensional represen-
tations are more common. An intensional representation is one in which states or sets of
states are described using sets of multi-valued features. The choice of an appropriate set
of features is an important part of the problem design. These features might include the
current location of the robot, the presence or absence of mail, and so on. The performance
metric is also typically expressed intensionally. Figure 2 serves as a reference for our exam-
ple problem, which we use throughout the paper. It lists the basic features used to describe
the states of the system, the actions available to the robot and the exogenous events that
might occur, together with an intuitive description of the features, actions and events.

The remainder of the paper is organized as follows. In Section 2, we present the MDP
framework in the abstract, introducing basic concepts and terminology and noting the rela-
tionship between this abstract model and the classical AI planning problem. Section 3 sur-
veys common solution techniques|algorithms based on dynamic programming for general
MDP problems and search algorithms for planning problems|and points out the relation-
ship between problem assumptions and solution techniques. Section 4 turns from algorithms
to representations, showing various ways in which the structured representations commonly
used by AI algorithms can be used to represent MDPs compactly as well. Section 5 surveys

4



Decision-Theoretic Planning: Structural Assumptions

Features Denoted Description

Location Loc(M), etc. Location of robot. Five possible locations: mailroom (M), co�ee room
(C), user's o�ce (O), hallway (H), laboratory (L)

Tidiness T (0), etc. Degree of lab tidiness. Five possible values: from 0 (messiest) to 4
(tidiest)

Mail present M;M Is there mail is user's mail box? True (M) or False (M)

Robot has mail RHM;RHM Does the robot have mail in its possession?

Co�ee request CR;CR Is there an outstanding (unful�lled) request for co�ee by the user?

Robot has co�ee RHC;RHC Does the robot have co�ee in its possession?

Actions Denoted Description

Move clockwise Clk Move to adjacent location (clockwise direction)
Counterclockwise CClk Move to adjacent location (counterclockwise direction)
Tidy lab Tidy If the robot is in the lab, the degree of tidiness is increased by 1
Pickup mail PUM If the robot is in the mailroom and there is mail present, the robot

takes the mail (RHM becomes true and M becomes false)
Get co�ee GetC If the robot is in the co�ee room, it gets co�ee (RHC becomes true)
Deliver mail DelM If the robot is in the o�ce and has mail, it hands the mail to the user

(RHM becomes false)
Deliver co�ee DelC If the robot is in the o�ce and has co�ee, it hands the co�ee to the

user (RHC and CR both become false)

Events Denoted Description

Mail arrival ArrM Mail arrives causing M to become true
Request co�ee ReqC User issues co�ee request causing CR to become true
Untidy the lab Mess The lab becomes messier (one degree less tidy)

Figure 2: Elements of the robot domain.

some recent work on abstraction, aggregation and problem decomposition methods, and
shows the connection to more traditional AI methods such as goal regression. This last
section demonstrates that representational and computational methods from AI planning
can be used in the solution of general MDPs. Section 5 also points out additional ways in
which this type of computational leverage might be developed in the future.

2. Markov Decision Processes: Basic Problem Formulation

In this section we introduce the MDP framework and make explicit the relationship between
this model and classical AI planning models. We are interested in controlling a stochastic

dynamical system: a system that at any point in time can be in one of a number of distinct
states, and in which the system's state changes over time in response to events. An action

is a particular kind of event instigated by an agent in order to change the system's state.
We assume that the agent has control over what actions are taken and when, though the
e�ects of taking an action might not be perfectly predictable. In contrast, exogenous events
are not under the agent's control, and their occurrence may be only partially predictable.
This abstract view of an agent is consistent both with the \AI" view where the agent is an
autonomous decision maker and the \control" view where a policy is determined ahead of
time, programmed into a device, and executed without further deliberation.
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2.1 States and State Transitions

We de�ne a state to be a description of the system at a particular point in time. How one
de�nes states can vary with particular applications, some notions being more natural than
others. However, it is common to assume that the state captures all information relevant
to the agent's decision-making process. We assume a �nite state space S = fs1; : : : ; sNg
of possible system states.2 In most cases the agent will not have complete information
about the current state; this uncertainty or incomplete information can be captured using
a probability distribution over the states in S.

A discrete-time stochastic dynamical system consists of a state space and probability
distributions governing possible state transitions|how the next state of the system depends
on past states. These distributions constitute a model of how the system evolves over time
in response to actions and exogenous events, re
ecting the fact that the e�ects of actions
and events may not be perfectly predictable even if the prevailing state is known.

Although we are generally concerned with how the agent chooses an appropriate course
of action, for the remainder of this section we assume that the agent's course of action is
�xed, concentrating on the problem of predicting the system's state after the occurrence of
a predetermined sequence of actions. We discuss the action selection problem in the next
section.

We assume the system evolves in stages, where the occurrence of an event marks the
transition from one stage t to the next stage t + 1. Since events de�ne changes in stage,
and since events often (but not necessarily) cause state transitions, we often equate stage
transitions with state transitions. Of course, it is possible for an event to occur but leave
the system in the same state.

The system's progression through stages is roughly analogous to the passage of time.
The two are identical if we assume that some action (possibly a no-op) is taken at each
stage, and that every action takes unit time to complete. We can thus speak loosely as if
stages correspond to units of time, and we refer to T interchangeably as the set of all stages
and the set of all time points.3

We can model uncertainty by regarding the system's state at some stage t as a random
variable St that takes values from S. An assumption of \forward causality" requires that the
variable St does not depend directly on the value of future variable Sk (k > t). Roughly,
it requires that we model our system such that the past history \directly" determines
the distribution over current states, whereas knowledge of future states can in
uence the
estimate of the current state only indirectly by providing evidence on what the current state
may have been so as to lead to these future states. Figure 3(a) shows a graphical perspective
on a discrete-time, stochastic dynamical system. The nodes are random variables denoting
the state at a particular time, and the arcs indicate the direct probabilistic dependence
of states on previous states. To describe this system completely we must also supply the
conditional distributions Pr(StjS0; S1; � � � St�1) for all times t.

States should be thought of as descriptions of the system being modeled, so the ques-
tion arises of how much detail about the system is captured in a state description. More

2. Most of the discussion in this paper also applies to cases where the state space is countably in�nite. See
(Puterman, 1994) for a discussion of in�nite and continuous-state problems.

3. While we do not deal with such topics here, there is a considerable literature in the OR community on
continuous-time Markov decision processes (Puterman, 1994).
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Figure 3: A general stochastic process (a), a Markov chain (b), and a stationary Markov
chain (c).

detail implies more information about the system, which in turn often translates into better
predictions of future behavior. Of course, more detail also implies a larger set S, which can
increase the computational cost of decision making.

It is commonly assumed that a state contains enough information to predict the next
state. In other words, any information about the history of the system relevant to predicting
its future is captured explicitly in the state itself. Formally, this assumption, the Markov

assumption, says that knowledge of the present state renders information about the past
irrelevant to making predictions about the future:

Pr(St+1jSt; St�1; : : : ; S0) = Pr(St+1jSt)

Markovian models can be represented graphically using a structure like that in Figure 3(b),
re
ecting the fact that the present state is su�cient to predict future state evolution.4

Finally, it is common to assume that the e�ects of an event depend only on the prevailing
state, and not the stage or time at which the event occurs.5 If the distribution predicting
the next state is the same regardless of stage, the model is said to be stationary and can
be represented schematically using just two stages, as in Figure 3(c). In this case only a
single conditional distribution is required. In this paper we generally restrict our attention
to discrete-time, �nite-state, stochastic dynamical systems with the Markov property, com-
monly called Markov chains. Furthermore, most of our discussion is restricted to stationary
chains.

To complete the model we must provide a probability distribution over initial states,
re
ecting the probability of being in any state at stage 0. This distribution can be repre-

4. It is worth mentioning that the Markov property applies to the particular model and not to the system
itself. Indeed, any non-Markovian model of a system (of �nite order, i.e., whose dynamics depend on at
most the k previous states for some k) can be converted to an equivalent though larger Markov model.
In control theory, this is called conversion to state form (Luenberger, 1979).

5. Of course, this is also a statement about model detail, saying that the state carries enough information
to make the stage irrelevant to predicting transitions.

7



Boutilier, Dean, & Hanks

1

6

7

3

2

4

5

.7

.3

.5

.5

.8

.2
1.0

1.0

.1

.1
.9

.5

.4

Figure 4: A state-transition diagram.

sented as a real-valued (row) vector of size N = jSj (one entry for each state). We denote
this vector P 0 and use p0i to denote its ith entry, that is, the probability of starting in state
si.

We can represent a T -stage nonstationary Markov chain with T transition matrices,
each of size N � N , where matrix P t captures the transition probabilities governing the
system as it moves from stage t to stage t + 1. Each matrix consists of probabilities ptij ,
where ptij = Pr(St+1 = sjjS

t = si). If the process is stationary, the transition matrix is
the same at all stages and one matrix (whose entries are denoted pij) will su�ce. Given an
initial distribution over states P 0, the probability distribution over states after n stages isQ0
i=n P

i.
A stationary Markov process can also be represented using a state-transition diagram

as in Figure 4. Here nodes correspond to particular states and the stage is not represented
explicitly. Arcs denote possible transitions (those with non-zero probability) and are labeled
with the transition probabilities pij = Pr(St+1 = sjjS

t = si). The arc from node i to node
j is labeled with pij if pij > 0.6 The size of such a diagram is at least O(N) and at most
O(N2), depending on the number of arcs. This is a useful representation when the transition
graph is relatively sparse, for example, when most states have immediate transitions to only
few neighbors.

Example 2.1 To illustrate these notions, imagine that the robot in Figure 1 is executing
the policy of moving counterclockwise repeatedly. We restrict our attention to two
variables, location Loc and presence of mail M , giving a state space of size 10. We
suppose that the robot always moves to the adjacent location with probability 1:0.
In addition, mail can arrive at the mailroom with probability 0:2 at any time (inde-
pendent of the robot's location), causing the variable M to become true. Once M
becomes true, the robot cannot move to a state where M is false, since the action of
moving does not in
uence the presence of mail. The state-transition diagram for this
example is illustrated in Figure 5. The transition matrix is also shown. 2

The structure of a Markov chain is occasionally of interest to us in planning. A subset
C � S is closed if pij = 0 for all i 2 C and j 62 C. It is a proper closed set if no proper
subset of C enjoys this property. We sometimes refer to proper closed sets as recurrent

classes of states. If a closed set consists of a single state, then that state is called an
absorbing state. Once an agent enters a closed set or absorbing state, it remains there

6. It is important to note that the nodes here do not represent random variables as in the earlier �gures.
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s3 0:0 0:0 0:0 0:8 0:0 0:0 0:0 0:0 0:2 0:0
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s8 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:0 0:0
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Figure 5: The state-transition diagram and transition matrix for a moving robot.

forever with probability 1. In the example above (Figure 5), the set of states where M
holds forms a recurrent class. There are no absorbing states in the example, but should we
program the robot to stay put whenever it is in the state hM;Loc(O)i, then this would be
an absorbing state in the altered chain. Finally, we say a state is transient if it does not
belong to a recurrent class. In Figure 5, each state where M holds is transient|eventually
(with probability 1), the agent leaves the state and never returns, since there is no way to
remove mail once it arrives.

2.2 Actions

Markov chains can be used to describe the evolution of a stochastic system, but they do
not capture the fact that an agent can choose to perform actions that alter the state of the
system. A key element of MDPs is the set of actions available to the decision maker. When
an action is performed in a particular state, the state changes stochastically in response to
the action. We assume that the agent takes some action at each stage of the process, and
then the system changes state accordingly.

At each stage t of the process and each state s, the agent has available a set of actions
At
s. This is called the feasible set for s at stage t. To describe the e�ects of a 2 A

t
s, we must

supply the state-transition distribution Pr(St+1jSt = s;At = a) for all actions a, states s,
and stages t. Unlike the case of a Markov chain, the terms Pr(St+1jSt = s;At = a) are not
true conditional distributions, but rather a family of distributions parameterized by St and
At, since the probability of At is not part of the model. We retain this notation, however,
for its suggestive nature.

We often assume that the feasible set of actions is the same for all stages and states, in
which case the set of actions is A = fa1; : : : ; aKg and each can be executed at any time.
This contrasts with the AI planning practice of assigning preconditions to actions de�ning
the states in which they can meaningfully be executed. Our model takes the view that any
action can be executed (or \attempted") in any state. If the action has no e�ect when
executed in some state, or its execution leads to disastrous e�ects, this can be noted in
the action's transition matrix. Action preconditions are often a computational convenience
rather than a representational necessity: they can make the planning process more e�cient
by identifying states in which the planner should not even consider selecting that action.
Preconditions can be represented in MDPs by relaxing the assumption that the set of
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Figure 6: The transition matrix for Clk and the induced transition diagram for a two-action
policy.

feasible actions is the same for all states. To illustrate planning concepts below, however,
we sometimes assume actions do have preconditions.

We again restrict our attention to stationary processes, which in this case means that
the e�ects of each action depends only on the state and not on the stage. Our transition
matrices thus take the form pkij = Pr(St+1 = sjjS

t = si; A
t = ak), capturing the probability

that the system moves to state sj when ak is executed in state si. In stationary models an
action is fully described by a single N � N transition matrix P k. It is important to note
that the transition matrix for an action includes not only the direct e�ects of executing the
action but also the e�ects of any exogenous events that might occur at the same stage.7

Example 2.2 The example in Figure 5 can be extended so the agent has two available
actions: moving clockwise and moving counterclockwise. The transition matrix for
CClk (with the assumption that mail arrives with probability 0:2) is shown in Figure 5.
The matrix for Clk appears on the left in Figure 6. Suppose the agent �xes its behavior
so that it moves clockwise in locationsM and C and counterclockwise in locations H,
O and L (we address below how the agent might come to know its location so that it
can actually implement this behavior). This de�nes the Markov chain illustrated in
the transition diagram on the right in Figure 6. 2

2.3 Exogenous Events

Exogenous events are those events that stochastically cause state transitions, much like
actions, but beyond the control of the decision maker. These might correspond to the
evolution of a natural process or the action of another agent. Notice that the e�ect of
the action CClk in Figure 5 \combines" the e�ects of the robot's action with that of the
exogenous event of mail arrival: state-transition probabilities incorporate both the motion
of the robot (causing a change in location) and the possible change in mail status due
to mail arrival. For the purposes of decision making, it is precisely this combined e�ect

7. It is possible to assess the e�ects of actions and exogenous events separately, then combine them into
a single transition matrix in certain cases (Boutilier & Puterman, 1995). We discuss this later in this
section.
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that is important when predicting the distribution over possible states resulting when an
action is taken. We call such models of actions implicit-event models, since the e�ects of
the exogenous event are folded into the transition probabilities associated with the action.
However, it is often natural to view these transitions as comprised of these two separate
events, each having its own e�ect on the state. More generally, we often think of transitions
as determined by the e�ects of the agent's chosen action and those of certain exogenous

events beyond the agent's control, each of which may occur with a certain probability.
When the e�ects of actions are decomposed in this fashion, we call the action model an
explicit-event model.

Specifying a transition function for an action and zero or more exogenous events is not
generally easy, for actions and events can interact in complex ways. For instance, consider
specifying the e�ect of action PUM (pickup mail) at a state where no mail is present but
there is the possibility of \simultaneous" mail arrival (i.e., during the \same unit" of discrete
time). If the event ArrM occurs, does the robot obtain the newly arrived mail, or does the
mail remain in the mailbox? Intuitively, this depends on whether the mail arrived before or
after the pickup was completed (albeit within the same time quantum). The state transition
in this case can be viewed as the composition of two transitions where the precise description
of the composition depends on the ordering of the agent's action and the exogenous event.
If mail arrives �rst, the transition might be s ! s0 ! s00, where s0 is a state where mail
is waiting and s00 is a state where no mail is waiting and the robot is holding mail; but if
the pickup action is completed �rst, the transition would be s! s! s0 (i.e., PUM has no
e�ect, then mail arrives and remains in the box).

The picture is more complicated if the actions and events can truly occur simultaneously
over some interval|in this case the resulting transition need not be a composition of the
individual transitions. As an example, if the robot lifts the side of a table on which a glass
of water is situated, the water will spill; similarly if an exogenous event causes the other side
to be raised. But if the action and event occur simultaneously, the result is qualitatively
di�erent (the water is not spilled). Thus, the \interleaving" semantics described above is
not always appropriate.

Because of such complications, modeling exogenous events and their combination with
actions or other events can be approached in many ways, depending on the modeling as-
sumptions one is willing to make. Generally, we specify three types of information. First,
we provide transition probabilities for all actions and events under the assumption that
these occur in isolation|these are standard transition matrices. The transition matrix in
Figure 5 can be decomposed into the two matrices shown in Figure 7, one for Clk and one
for ArrM.8 Second, for each exogenous event, we must specify its probability of occurrence.
Since this can vary with the state, we generally require a vector of length N indicating the
probability of occurrence at each state. The occurrence vector for ArrM would be

[0:2 0:2 0:2 0:2 0:2 0:0 0:0 0:0 0:0 0:0]

8. The fact that these individual matrices are deterministic is an artifact of the example. In general, the
actions and events will each be represented using genuinely stochastic matrices.
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s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

s1 0:0 1:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0

s2 0:0 0:0 1:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0

s3 0:0 0:0 0:0 1:0 0:0 0:0 0:0 0:0 0:0 0:0

s4 0:0 0:0 0:0 0:0 1:0 0:0 0:0 0:0 0:0 0:0

s5 1:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0

s6 0:0 0:0 0:0 0:0 0:0 0:0 1:0 0:0 0:0 0:0

s7 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:0 0:0 0:0

s8 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:0 0:0

s9 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:0

s10 0:0 0:0 0:0 0:0 0:0 1:0 0:0 0:0 0:0 0:0

Action Clk

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

s1 0:0 0:0 0:0 0:0 0:0 1:0 0:0 0:0 0:0 0:0

s2 0:0 0:0 0:0 0:0 0:0 0:0 1:0 0:0 0:0 0:0

s3 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:0 0:0 0:0

s4 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:0 0:0

s5 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:0

s6 0:0 0:0 0:0 0:0 0:0 1:0 0:0 0:0 0:0 0:0

s7 0:0 0:0 0:0 0:0 0:0 0:0 1:0 0:0 0:0 0:0

s8 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:0 0:0 0:0

s9 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:0 0:0

s10 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:0

Event ArrM

Figure 7: The transition matrices for an action and exogenous event in an explicit-event
model.

where we assume, for illustration, that mail arrives only when none is present.9 The �nal
requirement is a combination function that describes how to \compose" the transitions of an
action with any subset of event transitions. As indicated above, this can be very complex,
sometimes almost unrelated to the individual action and event transitions. However, under
certain assumptions combination functions can be speci�ed reasonably concisely.

One way of modeling the composition of transitions is to assume an interleaving seman-
tics of the type alluded to above. In this case, one needs to specify the probability that
the action and events that take place occur in a speci�c order. For instance, one might
assume that each event occurs at a time|within the discrete time unit|according to some
continuous distribution (e.g., an exponential distribution with a given rate). With this in-
formation, the probability of any particular ordering of transitions, given that certain events
occur, can be computed, as can the resulting distribution over possible next states. In the
example above, the probability of (composed) transitions s1 ! s2 ! s3 and s1 ! s1 ! s2
would be given by the probabilities with which mail arrived �rst or last, respectively.

In certain cases, the probability of this ordering is not needed. To illustrate another
combination function, assume that the action always occurs before the exogenous events.
Furthermore, assume that events are commutative: (a) for any initial state s and any pair
of events e1 and e2, the distribution that results from applying event sequence e1 � e2 to s is
identical to that obtained from the sequence e2 � e1; and (b) the occurrence probabilities at
intermediate states are identical. Intuitively, the set of events in our domain, ArrM, ReqC
and Mess, has this property. Under these conditions the combined transition distribution
for any action a is computed by considering the probability of any subset of events and
applying that subset in any order to the distribution associated with a.

Generally, we can construct an implicit-event model from the various components of the
explicit-event model; thus, the \natural" speci�cation can be converted to the form usually
used by MDP solution algorithms. Under the two assumptions above, for instance, we can
form an implicit event transition matrix Pr(si; a; sj) for any action a, given the matrixcPra(si; sj) for a (which assumes no event occurrences), the matrices Pre(si; sj) for events
e, and the occurrence vector Pre(si) for each event e. The e�ective transition matrix for

9. The probability of di�erent events may be correlated (possibly at particular states). If this is the case,
then it is necessary to specify occurrence probabilities for subsets of events. We will treat event occurrence
probabilities as independent for ease of exposition.
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event e is de�ned as follows:

cPre(si; sj) = Pre(si)Pre(si; sj) +

(
1� Pre(si) : i = j

0 : i 6= j

This equation captures the event transition probabilities with the probability of event oc-
currence factored in. If we let E;E0 denote the diagonal matrices with entries Ekk = Pre(sk)
and E0kk = 1 � Pre(sk), then cPre(si; sj) = E Pre+E

0. Under the assumptions above, the

implicit-event matrix Pr(si; a; sj) for action a is then given by Pr = cPre1 � � �cPren Pra for
any ordering of the n possible events.

Naturally, di�erent procedures for constructing implicit-event matrices will be required
given di�erent assumptions about action and event interaction. Whether such implicit mod-
els are constructed or speci�ed directly without explicit mention of the exogenous events, we
will always assume unless stated otherwise that action transition matrices take into account
the e�ects of exogenous events as well, and thus represent the agent's best information
about what will happen if it takes a particular action.

2.4 Observations

Although the e�ects of an action can depend on any aspect of the prevailing state, the
choice of action can depend only on what the agent can observe about the current state
and remember about its prior observations. We model the agent's observational or sensing
capabilities by introducing a �nite set of observations O = fo1; : : : ; oHg. The agent receives
an observation from this set at each stage prior to choosing its action at that stage. We
can model this observation as a random variable Ot whose value is taken from O. The
probability that a particular Ot is generated can depend on:

� the state of the system at t� 1

� the action taken at t� 1

� the state of the system at t after taking the action at t� 1 and after the e�ects of any
exogenous events at t� 1 are realized, but before the action at t is taken.

We let Pr(Ot = ohjS
t�1 = si; A

t�1 = ak; S
t = sj) be the probability that the agent observes

oh at stage t given that it performs ak in state si and ends up in state sj. As with actions,
we assume that observational distributions are stationary (independent of the stage), using
phi;j;k = Pr(ohjsi; ak; sj) to denote this quantity. We can view the probabilistic dependencies
among state, action and observation variables as a graph in which the time-indexed variables
are shown as nodes and one variable is directly probabilistically dependent on another if
there is an edge from the latter to the former; see Figure 8.

This model allows a wide variety of assumptions about the agent's sensing capabilities.
At one extreme are fully observable MDPs (FOMDPs), in which the agent knows exactly
what state it is in at each stage t. We model this case by letting O = S and setting

Pr(ohjsi; ak; sj) =

(
1 i� oh = sj
0 otherwise
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Figure 8: Graph showing the dependency relationships among states, actions and observa-
tions at di�erent times.

In the example above, this means the robot always knows its exact location and whether or
not mail is waiting in the mailbox, even if it is not in the mailroom when the mail arrives.
The agent thus receives perfect feedback about the results of its actions and the e�ects
of exogenous events|it has noisy e�ectors but complete, noise-free, and \instantaneous"
sensors. Most recent AI research that adopts the MDP framework explicitly assumes full
observability.

At the other extreme we might consider non-observable systems (NOMDPs) in which
the agent receives no information about the system's state during execution. We can model
this case by letting O = fog. Here the same observation is reported at each stage, revealing
no information about the state, so that Pr(sjjsi; ak; o) = Pr(sjjsi; ak). In these open-loop

systems, the agent receives no useful feedback about the results of its actions: the agent has
noisy e�ectors and no sensors. In this case an agent chooses its actions according to a plan
consisting of a sequence of actions executed unconditionally. In e�ect, the agent is relying
on its predictive model to determine good action choices before execution time.

Traditionally, AI planning work has implicitly made the assumption of non-observability,
often coupled with an omniscience assumption|that the agent knows the initial state with
certainty, can predict the e�ects of its actions perfectly, and can precisely predict the oc-
currence of any exogenous events and their e�ects. Under these circumstances, the agent
can predict the exact outcome of any plan, thus obviating the need for observation. Such
an agent can build a straight-line plan|a sequence of actions to be performed without
feedback|that is as good as any plan whose execution might depend on information gath-
ered at execution time.

These two extremes are special cases of the general observation model described above,
which allows the agent to receive incomplete or noisy information about the system state
(i.e., partially observable MDPs, or POMDPs). For example, the robot might be able to
determine its location exactly, but might not be able to determine whether mail arrives
unless it is in the mailroom. Furthermore, its \mail" sensors might occasionally report
inaccurately, leading to an incorrect belief as to whether there is mail waiting.

Example 2.3 Suppose the robot has a \checkmail" action that does not change the system
state but generates an observation that is in
uenced by the presence of mail, provided

14
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Pr(Obs = mail) Pr(Obs = nomail)

Loc(M);M 0:92 0:08

Loc(M);M 0:05 0:95

Loc(M);M 0:00 1:00

Loc(M);M 0:00 1:00

Figure 9: Observation probabilities for checking mailbox.

the robot is in the mailroom at the time the action is performed. If the robot is not
in the mailroom, the sensor always reports \no mail." A noisy \checkmail" sensor
can be described by a probability distribution like the one shown in Figure 9. We can
view these error probabilities as the probability of \false positives" (0:05) and \false
negatives" (0:08). 2

2.5 System Trajectories and Observable Histories

We use the terms trajectory and history interchangeably to describe the system's behavior
during the course of a problem-solving episode, or perhaps some initial segment thereof.
The complete system history is the sequence of states, actions, and observations generated
from stage 0 to some time point of interest, and can be of �nite or in�nite length. Complete
histories can be represented by a (possibly in�nite) sequence of tuples of the form

hhS0; O0; A0i; hS1; O1; A1i; : : : hST ; OT ; AT ii

We can de�ne two alternative notions of history that contain less complete information.
For some arbitrary stage t we de�ne the observable history as the sequence

hhO0; A0i; : : : ; hOt�1; At�1ii

where O0 is the observation of the initial state. The observable history at stage t comprises
all information available to the agent about its history when it chooses its action at stage t.

A third type of trajectory is the system trajectory, which is the sequence

hhS0; A0i; : : : ; hSt�1; At�1i; Sti

describing the system's behavior in \objective" terms, independent of the agent's particular
view of the system.

In evaluating an agent's performance, we will generally be interested in the system
trajectory. An agent's policy must be de�ned in terms of the observable history, since the
agent does not have access to the system trajectory, except in the fully observable case,
when the two are equivalent.

2.6 Reward and Value

The problem facing the decision maker is to select an action to be performed at each stage
of the decision problem, making this decision on the basis of the observable history. The
agent still needs some way to judge the quality of a course of action. This is done by de�ning
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Figure 10: Decision process with rewards and action costs.

a value function V(�) as a function mapping the set of system histories HS into the reals;
that is, V : HS ! R.10 The agent prefers system history h to h0 just in case V(h) > V(h0).
Thus, the agent judges its behavior to be good or bad depending on its e�ect on the
underlying system trajectory. Generally, the agent cannot predict with certainty which
system trajectory will occur, and can at best generate a probability distribution over the
possible trajectories caused by its actions. In that case, it computes the expected value of
each candidate course of action and chooses a policy that maximizes that quantity.

Just as with system dynamics, specifying a value function over arbitrary trajectories
can be cumbersome and unintuitive. It is therefore important to identify structure in the
value function that can lead to a more parsimonious representation.

Two assumptions about value functions commonly made in the MDP literature are
time-separability and additivity. A time-separable value function is de�ned in terms of
more primitive functions that can be applied to component states and actions. The reward
function R : S ! R associates a reward with being in a state s. Costs can be assigned
to taking actions by de�ning a cost function C : S � A ! R that associates a cost with
performing an action a in state s. Rewards are added to the value function, while costs are
subtracted.11

A value function is time-separable if it is a \simple combination" of the rewards and costs
accrued at each stage. \Simple combination" means that value is taken to be a function of
costs and rewards at each stage, where the costs and rewards can depend on the stage t, but
the function that combines these must be independent of the stage, most commonly a linear
combination or a product.12 A value function is additive if the combination function is a
sum of the reward and cost function values accrued over the history's stages. The addition
of rewards and action costs in a system with time-separable value can be viewed graphically
as shown in Figure 10.

The assumption of time-separability is restrictive. In our example, there might be
certain goals involving temporal deadlines (have the workplace tidy as soon as possible
after 9:00 tomorrow morning) and maintenance (do not allow mail to sit in the mailroom

10. Technically, the set of histories of interest also depends on the horizon chosen, as described below.
11. The term \reward" is somewhat of a misnomer in that the reward could be negative, in which case

\penalty" might be a better word. Likewise, \costs" can be either positive (punitive) or negative (ben-
e�cial). Thus, they admit great 
exibility in de�ning value functions.

12. See (Luenberger, 1973) for a more precise de�nition of time-separability.
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undelivered for more than 10 minutes) that require value functions that are non-separable
given our current representation of the state. Note, however, that separability|like the
Markov property|is a property of a particular representation. We could add additional
information to the state in our example: the clock time, the interval of time between 9:00
and the time at which tidiness is achieved, the length of time mail sits in the mail room
before the robot picks it up, and so on. With this additional information we could re-
establish a time-separable value function, but at the expense of an increase in the number
of states and a more ad hoc and cumbersome action representation.13

2.7 Horizons and Success Criteria

In order to evaluate a particular course of action, we need to specify how long (in how
many stages) it will be executed. This is known as the problem's horizon. In �nite-horizon

problems, the agent's performance is evaluated over a �xed, �nite number of stages T .
Commonly, our aim is to maximize the total expected reward associated with a course of
action; we therefore de�ne the (�nite-horizon) value of any length T history h as (Bellman,
1957):

V (h) =
T�1X
t=0

fR(st)� C(st; at)g+R(sT )

An in�nite-horizon problem, on the other hand, requires that the agent's performance
be evaluated over an in�nite trajectory. In this case the total reward may be unbounded,
meaning that any policy could be arbitrarily good or bad if it were executed for long enough.
In this case it may be necessary to adopt a di�erent means of evaluating a trajectory. The
most common is to introduce a discount factor, ensuring that rewards or costs accrued at
later stages are counted less than those accrued at earlier stages. The value function for
an expected total discounted reward problem is de�ned as follows (Bellman, 1957; Howard,
1960):

V (h) =
1X
t=0


t(R(st)� C(st; at))

where 
 is a �xed discount rate (0 � 
 < 1). This formulation is a particularly simple
and elegant way to ensure a bounded measure of value over an in�nite horizon, though it is
important to verify that discounting is in fact appropriate. Economic justi�cations are often
provided for discounted models|a reward earned sooner is worth more than one earned
later provided the reward can somehow be invested. Discounting can also be suitable for
modeling a process that terminates with probability 1 � 
 at at any point in time (e.g., a
robot that can break down), in which case discounted models correspond to expected total
reward over a �nite but uncertain horizon. For these reasons, discounting is sometimes used
for �nite-horizon problems as well.

Another technique for dealing with in�nite-horizon problems is to evaluate a trajectory
based on the average reward accrued per stage, or gain. The gain of a history is de�ned as

g(h) = lim
n!1

1

n

nX
t=0

fR(st)�C(st; at)g

13. See (Bacchus, Boutilier, & Grove, 1996, 1997), however, for a systematic approach to handling certain
types of history-dependent reward functions.
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Re�nements of this criterion have also been proposed (Puterman, 1994).
Sometimes the problem itself ensures that total reward over any in�nite trajectory is

bounded, and thus the expected total reward criterion is well-de�ned. Consider the case
common in AI planners in which the agent's task is to bring the system to a goal state. A
positive reward is received only when the goal is reached, all actions incur a non-negative
cost, and when a goal is reached the system enters an absorbing state in which no further
rewards or costs are accrued. As long as the goal can be reached with certainty, this
situation can be formulated as an in�nite-horizon problem where total reward is bounded
for any desired trajectory (Bertsekas, 1987; Puterman, 1994). In general, such problems
cannot be formulated as (�xed) �nite-horizon problems unless an a priori bound on the
number of steps needed to reach the goal can be established. These problems are sometimes
called inde�nite-horizon problems: from a practical point of view, the agent will continue to
execute actions for some �nite number of stages, but the exact number cannot be determined
ahead of time.

2.8 Solution Criteria

To complete our de�nition of the planning problem we need to specify what constitutes
a solution to the problem. Here again we see a split between explicit MDP formulations
and work in the AI planning community. Classical MDP problems are generally stated as
optimization problems: given a value function, a horizon, and an evaluation metric (e.g.,
expected total reward, expected total discounted reward, expected average reward per stage)
the agent seeks a behavioral policy that maximizes the objective function.

Work in AI often seeks satis�cing solutions to such problems. In the planning literature,
it is generally taken that any plan that satis�es the goal is equally preferred to any other
plan that satis�es the goal, and that any plan that satis�es the goal is preferable to any
plan that does not.14 In a probabilistic framework, we might seek the plan that satis�es
the goal with maximum probability (an optimization), but this can lead to situations in
which the optimal plan has in�nite length if the system state is not fully observable. The
satis�cing alternative (Kushmerick, Hanks, & Weld, 1995) is to seek any plan that satis�es
the goal with a probability exceeding a given threshold.

Example 2.4 We extend our running example to demonstrate an in�nite-horizon, fully
observable, discounted reward situation. We begin by adding one new dimension to
the state description, the boolean variable RHM (does the robot have mail), giving us
a system with 20 states. We also provide the agent with two additional actions: PUM
(pickup mail) and DelM (deliver mail) as described in Figure 2. We can now reward
the agent in such a way that mail delivery is encouraged: we associate a reward of
10 with each state in which RHM and M are both false and 0 with all other states.
If actions have no cost, the agent gets a total reward of 20 for this six-stage system
trajectory:

hLoc(M);M;RHMi;Stay; hLoc(M);M;RHMi;PUM; hLoc(M);M;RHMi;

Clk; hLoc(H);M;RHMi;Clk; hLoc(O);M;RHMi;DelM; hLoc(O);M;RHMi

14. Though see (Haddawy & Hanks, 1998; Williamson & Hanks, 1994) for a restatement of planning as an
optimization problem.

18



Decision-Theoretic Planning: Structural Assumptions

If we assign an action cost of �1 for each action except Stay (which has 0 cost),
the total reward becomes 16. If we use a discount rate of 0:9 to discount future
rewards and costs, this initial segment of an in�nite-horizon history would contribute
10 + :9(�1) + :81(�1) + :729(�1) + :6561(�1) + :59054(�1 + 10) = 12:2 to the total
value of the trajectory (as subsequently extended). Furthermore, we can establish a
bound on the total expected value of this trajectory. In the best case, all subsequent
stages will yield a reward of 10, so the expected total discounted reward is bounded
by

12:2 + :96(10) + :97(10) + : : : = 12:2 + 10 � :96
1X
i=0

0:9i < 66

A similar e�ect on behavior can be achieved by penalizing states (i.e., having negative
rewards) in which either M or RHM is true. 2

2.9 Policies

We have mentioned policies (or courses of action, or plans) informally to this point, and
now provide a precise de�nition. The decision problem facing an agent can be viewed most
generally as deciding which action to perform given the current observable history. We
de�ne a policy � to be a mapping from the set of observable histories HO to actions, that
is, � : HO ! A. Intuitively, the agent executes action

at = �(hho0; a0i; : : : ; hot�1; at�1i; oti)

at stage t if it has performed the actions a0; � � � at�1 and made observations o0; � � � ot�1 at
earlier stages, and has just made observation ot at the current stage.

A policy induces a distribution Pr(hj�) over the set of system histories HS ; this proba-
bility distribution depends on the initial distribution P 0. We de�ne the expected value of a

policy to be:

EV(�) =
X
h2HS

V(h) Pr(hj�)

We would like the agent to adopt a policy that either maximizes this expected value or, in
a satis�cing context, has an acceptably high expected value.

The general form of a policy, depending as it does on an arbitrary observation history,
can lead to very complicated policies and policy-construction algorithms. In special cases,
however, assumptions about observability and the structure of the value function can result
in optimal policies that have a much simpler form.

In the case of a fully observable MDP with a time-separable value function, the optimal
action at any stage can be computed using only information about the current state and
the stage: that is, we can restrict policies to have the simpler form � : S � T ! A without
danger of acting suboptimally. This is due to the fact that full observability allows the state
to be observed completely, and the Markov assumption renders prior history irrelevant.

In the non-observable case, the observational history contains only vacuous observations
and the agent must choose its actions using only knowledge of its previous actions and the
stage; however, since � incorporates previous actions, it takes the form � : T ! A. This
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form of policy corresponds to a linear, unconditional sequence of actions ha1; a2; : : : ; aT i, or
a straight-line plan in AI nomenclature.15

2.10 Model Summary: Assumptions, Problems, and Computational
Complexity

This concludes our exposition of the MDP model for planning under uncertainty. Its gen-
erality allows us to capture a wide variety of the problem classes that are currently being
studied in the literature. In this section we review the basic components of the model,
describe problems commonly studied in the DTP literature with respect to this model, and
summarize known complexity results for each. In Section 3, we describe some of the spe-
cialized computational techniques used to solve problems in each of these problem classes.

2.10.1 Model Summary and Assumptions

The MDP model consists of the following components:

� The state space S, a �nite or countable set of states. We generally make the Markov
assumption, which requires that each state convey all information necessary to predict
the e�ects of all actions and events independent of any further information about
system history.

� The set of actions A. Each action ak is represented by a transition matrix of size
jSj�jSj representing the probability pkij that performing action ak in state si will move
the system into state sj. We assume throughout that the action model is stationary,
meaning that transition probabilities do not vary with time. The transition matrix
for an action is generally assumed to account for any exogenous events that might
occur at the stage at which the action is executed.

� The set of observation variablesO. This is the set of \messages" sent to the agent after
an action is performed, that provide execution-time information about the current
system state. With each action ak and pair of states si, sj, such that pkij > 0,

we associate a distribution over possible observations: pkmij denotes the probability
of obtaining observation om given that action ak was taken in si and resulted in a
transition to state sj.

� The value function V . The value function maps a state history into a real number
such that V (h1) � V (h2) just in case the agent considers history h1 at least as good
as h2. A state history records the progression of states the system assumes along
with the actions performed. Assumptions such as time-separability and additivity are
common for V . In particular, we generally use a reward function R and cost function
C when de�ning value.

� The horizon T . This is the number of stages over which the state histories should be
evaluated using V .

15. Many algorithms in the AI literature produce a partially ordered sequence of actions. These plans do
not, however, involve conditional or nondeterministic execution. Rather, they represent the fact that
any linear sequence consistent with the partial order will solve the problem. Thus, a partially ordered
plan is a concise representation for a particular set of straight-line plans.
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� An optimality criterion. This provides a criterion for evaluating potential solutions
to planning problems.

2.10.2 Common Planning Problems

We can use this general framework to classify various problems commonly studied in the
planning and decision-making literature. In each case below, we note the modeling assump-
tions that de�ne the problem class.

Planning Problems in the OR/Decision Sciences Tradition

� Fully Observable Markov Decision Processes (FOMDPs) | There is an ex-
tremely large body of research studying FOMDPs, and we present the basic algorith-
mic techniques in some detail in the next section. The most commonly used formula-
tion of FOMDPs assumes full observability and stationarity, and uses as its optimality
criterion the maximization of expected total reward over a �nite horizon, maximiza-
tion of expected total discounted reward over an in�nite horizon, or minimization of
the expected cost to a goal state.

FOMDPs were introduced by Bellman (1957) and have been studied in depth in the
�elds of decision analysis and OR, including the seminal work of Howard (1960). Re-
cent texts on FOMDPs include (Bertsekas, 1987) and (Puterman, 1994). Average re-
ward optimality has also received attention in this literature (Blackwell, 1962; Howard,
1960; Puterman, 1994). In the AI literature, discounted or total reward models have
been most popular as well (Barto et al., 1995; Dearden & Boutilier, 1997; Dean, Kael-
bling, Kirman, & Nicholson, 1995; Koenig, 1991), though the average-reward criterion
has been proposed as more suitable for modeling AI planning problems (Boutilier &
Puterman, 1995; Mahadevan, 1994; Schwartz, 1993).

� Partially Observable Markov Decision Processes (POMDPs) | POMDPs
are closer than FOMDPs to the general model of decision processes we have described.
POMDPs have generally been studied with the assumption of stationarity and opti-
mality criteria identical to those of FOMDPs, though the average-reward criterion
has not been widely considered. As we discuss below, a POMDP can be viewed as
a FOMDP with a state space consisting of the set of probability distributions over
S. These probability distributions represent states of belief: the agent can \observe"
its state of belief about the system although it does not have exact knowledge of the
system state itself.

POMDPs have been widely studied in OR and control theory (Astr�om, 1965; Love-
joy, 1991b; Smallwood & Sondik, 1973; Sondik, 1978), and have drawn increasing
attention in AI circles (Cassandra, Kaelbling, & Littman, 1994; Hauskrecht, 1998;
Littman, 1996; Parr & Russell, 1995; Simmons & Koenig, 1995; Thrun, Fox, & Bur-
gard, 1998; Zhang & Liu, 1997). In
uence diagrams (Howard & Matheson, 1984;
Shachter, 1986) are a popular model for decision making in AI and are, in fact, a
structured representational method for POMDPs (see Section 4.3).

Planning Problems in the AI Tradition
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� Classical Deterministic Planning | The classical AI planning model assumes
deterministic actions: any action ak taken at any state si has at most one successor sj.
The other important assumptions are non-observability and that value is determined
by reaching a goal state: any plan that leads to a goal state is preferred to any
that does not. Often there is a preference for shorter plans; this can be represented
by using a discount factor to \encourage" faster goal achievement or by assigning a
cost to actions. Reward is associated only with transitions to goal states, which are
absorbing. Action costs are typically ignored, except as noted above.

In classical models it is usually assumed that the initial state is known with certainty.
This contrasts with the general speci�cation of MDPs above, which does not assume
knowledge of or even distributional information about the initial state. Policies are
de�ned to be applicable no matter what state (or distribution over states) one �nds
oneself in|action choices are de�ned for every possible state or history. Knowledge of
the initial state and determinism allow optimal straight-line plans to be constructed,
with no loss in value associated with non-observability, but unpredictable exogenous
events and uncertain action e�ects cannot be modeled consistently if these assump-
tions are adopted.

For an overview of early classical planning research and the variety of approaches
adopted, see (Allen, Hendler, & Tate, 1990) as well as Yang's (1998) recent text.

� Optimal Deterministic Planning | A separate body of work retains the classical
assumptions of complete information and determinism, but tries to recast the planning
problem as an optimization that relaxes the implicit assumption of \achieve the goal
at all costs." At the same time, these methods use the same sort of representations
and algorithms applied to satis�cing planning.

Haddawy and Hanks (1998) present a multi-attribute utility model for planners that
keeps the explicit information about the initial state and goals, but allows prefer-
ences to be stated about the partial satisfaction of the goals as well as the cost of the
resources consumed in satisfying them. The model also allows the expression of pref-
erences over phenomena like temporal deadlines and maintenance intervals that are
di�cult to capture using a time-separable additive value function. Williamson (1996)
(see also Williamson & Hanks, 1994). implements this model by extending a clas-
sical planning algorithm to solve the resulting optimization problem. Haddawy and
Suwandi (1994) also implement this model in a complete decision-theoretic framework.
Their model of planning, re�nement planning, di�ers somewhat from the generative
model discussed in this paper. In their model the set of all possible plans is pre-stored
in an abstraction hierarchy, and the problem solver's job is to �nd in the hierarchy
the optimal choice of concrete actions for a particular problem.

Perez and Carbonell's (1994) work also incorporates cost information into the classical
planning framework, but maintains the split between a classical satis�cing planner
and additional cost information provided in the utility model. The cost information is
used to learn search-control rules that allow the classical planner to generate low-cost
goal-satisfying plans.
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� Conditional Deterministic Planning | The classical planning assumption of
omniscience can be relaxed somewhat by allowing the state of some aspects of the
world to be unknown. The agent is thus in a situation where it is certain that the
system is one of a particular set of states, but does not know which one. Unknown
truth values can be included in the initial state speci�cation, and taking actions can
cause a proposition to become unknown as well.

Actions can provide the agent with information while the plan is being executed: con-
ditional planners introduce the idea of actions providing runtime information about
the prevailing state, distinguishing between an action that makes proposition P true
and an action that will tell the agent whether P is true when the action is executed.
An action can have both causal and informational e�ects, simultaneously changing
the world and reporting on the value of one or more propositions. This second sort
of information is not useful at planning time except that it allows steps in the plan
to be executed conditionally, depending on the runtime information provided by prior
information-producing steps. The value of such actions lies in the fact that di�erent
courses of action may be appropriate under di�erent conditions|these informational
e�ects allow runtime selection of actions based on the observations produced, much
like the general POMDP model.

Examples of conditional planners in the classical framework include early work by
Warren (1976) and the more recent CNLP (Peot & Smith, 1992), Cassandra (Pryor
& Collins, 1993), Plynth (Goldman & Boddy, 1994), and UWL (Etzioni, Hanks,
Weld, Draper, Lesh, & Williamson, 1992) systems.

� Probabilistic Planning Without Feedback | A direct probabilistic extension
of the classical planning problem can be stated as follows (Kushmerick et al., 1995):
take as input (a) a probability distribution over initial states, (b) stochastic actions
(explicit or implicit transition matrices), (c) a set of goal states, and (d) a probability
success threshold � . The objective is to produce a plan that reaches any goal state
with probability at least � , given the initial state distribution. No provision is made
for execution-time observation, thus straight-line plans are the only form of policy
possible. This is a restricted case of the in�nite-horizon NOMDP problem, one in
which actions incur no cost and goal states o�er positive reward and are absorbing.
It is also a special case in that the objective is to �nd a satis�cing policy rather than
an optimal one.

� Probabilistic Planning With Feedback | Draper et al. (1994a) have proposed
an extension of the probabilistic planning problem in which actions provide feedback,
using exactly the observation model described in Section 2.4. Again, the problem is
posed as that of building a plan that leaves the system in a goal state with su�cient
probability. But a plan is no longer a simple sequence of actions|it can contain con-
ditionals and loops whose execution depends on the observations generated by sensing
actions. This problem is a restricted case of the general POMDP problem: absorb-
ing goal states and cost-free actions are used, and the objective is to �nd any policy
(conditional plan) that leaves the system in a goal state with su�cient probability.

23



Boutilier, Dean, & Hanks

Comparing the Frameworks: Task-oriented Versus Process-oriented Problems
It is useful at this point to pause and contrast the types of problems considered in the clas-
sical planning literature with those typically studied within the MDP framework. Although
problems in the AI planning literature have emphasized a goal-pursuit or \one-shot" view of
problem solving, in some cases viewing the problem as an in�nite-horizon decision problem
results in a more satisfying formulation. Consider our running example involving the o�ce
robot. It is simply not possible to model the problem of responding to co�ee requests, mail
arrival and keeping the lab tidy as a strict goal-satisfaction problem while capturing the
possible nuances of intuitively optimal behavior.

The primary di�culty is that no explicit and persistent goal states exist. If we were
simply to require that the robot attain a state where the lab is tidy, no mail awaits, and no
un�lled co�ee requests exist, no \successful" plan could anticipate possible system behavior
after a goal state was reached. The possible occurrence of exogenous events after goal
achievement requires that the robot bias its methods for achieving its goals in a way that
best suits the expected course of subsequent events. For instance, if co�ee requests are
very likely at any point in time and unmet requests are highly penalized, the robot should
situate itself in the co�ee room in order to satisfy an anticipated future request quickly.
Most realistic decision scenarios involve both task-oriented and process-oriented behavior,
and problem formulations that take both into account will provide more satisfying models
for a wider range of situations.

2.10.3 The Complexity of Policy Construction

We have now de�ned the planning problem in several di�erent ways, each having a di�erent
set of assumptions about the state space, system dynamics and actions (deterministic or
stochastic), observability (full, partial, or none), value function (time-separable, goal only,
goal rewards and action costs, partially satis�able goals with temporal deadlines), planning
horizon (�nite, in�nite, or inde�nite), and optimality criterion (optimal or satis�cing solu-
tions). Each set of assumptions puts the corresponding problem in a particular complexity
class, which de�nes worst-case time and space bounds on any representation and algorithm
for solving that problem. Here we summarize known complexity results for each of the
problem classes de�ned above.

Fully Observable Markov Decision Processes Fully observable MDPs (FOMDPs)
with time-separable, additive value functions can be solved in time polynomial in the size
of the state space, the number of actions, and the size of the inputs.16 The most com-
mon algorithms for solving FOMDPs are value iteration and policy iteration, which are
described in the next section. Both �nite-horizon and discounted in�nite-horizon problems
require a polynomial amount of computation per iteration|O(jSj2jAj) and O(jSj2jAj+jSj3),
respectively|and converge in a polynomial number of iterations (with factor 1

1�
 in the
discounted case). On the other hand, these problems have been shown to be P-complete
(Papadimitriou & Tsitsiklis, 1987), which means that an e�cient parallel solution algorithm
is unlikely.17 The space required to store the policy for an n-stage �nite-horizon problem

16. More precisely, the maximum number of bits required to represent any of the transition probabilities or
costs.

17. See (Littman, Dean, & Kaelbling, 1995) for a summary of these complexity results.
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is O(jSjn). For most interesting classes of in�nite-horizon problems, speci�cally those in-
volving discounted models with time-separable additive reward, the optimal policy can be
shown to be stationary, and the policy can be stored in O(jSj) space.

Bear in mind that these are worst-case bounds. In many cases, better time bounds and
more compact representations can be found. Sections 4 and 5 explore ways to represent
and solve these problems more e�ciently.

Partially Observable Markov Decision Processes POMDPs are notorious for their
computational di�culty. As mentioned above, a POMDP can be viewed as a FOMDP
with an in�nite state space consisting of probability distributions over S, each distribution
representing the agent's state of belief at a point in time (Astr�om, 1965; Smallwood &
Sondik, 1973). The problem of �nding an optimal policy for a POMDP with the objective
of maximizing expected total reward or expected total discounted reward over a �nite
horizon T has been shown to be exponentially hard both in jSj and in T (Papadimitriou
& Tsitsiklis, 1987). The problem of �nding a policy that maximizes or approximately
maximizes the expected discounted total reward over an in�nite horizon is shown to be
undecidable (Madani, Condon, & Hanks, 1999).

Even restricted cases of the POMDP problem are computationally di�cult in the worst
case. Littman (1996) considers the special case of boolean rewards: determining whether
there is an in�nite-horizon policy with nonzero total reward given that the rewards associ-
ated with all states are non-negative. He shows that the problem is EXPTIME-complete if
the transitions are stochastic, and PSPACE-hard if the transitions are deterministic.

Deterministic Planning Recall that the classical planning problem is de�ned quite
di�erently from the MDP problems above: the agent has no ability to observe the state but
has perfect predictive powers, knowing the initial state and the e�ects of all actions with
certainty. In addition, rewards come only from reaching a goal state, and any plan that
achieves the goal su�ces.

Planning problems are typically de�ned in terms of a set P of boolean features or
propositions: a complete assignment of truth values to features describes exactly one state,
and a partial assignment of truth values describes a set of states. A set of propositions P
induces a state space of size 2jPj. Thus, the space required to represent a planning problem
using a feature-based representation can be exponentially smaller than that required by a

at representation for the same problem (see Section 4).

The ability to represent planning problems compactly has a dramatic impact on worst-
case complexity. Bylander (1994) shows that the deterministic planning problem without
observation is PSPACE-complete. Roughly speaking, this means that at worst planning
time will increase exponentially with P and A, and further, that the size of a solution plan
can grow exponentially with the problem size. These results hold even when the action
space A is severely restricted. For example, the planning problem is NP-complete even
in cases where each action is restricted to one precondition feature and one postcondition
feature. Conditional and optimal planning are PSPACE-complete as well. These results
are for inputs that are generally more compact (generally exponentially so) than those in
terms of which the complexity of the FOMDP and POMDP problems are phrased.

Probabilistic Planning In probabilistic goal-oriented planning, as for POMDPs, we
typically search for a solution in a space of probability distributions over states (or over
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formulas that describe states). Even the simplest problem in probabilistic planning|one
that admits no observability|is undecidable at worst (Madani et al., 1999). The intuition
is that even though the set of states is �nite, the set of distributions over those states is not,
and at worst the agent may have to search an in�nite number of plans before being able
to determine whether or not a solution exists. An algorithm can be guaranteed to �nd a
solution plan eventually if one exists, but cannot be guaranteed to terminate in �nite time
if there is no solution plan. Conditional probabilistic planning is a generalization of the
non-observable probabilistic planning problem, and thus is undecidable as well.

It is interesting to note a connection between conditional probabilistic planning and
POMDPs. The actions and observations of the two problems have equivalent expressive
power, but the reward structure of the conditional probabilistic planning problem is quite
restrictive: goal states have positive rewards, all other states have no reward, and goal states
are absorbing. Since we cannot put an a priori bound on the length of a solution plan,
conditional probabilistic planning must be viewed as an in�nite-horizon problem where the
objective is to maximize total expected undiscounted reward. Note, however, that since goal
states are absorbing, we can guarantee that total expected reward will be non-negative and
bounded, even over an in�nite horizon. Technically this means that the conditional proba-
bilistic planning problem is a restricted case of an in�nite-horizon positive-bounded problem
(Puterman, 1994, Section 7.2). We can therefore conclude that the problem of solving an
arbitrary in�nite-horizon undiscounted positive-bounded POMDP is also undecidable. The
more commonly studied problem is the in�nite-horizon POMDP with a criterion of maxi-
mizing expected discounted total reward; �nding optimal or near-optimal solutions to that
problem is also undecidable, as noted above.

2.10.4 Conclusion

We end this section by noting again that these results are algorithm-independent and de-
scribe worst-case behavior. In e�ect, they indicate how badly any algorithm can be made to
perform on an \arbitrarily unfortunate" problem instance. The more interesting question
is whether we can build representations, techniques, and algorithms that typically perform
well on problem instances that typically arise in practice. This concern leads us to examine
the problem characteristics with an eye toward exploiting the restrictions placed on the
states and actions, on observability, and on the value function and optimality criterion. We
begin with algorithmic techniques that focus on the value function|particularly those that
take advantage of time-separability and goal orientation. Then in the following section we
explore complementary techniques for building compact problem representations.

3. Solution Algorithms: Dynamic Programming and Search

In this section we review standard algorithms for solving the problems described above in
terms of the \unstructured" or \
at" problem representations. As noted in the analysis
above, fully observable Markov decision processes (FOMDPs) are by far the most widely
studied models in this general class of stochastic sequential decision problems. We begin by
describing techniques for solving FOMDPs, focusing on techniques that exploit structure in
the value function like time-separability and additivity.
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3.1 Dynamic Programming Approaches

Suppose we are given a fully-observable MDP with a time-separable, additive value function.
In other words, we are given the state space S, action space A, a transition matrix Pr(s0js; a)
for each action a, a reward function R, and a cost function C. We start with the problem
of �nding the policy that maximizes expected total reward for some �xed, �nite-horizon T .
Suppose we are given a policy � such that �(s; t) is the action to be performed by the agent
in state s with t stages remaining to act (for 0 � t � T ).18 Bellman (1957) shows that the
expected value of such a policy at any state can be computed using the set of t-stage-to-go
value functions V �

t . We de�ne V �
0 (s) to be R(s), then de�ne:

V �
t (s) = R(s) + C(�(s; t)) +

X
s02S

fPr(s0j�(s; t); s)V �
t�1(s

0)g (1)

This de�nition of the value function for � makes its dependence on the initial state clear.

We say a policy � is optimal if V �
T (s) � V �0

T (s) for all policies �0 and all s 2 S.
The optimal T -stage-to-go value function, denoted V �T , is simply the value function of any
optimal T -horizon policy. Bellman's principle of optimality (Bellman, 1957) forms the basis
of the stochastic dynamic programming algorithms used to solve MDPs, establishing the
following relationship between the optimal value function at tth stage and the optimal value
function at the previous stage:

V �t (s) = R(s) + max
a2A

fC(a) +
X
s02S

Pr(s0ja; s)V �t�1(s
0)g (2)

3.1.1 Value Iteration

Equation 2 forms the basis of the value iteration algorithm for �nite-horizon problems.
Value iteration begins with the value function V �0 = R, and uses Equation 2 to compute in
sequence the value functions for longer time intervals, up to the horizon T . Any action that
maximizes the right-hand side of Equation 2 can be chosen as the policy element �(s; t).
The resulting policy is optimal for the T -stage, fully observable MDP, and indeed for any
shorter horizon t < T .

It is important to note that a policy describes what should be done at every stage and
for every state of the system, even if the agent cannot reach certain states given the system's
initial con�guration and its available actions. We return to this point below.

Example 3.1 Consider a simpli�ed version of the robot example, in which we have four
state variables M , CR, RHC, and RHM (movement to various locations is ignored),
and four actions GetC, PUM, DelC, and DelM. Actions GetC and PUM make RHC
and RHM, respectively, true with certainty. Action DelM, when RHM holds, makes
bothM and RHM false with probability 1.0; DelC makes both CR and RHC false with
probability 0.3, leaving the state unchanged with probability 0.7. A reward of 3 is
associated with CR and a reward of 1 is associated withM . The reward for any state
is the sum of the rewards for each objective satis�ed in that state. Figure 11 shows
the optimal 0-stage, 1-stage and 2-stage value functions for various states, along with

18. Recall that for FOMDPs other aspects of history are not relevant.
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State V �

0 V �

1 �(1) V �

2 �(2)

s0 = hM;RHM;CR;RHCi 0 0 any 1 PUM

s1 = hM;RHM;CR;RHCi 0 1 DelM 2 DelM

s2 = hM;RHM;CR;RHCi 0 0.9 DelC 2.43 DelC

s3 = hM;RHM;CR;RHCi 0 1 DelM 2.9 DelM

s4 = hM;CR;RHCi 1 2.9 DelC 5.43 DelC

s5 = hM;CR;RHCi 1 2 any 3.9 GetC

s6 = hM;RHM;CRi 3 7 DelM 11 DelM

s7 = hM;RHM;CRi 3 6 any 10 PUM

s8 = hM;CRi 4 8 any 12 any

Figure 11: Finite-horizon optimal value and policy.

the optimal choice of action at each state-stage pairing (the values for any \state"
with missing variables hold for all instantiations of those variables). Note that V �0 (s)
is simply R(s) for each state s.

To illustrate the application of Equation 2, �rst consider the calculation of V �1 (s3).
The robot has the choice of delivering co�ee or delivering mail, and the expected value
of each option, with one stage remaining, is given by:

EV1(s3;DelC) = 0:3V �0 (s6) + 0:7V �0 (s3) = 0:9
EV1(s3;DelM) = 1:0V �0 (s4) = 1:0

Thus ��(s3; 1) = DelM and V �1 (s3) is the value of this maximizing choice. Notice that
the robot with one action to perform will aim for the \lesser" objective M due to the
risk of failure inherent in delivering co�ee. With two stages remaining at the same
state, the robot will again deliver mail, but with certainty will move to s4 with one
stage to go, where it will attempt to deliver co�ee (��(s4; 1) = DelC).

To illustrate the e�ects a �xed �nite horizon can have on policy choice, note that
��(s0; 2) = PUM. With two stages remaining and the choice of getting mail or co�ee,
the robot will get mail because subsequent delivery (in the last stage) is guaranteed
to succeed, whereas subsequent co�ee delivery may fail. However, if we compute
��(s0; 3), we see:

EV3(s0;GetC) = 1:0V �2 (s2) = 2:43
EV3(s0;PUM) = 1:0V �2 (s1) = 2:0

With three stages to go, the robot will instead retrieve co�ee at s0. Once it has
co�ee, it has two chances at successful delivery. The expected value of this course
of action is greater than that of (guaranteed) mail delivery. Note that three stages
does not allow su�cient time to try to achieve both objectives at s0. In fact, the
larger reward associated with co�ee delivery ensures that with any greater number of
stages remaining, the robot should focus �rst on co�ee retrieval and delivery, and then
attempt mail retrieval and delivery once co�ee delivery is successfully completed. 2

Often we are faced with tasks that do not have a �xed �nite horizon. For example, we
may want our robot to perform the tasks of keeping the lab tidy, picking up mail whenever it
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arrives, responding to co�ee requests, and so on. There is no �xed time horizon associated
with these tasks|they are to be performed as the need arises. Such problems are best
modeled as in�nite-horizon problems.

We consider here the problem of building a policy that maximizes the discounted sum
of expected rewards over an in�nite horizon.19 Howard (1960) showed that there always
exists an optimal stationary policy for such problems. Intuitively, this is the case because
no matter what stage the process is in, there are still an in�nite number of stages remaining;
so the optimal action at any state is independent of the stage. We can therefore restrict
our attention to policies that choose the same action for a state regardless of the stage of
the process. Under this restriction, the policy will have the same size jSj regardless of the
number of stages over which the policy is executed|the policy � has the form � : S ! A.
In contrast, optimal policies for �nite-horizon problems are generally nonstationary, as
illustrated in Example 3.1.

Howard also shows that the value of policy � satis�es the following recurrence:

V �(s) = R(s) + fC(�(s)) + 

X
s02S

Pr(s0j�(s); s)V �(s0)g (3)

and that the optimal value function V � satis�es:

V �(s) = R(s) + max
a2A

fC(a) + 

X
s02S

Pr(s0ja; s)V �(s0)g (4)

The value of a �xed policy � can be evaluated using the method of successive approxi-

mation, which is almost identical to the procedure described in Equation 1 above. We begin
with an arbitrary assignment of values to V �

0 (s), then de�ne:

V �
t (s) = R(s) + C(�(s; t)) + 


X
s02S

fPr(s0j�(s; t); s)V �
t�1(s

0)g (5)

The sequence of functions V �
t converges linearly to the true value function V �.

One can also alter the value-iteration algorithm slightly so it builds optimal policies for
in�nite-horizon discounted problems. The algorithm starts with a value function V0 that
assigns an arbitrary value to each s 2 S. Given value estimate Vt(s) for each state s, Vt+1(s)
is calculated as:

Vt+1(s) = R(s) + max
a2A

fC(a) + 

X
s02S

Pr(s0ja; s) � Vt(s
0)g (6)

The sequence of functions Vt converges linearly to the optimal value function V
�(s). After

some �nite number of iterations n, the choice of maximizing action for each s forms an
optimal policy � and Vn approximates its value.20

19. This is by far the most commonly studied problem in the literature, though it is argued in (Boutilier &
Puterman, 1995; Mahadevan, 1994; Schwartz, 1993) that such problems are often best modeled using
average reward per stage as the optimality criterion. For a discussion of average reward optimality and
its many variants and re�nements, see (Puterman, 1994).

20. The number of iterations n is based on a stopping criterion that generally involves measuring the dif-
ference between Vt and Vt+1. For a discussion of stopping criteria and convergence of the algorithm, see
(Puterman, 1994).
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3.1.2 Policy Iteration

Howard's (1960) policy-iteration algorithm is an alternative to value iteration for in�nite-
horizon problems. Rather than iteratively improving the estimated value function, it instead
modi�es the policies directly. It begins with an arbitrary policy �0, then iterates, computing
�i+1 from �i.

Each iteration of the algorithm comprises two steps, policy evaluation and policy im-

provement:

1. (Policy evaluation) For each s 2 S, compute the value function V �i(s) based on the
current policy �i.

2. (Policy improvement) For each s 2 S, �nd the action a� that maximizes

Qi+1(a; s) = R(s) + C(a) + 

X
s02S

Pr(s0ja; s) � V �i(s0) (7)

If Qi+1(a
�; s) > V �i(s), let �i+1 = a�; otherwise �i+1(s) = �i(s).

21

The algorithm iterates until �i+1(s) = �i(s) for all states s. Step 1 evaluates the current
policy by solving the N � N linear system represented by Equation 3 (one equation for
each s 2 S), and can be computationally expensive. However, the algorithm converges to
an optimal policy at least linearly and under certain conditions converges superlinearly or
quadratically (Puterman, 1994). In practice, policy iteration tends to converge in many
fewer iterations than does value iteration. Policy iteration thus spends more computational
time at each individual stage, with the result that fewer stages need be computed.22

Modi�ed policy iteration (Puterman & Shin, 1978) provides a middle ground between
policy iteration and value iteration. The structure of the algorithm is exactly the same as
that of policy iteration, alternating evaluation and improvement phases. The key insight is
that one need not evaluate a policy exactly in order to improve it. Therefore, the evaluation
phase involves some (usually small) number of iterations of successive approximation (i.e.,
setting V � = V �

t for some small t, using Equation 6). With some tuning of the value
of t used at each iteration, modi�ed policy iteration can work extremely well in practice
(Puterman, 1994). Both value iteration and policy iteration are special cases of modi�ed
policy iteration, corresponding to setting t = 0 and t =1, respectively.

A number of other variants of both value and policy iteration have been proposed. For
instance, asynchronous versions of these algorithms do not require that the value function
be constructed, or policy improved, at each state in lockstep. In the case of value iteration
for in�nite-horizon problems, as long as each state is updated su�ciently often, convergence
can be assured. Similar guarantees can be provided for asynchronous forms of policy it-
eration. Such variants are important tools for understanding various online approaches to
solving MDPs (Bertsekas & Tsitsiklis, 1996). For a nice discussion of asynchronous dynamic
programming, see (Bertsekas, 1987; Bertsekas & Tsitsiklis, 1996).

21. The Q-function de�ned by Equation 7, and so called because of its use in Q-learning (Watkins & Dayan,
1992), gives the value of performing action a at state s assuming the value function V � accurately re
ects
future value.

22. See (Littman et al., 1995) for a discussion of the complexity of the algorithm.
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3.1.3 Undiscounted Infinite-Horizon Problems

The di�culty with �nding optimal solutions to in�nite-horizon problems is that total reward
can grow without limit over time. Thus, the problem de�nition must provide some way to
ensure that the value metric is bounded over arbitrarily long horizons. The use of expected
total discounted reward as the optimality criterion o�ers a particularly elegant way to
guarantee a bound, since the in�nite sum of discounted rewards is �nite. However, although
discounting is appropriate for certain classes of problems (e.g., economic problems, or those
where the system may terminate at any point with a certain probability), for many realistic
AI domains it is di�cult to justify counting future rewards less than present rewards, and
the discounted-reward criterion is not appropriate.

There are a variety of ways to bound total reward in undiscounted problems. In some
cases the problem itself is structured so that reward is bounded. In planning problems, for
example, the goal reward can be collected at most once, and all actions incur a cost. In
that case total reward is bounded from above and the problem can legitimately be posed
in terms of maximizing total expected undiscounted reward in many cases (e.g., if the goal
can be reached with certainty).

In cases where discounting is inappropriate and total reward is unbounded, di�erent
success criteria can be employed. For example, the problem can instead be posed as one
in which we wish to maximize expected average reward per stage, or gain. Computational
techniques for constructing gain-optimal policies are similar to the dynamic-programming
algorithms described above, but are generally more complicated, and the convergence rate
tends to be quite sensitive to the communicating structure and periodicity of the MDP.

Re�nements to gain optimality have also been studied. For example, bias optimality can
be used to distinguish two gain-optimal polices by giving preference to the policy whose total
reward over some initial segment of policy execution is larger. Again, while the algorithms
are more complicated than those for discounted problems, they are variants of standard
policy or value iteration. See (Puterman, 1994) for details.

3.1.4 Dynamic Programming and POMDPs

Dynamic programming techniques can be applied in partially observable settings as well
(Smallwood & Sondik, 1973). The main di�culty in building policies for situations in which
the state is not fully observable is that, since past observations can provide information
about the system's current state, decisions must be based on information gleaned in the
past. As a result, the optimal policy can depend on all observations the agent has made since
the beginning of execution. These history-dependent policies can grow in size exponential
in the length of the horizon. While history-dependence precludes dynamic programming,
the observable history can be summarized adequately with a probability distribution over S
(Astr�om, 1965), and policies can be computed as a function of these distributions, or belief
states.

A key observation of Sondik (Smallwood & Sondik, 1973; Sondik, 1978) is that when
one views a POMDP with a time-separable value function by taking the state space to be
the set of probability distributions over S, one obtains a fully observable MDP that can
be solved by dynamic programming. The (computational) problem with this approach is
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that the state space for this FOMDP is an N -dimensional continuous space,23 and special
techniques must be used to solve it (Smallwood & Sondik, 1973; Sondik, 1978).

We do not explore these techniques here, but note that they are currently practical
only for very small problems (Cassandra et al., 1994; Cassandra, Littman, & Zhang, 1997;
Littman, 1996; Lovejoy, 1991b). A number of approximation methods, developed both in
OR (Lovejoy, 1991a; White III & Scherer, 1989) and AI (Brafman, 1997; Hauskrecht, 1997;
Parr & Russell, 1995; Zhang & Liu, 1997), can be used to increase the range of solvable
problems, but even these techniques are presently of limited practical value.

POMDPs play a key role in reinforcement learning as well, where the \natural state
space" consisting of agent observations provides incomplete information about the under-
lying system state (see, e.g., McCallum, 1995).

3.2 AI Planning and State-Based Search

We noted in Section 2.7 that the classical AI planning problem can be formulated as an
in�nite-horizon MDP and can therefore be solved using an algorithm like value iteration.
Recall that two assumptions in classical planning specialize the general MDP model, namely
determinism of actions and the use of goal states instead of a more general reward function.
A third assumption|that we want to construct an optimal course of action starting from a
known initial state|does not have a counterpart in the FOMDP model as presented above,
since the policy dictates the optimal action from any state at any stage of the plan. As we
will see below, the interest in online algorithms within AI has led to revised formulations
of FOMDPs that do take initial and current states into account.

Though we de�ned the classical planning problem earlier as a non-observable process
(NOMDP), it can be solved as if it were fully observable. We let G be the set of goal states
and sinit be the initial state. Applying value iteration to this type of problem is equivalent
to determining the reachability of goal states from all system states. For instance, if we
make goal states absorbing, assign a reward of 1 to all transitions from any s 2 S � G

to some g 2 G and 0 to all others, then the set of all states where V �k (s) > 0 is exactly
the set of states that can lead to a goal state.24 In particular, if V �k (sinit) > 0, then a
successful plan can be constructed by extracting actions from the k-stage (�nite-horizon)
policy produced by value iteration. The determinism assumption means that the agent can
predict the state perfectly at every stage of execution; the fact that it cannot observe the
state is unimportant.

The assumptions commonly made in classical planning can be exploited computation-
ally in value iteration. First, we can terminate the process at the �rst iteration k where
V �k (sinit) > 0, because we are interested only in plans that begin at sinit, not in acting
optimally from every possible start state. Second, we can terminate value iteration after jSj
iterations: if V �jSj(sinit) = 0 at that point, the algorithm will have searched every possible
state and can guarantee that no solution plan exists. Therefore, we can view classical plan-
ning as a �nite-horizon decision problem with a horizon of jSj. This use of value iteration

23. More accurately, it is an N -dimensional simplex, or (N � 1)-dimensional space.
24. Speci�cally, V �

k (s) indicates the probability with which one reaches the goal region under the optimal
policy from s 2 S �G in stochastic settings. In the deterministic case being discussed, this value must
be 1 or 0.
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is equivalent to using the Floyd-Warshall algorithm to �nd a minimum-cost path through
a weighted graph (Floyd, 1962).

3.2.1 Planning and Search

While value iteration can, in theory, be used for classical planning, it does not take advantage
of the fact that the goal and initial states are known. In particular, it computes the value
and policy assignment for all states at all stages. This can be very wasteful since optimal
actions will be computed for states that cannot be reached from sinit or that cannot possibly
lead to any state g 2 G. It is also problematic when jSj is large, since each iteration of
value iteration requires O(jSjjAj) computations. For this reason dynamic programming
approaches have not been used extensively in AI planning.

The restricted form of the value function, especially the fact that initial and goal states
are given, makes it more advantageous to view planning as a graph-search problem. Unlike
general FOMDPs, where it is generally not known a priori which states are most desirable
with respect to (long-term) value, the well-de�ned set of target states in a classical planning
problem makes search-based algorithms appropriate. This is the approach taken by most
AI planning algorithms.

One way to formulate the problem as a graph search is to make each node of the graph
correspond to a state in S. The initial state and goal states can then be identi�ed, and
the search can proceed either forward or backward through the graph, or in both directions
simultaneously.

In forward search, the initial state is the root of the search tree. A node is then chosen
from the tree's fringe (the set of all leaf nodes), and all feasible actions are applied. Each
action application extends the plan by one step (or one stage) and generates a unique new
successor state, which is a new leaf node in the tree. This node can be pruned if the state it
de�nes is already in the tree. The search ends when a state is identi�ed as a member of the
goal set (in which case a solution plan can be extracted from the tree), or when all branches
have been pruned (in which case no solution plan exists). Forward search attempts to build
a plan from beginning to end, adding actions to the end of the current sequence of actions.
Forward search never considers states that cannot be reached from the sinit.

Backward search can be viewed in several di�erent ways. We could arbitrarily select
some g 2 G as the root of the search tree, and expand the search tree at the fringe by
selecting a state on the fringe and adding to the tree all states such that some action would
cause the system to enter the chosen state. In general, an action can give rise to more than
one predecessor vertex, even if actions are deterministic. A state can again be pruned if it
appears in the search tree already. The search terminates when the initial state is added to
the tree, and a solution plan can again be extracted from the tree. This search is similar
to dynamic-programming-based algorithms for �nding the shortest path through a graph.
The di�erence is that backward search considers only those states at a depth k in the search
tree that can reach the chosen goal state within k steps. Dynamic programming algorithms,
in contrast, visit every state at every stage of the search.

One di�culty with the backward approach as described above is the commitment to
a particular goal state. Of course, this assumption can be relaxed, as an algorithm could
\simultaneously" search for paths to all goal states by adding at the �rst level of the search
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tree any vertex that can reach some g 2 G. We will see in Section 5 that goal regression
can be viewed as doing this, at least implicitly.

It is generally thought that regression (or backward) techniques are more e�ective in
practice than progression (or forward) methods. The reasoning is that the branching factor
in the forward graph, which is the number of actions that can feasibly be applied in a given
state, is substantially larger than the branching factor in the reverse graph, which is the
number of operators that could bring the system into a given state.25 This is especially true
when goal sets are represented by a small set of propositional literals (Section 5). The two
approaches are not mutually exclusive, however: one can mix forward and backward expan-
sions of the underlying problem graph and terminate when a forward path and backward
path meet.

The important thing to observe about these algorithms is that they restrict their atten-
tion to the relevant and reachable states. In forward search, only those states that can be
reached from sinit are ever considered: this can provide bene�t over dynamic programming
methods if few states are reachable, since unreachable states cannot play a role in construct-
ing a successful plan. In backward approaches, similarly, only states lying on some path
to the goal region G are considered, and this can have signi�cant advantages over dynamic
programming if only a fraction of the state space is connected to the goal region.

In contrast, dynamic programming methods (with the exception of asynchronous meth-
ods) must examine the entire state space at every iteration. Of course, the ability to ignore
parts of the state space comes from planning's stringent de�nition of what is relevant: states
in G have positive reward, no other states matter except to the extent they move the agent
closer to the goal, and the choice of action at states unreachable from sinit is not of interest.

While state-based search techniques use knowledge of a speci�c initial state and a speci�c
goal set to constrain the search process, forward search does not exploit knowledge of the
goal set, nor does backward search exploit knowledge of the initial state. The GraphPlan
algorithm (Blum & Furst, 1995) can be viewed as a planning method that integrates the
propagation of forward reachability constraints with backward goal-informed search. We
describe this approach in Section 5. Furthermore, work on partial order planning (POP)
can be viewed as a slightly di�erent approach to this form of search. It too is described
in Section 5, after we discuss feature-based or intensional representations for MDPs and
planning problems.

3.2.2 Decision Trees and Real-time Dynamic Programming

State-based search techniques are not limited to deterministic, goal-oriented domains. Knowl-
edge of the initial state can be exploited in more general MDPs as well, forming the basis of
decision tree search algorithms. Assume we have been given a �nite-horizon FOMDP with
horizon T and initial state sinit. A decision tree rooted at sinit is constructed in much the
same way as a search tree for a deterministic planning problem (French, 1986). Each action
applicable at sinit forms level 1 of the tree. The states s0 that result with positive proba-
bility when any of those actions occur are applied at sinit are placed at level 2, with an arc

25. See Bacchus et al. (1995, 1998) for some recent work that makes the case for progression with good
search control, and Bonet et al. (1997) who argue that progression in deterministic planning is useful
when integrating planning and execution.
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Figure 12: The initial stages of a decision tree for evaluating action choices at sinit. The
value of an action is the expected value of its successor states, while the value
of a state is the maximum of the values of its successor actions (as indicated by
dashed arrows at selected nodes).

labeled with probability Pr(s0ja; sinit) relating s
0 with a. Level 3 has the actions applicable

at the states at level 2, and so on, until the tree is grown to depth 2T , at which point each
branch of the tree is a path consisting of a positive-probability length-T trajectory rooted
at sinit (see Figure 12).

The relevant part of the optimal T -stage value function and the optimal policy can easily
be computed using this tree. We say that value of any node in the tree labeled with an
action is the expected value of its successor states in the tree (using the probabilities labeling
the arcs), while the value of any node in the tree labeled with state s is the sum of R(s) and
the maximum value of its successor actions.26 The rollback procedure, whereby value at the
leaves of the tree are �rst computed and then values at successively higher levels of the tree
are determined using the preceding values, is, in fact, a form of value iteration. The value
of any state s at level 2t is precisely V �T�t(s) and the maximizing actions form the optimal
�nite-horizon policy. This form of value iteration is directed: (T � t)-stage-to-go values
are computed only for states that are reachable from sinit within t steps. In�nite-horizon
problems can be solved in an analogous fashion if one can determine a priori the depth
required (i.e., the number of iterations of value iteration needed) to ensure convergence to
an optimal policy.

Unfortunately, the branching factor for stochastic problems is generally much greater
than that for deterministic problems. More troublesome still is the fact that one must
construct the entire decision tree to be sure that the proper values are computed, and hence
the optimal policy constructed. This stands in contrast with classical planning search,
where attention can be focused on a single branch: if a goal state is reached, the path
constructed determines a satisfactory plan. While worst-case behavior for planning may

require searching the whole tree, decision-tree evaluation is especially problematic because

26. States at level 2T are given value R(s).
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the entire tree must be generated in general to ensure optimal behavior. Furthermore,
in�nite-horizon problems pose the di�culty of determining a su�ciently deep tree.

One way around this di�culty is the use of real time search (Korf, 1990). In particular,
real-time dynamic programming, or RTDP, has been proposed in (Barto et al., 1995) as a
way of approximately solving large MDPs in an online fashion. One can interleave search
with execution of an approximately optimal policy using a form of RTDP similar to decision-
tree evaluation as follows. Imagine the agent �nds itself in a particular state sinit. It can
then build a partial search tree to some depth, perhaps uniformly or perhaps with some
branches expanded more deeply than others. Partial tree construction may be halted due to
time pressure or due to an assessment by the agent that further expansion of the tree may
not be fruitful. When a decision to act must be made, the rollback procedure is applied to
this partial, possibly unevenly expanded decision tree.

Reward values can be used to evaluate the leaves of the tree, but this may o�er an
inaccurate picture of the value of nodes higher in the tree. Heuristic information can be
used to estimate the long-term value of states labeling leaves. As with value iteration, the
deeper the tree, the more accurate the estimated value at the root (generally speaking)
for a �xed heuristic. We will see in Section 5 that structured representations of MDPs can
provide a means to construct such heuristics (Dearden & Boutilier, 1994, 1997). Speci�cally,
with admissible heuristics or upper and lower bounds on the true values of leaf nodes in the
tree, methods such as A* or branch-and-bound search can be used.

A key advantage of integrating search with execution is that the actual outcome of the
action taken can be used to prune from the tree the branches rooted at the unrealized
outcomes. The subtree rooted at the realized state can then be expanded further to make
the next action choice. The algorithm of Hansen and Zilberstein (1998) can be viewed as
a variant of these methods in which stationary policies (i.e., state-action mappings) can be
extracted during the search process.

RTDP is formulated by Barto et al. (1995) more generally as a form of online, asyn-
chronous value iteration. Speci�cally, the values \rolled backed" can be cached and used
as improved heuristic estimates of the value function at the states in question. This tech-
nique is also investigated in (Bonet et al., 1997; Dearden & Boutilier, 1994, 1997; Koenig
& Simmons, 1995), and is closely tied to Korf's (1990) LRTA* algorithm. These value
updates also need not proceed strictly using a decision tree to determine the states; the key
requirement of RTDP is simply that the actual state sinit be one of the states whose value
is updated at each decision-action iteration.

A second way to avoid some of the computational di�culties that arise in large search
spaces is to use sampling methods. These methods sample from the space of possible trajec-
tories and use this sampled information to provide estimates of the values of speci�c courses
of action. This approach is quite common in reinforcement learning (Sutton & Barto, 1998),
where simulation models are often used to generate experience from which a value function
can be learned. In the present context, Kearns, Mansour and Ng (Kearns, Mansour, &
Ng, 1999) have investigated search methods for in�nite-horizon MDPs where the successor
states of any speci�c action are randomly sampled according to the transition distribution.
Thus, rather than expand all successor states, only sampled states are searched. Though
this method is exponential in the \e�ective" horizon (or mixing rate) of the MDP and is
required to expand all actions, the number of states expanded can be less than that required
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by full search, even if the underlying transition graph is not sparse. They are able to pro-
vide polynomial bounds (ignoring action branching and horizon e�ects) on the number of
trajectories that need to be sampled in order to generate approximately optimal behavior
with high probability.

3.3 Summary

We have seen that dynamic programming methods and state-based search methods can
both be used for fully observable and non-observable MDPs, with forward search meth-
ods interpretable as \directed" forms of value iteration. Dynamic programming algorithms
generally require explicit enumeration of the state space at each iteration, while search
techniques enumerate only reachable states; but the branching factor may require that,
at su�cient depth in the search tree, search methods enumerate individual states multiple
times, whereas they are considered only once per stage in dynamic programming. Overcom-
ing this di�culty in search requires the use of cycle-checking and multiple-path-checking
methods.

We note that search techniques can be applied to partially observable problems as well.
One way to do this is to search through the space of belief states (just as dynamic pro-
gramming can be applied to the belief space MDP|see Section 2.10.2). Speci�cally, belief
states play the role of system states and the stochastic e�ects of actions on belief states are
induced by speci�c observation probabilities, since each observation has a distinct, but �xed
e�ect on any belief state. This type of approach has been pursued in (Bonet & Ge�ner,
1998; Koenig & Simmons, 1995).

4. Factored Representations

To this point our discussion of MDPs has used an explicit or extensional representation for
the set of states (and actions) in which states are enumerated directly. In many cases it
is advantageous, from both the representational and computational point of view, to talk
about properties of states or sets of states: the set of possible initial states, the set of
states in which action a can be executed, and so on. It is generally more convenient and
compact to describe sets of states based on certain properties or features than to enumerate
them explicitly. Representations in which descriptions of objects substitute for the objects
themselves are called intensional and are the technique of choice in AI systems.

An intensional representation for planning systems is often built by de�ning a set of
features that are su�cient to describe the state of the dynamic system of interest. In the
example in Figure 2, the state was described by a set of six features: the robot's location, the
lab's tidiness, whether or not mail is present, whether or not the robot has mail, whether or
not there is a pending co�ee request, and whether or not the robot has co�ee. The �rst and
second features can each take one of �ve values, and the last four can each take one of two
values (true or false). An assignment of values to the six features completely de�nes a state;
the state space thus comprises all possible combinations of feature values, with jSj = 400.
Each feature, or factor, is typically assigned a unique symbolic name, as indicated in the
second column of Figure 2. The fundamental tradeo� between extensional and intensional
representations becomes clear in this example. An extensional representation of the co�ee
example views the space of possible states as a single variable that takes on 400 possible
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values, whereas the intensional or factored representation views a state as the cross product
of six variables, each of which takes on substantially fewer values. Generally, the state space
grows exponentially in the number of features required to describe a system.

The fact that the state of a system can be described using a set of features allows one
to adopt factored representations of actions, rewards and other components of an MDP. In
a factored action representation, for instance, one generally describes the e�ect of an action
on speci�c state features rather than on entire states. This often provides considerable rep-
resentational economy. For instance, in the Strips action representation (Fikes & Nilsson,
1971), the state transitions induced by actions are represented implicitly by describing the
e�ects of actions on only those features that change value when the action is executed.
Factored representations can be very compact when individual actions a�ect relatively few
features, or when their e�ects exhibit certain regularities. Similar remarks apply to the
representation of reward functions, observation models, and so on. The regularities that
make factored representations suitable for many planning problems can often be exploited
by planning and decision-making algorithms.

While factored representations have long been used in classical AI planning, similar
representations have also been adopted in the recent use of MDP models within AI. In
this section (Section 4), we focus on the economy of representation a�orded by exploiting
the structure inherent in many planning domains. In the following section (Section 5), we
describe how this structure|when made explicit by the factored representations|can be
exploited computationally in plan and policy construction.

4.1 Factored State Spaces and Markov Chains

We begin by examining structured states, or systems whose state can be described using a
�nite set of state variables whose values change over time.27 To simplify our illustration of
the potential space savings, we assume that these state variables are boolean. If there are
M such variables, then the size of the state space is jSj = N = 2M . For large M , specifying
or representing the dynamics explicitly using state-transition diagrams or N �N matrices
is impractical. Furthermore, representing a reward function as an N -vector, and specifying
the observational probabilities, is similarly infeasible. In Section 4.2, we de�ne a class of
problems in which the dynamics can be represented in O(M) space in many cases. We begin
by considering how to represent Markov chains compactly and then consider incorporating
actions, observations and rewards.

We let a state variable X take on a �nite number of values and let 
X stand for the
set of possible values. We assume that 
X is �nite, though much of what follows can be
applied to countable state and action spaces as well. We say the state space is 
at if it is
speci�ed using one state variable (this variable is denoted S as in the general model, taking
values from S). The state space is factored if there is more than one state variable. A state
is any possible assignment of values to these variables. Letting Xi represent the ith state
variable, the state space is the cross product of the value spaces for the individual state
variables; that is, S = �M

i=1
Xi
. Just as St denotes the state of the process at stage t, we

let Xt
i be the random variable representing the value of the ith state variable at stage t.

27. These variables are often called 
uents in the AI literature (McCarthy & Hayes, 1969). In classical
planning, these are the atomic propositions used to describe the domain.
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A Bayesian network (Pearl, 1988) is a representational framework for compactly repre-
senting a probability distribution in factored form. Although these networks have most typi-
cally been used to represent atemporal problem domains, we can apply the same techniques
to represent Markov chains, encoding the chain's transition probabilities in the network
structure (Dean & Kanazawa, 1989).

Formally, a Bayes net is a directed acyclic graph in which vertices correspond to random
variables and an edge between two variables indicates a direct probabilistic dependency
between them. A network so constructed also re
ects implicit independencies among the
variables. The network must be quanti�ed by specifying a probability for each variable
(vertex) conditioned on all possible values of its immediate parents in the graph. In addition,
the network must include a marginal distribution: an unconditional probability for each
vertex that has no parents. This quanti�cation is captured by associating a conditional

probability table (CPT) with each variable in the network. Together with the independence
assumptions de�ned by the graph, this quanti�cation de�nes a unique joint distribution
over the variables in the network. The probability of any event over this space can then be
computed using algorithms that exploit the independencies represented within the graphical
structure. We refer to Pearl (1988) for details.

Figures 3(a)-(c) (page 7) are special cases of Bayes nets called \temporal" Bayesian
networks. In these networks, vertices in the graph represent the system's state at di�erent
time points and arcs represent dependencies across time points. In these temporal networks,
each vertex's parent is its temporal predecessor, the conditional distributions are transition
probability distributions, and the marginal distributions are distributions over initial states.

The networks in Figure 3 re
ect an extensional representation scheme in which states are
explicitly enumerated, but techniques for building and performing inference in probabilis-
tic temporal networks are designed especially for application to factored representations.
Figure 13 illustrates a two-stage temporal Bayes net (2TBN) describing the state-transition
probabilities associated with the Markov chain induced by the �xed policy of executing
the action CClk (repeatedly moving counterclockwise). In a 2TBN, the set of variables is
partitioned into those corresponding to state variables at a given time (or stage) t and those
corresponding to state variables at time t + 1. Directed arcs indicate probabilistic depen-
dencies between those variables in the Markov chain. Diachronic arcs are those directed
from time t variables to time t + 1 variables, while synchronic arcs are directed between
variables at time t + 1. Figure 13 contains only diachronic arcs; synchronic arcs will be
discussed later in this section.

Given any state at time t, the network induces a unique distribution over states at t+1.
The quanti�cation of the network describes how the state of any particular variable changes
as a function of certain state variables. The lack of a direct arc (or more generally a directed
path if there are synchronic arcs among the t+ 1 variables) from a variable Xt to another
variable Yt+1 means that knowledge of Xt is irrelevant to the prediction of the (immediate,
or one-stage) evolution of variable Y in the Markov process.

Figure 13 shows how compact this representation can be in the best of circumstances, as
many of the potential links between one stage and the next can be omitted. The graphical
representation makes explicit the fact that the policy (i.e., the action CClk) can a�ect only
the state variable Loc, and the exogenous events ArrM, ReqC, and Mess can a�ect only
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Figure 13: A factored 2TBN for the Markov chain induced by moving counterclockwise
(with selected CPTs shown).

the variables M , CR, and Tidy, respectively.28 Furthermore, the dynamics of Loc (and
the other variables) can be described using only knowledge of the state of their parent
variables; for instance, the distribution over Loc at t+1 depends only on the value of Loc at
the previous stage (e.g., if Loct = O, then Loct+1 =M with probability 0:9 and Loct+1 = O

with probability 0:1). Similarly, CR can become true with probability 0:2 (due to a ReqC
event), but once true, cannot become false (under this simple policy); and RHC remains
true (or false) with certainty if it was true (or false) at the previous stage. Finally, the
e�ects on the relevant variables are independent. For any instantiation of the variables at
time t, the distribution over next states can be computed by multiplying the conditional
probabilities of relevant t+ 1 variables.

The ability to omit arcs from the graph based on the locality and independence of action
e�ects has a strong e�ect on the number of parameters that must be supplied to complete
the model. Although the full transition matrix for CClk would be of size 4002 = 160000,
the transition model in Figure 13 requires only 66 parameters.29

The example above shows how 2TBNs exploit independence to represent Markov chains
compactly, but the example is extreme in that there is e�ectively no relationship between the
variables|the chain can be viewed as the product of six independently evolving processes.

28. We show only some of the CPTs for brevity.
29. In fact, we can exploit the fact that probabilities sum to one and leave one entry unspeci�ed per row of

any CPT or explicit transition matrix. In this case, the 2TBN requires only 48 explicit parameters, while
the transition matrix requires 400 � 300 = 159; 600 entries. We generally ignore this fact when comparing
the sizes of representations.
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Figure 14: A 2TBN for the Markov chain induced by moving counterclockwise and deliv-
ering co�ee.
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In general, these \subprocesses" will interact, but still exhibit certain independencies and
regularities that can be exploited by a 2TBN representation. We consider two distinct
Markov chains that exhibit di�erent types of dependencies.

Figure 14 illustrates a 2TBN representing the Markov chain induced by the following
policy: the robot consistently moves counterclockwise unless it is in the o�ce and has
co�ee, in which case it delivers co�ee to the user. Notice that di�erent variables are now
dependent: for instance, predicting the value of RHC at t+ 1 requires knowing the values
of Loc and RHC at t. The CPT for RHC shows that the robot retains co�ee at stage t+ 1
with certainty, if it has it at stage t, in all locations except O (where it executes DelC,
thus losing the co�ee). The variable Loc also depends on the value of RHC. The location
will change as in Figure 13 with one exception: if the robot is in the o�ce with co�ee, the
location remains the same (since the robot does not move, but executes DelC). The e�ect
on the variable CR is explained as follows: if the robot is in the o�ce and delivers co�ee in
its possession, it will ful�ll any outstanding co�ee request. However, the 0:05 chance of CR
remaining true under these conditions indicates a 5% chance of spilling the co�ee.

Even though there are more dependencies (i.e., additional diachronic arcs) in this 2TBN,
it still requires only 118 parameters. Again, the distribution over resulting states is deter-
mined by multiplying the conditional distributions for the individual variables. Even though
the variables are \related," when the state St is known, the variables at time t+1 (Loct+1,
RHCt+1, etc.) are independent. In other words,

Pr(Loct+1; T t+1;CRt+1;RHCt+1;RHMt+1;M t+1jSt) =

Pr(Loct+1jSt) Pr(T t+1jSt) Pr(CRt+1jSt) Pr(RHCt+1jSt) Pr(RHMt+1jSt) Pr(M t+1jSt)(8)

Figure 15 illustrates a 2TBN representing the Markov chain induced by the same policy
as above, but where we assume that the act of moving counterclockwise has a slightly
di�erent e�ect. We now suppose that, when the robot moves from the hallway into some
adjacent location, it has a 0:3 chance of spilling any co�ee it has in its possession: the
fragment of the CPT for RHC in Figure 15 illustrates this possibility. Furthermore, should
the robot be carrying mail whenever it loses co�ee (whether \accidentally" or \intentionally"
via the DelC action), there is a 0:5 chance it will lose the mail. Notice that the e�ects of this
policy on the variables RHC and RHM are correlated: one cannot accurately predict the
probability of RHMt+1 without determining the probability of RHCt+1. This correlation is
modeled by the synchronic arc between RHC and RHM at the t+ 1 slice of the network.

The independence of the t+1 variables given St does not hold in 2TBNs with synchronic
arcs. Determining the probability of a resulting state requires some simple probabilistic
reasoning, for example, application of the chain rule. In this example, we can write

Pr(RHCt+1;RHMt+1jSt) = Pr(RHMt+1jRHCt+1; St) Pr(RHCt+1jSt)

The joint distribution over t + 1 variables given St can then be computed as in Equa-
tion 8 above, with this term replacing the Pr(RHCt+1jSt) Pr(RHMt+1jSt)|while these two
variables are correlated, the remaining variables are independent.

We refer to 2TBNs with no synchronic arcs, like the one in Figure 14, as simple 2TBNs.
General 2TBNs allow synchronic as well as diachronic arcs, as in Figure 15.
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Figure 15: A 2TBN for the Markov chain induced by moving counterclockwise and deliv-
ering co�ee with correlated e�ects.

4.2 Factored Action Representations

Just as we extended Markov chains to account for di�erent actions, we must extend the
2TBN representation to account for the fact that the state transitions are in
uenced by
the agent's choice of action. We discuss a variety of techniques for specifying the transition
matrices that exploit the factored state representation to produce representations that are
more natural and compact than explicit transition matrices.

4.2.1 Implicit-Event Models

We begin with the implicit-event model from Section 2.3 in which the e�ects of actions
and exogenous events are combined in a single transition matrix. We will consider explicit-
event models in Section 4.2.4. As we saw in the previous section, algorithms such as value
and policy iteration require the use of transition models that re
ect the ultimate transition
probabilities, including the e�ects of any exogenous events.

One way to model the dynamics of a fully observable MDP is to represent each action
by a separate 2TBN. The 2TBN shown above in Figure 13 can be seen as a representation
of the action CClk (since the policy inducing the Markov chain in that example consists
of the repeated application of that action alone). The network fragment in Figure 16(a)
illustrates the interesting aspects of the 2TBN for the DelC action including the e�ects of
exogenous events. As above, the robot satis�es an outstanding co�ee request if it delivers
co�ee while it is in the o�ce and has co�ee (with a 0:05 chance of spillage), as shown in the
conditional probability table for CR. The e�ect on RHC can be explained as follows: the
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Figure 16: A factored 2TBN for action DelC (a) and structured CPT representations (b,c).

robot loses the co�ee (to the user or to spillage) if it delivers it in the o�ce; if it attempts
delivery elsewhere, there is a 0:7 chance that a random passerby will take the co�ee from
the robot.

As in the case of Markov chains, the e�ects of actions on di�erent variables can be
correlated, in which case we must introduce synchronic arcs. Such correlations can be
thought of as rami�cations (Baker, 1991; Finger, 1986; Lin & Reiter, 1994).

4.2.2 Structured CPTs

The conditional probability table (CPT) for the node CR in Figure 16(a) has 20 rows, one
for each assignment to its parents. However, the CPT contains a number of regularities.
Intuitively, this re
ects the fact that the co�ee request will be met successfully (i.e., the
variable becomes false) 95% of the time when DelC is executed, if the robot has co�ee and
is in the right location (the user's o�ce). Otherwise, CR remains true if it was true and
becomes true with probability 0:2 if it was not. In other words, there are three distinct cases
to be considered, corresponding to three \rules" governing the (stochastic) e�ect of DelC
on CR. This can be represented more compactly by using a decision tree representation
(with \else" branches to summarize groups of cases involving multivalued variables such
as Loc) like that shown in Figure 16(b), or more compactly still using a decision graph
(Figure 16(c)). In tree- and graph-based representations of CPTs, interior nodes are labeled
by parent variables, edges by values of the variables, and leaves or terminals by distributions
over the child variable's values.30

Decision-tree and decision-graph representations are used to represent actions in fully
observable MDPs in (Boutilier et al., 1995; Hoey, St-Aubin, Hu, & Boutilier, 1999) and

30. When the child is boolean, we label the leaves with only the probability of that variable being true (the
probability of the variable being false is one minus this value).
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are described in detail in (Poole, 1995; Boutilier & Goldszmidt, 1996).31 Intuitively, trees
and graphs embody the rule-like structure present in the family of conditional distributions
represented by the CPT, and in the settings we consider often yield considerable represen-
tational compactness. Rule-based representations have been used directly by Poole (1995,
1997a) in the context of decision processes and can often be more compact than trees (Poole,
1997b). We generically refer to representations of this type as 2TBNs with structured CPTs.

4.2.3 Probabilistic STRIPS Operators

The 2TBN representation can be viewed as oriented toward describing the e�ects of actions
on distinct variables. The CPT for each variable expresses how it (stochastically) changes
(or persists), perhaps as a function of the state of certain other variables. However, it
has long been noted in AI research on planning and reasoning about action that most
actions change the state in limited ways; that is, they a�ect a relatively small number of
variables. One di�culty with variable-oriented representations such as 2TBNs is that one
must explicitly assert that variables una�ected by a speci�c action persist in value (e.g.,
see the CPT for RHC in Figure 13)|this is an instance of the infamous frame problem

(McCarthy & Hayes, 1969).

Another form of representation for actions might be called an outcome-oriented repre-
sentation: one explicitly describes the possible outcomes of an action or the possible joint
e�ects over all variables. This was the idea underlying the Strips representation from
classical planning (Fikes & Nilsson, 1971).

A classical Strips operator is described by a precondition and a set of e�ects. The
former identi�es the set of states in which the action can be executed, and the latter
describes how the input state changes as a result of taking the action. A probabilistic
Strips operator (PSO) (Hanks, 1990; Hanks & McDermott, 1994; Kushmerick et al., 1995)
extends the Strips representation in two ways. First, it allows actions to have di�erent
e�ects depending on context, and second, it recognizes that the e�ects of actions are not
always known with certainty.32

Formally, a PSO consists of a set of mutually exclusive and exhaustive logical formulae,
called contexts, and a stochastic e�ect associated with each context. Intuitively, a con-
text discriminates situations under which an action can have di�ering stochastic e�ects.
A stochastic e�ect is itself a set of change sets|a simple list of variable values|with a
probability attached to each change set, with the requirement that these probabilities sum
to one. The semantics of a stochastic e�ect can be described as follows: when the stochastic
e�ect of an action is applied at state s, the possible resulting states are determined by the
change sets, each occurring with the corresponding probability; the resulting state associ-
ated with a change set is constructed by changing variable values at state s to match those
in the change set, while all unmentioned variables persist in value. Note that since only one

31. The fact that certain direct dependencies among variables in a Bayes net are rendered irrelevant under
speci�c variable assignments has been studied more generally in the guise of context-speci�c independence
(Boutilier, Friedman, Goldszmidt, & Koller, 1996); see (Geiger & Heckerman, 1991; Shimony, 1993) for
related notions.

32. The conditional nature of e�ects is also a feature of a deterministic extension of Strips known as ADL
(Pednault, 1989).
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Figure 17: A PSO representation for the DelC action.
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context can hold in any state s, the transition distribution for the action at any state s is
easily determined.

Figure 17 gives a graphical depiction of the PSO for the DelC action (shown as a 2TBN
in Figure 16). The three contexts :RHC, RHC^Loc(O) and RHC^:Loc(O) are represented
using a decision tree. At the leaf of each branch in the decision tree is the stochastic e�ect
(set of change sets and associated probabilities) determined by the corresponding context.
For example, when RHC^Loc(O) holds, the action has four possible e�ects: the robot loses
the co�ee; it may or may not satisfy the co�ee request (due to the 0:05 chance of spillage);
and mail may or may not arrive. Notice that each outcome is spelled out completely. The
number of outcomes in the other two contexts is rather large due to possible exogenous
events (we discuss this further in Section 4.2.4).33

A key di�erence between PSOs and 2TBNs lies in their treatment of persistence. All
variables that are una�ected by an action must be given CPTs in the 2TBN model, while
such variables are not mentioned at all in the PSO model (e.g., compare the variable Loc in
both representations of DelC). In this way, PSOs can be said to \solve" the frame problem,
since una�ected variables need not be mentioned in an action's description.34

33. To keep Figure 17 manageable, we ignore the e�ect of the exogenous event Mess on variable T .
34. For a discussion of the frame problem in 2TBNs, see (Boutilier & Goldszmidt, 1996).
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Figure 19: An simpli�ed explicit-event model for DelC.

PSOs can provide an e�ective means for representing actions with correlated e�ects.
Recall the description of the CClk action captured in Figure 15, where the robot may
drop its co�ee as it moves from the hallway, and may drop its mail only if it drops the
co�ee. In the 2TBN representation of CClk, one must have both RHCt and RHCt+1 as
parents of RHMt+1: we must model the dependence of RHM on a change in value in the
variable RHC. Figure 18 shows the CClk action in PSO format (for simplicity, we ignore
the occurrence of exogenous events). The PSO representation can o�er an economical
representation of correlated e�ects such as this since the possible outcomes of moving in the
hallway are spelled out explicitly. Speci�cally, the (possible) simultaneous change in values
of the variables in question is made clear.

4.2.4 Explicit-Event Models

Explicit-event models can also be represented using 2TBNs in a somewhat di�erent form.
As in our discussion in Section 2.3, the form taken by explicit-event models depends cru-
cially on one's assumptions about the interplay between the e�ects of the action itself and
exogenous events. However, under certain assumptions even explicit-event models can be
rather concise.

To illustrate, Figure 19 shows the deliver-co�ee action represented as a 2TBN with
exogenous events explicitly represented. The �rst \slice" of the network shows the e�ects of
the action DelC without the presence of exogenous events. The subsequent slices describe
the e�ects of the events ArrM andMess (we use only two events for illustration). Notice the
presence of the extra random variables representing the occurrence of the events in question.
The CPTs for these nodes re
ect the occurrence probabilities for the events under various
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conditions, while the directed arcs from the event variables to state variables indicate the
e�ects of these events. These probabilities do not depend on all state variables in general;
thus, this 2TBN represents the occurrence vectors (see Section 2.3) in a compact form. Also
notice that, in contrast to the event occurrence variables, we do not explicitly represent the
action occurrence as a variable in the network, since we are modeling the e�ect on the
system given that the action was taken.35

This example re
ects the assumptions described in Section 2.3, namely, that events
occur after the action takes place and that event e�ects are commutative, and for this
reason the ordering of the events ArrM and Mess in the network is irrelevant. Under this
model, the system actually passes through two intermediate though not necessarily distinct
states as it goes from stage t to stage t + 1; we use subscripts "1 and "2 to suggest this
process. Of course, as described earlier, not all actions and events can be combined in such a
decomposable way; more complex combination functions can also be modeled using 2TBNs
(for one example, see Boutilier & Puterman, 1995).

4.2.5 Equivalence of Representations

An obvious question one might ask concerns the extent to which certain representations are
inherently more concise than others. Here we focus on the standard implicit-event models,
describing some of the domain features that make the di�erent representations more or less
suitable.

Both 2TBN and PSO representations are oriented toward representing the changes in
the values of the state variables induced by an action; a key distinction lies in the fact that
2TBNs model the in
uence on each variable separately, while the PSO model explicitly
represents complete outcomes. A simple 2TBN|a network with no synchronic arcs|can
be used to represent an action in cases where there are no correlations among the action's
e�ect on di�erent state variables. In the worst case, when the e�ect on each variable
di�ers at each state, each time t + 1 variable must have all time t variables as parents.
If there are no regularities that can be exploited in structured CPT representations, then
such an action requires the speci�cation of O(n2n) parameters (assuming boolean variables),
compared with the 22n entries required by an explicit transition matrix. When the number of
parents of any variable is bounded by k, then we need specify no more than n2k conditional
probabilities. This can be further reduced if the CPTs exhibit structure (e.g., can be
represented concisely in a decision tree). For instance, if the CPT can be captured by the
representation of choice with no more than f(k) entries, where f is a polynomial function of
the number of parents of a variable, then the representation size, O(n � f(k)), is polynomial
in the number of state variables. This is often the case, for instance, in actions where one
of its (stochastic) e�ects on a variable requires that some number of (pre-) conditions hold;
if any of them do not, a di�erent e�ect comes into play.

A PSO representation may not be as concise as a 2TBN when an action has multiple
independent stochastic e�ects. A PSO requires that each possible change list be enumer-
ated with its corresponding probability of occurrence. The number of such changes grows
exponentially with the number of variables a�ected by the action. This fact is evident in

35. Sections 4.2.7 and 4.3 discuss representations that model the choice of action explicitly as a variable in
the network.
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Figure 20: A \factored" PSO representation for the DelC action.

Figure 17, where the impact of exogenous events a�ects a number of variables stochasti-
cally and independently. The problem can arise with respect to \direct" action e�ects, as
well. Consider an action in which a set of 10 unpainted parts is spray painted; each part is
successfully painted with probability 0:9, and these successes are uncorrelated. Ignoring the
complexity of representing di�erent conditions under which the action could take place, a
simple 2TBN can represent such an action with 10 parameters (one success probability per
part). In contrast, a PSO representation might require one to list all 210 distinct change
lists and their associated probabilities. Thus, a PSO representation can be exponentially
larger (in the number of a�ected variables) than a simple 2TBN representation.

Fortunately, if certain variables are a�ected deterministically, these do not cause the
PSO representation to blow up. Furthermore, PSO representations can also be modi�ed
to exploit the independence of an action's e�ects on di�erent state variables (Boutilier &
Dearden, 1994; Dearden & Boutilier, 1997), thus escaping this combinatorial di�culty. For
instance, we might represent the DelC action shown in Figure 17 in the more \factored
form" illustrated in Figure 20 (for simplicity, we show only the e�ect of the action and
the exogenous event ArrM). Much like a 2TBN, we can determine an overall e�ect by
combining the change sets (in the appropriate contexts) and multiplying the corresponding
probabilities.

Simple 2TBNs de�ned over the original set of state variables are not su�cient to rep-
resent all actions.36 Correlated action e�ects require the presence of synchronic arcs. In
the worst case, this means that time t + 1 variables can have up to 2n � 1 parents. In
fact, the acyclicity condition assures that in the worst case, the total number of parents
is
Pn

k=1 2k � 1; thus, we end up specifying O(22n) entries, the same as required by an
explicit transition matrix. However, if the number of parents (whether occurring within
the time slice t or t + 1) can be bounded, or if regularities in the CPTs allow a compact
representation, then 2TBNs can still be pro�tably used.

PSO representations compare more favorably to 2TBNs in cases in which most of an
action's e�ects on di�erent variables are correlated. In this case, PSOs can provide a
somewhat more economical representation of action e�ects, primarily because one needn't
worry about frame conditions. The main advantage of PSOs is that one need not enlist the
aid of probabilistic reasoning procedures to determine the transitions induced by actions
with correlated e�ects. Contrast the explicit speci�cation of outcomes in PSOs with the
type of reasoning required to determine the joint e�ects of an action represented in 2TBN

36. However, Section 4.2.6 discusses certain problem transformations that do render simple 2TBNs su�cient
for any MDP.
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form with synchronic arcs, as described in Section 4.1. Essentially, correlated e�ects are
\compiled" into explicit outcomes in PSOs.

Recent results by Littman (1997) have shown that simple 2TBNs and PSOs can both
be used to represent any action represented as a 2TBN without an exponential blowup
in representation size. This is e�ected by a clever problem transformation in which new
sets of actions and propositional variables are introduced (using either a simple 2TBN or
PSO representation). The structure of the original 2TBN is re
ected in the new planning
problem, incurring no more than a polynomial increase in the size of the input action
descriptions and the description of any policy. Though the resulting policy consists of actions
that do not exist in the underlying domain, extracting the true policy is not di�cult. It
should be noted, however, that while such a representation can automatically be constructed
from a general 2TBN speci�cation, it is unlikely that it could be provided directly, since
the actions and variables in the transformed problem have no \physical" meaning in the
original MDP.

4.2.6 Transformations to Eliminate Synchronic Constraints

The discussion above has assumed that the variables or propositions used in the 2TBN or
PSO action descriptions are the original state variables. However, certain problem trans-
formations can be used to ensure that one can represent any action using simple 2TBNs, as
long as one does not require the original state variables to be used. One such transformation
simply clusters all variables on which some action has a correlated e�ect. A new compound

variable|which takes as values assignments to the clustered variables|can then be used
in the 2TBN, removing the need for synchronic arcs. Of course, this variable will have a
domain size exponential in the number of clustered variables.

Some of the intuitions underlying PSOs can be used to convert general 2TBN action de-
scriptions to simple 2TBN descriptions with explicit \events" dictating the precise outcome
of the action. Intuitively, this event can occur in k di�erent forms, each corresponding to a
di�erent change list induced by the action (or a change list with respect to the variables in
question). As an example, we can convert the \action" description for CClk in Figure 15
into the explicit-event model shown in Figure 21.37 Notice that the \event" takes on values
corresponding to the possible e�ects on the correlated variables RHC and RHM. Speci�-
cally, a denotes the event of the robot escaping the hallway successfully without losing its
cargo, b denotes the event of the robot losing only its co�ee, and c denotes the event of losing
both the co�ee and the mail. In e�ect, the event space represents all possible \combined"
e�ects, obviating the need for synchronic arcs in the network.

4.2.7 Actions as Explicit Nodes in the Network

One di�culty with the 2TBN and PSO approach to action description is that each action
is represented separately, o�ering no opportunity to exploit patterns across actions. For
instance, the fact that location persists in all actions except moving clockwise or counter-
clockwise means that the \frame axiom" is duplicated in the 2TBN for all other actions
(this is not the case for PSOs, of course). In addition, rami�cations (or correlated action

37. While Figure 15 describes a Markov chain induced by a policy, the representation of CClk can easily be
extracted from it.
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Figure 21: An explicit-event model that removes correlations.

e�ects) are duplicated across actions as well. For instance, if a co�ee request occurs (with
probability 0:2) only when the robot ends up in the o�ce, then this correlation is duplicated
across all actions. A more compelling example might be one in which the robot can move
a briefcase to a new location in one of a number of ways. We'd like to capture the fact (or
rami�cation) that the contents of the briefcase move to the same location as the briefcase
regardless of the action that moves the briefcase.

To circumvent this di�culty, we can introduce the choice of action as a \random vari-
able" in the network, conditioning the distribution over state variable transitions on the
value of this variable. Unlike state variables (or event variables in explicit event models),
we do not generally require a distribution over this action variable|the intent is simply
to model schematically the conditional state-transition distributions given any particular
choice of action. This is because the choice of action will be dictated by the decision maker
once a policy is determined. For this reason, anticipating terminology used for in
uence
diagrams (see Section 4.3), we call these nodes decision nodes and depict them in our net-
work diagrams with boxes. Such a variable can take as its value any action available to the
agent.

A 2TBN with an explicit decision node is shown in Figure 22. In this restricted example,
we might imagine the decision node can take one of two values, Clk or CClk. The fact that
the issuance of a co�ee request at t+1 depends on whether the robot successfully moved from
(or remained in) the o�ce is now represented \once" by the arc between Loct+1 and CRt+1,
rather than repeated across multiple action networks. Furthermore, the noisy persistence
of M under both actions is also represented only once (adding the action PUM, however,
undercuts this advantage as we will see when we try to combine actions).

One di�culty with this straightforward use of decision nodes (which is the standard
representation in the in
uence diagram literature) is that adding candidate actions can
cause an explosion in the network's dependency structure. For example, consider the two
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action networks shown in Figure 23(a) and (b). Action a1 makes Y true with probability
0:9 if X is true (having no e�ect otherwise), while a2 makes Y true if Z is true.

Combining these actions in a single network in the obvious way produces the in
uence
diagram shown in Figure 23(c). Notice that Y now has four parent nodes, inheriting the
union of all its parents in the individual networks (plus the action node) and requiring a
CPT with 16 entries for actions a1 and a2 together with eight additional entries for each
action that does not a�ect Y . The individual networks re
ect the fact that Y depends
on X only when a1 is performed and on Z only when a2 is performed. This fact is lost
in the naively constructed in
uence diagram. However, structured CPTs can be used to
recapture this independence and compactness of representation: the tree of Figure 23(d)
captures the distribution much more concisely, requiring only eight entries. This structured
representation also allows us concisely to express that Y persists under all other actions. In
large domains, we expect variables to generally be una�ected by a substantial number of
(perhaps most) actions, thus requiring representations such as this for in
uence diagrams.
See (Boutilier & Goldszmidt, 1996) for a deeper discussion of this issue and its relationship
to the frame problem.

While we provide no distributional information over the action choice, it is not hard to
see that a 2TBN with an explicit decision node can be used to represent the Markov chain
induced by a particular policy in a very natural way. Speci�cally, by adding arcs from state
variables at time t to the decision node, the value of the decision node (i.e., the choice of
action at that point) can be dictated by the prevailing state.38

4.3 In
uence Diagrams

In
uence diagrams (Howard & Matheson, 1984; Shachter, 1986) extend Bayesian networks
to include special decision nodes to represent action choices, and value nodes to represent
the e�ect of action choice on a value function. The presence of decision nodes means that
action choice is treated as a variable under the decision maker's control. Value nodes treat
reward as a variable in
uenced (usually deterministically) by certain state variables.

In
uence diagrams have not typically been associated with the schematic representation
of stationary systems, instead being used as a tool for decision analysts where the sequential
decision problem is carefully handcrafted. This more generic use of in
uence diagrams has
been discussed by Tatman and Shachter (1990). In any event, there is no theory of plan
construction associated with in
uence diagrams: the choice of all possible actions at each
stage must be explicitly encoded in the model. In
uence diagrams are, therefore, usually
used to model �nite-horizon decision problems by explicitly describing the evolution of the
process at each stage in terms of state variables.

As in Section 4.2.7, decision nodes take as values speci�c actions, though the set of
possible actions can be tailored to the particular stage. In addition, an analyst will generally
include at each stage only state variables that are thought relevant to the decision at that
or subsequent stages. Value nodes are also a key feature of in
uence diagrams and are
discussed Section 4.5. Usually, a single value node is speci�ed, with arcs indicating the

38. More generally, a randomized policy can be represented by specifying a distribution over possible actions
conditioned on the state.
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Figure 24: The representation of a reward function in an in
uence diagram.

in
uence of particular state and decision variables (often over multiple stages) on the overall
value function.

In
uence diagrams are typically used to model partially observable problems. An arc
from a state variable to a decision node re
ects the fact that the value of that state variable
is available to the decision maker at the time the action is to be chosen. In other words,
this variable's value forms part of the observation made at time t prior to the action being
selected at time t+1, and the policy constructed can refer to this variable. Once again, this
allows a compact speci�cation of the observation probabilities associated with a system. The
fact that the probability of a given observation depends directly only on certain variables
and not on others can mean that far fewer model parameters are required.

4.4 Factored Reward Representation

We have already noted that it is very common in formulating MDP problems to adopt a
simpli�ed value function: assigning rewards to states and costs to actions, and evaluat-
ing histories by combining these factors according to some simple function like addition.
This simpli�cation alone allows a representation for the value function signi�cantly more
parsimonious than one based on a more complex comparison of complete histories. Even
this representation requires an explicit enumeration of the state and action space, however,
motivating the need for more compact representations for these parameters. Factored rep-
resentations for rewards and action costs can often obviate the need to enumerate state and
action parameters explicitly.

Like an action's e�ect on a particular variable, the reward associated with a state often
depends only on the values of certain features of the state. For example, in our robot
domain, we can associate rewards or penalties with undelivered mail, with unful�lled co�ee
requests and with untidiness in the lab. This reward or penalty is independent of other
variables, and individual rewards can be associated with the groups of states that di�er on
the values of the relevant variables. The relationship between rewards and state variables is
represented in value nodes in in
uence diagrams, represented by the diamond in Figure 24.
The conditional reward table (CRT) for such a node is a table that associates a reward with
every combination of values for its parents in the graph. This table, not shown in Figure 24,
is locally exponential in the number of relevant variables. Although Figure 24 shows the
case of a stationary Markovian reward function, in
uence diagrams can be used to represent
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nonstationary or history-dependent rewards and are often used to represent value functions
for �nite-horizon problems.

Although in the worst case the CRT will take exponential space to store, in many
cases the reward function exhibits structure, allowing it to be represented compactly using
decision trees or graphs (Boutilier et al., 1995), Strips-like tables (Boutilier & Dearden,
1994), or logical rules (Poole, 1995, 1997a). Figure 24 shows a fragment of one possible
decision-tree representation for the reward function used in the running example.

The independence assumptions studied in multiattribute utility theory (Keeney & Rai�a,
1976) provide yet another way in which reward functions can be represented compactly. If
we assume that the component attributes of the reward function make independent contri-
butions to a state's total reward, the individual contributions can be combined functionally.
For instance, we might imagine penalizing states where CR holds with a (partial) reward
of �3, penalizing situations where there is undelivered mail (M _ RHM) with �2, and
penalizing untidiness T (i) with i � 4 (i.e., in proportion to how untidy things are). The
reward for any state can then be determined simply by adding the individual penalties as-
sociated with each feature. The individual component rewards along with the combination
function constitute a compact representation of the reward function. The tree fragment in
Figure 24, which re
ects the additive independent structure just described, is considerably
more complex than a representation that de�nes the (independent) rewards for individual
propositions separately. The use of additive reward functions for MDPs is considered in
(Boutilier, Brafman, & Geib, 1997; Meuleau, Hauskrecht, Kim, Peshkin, Kaelbling, Dean,
& Boutilier, 1998; Singh & Cohn, 1998).

Another example of structured rewards is the goal structure studied in classical planning.
Goals are generally speci�ed by a single proposition (or a set of literals) to be achieved.
As such, they can generally be represented very compactly. Haddawy and Hanks (1998)
explore generalizations of goal-oriented models that permit extensions such as partial goal
satisfaction, yet still admit compact representations.

4.5 Factored Policy and Value Function Representation

The techniques studied so far have been concerned with the input speci�cation of the MDP:
the states, actions, and reward function. The components of a problem's solution|the pol-
icy and optimal value function|are also candidates for compact structured representation.

In the simplest case, that of a stationary policy for a fully observable problem, a policy
must associate an action with every state, nominally requiring a representation of size
O(jSj). The problem is exacerbated for nonstationary policies and POMDPs. For example,
the policy for a �nite-horizon FOMDP with T stages generates a policy of size O(T jSj).
For a �nite-horizon POMDP, each possible observable history of length t < T might require
a di�erent action choice; as many as

PT
k=1 b

k such histories can be generated by a �xed
policy, where b is the maximum number of possible observations one can make following an
action.39

The fact that policies require too much space motivates the need to �nd compact func-
tional representations, and standard techniques like the tree structures discussed above for

39. Other methods of dealing with POMDPs, by conversion to FOMDPs over belief space (see Section 2.10.2),
are more complex still.
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actions and reward functions can be used to represent policies and value functions as well.
Here we focus on stationary policies and value functions for FOMDPs, for which any logical
function representation may be used. For example, Schoppers (1987) uses a Strips-style
representation for universal plans, which are deterministic, plan-like policies. Decision trees
have also been used for policies and value functions (Boutilier et al., 1995; Chapman &
Kaelbling, 1991). An example policy for the robot domain speci�ed with a decision tree is
given in Figure 25. This policy dictates that, for instance, if CR and RHC are true: (a) the
robot deliver the co�ee to the user if it is in the o�ce, and (b) it move toward the o�ce
if it is not in the o�ce, unless (c) there is mail and it is in the mailroom, in which case it
should pickup the mail on its way.

4.6 Summary

In this section we discussed a number of compact factored representations for components of
an MDP. We began by discussing intensional state representations, then temporal Bayesian
networks as a device for representing the system dynamics. Tree-structured conditional
probability tables (CPTs) and probabilistic Strips operators (PSOs) were introduced as an
alternative to transition matrices. Similar tree structures and other logical representations
were introduced for representing reward functions, value functions, and policies.

While these representations can often be used to describe a problem compactly, by
themselves they o�er no guarantee that the problem can be solved e�ectively. In the next
section we explore algorithms that use these factored representations to avoid iterating
explicitly over the entire set of states and actions.

5. Abstraction, Aggregation, and Decomposition Methods

The greatest challenge in using MDPs as the basis for DTP lies in discovering computation-
ally feasible methods for the construction of optimal, approximately optimal or satis�cing
policies. Of course, arbitrary decision problems are intractable|even producing satis�cing
or approximately optimal policies is generally infeasible. However, the previous sections
suggest that many realistic application domains may exhibit considerable structure, and
furthermore that the structure can be modeled explicitly and exploited so that typical
problems can be solved e�ectively. For instance, structure of this type can lead to compact
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factored representations of both input data and output policies, often polynomial-sized with
respect to the number of variables and actions describing the problem. This suggests that
for these compact problem representations, policy construction techniques can be devel-
oped that exploit this structure and are tractable for many commonly occurring problem
instances.

Both the dynamic programming and state-based search techniques described in Sec-
tion 3 exploit structure of a di�erent kind. Value functions that can be decomposed into
state-dependent reward functions, or state-based goal functions, can be tackled by dynamic
programming and regression search, respectively. These algorithms exploit the structure
in decomposable value functions to prevent having to search explicitly through all possible
policies. However, while these algorithms are polynomial in the size of the state space,
the curse of dimensionality makes even these algorithms infeasible for practical problems.
Though compact problem representations aid in the speci�cation of large problems, it is
clear that a large system can be speci�ed compactly only if the representation exploits
\regularities" found in the domain. Recent AI research on DTP has stressed using the
regularities implicit in compact representations to speed up the planning process. These
techniques focus on both optimal and approximately optimal policy construction.

In the following subsection we focus on abstraction and aggregation techniques, espe-
cially those that manipulate factored representations. Roughly, these techniques allow the
explicit or implicit grouping of states that are indistinguishable with respect to certain char-
acteristics (e.g., value or optimal action choice). We refer to a set of states grouped in this
manner as an aggregate or abstract state, or sometimes as a cluster, and assume that the
set of abstract states constitutes a partition of the state space; that is to say, every state is
in exactly one abstract state and the union of all abstract states comprises the entire state
space.40 By grouping similar states, each abstract state can be treated as a single state, thus
alleviating the need to perform computations for each state individually. These techniques
can be used for approximation if the elements of an abstract state are only approximately
indistinguishable (e.g., if the values of those states lie within some small interval).

We then look at the use of problem decomposition techniques in which an MDP is
broken into various pieces, each of which is solved independently; the solutions are then
pieced together or used to guide the search for a global solution. If subprocesses whose
solutions interact minimally are treated as independent, we might expect an approximately
optimal global solution. Furthermore, if the structure of the problem requires a solution
to a particular subproblem only, then the solutions to other subproblems can be ignored
altogether.

Related is the use of reachability analysis to restrict attention to \relevant" regions of
state space. Indeed, reachability analysis and the communicating structure of an MDP
can be used to form certain types of decompositions. Speci�cally, we distinguish serial

decompositions from parallel decompositions.

The result of a serial decomposition can be viewed as a partitioning of the state space
into blocks, each representing a (more or less) independent subprocess to be solved. In
serial decomposition, the relationship between blocks is generally more complicated than
in the case of abstraction or aggregation. In a partition resulting from decomposition, the

40. We might also group states into non-disjoint sets that cover the entire state space. We do not consider
such soft-state aggregation here, but see (Singh, Jaakkola, & Jordan, 1994).
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states within a particular block may behave quite di�erently with respect to (say) value or
dynamics. The important consideration in choosing a decomposition is that it is possible to
represent each block compactly and to compute e�ciently the consequences of moving from
one block to another and, further, that the subproblems corresponding to the subprocesses
can themselves be solved e�ciently.

A parallel decomposition is somewhat more closely related to an abstract MDP. An
MDP is divided into \parallel sub-MDPs" such that each decision or action causes the
state to change within each sub-MDP. Thus, the MDP is the cross product or join of the
sub-MDPs (in contrast to the union, as in serial decomposition). We brie
y discuss several
methods that are based on parallel MDP decomposition.

5.1 Abstraction and Aggregation

One way problem structure can be exploited in policy construction relies on the notion
of aggregation|grouping states that are indistinguishable with respect to certain problem
characteristics. For example, we might group together all states that have the same optimal
action, or that have the same value with respect to the k-stage-to-go value function. These
aggregates can be constructed during the solution of the problem.

In AI, emphasis has generally been placed on a particular form of aggregation, namely
abstraction methods, in which states are aggregated by ignoring certain problem features.
The policy in Figure 25 illustrates this type of abstraction: those states in which CR,
RHC and Loc(O) are true are grouped, and the same action is selected for each such
state. Intuitively, when these three propositions hold, other problem features are ignored
and abstracted away (i.e., they are deemed irrelevant). A decision-tree representation of a
policy or a value function partitions the state space into a distinct cluster for each leaf of
the tree. Other representations (e.g., Strips-like rules) abstract the state space similarly.

It is precisely this type of abstraction that is used in the compact, factored represen-
tations of actions and goals discussed in Section 4. In the 2TBN shown in Figure 16, the
e�ect of the action DelC on the variable CR is given by the CPT for CRt+1; however,
this (stochastic) e�ect is the same at any state for which the parent variables have the
same value. This representation abstracts away other variables, combining states that have
distinct values for the irrelevant (non-parent) variables. Intensional representations often
make it easy to decide which features to ignore at a certain stage of problem solving, and
thus (implicitly) how to aggregate the state space.

There are at least three dimensions along which abstractions of this type can be com-
pared. The �rst is uniformity: a uniform abstraction is one in which variables are deemed
relevant or irrelevant uniformly across the state space, while a nonuniform abstraction al-
lows certain variables to be ignored under certain conditions and not under others. The
distinction is illustrated schematically in Figure 26. The tabular representation of a CPT
can be viewed as a form of uniform abstraction|the e�ect of an action on a variable is
distinguished for all clusters of states that di�er on the value of a parent variable, and is
not distinguished for states that agree on parent variables but disagree on others|while a
decision tree representation of a CPT embodies a nonuniform abstraction.

A second dimension of comparison is accuracy. States are grouped together on the
basis of certain characteristics, and the abstraction is called exact if all states within a
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Figure 26: Di�erent forms of state space abstraction.

cluster agree on this characteristic. A non-exact abstraction is called approximate. This
is illustrated schematically in Figure 26: the exact abstraction groups together states that
agree on the value assigned to them by a value function, while the approximate abstraction
allows states to be grouped together that di�er in value. The extent to which these states
di�er is often used as a measure of the quality of an approximate abstraction.

A third dimension is adaptivity. Technically, this is a property not of an abstraction
itself, but of how abstractions are used by a particular algorithm. An adaptive abstraction
technique is one in which the abstraction can change during the course of computation, while
a �xed abstraction scheme groups together states once and for all (again, see Figure 26).
For example, one can imagine using an abstraction in the representation of a value function
V k, then revising this abstraction to represent V k+1 more accurately.

Abstraction and aggregation techniques have been studied in the OR literature on
MDPs. Bertsekas and Castanon (1989) develop an adaptive aggregation (as opposed to
abstraction) technique. The proposed method operates on 
at state spaces, however, and
therefore does not exploit implicit structure in the state space itself. An adaptive, uniform
abstraction method is proposed by Schweitzer et al. (1985) for solving stochastic queu-
ing models. These methods, often referred to as aggregation-disaggregation procedures, are
typically used to accelerate the calculation of the value function for a �xed policy. Value-
function calculation requires computational e�ort at least quadratic in the size of the state
space, which is impractical for very large state spaces. In aggregation-disaggregation pro-
cedures, the states are �rst aggregated into clusters. A system of equations is then solved,
or a series of summations performed, requiring e�ort no more than cubic in the number of
clusters. Next, a disaggregation step is performed for each cluster, requiring e�ort at least
linear in the size of the cluster. The net result is that the total work, while at least linear
in the total number of states, is at worst cubic in the size of the largest cluster.

In DTP it is generally assumed that computations even linear in the size of the full
state space are infeasible. Therefore it is important to develop methods that perform
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work polynomial in the log of the size of the state space. Not all problems are amenable
to such reductions without some (perhaps unacceptable) sacri�ce in solution quality. In
the following section, we review some recent techniques for DTP aimed at achieving such
reductions.

5.1.1 Goal Regression and Classical Planning

In Section 3.2 we introduced the general technique of regression (or backward) search
through state space to solve classical planning problems, those involving deterministic ac-
tions and performance criteria speci�ed in terms of reaching a goal-satisfying state. One
di�culty is that such a search requires that any branch of the search tree lead to a particular
goal state. This commitment to a goal state may have to be retracted (by backtracking
the search process) if no sequence of actions can lead to that particular goal state from the
initial state. However, a goal is usually speci�ed as a set of literals G representing a set of
states, where reaching any state in G is equally suitable|it may, therefore, be wasteful to
restrict the search to �nding a plan that reaches a particular element of G.

Goal regression is an abstraction technique that avoids the problem of choosing a partic-
ular goal state to pursue. A regression planner works by searching for a sequence of actions
as follows: the current set of subgoals SG0 is initialized as G. At each iteration an action
� is selected that achieves one or more of the current subgoals of SGi without deleting
the others, and whose preconditions do not con
ict with the \unachieved subgoals." The
subgoals so achieved are removed from the current subgoal set and replaced by a formula
representing the context under which � will achieve the current subgoals, forming SGi+1.
This process is known as regressing SGi through �. The process is repeated until one of
two conditions holds: (a) the current subgoal set is satis�ed by the initial state, in which
case the current sequence of actions so selected is a successful plan; or (b) no action can be
applied, in which case the current sequence cannot be extended into a successful plan and
some earlier action choice must be reconsidered.

Example 5.1 As an example, consider the simpli�ed version of the robot planning exam-
ple used in Section 3.1 to illustrate value iteration: the robot has only four actions
PUM, GetC, DelC and DelM, which we make deterministic in the obvious way. The
initial state sinit is hCR;M;RHC;RHMi and the goal set G is fCR;Mg. Regress-
ing G through DelM results in SG1 = fCR;M;RHMg. Regressing SG1 through
DelC results in SG2 = fRHC;M;RHMg. Regressing SG2 through PUM results in
SG3 = fRHC;Mg. Regressing SG3 through GetC results in SG4 = fMg. Note that
sinit 2 SG4, so the sequence of actions GetC, PUM, DelC, DelM will successfully reach
a goal state. 2

To see how this algorithm implements a form of abstraction, �rst note that the goal
itself provides an initial partition of the state space, dividing it into one set of states in
which the goal is satis�ed (G) and a second set in which it is not (G). Viewed as a partition
of a zero-stage-to-go value function, G represents those states whose value is positive while
G represents those states whose value is zero.

Every regression step can be thought of as revising this partition. When the planning
algorithm attempts to satisfy the current subgoal set SGi by applying action �, it uses
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Figure 27: An example of goal regression.

regression to compute the (largest) set of states such that, after executing �, all subgoals
are satis�ed. In particular, the state space is repartitioned into two abstract states: SGi+1

and SGi+1. In this way, the abstraction mechanism implemented by goal regression should
be considered adaptive. This can be viewed as an (i + 1)-stage value function: any state
satisfying SGi+1 can reach a goal state in i+1 steps using the action sequence that produced
SGi+1.

41 The regression process can be stopped when the initial state is a member of the
abstract state SGi+1. Figure 27 illustrates the repartitioning of the state space into the
di�erent regions SGi+1 for each of the steps in the example above.

While regression produces a compact representation of something like a value function
(as in our discussion of deterministic, goal-based dynamic programming in Section 3.2), the
analogy is not exact in that the regions produced by regression record only the property of
goal reachability contingent on a particular choice of action or action sequence.

Standard dynamic programming methods can be implemented in a structured way by
simply noticing that a number of di�erent regions can be produced at the ith iteration
by considering all actions that can be regressed at that stage. The union of all of these
regressions form the states that have positive values in Vi, thus making the representation of
the i-stage-to-go value function exact. Notice that each iteration is now more costly, since
regression through all actions must be attempted, but this approach obviates the need for
backtracking and can ensure that a shortest plan is found. Standard regression does not
provide such guarantees without commitment to a particular search strategy (e.g., breadth-
�rst). This use of dynamic programming using Strips action descriptions forms the basic
idea of Schoppers's universal planning method (Schoppers, 1987).

Another general technique for solving classical planning problems is partial order plan-
ning (POP) (Chapman, 1987; Sacerdoti, 1975), embodied in such popular planning algo-
rithms as SNLP (McAllester & Rosenblitt, 1991) and UCPOP (Penberthy & Weld, 1992).42

The main motivation for the least-commitment approach comes from the realization that
regression techniques are incrementally building a plan from the end to the beginning (in
the temporal dimension). Thus, each iteration must commit to inserting a step last in the
plan.

In many cases it can be determined that a particular step must appear somewhere in the
plan, but not necessarily as the last step in the plan; and, indeed, in many cases the step

41. It is not the case, however, that states in SGi+1 cannot reach the goal region in i + 1 steps. It is only
the case that they cannot do so using the speci�c sequence of actions chosen so far.

42. This type of planning is also sometimes called nonlinear or least-commitment planning. See Weld's
(1994) survey for a nice overview.
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under consideration cannot appear last, but this fact cannot be recognized until later choices
reveal an inconsistency. In these cases, a regression algorithm will prematurely commit to
the incorrect ordering and will eventually have to backtrack over that choice. For example,
suppose in the problem scenario above that the robot can hold only one item at a time,
co�ee or mail. Picking up mail causes the robot to spill any co�ee in its possession, and
similarly grasping the co�ee makes it drop the mail. The plan generated by regression would
no longer be valid: once the �rst two actions (DelC and DelM) have been inserted into the
plan, no action can be added to achieve RHC or RHM without making the other one false;
the search for a plan would have to backtrack. Ultimately it would be discovered that no
successful plan can end with these two actions performed in sequence.

Partial-order planning algorithms proceed much like regression algorithms, choosing
actions to achieve unachieved subgoals and using regression to determine new subgoals,
but leaving actions unordered to whatever extent possible. Strictly speaking, subgoal sets
aren't regressed; rather, each unachieved goal or action precondition is addressed separately,
and actions are ordered relative to one another only if one action threatens to negate the
desired e�ect of another. In the example above, the algorithm might �rst place actions
DelC and DelM into the plan, but leave them unordered. PUM can be added to the plan
to achieve the requirement RHM of DelM; it is ordered before DelM but is still unordered
with respect to DelC. When GetC is �nally added to the plan so as to achieve RHC for
action DelC, two threats arise. First, GetC threatens the desired e�ect RHM of PUM. This
can be resolved by ordering GetC before PUM or after DelM. Assume the former ordering
is chosen. Second, PUM threatens the desired e�ect RHC of GetC. This threat can also
be resolved by placing PUM before GetC or after DelC; since the �rst threat was resolved
by ordering GetC before PUM, the latter ordering is the only consistent one. The result
is the plan GetC, DelC, PUM, DelM. No backtracking was required to generate the plan,
because the actions were initially unordered, and orderings were introduced only when the
discovery of threats required them.

In terms of abstraction, any incomplete, partially ordered plan that is threat-free,
but perhaps has certain \open conditions" (unachieved preconditions or subgoals), can be
viewed in much the same way as a partially completed regression plan: any state satisfying
the open conditions can reach a goal state by executing any total ordering of the plan's
actions consistent with current set of ordering constraints. See (Kambhampati, 1997) for a
framework that uni�es various approaches to solving classical plan-generation problems.

While techniques relying on regression have been studied extensively in the deterministic
setting, they have only recently been applied to probabilistic unobservable (Kushmerick
et al., 1995) and partially observable (Draper, Hanks, & Weld, 1994b) domains. For the
most part, these techniques assume a goal-based performance criterion and attempt to
construct plans whose probability of reaching a goal state exceeds some threshold. These
augment standard POP methods with techniques for evaluating a plan's probability of
achieving the goal, and techniques for improving this probability by adding further structure
to the plan. In the next section, we consider how to use regression-related techniques to
solve MDPs with performance criteria more general than goals.
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5.1.2 Stochastic Dynamic Programming with Structured Representations

A key idea underlying propositional goal regression|that one need only regress the rele-
vant propositions through an action|can be extended to stochastic dynamic programming
methods, like value iteration and policy iteration, and used to solve general MDPs. There
are, however, two key di�culties to overcome: the lack of a speci�c goal region and the
uncertainty associated with action e�ects.

Instead of viewing the state space as partitioned into goal and non-goal clusters, we
consider grouping states according to their expected values. Ideally, we might want to
group states according to their value with respect to the optimal policy. Here we consider
a somewhat less di�cult task, that of grouping states according to their value with respect
to a �xed policy. This is essentially the task performed by the policy evaluation step in
policy iteration, and the same insights can be used to construct optimal policies.

For a �xed policy, we want to group states that have the same value under that policy.
Generalizing the goal versus non-goal distinction, we begin with a partition that groups
states according their immediate rewards. Then, using an analogue of regression developed
for the stochastic case, we reason backward to construct a new partition in which states
are grouped according to their value with respect to the one-stage-to-go value function. We
iterate in this manner so that on the kth iteration we produce a new partition that groups
states according the k-stage-to-go value function.

On each iteration, we perform work polynomial in the number of abstract states (and
the size of the MDP representation) and, if we are lucky, the total number of abstract states
will be bounded by some logarithmic factor of the size of the state space. To implement this
scheme e�ectively, we have to perform operations like regression without ever enumerating
the set of all states, and this is where the structured representations for state-transition,
value, and policy functions play a role.

For FOMDPs, approaches of this type are taken in (Boutilier, 1997; Boutilier & Dear-
den, 1996; Boutilier et al., 1995; Boutilier, Dearden, & Goldszmidt, 1999; Dietterich &
Flann, 1995; Hoey et al., 1999). We illustrate the basic intuitions behind this approach
by describing how value iteration for discounted in�nite-horizon FOMDPs might work. We
assume that the MDP is speci�ed using a compact representation of the reward function
(such as a decision tree) and actions (such as 2TBNs).

In value iteration, we produce a sequence of value functions V0; V1; � � � ; Vn, each Vk
representing the utility of the optimal k-stage policy. Our aim is to produce a compact
representation of each value function and, using Vn for some suitable n, produce a compact
representation of the optimal stationary policy. Given a compact representation of the
reward function R, it is clear that this constitutes a compact representation of V0. As
usual, we think of each leaf of the tree as a cluster of states having identical utility. To
produce V1 in compact form, we can proceed in two phases.

Each branch of the tree for V0 provides an intensional description|namely, the con-
junction of variable values labeling the branch|of an abstract state, or region, comprising
states with identical value with respect to the initial value function V0. For any determin-
istic action �, we can perform a regression step using this description to determine the
conditions under which, should we perform �, we would end up in this cluster. This would,
furthermore, determine a region of the state space containing states of identical future value
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Figure 28: An example action.

with respect to the execution of � with one stage to go.43 Unfortunately, nondeterministic
actions cannot be handled in quite this way: at any given state, the action might lead to
several di�erent regions of V0 with non-zero probability. However, for each leaf in the tree
representing V0 (i.e., for each region of V0), we can regress the conjunction X describing
that region through action � to produce the conditions under which X becomes true or
false with a speci�ed probability. In other words, instead of regressing in the standard fash-
ion to determine the conditions under which X becomes true, we produce a set of distinct
conditions under which X becomes true with di�erent probabilities. By piecing together
the regions produced for the di�erent labels in the description of V0, we can construct a
set of regions such that each state in a given region: (a) transitions (under action �) to a
particular part of V0 with identical probability; and hence (b) has identical expected future
value (Boutilier et al., 1995). We can view this as a generalization of propositional goal
regression suitable for decision-theoretic problems.

Example 5.2 To illustrate, consider the example action a shown in Figure 28 and the value
function V 0 shown to the left of Figure 29. In order to generate the set of regions
consisting of states whose future value (w.r.t. V 0) under a is identical, we proceed in
two steps (see Figure 29). We �rst determine the conditions under which a has a �xed
probability of making Y true (hence we have a �xed probability of moving to the left
or right subtree of V 0). These conditions are given by the tree representing the CPT
for node Y , which makes up the �rst portion of the tree representing V 1|see Step 1
of Figure 29. Notice that this tree has leaves labeled with the probability of making
Y true or (implicitly) false.

If a makes Y true, then we know that its future value (i.e., value with zero stages
to go) is 8.1; but if Y becomes false, we need to know whether a makes Z true (to

43. We ignore immediate reward and cost distinctions within the region so produced in our description;
recall that the value of performing � at any state s is given by R(s), C(�; s) and expected future value.
We simply focus on abstract states whose elements have identical future expected value. Di�erences in
immediate reward and cost can be added after the fact.
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Figure 29: An iteration of decision-theoretic regression. Step 1 produces the portion of the
tree with dashed lines, while Step 2 produces the portion with dotted lines.

determine whether the future value is 0 or 9:0). The probability with which Z becomes
true is given by the tree representing the CPT for node Z. In Step 2 in Figure 29,
the conditions in that CPT are conjoined to the conditions required for predicting
Y 's probability (by \grafting" the tree for Z to the tree for Y given by the �rst step).
This grafting is slightly di�erent at each of the three leaves of the tree for Y : (a) the
full tree for Z is attached to the leaf X = t; (b) the tree for Z is simpli�ed where it is
attached to to the leaf X = f ^ Y = f by removal of the redundant test on variable
Y ; (c) notice that there is no need to attach the tree for Z to the leaf X = f ^ Y = t,
since a makes Y true with probability 1 under those conditions (and Z is relevant to
the determination of V 0 only when Y is false).

At each of the leaves of the newly formed tree we have both Pr(Y ) and Pr(Z). Each of
these joint distributions over Y and Z (the e�ect of a and these variables is indepen-
dent by the semantics of the network) tells us the probability of having Y and Z true
with zero stages to go given that the conditions labeling the appropriate branch of the
tree hold with one stage to go. In other words, the new tree uniquely determines, for
any state with one stage remaining, the probability of making any of the conditions
labeling the branches of V 0 true. The computation of expected future value obtained
by performing a with one stage to go can then be placed at the leaves of this tree by
taking expectation over the values at the leaves of V 0. 2

The new set of regions produced this way describes the function Q�
1 , where Q

�
1 (s) is the

value associated with performing � at state s with one stage to go and acting optimally
thereafter. These functions (for each action �) can be pieced together (i.e., \maxed"|see
Section 3.1) to determine V1. Of course, the process can be repeated some number of times
to produce Vn for some suitable n, as well as the optimal policy with respect to Vn.

This basic technique can be used in a number of di�erent ways. Dietterich and Flann
(1995) propose ideas similar to these, but restrict attention to MDPs with goal regions
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and deterministic actions (represented using Strips operators), thus rendering true goal-
regression techniques directly applicable.44 Boutilier et al. (1995) develop a version of
modi�ed policy iteration to produce tree-structured policies and value functions, while
Boutilier and Dearden (1996) develop the version of value iteration described above. These
algorithms are extended to deal with correlations in action e�ects (i.e., synchronic arcs in the
2TBNs) in (Boutilier, 1997). These abstraction schemes can be categorized as nonuniform,
exact and adaptive.

The utility of such exact abstraction techniques has not been tested on real-world prob-
lems to date. In (Boutilier et al., 1999), results on a series of abstract process-planning
examples are reported, and the scheme is shown to be very useful, especially for larger
problems. For example, in one speci�c problem with 1.7 million states, the tree repre-
sentation of the value function has only 40,000 leaves, indicating a tremendous amount of
regularity in the value function. Schemes like this exploit such regularity to solve problems
more quickly (in this example, in much less than half the time required by modi�ed pol-
icy iteration) and with much lower memory demands. However, these schemes do involve
substantial overhead in tree construction, and for smaller problems with little regularity,
the overhead is not repaid in time savings (simple vector-matrix representations methods
are faster), though they still generally provide substantial memory savings. What might be
viewed as best- and worst-case behavior is also described in (Boutilier et al., 1999). In a
series of \linear" examples (i.e., problems with value functions that can be represented with
trees whose size is linear in the number of problem variables), the tree-based scheme solves
problems many orders of magnitude faster than classical state-based techniques. In con-
trast, problems with exponentially-many distinct values are also tested (i.e., with a distinct
value at each state): here tree-construction methods are required to construct a complete
decision tree in addition to performing the same number of expected value and maximization
computations as classical methods. In this worst case, tree-construction overhead makes
the algorithm run about 100 times slower than standard modi�ed policy iteration.

In (Hoey et al., 1999), a similar algorithm is described that uses algebraic decision

diagrams (ADDs) (Bahar, Frohm, Gaona, Hachtel, Macii, Pardo, & Somenzi, 1993) rather
than trees. ADDs are a simple generalization of boolean decision diagrams (BDDs) (Bryant,
1986) that allow terminal nodes to be labeled with real values instead of just boolean values.
Essentially, ADD-based algorithms are similar to the tree-based algorithms except that
isomorphic subtrees can be shared. This lets ADDs provide more compact representations
of certain types of value functions. Highly optimized ADD manipulation and evaluation
software developed in the veri�cation community can also be applied to solving MDPs.
Initial results provided in (Hoey et al., 1999) are encouraging, showing considerable savings
over tree-based algorithms on the same problems. For example, the ADD algorithm applied
to the 1.7-million-state example described above revealed the value function to have only
178 distinct values (cf. the 40,000 tree leaves required) and produced an ADD description
of the value function with less than 2200 internal nodes. It also solved the same problem
in seven minutes, about 40 times faster than earlier reported timing results using decision
trees (though some of this improvement was due to the use of optimized ADD software
packages). Similar results obtain with other problems (problems of up to 268 million states

44. Dietterich and Flann (1995) also describe their work in the context of reinforcement learning rather than
as a method for solving MDPs directly.
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were solved in about four hours). Most encouraging is the fact that on the worst-case
(exponential) examples, the overhead associated with using ADDs|compared to classical,
vector-based methods|is much less than with trees (about a factor of 20 compared to \
at"
modi�ed policy iteration with 12 state variables), and lessens as problems become larger.
Like tree-based algorithms, these methods have yet to be applied to real-world problems.

With these exact abstraction schemes it is clear that, while in some examples the result-
ing policies and value functions may be compact, in others the set of regions may get very
large (even reaching the level of individual states Boutilier et al., 1995), thus precluding
any computational savings. Boutilier and Dearden (1996) develop an approximation scheme
that exploits the tree-structured nature of the value functions produced. At each stage k,
the value function Vk can be pruned to produce a smaller, less accurate tree that approxi-
mates Vk. Speci�cally, approximate value functions are represented using trees whose leaves
are labeled with an upper and lower bound on the value function in that region; decision-
theoretic regression is performed on these bounds. Certain subtrees of the value tree can
be pruned when leaves of the subtree are very close in value or when the tree is too large
given computational constraints. This scheme is nonuniform, approximate and adaptive.
This approximation scheme can be tailored to provide (roughly) the most accurate value
function of a given maximum tree size, or the smallest value function (with respect to tree
size) of some given minimum accuracy. Results reported in (Boutilier & Dearden, 1996)
show that approximation on a small set of examples (including the worst-case examples for
tree-based algorithms) allows substantial reduction in computational cost. For instance, in
a 10-variable worst-case example, a small amount of pruning introduced an average error of
only 0.5% but reduced computation time by a factor of 50. More aggressive pruning tends
to increase error and decrease computation time very rapidly; making appropriate tradeo�s
in these two dimensions is still to be addressed. This method too remains to be tested and
evaluated on realistic problems.

Structured representations and solution algorithms can be applied to problems other
than FOMDPs. Methods for solving in
uence diagrams (Shachter, 1986) exploit structure
in a natural way; Tatman and Shachter (1990) explore the connection between in
uence dia-
grams and FOMDPs and the relationship between in
uence diagram solution techniques and
dynamic programming. Boutilier and Poole (1996) show how classic history-independent
methods for solving POMDPs, based on conversion to a FOMDP with belief states, can ex-
ploit the types of structured representations described here. However, exploiting structured
representations of POMDPs remains to be explored in depth.

5.1.3 Abstract Plans

One of the di�culties with the adaptive abstraction schemes suggested above is the fact
that di�erent abstractions must be constructed repeatedly, incurring substantial compu-
tational overhead. If this overhead is compensated by the savings obtained during policy
construction|e.g., by reducing the number of backups|then it is not problematic. But in
many cases the savings can be dominated by the time and space required to generate the
abstractions, and thus motivates the development of cheaper but less accurate approximate
clustering schemes.
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Another way to reduce this overhead is to adopt a �xed abstraction scheme so that
only one abstraction is ever produced. This approach has been adopted in classical plan-
ning in hierarchical or abstraction-based planners, pioneered by Sacerdoti's AbStrips sys-
tem (Sacerdoti, 1974). A similar form of abstraction is studied by Knoblock (1993) (see also
Knoblock, Tenenberg, & Yang, 1991). In this work, variables (in this case propositional) are
ranked according to criticality (roughly, how important such variables are to the solution
of the planning problem) and an abstraction is constructed by deleting from the problem
description a set of propositions of low criticality. A solution to this abstract problem is a
plan that achieves the elements of the original goal that have not been deleted. However,
preconditions and e�ects of actions that have been deleted are not accounted for in this so-
lution, so it might not be a solution to the original problem. Even so, the abstract solution
can be used to restrict search for a solution in the underlying concrete space. Very often
hierarchies of more and more re�ned abstractions are used and propositions are introduced
back into the domain in stages.

This form of abstraction is uniform (propositions are deleted uniformly) and �xed. Since
the abstract solution need not be a solution to the problem, we might be tempted to view
it as an approximate abstraction method. However, it is best not to think of the abstract
plan as a solution at all, rather as a form of heuristic information that can help solve the
true problem more quickly.

The intuitions underlying Knoblock's scheme are applied to DTP by Boutilier and Dear-
den (1994, 1997): variables are ranked according to their degree of in
uence on the reward
function and a subset of the most important variables is deemed relevant. Once this subset
is determined, those variables that in
uence the relevant variables through the e�ects of
actions (which can be determined easily using Strips or 2TBN action descriptions) are
also deemed relevant, and so on. All remaining variables are deemed irrelevant and are
deleted from the description of the problem (both action and reward descriptions). This
leaves an abstract MDP with a smaller state space (i.e., fewer variables) that can be solved
by standard methods. Recall that the state space reduction is exponential in the number of
variables removed. We can view this method as an uniform �xed approximate abstraction
scheme. Unlike the output of classical abstraction methods, the abstract policy produced
can be implemented and has a value. The degree to which the optimal abstract policy and
the true optimal policy di�er in value can be bounded a priori once the abstraction is �xed.

Example 5.3 As a simple illustration, suppose that the reward for satisfying co�ee requests
(or penalty for not satisfying them) is substantially greater than that for keeping the
lab tidy or for delivering mail. Suppose that time pressure requires our agent to focus
on a speci�c subset of objectives in order to produce a small abstract state space. In
this case, of the four reward-laden variables in our problem (see Figure 24), only CR

will be judged to be important. When the action descriptions are used to determine
the variables that can (directly or indirectly) a�ect the probability of achieving CR,
only CR, RHC and Loc will be deemed relevant, allowing T , M , and RHM to be
ignored. The state space is thus reduced from size 400 to size 20. In addition, several
of the action descriptions (e.g., Tidy) become trivial and can be deleted. 2
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The advantage of these abstractions is that they are easily computed and incur little
overhead. The disadvantages are that the uniform nature of such abstractions is restrictive,
and the relevant \reward variables" are determined before the policy is constructed and
without knowledge of the agent's ability to control these variables. As a result, important
variables|those that have a large impact on reward|but over which the agent has no
control, may be taken into account, while less important variables that the agent can actually
in
uence are ignored. However, a series of such abstractions can be used that take into
account objectives of decreasing importance, and the a posteriori most valuable objectives
can be dealt with once risk and controllability are taken into account (Boutilier et al.,
1997). The policies generated at more abstract levels can also be used to \seed" value or
policy iteration at less abstract levels, in certain cases reducing the time to convergence
(Dearden & Boutilier, 1997). It has also been suggested (Dearden & Boutilier, 1994, 1997)
that the abstract value function be used as a heuristic in an online search for policies that
improve the abstract policy so constructed, as discussed in Section 3.2.2. Thus, the error
in the approximate value function is overcome to some extent by search, and the heuristic
function can be improved by asynchronous updates.

A di�erent use of abstraction is adopted in the DRIPS planner (Haddawy & Suwandi,
1994; Haddawy & Doan, 1994). Actions can be abstracted by collapsing \branches," or pos-
sible outcomes, and maintaining probabilistic intervals over the abstract, disjunctive e�ects.
Actions are also combined in an decomposition hierarchy, much like those in hierarchical
task networks. Planning is done by evaluating abstract plans in the decomposition net-
work, producing ranges of utility for the possible instantiations of those plans, and re�ning
only those plans that are possibly optimal. The use of task networks means that search is
restricted to �nite-horizon, open-loop plans with action choice restricted to possible re�ne-
ments of the network. Such task networks o�er a useful way to encode a priori heuristic
knowledge about the structure of good plans.

5.1.4 Model Minimization and Reduction Methods

The abstraction techniques de�ned above can be recast in terms of minimizing a stochastic
automaton, providing a unifying view of the di�erent methods and o�ering new insights
into the abstraction process (Dean & Givan, 1997). From automata theory we know that
for any given �nite-state machineM recognizing a language L there exists a unique minimal
�nite-state machine M 0 that also recognizes L. It could be that M =M 0, but it might also
be that M 0 is exponentially smaller than M . This minimal machine, called the minimal

model for the language L, captures every relevant aspect of M and so the machines are
said to be equivalent. We can de�ne similar notions of equivalence for MDPs. Since we are
primarily concerned with planning, it is important that equivalent MDPs agree on the value
functions for all policies. From a practical standpoint, it may not be necessary to �nd the
minimal model if we can �nd a reduced model that is su�ciently small but still equivalent.

We apply the idea of model minimization (or model reduction) to planning as follows:
we begin by using an algorithm that takes as input an implicit MDP model in factored form
and produces (if we are lucky) an explicit, reduced model whose size is within a polynomial
factor of the size of the factored representation. We then use our favorite state-based
dynamic programming algorithms to solve the explicit model.
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We can think of the dynamic programming techniques that rely on structured representa-
tions discussed earlier as operating on a reduced model without ever explicitly constructing
that model. In some cases, building the reduced model once and for all may be appropriate;
in other cases, one might save considerable e�ort by explicitly constructing only those parts
of the reduced model that are absolutely necessary.

There are some potential computational problems with the model-minimization tech-
niques sketched above. A small minimal model may exist, but it may be hard to �nd.
Instead, we might look for a reduced model that is easier to �nd but not necessarily mini-
mal. This too could fail, in which case we might look for a model small enough to be useful
but only approximately equivalent to the original factored model. We have to be careful
what we mean by \approximate," but intuitively two MDPs are approximately equivalent
if the corresponding optimal value functions are within some small factor of one another.

In order to be practical, MDP model reduction schemes operate directly on the implicit
or factored representation of the original MDP. Lee and Yannakakis (1992) call this online
model minimization. Online model minimization starts with an initial partition of the states.
Minimization then iteratively re�nes the partition by splitting clusters into smaller clusters.
A cluster is split if and only if the states in the cluster behave di�erently with respect to
transitions to states in the same or other clusters. If this local property is satis�ed by all
clusters in a given partition, then the model consisting of aggregate states that correspond
to the clusters of this partition is equivalent to the original model. In addition, if the
initial partition and the method of splitting clusters satisfy certain properties,45 then we
are guaranteed to �nd the minimal model. In the case of MDP reduction, the initial partition
groups together states that have the same reward, or nearly the same reward in the case of
approximation methods.

The clusters of the partitions manipulated by online model reduction methods are rep-
resented intensionally as formulas involving the state variables. For instance, the formula
RHC ^Loc(M) represents the set of all states such that the robot has co�ee and is located
in the mail room. The operations performed on these clusters require conjoining, comple-
menting, simplifying, and checking for satis�ability. In the worst case, these operations are
intractable, and so the successful application of these methods depends critically on the
problem and the way in which it is represented. We illustrate the basic idea on a simple
example.

Example 5.4 Figure 30 depicts a simple version of our running example with a single
action. There are three boolean state variables corresponding to RHC|the robot has
co�ee (or not, RHC), CR|there is an outstanding request for co�ee (or not, CR),
and, considering only two location possibilities, Loc(C)|the robot is in the co�ee
room (or not, Loc(C)). Whether there is an outstanding co�ee request depends on
whether there was a request in the previous stage and whether the robot was in the
co�ee room. Location depends only on the location at the previous stage, and the
reward depends only on whether or not there is an outstanding co�ee request.

45. The property required of the initial partition is that, if two states are in the same cluster of the partition
de�ning the minimal model (recall that the minimal model is unique), then they must be in same cluster
in the initial partition.
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Figure 30: Factored model illustrating model-reduction techniques.
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Figure 31: Models involving aggregate states: (a) the model corresponding to the initial
partition and (b) the minimal model.

The initial partition shown in Figure 31(a) is de�ned in terms of immediate rewards.
We say that all the states in a particular starting cluster behave the same with respect
to a particular destination cluster if the probability of ending up in the destination
cluster is the same for all states in the starting cluster. This property is not satis�ed
for starting cluster CR and destination cluster CR in Figure 31(a), and so we split the
cluster labeled CR to obtain the model in Figure 31(b). Now the property is satis�ed
for all pairs of clusters and the model in Figure 31(b) is the minimal model. 2

The Lee and Yannakakis algorithm for non-deterministic �nite-state machines has been
extended by Givan and Dean to handle classical Strips planning problems (Givan & Dean,
1997) and MDPs (Dean & Givan, 1997). The basic step of splitting a cluster is closely
related to goal regression, a relationship explored in (Givan & Dean, 1997). Variants of
the model reduction approach apply when the action space is large and represented in a
factored form (Dean, Givan, & Kim, 1998); for example, when each action is speci�ed
by a set of parameters such as those corresponding to the allocations of several di�erent
resources in an optimization problem. There also exist algorithms for computing approxi-
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Figure 32: Reachability and serial problem decomposition.

mate models (Dean, Givan, & Leach, 1997) and e�cient planning algorithms that use these
approximate models (Givan, Leach, & Dean, 1997).

5.2 Reachability Analysis and Serial Problem Decomposition

5.2.1 Reachability Analysis

The existence of goal states can be exploited in di�erent settings. For instance, in determin-
istic classical planning problems, regression can be viewed as a form of directed dynamic
programming. Without uncertainty, a certain policy either reaches a goal state or does not,
and the dynamic programming backups need be performed only from goal states, not from
all possible states. Regression, therefore, implicitly exploits certain reachability character-
istics of the domain along with the special structure of the value function.

Reachability analysis applied much more broadly forms the basis for various types of
problem decomposition. In decomposition problem solving, the MDP is broken into several
subprocesses that can be solved independently, or roughly independently, and the solutions
can be pieced together. If subprocesses whose solutions interact marginally are treated as
independent, we might expect a good but nonoptimal global solution to result. Furthermore,
if the structure of the problem requires that only a solution to a particular subproblem is
needed, then the solutions to other subproblems can be ignored or need not be computed
at all. For instance, in regression analysis, the optimal action for states that cannot reach
a goal region is irrelevant to the solution of a classical AI planning problem. This is shown
schematically in Figure 32(a), where regions A and B are never explored in the backward
search through state space: only states that can reach the goal within the search horizon
are ever deemed relevant. While regions A and B may be reachable from the start state, the
fact that they do not reach the goal state means they are known to be irrelevant. Should
the system dynamics be stochastic, such a scheme can form the basis of an approximately
optimal solution method: regions A and B can be ignored if they are unlikely to transition
to the regression of the goal region (region R). Similar remarks using progression or forward
search from the start state apply, as illustrated in Figure 32(b).
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Several schemes have been proposed in the AI literature for exploiting such reachability
constraints, apart from the usual forward- or backward-search approaches. Peot and Smith
(1993) introduce the operator graph, a structure computed prior to problem solving that
caches reachability relationships among propositions. The graph can be consulted during
the planning process in deciding which actions to insert into the plan and how to resolve
threats.

The GraphPlan algorithm of Blum and Furst (1995) attempts to blend considerations
of both forward and backward reachability in a deterministic planning context. One of the
di�culties with regression is that we may regress the goal region through a sequence of
operators only to �nd ourselves in a region that cannot be reached from the initial state.
In Figure 32(a), for example, not all states in region R may be reachable from the initial
state. GraphPlan constructs a variant of the operator graph called the planning graph, in
which certain forward reachability constraints are posted. Regression is then implemented
as usual, but if the current subgoal set violates the forward reachability constraints at any
point, this subgoal set is abandoned and the regression search backtracks.

Conceptually, one might think of GraphPlan as constructing a forward search tree
through state space with the initial state as the root, then doing a backward search from
the goal region backward through this tree. Of course, the process is not state-based:
instead, constraints on the possible variable values that can hold simultaneously at di�erent
planning stages are recorded, and regression is used to search backward through the planning
graph. In a sense, GraphPlan can be viewed as constructing an abstraction in which
forward-reachable states are distinguished from unreachable states at each planning stage,
and using this distinction among abstract states quickly to identify infeasible regression
paths. Note, however, the GraphPlan approximates this distinction by overestimating
the set of reachable states. Overestimation (as opposed to underestimation) ensures that
the regression search space contains all legitimate plans.

Reachability has also been exploited in the solution of more general MDPs. Dean
et al. (1995) propose an envelope method for solving \goal-based" MDPs approximately.
Assuming some path can be generated quickly from a given start state to the goal region,
an MDP consisting of the states on this path and perhaps neighboring states is solved. To
deal with transitions that lead out of this envelope, a heuristic method estimates a value for
these states.46 As time permits, the set of neighboring states can be expanded, increasing
solution quality by more accurately evaluating the quality of alternative actions.

Some of the ideas underlying GraphPlan have been applied to more general MDPs in
(Boutilier, Brafman, & Geib, 1998), where the construction of a planning graph is general-
ized to deal with the stochastic, conditional action representation o�ered by 2TBNs. Given
an initial state (or set of initial states), this algorithm discovers reachability constraints
that have a form like those in GraphPlan| for instance, that two variable values X = x1
and Y = y3 cannot both obtain simultaneously; that is, no action sequence starting at the
given initial state can lead to a state in which these values both hold.47 The reachability
constraints discovered by this process are then used to simplify the action and reward repre-
sentation of an MDP so that it refers only to reachable states. In this case, any action that

46. The approximate abstraction techniques described in Section 5.1.3 might be used to generate such
heuristic information.

47. General k-ary constraints of this type are considered in (Boutilier et al., 1998).
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requires an unreachable set of values to hold is e�ectively deleted. In some cases, certain
variables are discovered to be immutable given the initial conditions and can themselves be
deleted, leading to much smaller MDPs. This simpli�ed representation retains the original
propositional structure so standard abstraction methods can be applied to the reachable
MDP. It is also suggested that a strong synergy exists between abstraction and reachabil-
ity analysis such that together these techniques reduce the size of the \e�ective" MDP to
be solved much more dramatically than either does in isolation. Just as reachability con-
straints can be used to prune regression paths in deterministic domains, they can be used
to prune value function and policy estimates generated by decision-theoretic regression and
abstraction algorithms (Boutilier et al., 1998).

The results reported in (Boutilier et al., 1998) are limited to a single process-planning
domain, but show that reachability analysis together with abstraction can provide substan-
tial reductions in the size of the e�ective MDP that must be solved, at least in some domains.
In a domain with 31 binary variables, reachability considerations generally eliminated on
the order of 10 to 15 variables (depending on the initial state and the arity|binary or
ternary|of the constraints considered), reducing the state space from size 231 to anywhere
from 222 to 215. Incorporating abstraction on the reachable MDP provided considerably
more reduction, reducing the MDP to sizes ranging from 28 to e�ectively zero states. The
latter case would occur if it is discovered that no values of variables that impact reward
can be altered|in which case every course of action has the same expected utility and the
MDP needn't be solved (or can be solved by applying null actions with zero cost).

5.2.2 Serial Problem Decomposition and Communicating Structure

The communicating or reachability structure of an MDP provides a way to formalize dif-
ferent types of problem decomposition. We can classify an MDP according to the Markov
chains induced by the stationary policies it admits. For a �xed Markov chain, we can group
states into maximal recurrent classes and transient states, as described in Section 2.1. An
MDP is recurrent if each policy induces a Markov chain with a single recurrent class. An
MDP is unichain if each policy induces a single recurrent class with (possibly) some tran-
sient states. An MDP is communicating if for any pair of states s; t, there is some policy
under which s can reach t. An MDP is weakly communicating if there exists a closed set
of states that is communicating plus (possibly) a set of states transient under every policy.
We call other MDPs noncommunicating.

These notions are crucial in the construction of optimal average-reward policies, but can
also be exploited in problem decomposition. Suppose an MDP is discovered to consist of a
set of recurrent classes C1; � � � Cn (i.e., no matter what policy is adopted, the agent cannot
leave any such class once it enters that class) and a set of transient states.48 It is clear that
optimal policy restricted to any class Ci can be constructed without reference to the policy
decisions made at any states outside of Ci or even their values. Essentially, each Ci can be
viewed as an independent subprocess.

48. A simple way to view these classes is to think of the agent adopting a randomized policy where each action
is adopted at any state with positive probability. The classes of the induced Markov chain correspond
to the classes of the MDP.
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This observation leads to the following suggestion for optimal policy construction:49 we
solve the subprocesses consisting of the recurrent classes for the MDPs; we then remove
these states from the MDP, forming a reduced MDP consisting only of the transient states.
We then break the reduced MDP into its recurrent classes and solve these independently.
The key to doing this e�ectively is to use the value function for the original recurrent
states (computed in solving the independent subproblems in Step 1) to take into account
transitions out of the recurrent classes in the reduced MDP. Figure 32(c) shows an MDP
broken into the classes that might be constructed this way. In the original MDP, classes C
and E are recurrent and can be solved independently. Once removed from the MDP, class
D is recurrent in the reduced MDP. It can, of course, be solved without reference to classes
A and B, but does rely on the value of the states that it transitions to in class E. However,
the value function for E is available for this purpose, and can be used to solve for D as
if D consisted only of jDj states. With this in hand, B can then be solved, and �nally A
can be solved. Lin and Dean (1995) provide a version of this type of decomposition that
also employs a factored representation. The factored representation allows dimensionality
reduction in di�erent state subspaces by aggregating states that di�er only in the values of
the irrelevant variables in their subspaces.

A key to such a decomposition is the discovery of the recurrent classes of an MDP.
Puterman (1994) suggests an adaptation of the Fox-Landi algorithm (Fox & Landi, 1968)
for discovering the structure of Markov chains that is O(N2) (recall N = jSj).50 To alleviate
the di�culties of algorithms that work with an explicit state-based representation, Boutilier
and Puterman (1995) propose a variant of the algorithm that works with a factored 2TBN
representation.

One di�culty with this form of decomposition is its reliance on strongly independent
subproblems (i.e., recurrent classes) within the MDP. Others have explored exact and ap-
proximate techniques that work under less restrictive assumptions. One simple method of
approximation is to construct \approximately recurrent classes." In Figure 32(c) we might
imagine that C and E are nearly independent in the sense that all transitions between them
are very low-probability or high-cost. Treating them as independent might lead to approx-
imately optimal policies whose error can be bounded. If the solutions to C and E interact
strongly enough that the solutions should not be constructed completely independently, a
di�erent approach to solving the decomposed problem can be taken.

If we have the optimal value function for E then, as pointed out, we can calculate the
optimal value function for D. The �rst thing to note is that we don't need to know the
value function for all of the states in E, just the value of every state in E that is reachable
from some state in D in a single step. The set of all states outside D reachable in a single
step from a state inside D is referred to as the states in the periphery of D. The values of
the states in the intersection of E and the periphery of D summarize the value of exiting D
and ending up in E. We refer to the set of all states that are in the periphery of some block
as the kernel of the MDP. All of the di�erent blocks interact with one another through
states in the kernel.

49. Ross and Varadarajan (1991) make a related suggestion for solving average-reward problems.
50. A slight correction is made to the suggested algorithm in (Boutilier & Puterman, 1995).
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Figure 34: Kernel-based decomposition depicting the kernel states.
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Example 5.5 Spatial features often provide a natural dimension along which to decom-
pose a domain. In our running example, the location of the robot might be used to
decompose the state space into blocks of states, one block for each of the possible lo-
cations. Figure 33 shows such a decomposition superimposed over the state-transition
diagram for the MDP. States in the kernel are shaded and might correspond to the
entrances and exits of locations. The star-shaped topology, induced by the kernel
decomposition used in (Kushner & Chen, 1974) and (Dean & Lin, 1995), is illustrated
in Figure 34. In Figure 33, the hallway location is not explicitly represented. This
simpli�cation may be reasonable if the hallway is only a conduit for moving from
one room to another; in this case the function of the hallway is accounted for in the
dynamics governing states in the kernel. Figures 33 and 34 are idealized in that, given
the full set of features in our running example, the kernel would contain many more
states. 2

One technique for computing the optimal policy for the entire MDP involves repeatedly
solving the MDPs corresponding to the individual blocks. The techniques works as follows:
initially, we guess the value of every state in the kernel.51 Given a current estimate for the
values of the kernel states, we solve the component MDPs; this solution produces a new
estimate for the states in the kernel. We adjust the values of the states in the kernel by
considering the di�erence between the current and the new estimates and iterate until this
di�erence is negligible.

This iterative method for solving a decomposed MDP is a special case of the Lagrangian
method for �nding the extrema of a function. The OR literature is replete with such
methods for both linear and nonlinear systems of equations (Winston, 1992). It is possible
to formulate an MDP as a linear program (D'Epenoux, 1963; Puterman, 1994). Dantzig and
Wolfe (1960) developed a method of decomposing a system of equations involving a very
large number of variables into a set of smaller systems of equations interacting through a set
of coupling variables (variables shared by more two or more blocks). In the Dantzig-Wolfe
decomposition method, the original, very large system of equations is solved by iteratively
solving the smaller systems and adjusting the coupling variables on each iteration until no
further adjustment is required. In the linear programming formulation of an MDP, the
values of the states are encoded as variables.

Kushner and Chen (1974) exploit the fact that MDPs can be modeled as linear programs
by using the Dantzig-Wolfe decomposition method to solve MDPs involving a large number
of states. Dean and Lin (1995) describe a general framework for solving decomposed MDPs
pointing to the work of Kushner and Chen as a special case, but neither work addresses
the issue of where the decompositions come from. Dean et al. (1995) investigate methods
for decomposing the state space into two blocks: those reachable in k steps or fewer and
those not reachable in k steps (see the discussion of reachability above). The set of states
reachable in k or fewer steps is used to construct an MDP that is the basis for a policy that
approximates the optimal policy. As k increases, the size of the block of states reachable in
k steps increases, ensuring a better solution; but the amount of time required to compute a

51. Ideally we would aggregate kernel states with the same value so as to provide a compact representation.
In the remainder of this section, however, we won't consider this or any other opportunities for combining
aggregation and decomposition methods.
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solution also increases. Dean et al. (1995) discuss methods for solving MDPs in time-critical
problems by trading o� quality against time.

We have ignored the issue of how to obtain decompositions that expedite our calcu-
lations. Ideally, each component of the decomposition would yield to simpli�cation via
aggregation and abstraction, reducing the dimensionality in each component and thereby
avoiding explicit enumeration of all the states. Lin (1997) presents methods for exploiting
structure for certain special cases in which the communicating structure is revealed by a
domain expert. In general, however, �nding a decomposition so as to minimize the e�ort
spent in solving the component MDPs is quite hard (at least as hard as �nding the small-
est circuit consistent with a given input-output behavior) and so the best we can hope for
are good heuristic methods. Unfortunately, we are not aware of any particularly useful
heuristics for �nding serial decompositions for Markov decision processes. Developing such
heuristics is clearly an area for investigation.

Related to this form of decomposition is the development of macro operators for MDPs
(Sutton, 1995). Macros have a long history in classical planning and problem solving (Fikes,
Hart, & Nilsson, 1972; Korf, 1985), but only recently have they been generalized to MDPs
(Hauskrecht, Meuleau, Kaelbling, Dean, & Boutilier, 1998; Parr, 1998; Parr & Russell, 1998;
Precup, Sutton, & Singh, 1998; Stone & Veloso, 1999; Sutton, 1995; Thrun & Schwartz,
1995). In most of this work, a macro is taken to be a local policy over a region of state
space (or block in the above terminology). Given an MDP comprising these blocks and a
set of macros de�ned for each block, the MDP can be solved by selecting a macro action
for each block such that the global policy induced by the set of macros so picked is close
to optimal, or at the very least is the best combination of macros from the set available.
In (Sutton, 1995; Precup et al., 1998), macros are treated as temporally-abstract actions
and models are de�ned by which a macro can be treated as if it were a single action and
used in policy or value iteration (along with concrete actions). In (Hauskrecht et al., 1998;
Parr, 1998; Parr & Russell, 1998), these models are exploited in a hierarchical fashion, with
a high-level MDP consisting only of states lying on the boundaries of blocks, and macros
the only \actions" that can be chosen at these states. The issue of macro generation|
constructing a set of macros guaranteed to provide the 
exibility to select close to optimal
global behavior|is addressed in (Hauskrecht et al., 1998; Parr, 1998). The relationship
to serial decomposition techniques is quite close; thus, the problems of discovering good
decompositions, constructing good sets of macros, and exploiting intensional representations
are areas in which clearer, compelling solutions are required. To date, work in this area has
not provided much computational utility in the solution of MDPs|except in cases where
good, hand-crafted, region-based decompositions and macros can be provided|and little
of this work has taken into account the factored nature of many MDPs. For this reason, we
do not discuss it in detail. However, the general notion of serial decomposition continues to
develop and shows great promise.

5.3 Multiattribute Reward and Parallel Decomposition

Another form of decomposition is parallel decomposition, in which an MDP is broken into
a set of sub-MDPs that are \run in parallel." Speci�cally, at each stage of the (global)
decision process, the state of each subprocess in a�ected. For instance, in Figure 35, action
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Figure 35: Parallel problem decomposition.

a a�ects the state of each subprocess. Intuitively, an action is suitable for execution in the
original MDP at some state if it is reasonably good in each of the sub-MDPs.

Generally, the sub-MDPs form either a product or join decomposition of the original
state space (contrast this with the union decompositions of state space determined by serial
decompositions): the state space is formed by taking the cross product of the sub-MDP state
spaces, or the join if certain states in the subprocesses cannot be linked. The subprocesses
may have identical action spaces (as in Figure 35), or each may have its own action space,
with the global action choice being factored into a choice for each subprocess. In the latter
case, the sub-MDPs may be completely independent, in which case the (global) MDP can be
solved exponentially faster. A more challenging problem arises when there are constraints
on the legal action combinations. For example, if the actions in the subprocesses each
require certain shared resources, interactions in the global choice may arise.

In a parallel MDP decomposition, we wish to solve the sub-MDPs and use the policies
or value functions generated to help construct an optimal or approximately optimal solution
to the original MDP, highlighting the need to �nd appropriate decompositions for MDPs
and to develop suitable merging techniques. Recent parallel decomposition methods have
all involved decomposing an MDP into subprocesses suitable for distinct objectives. Since
reward functions often deal with multiple objectives, each associated with an independent
reward, and whose rewards can be summed to determine a global reward, this is often a
very natural way to decompose MDPs. Thus, ideas from multiattribute utility theory can
be seen to play a role in the solution of MDPs.

Boutilier et al. (1997) decompose an MDP speci�ed using 2TBNs and an additive reward
function using the abstraction technique described in Section 5.1.3. For each component
of the reward function, abstraction is used to generate an MDP referring only to variables
relevant to that component.52 Since certain state variables may be present in multiple
sub-MDPs (i.e., relevant to more than one objective), the original state space in the join of
the subspaces. Thus, decomposition is tackled automatically. Merging is tackled in several
ways. One involves using the sum of the value functions obtained by solving the sub-MDPs
as a heuristic estimate of the true value function. This heuristic is then used to guide online,
state-based search (see Section 3.2.1). If the sub-MDPs do not interact, then this heuristic
is perfect and leads to backtrack-free optimal action selection; if they interact, search is

52. Note that the existence of a factored MDP representation is crucial for this abstraction method.
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required to detect con
icts. Note that each sub-MDP has identical sets of actions. If the
action space is large, the branching factor of the search process may be prohibitive.

Singh and Cohn (1998) also deal with parallel decomposition, though they assume the
global MDP is speci�ed explicitly as a set of parallel MDPs, thus generating decompositions
of a global MDP is not at issue. The global MDP is given by the cross product of the state
and action spaces of these sub-MDPs and the reward functions are summed. However,
constraints on the feasible action combinations couple the solutions of these sub-MDPs. To
solve the global MDP, the sum of the sub-MDP value functions is used as an upper bound
on the optimal global value function, while the maximum of these (at any global state) is
used as a lower bound. These bounds then form the basis of an action-elimination procedure
in a value-iteration algorithm for solving the global MDP.53 Unfortunately, value iteration
is run over the explicit state space of the global MDP. Since the action space is also a cross
product, this is a potential computational bottleneck for value iteration, as well.

Meuleau et al. (1998) use parallel decomposition to approximate the solution of stochas-
tic resource allocation problems with very large state and action spaces. Much like Singh
and Cohn (1998), an MDP is speci�ed in terms of a number of independent MDPs, each
involving a distinct objective, whose action choices are linked through shared resource con-
straints. The value functions for the individual MDPs are constructed o�ine and then used
in set of online action-selection procedures. Unlike many of the approximation procedures
we have discussed, this approach makes no attempt to construct a policy explicitly (and
is similar to real-time search or RTDP in this respect) nor to construct the value function
explicitly. This method has been applied to very large MDPs, with state spaces of size
21000 and actions spaces that are even larger, and can solve such problems in roughly half
an hour. The solutions produced are approximate, but the size of the problem precludes
exact solution; so good estimates of solution quality are hard to derive. However, when the
same method is applied to smaller problems of the same nature whose exact solution can
be computed, the approximations have very high quality (Meuleau et al., 1998). While able
to solve very large MDPs (with large, but factored, state and action spaces), the model
relies on somewhat restrictive assumptions about the nature of the local value functions
that ensure good solution quality. However, the basic approach appears to be generalizable,
and o�ers great promise for solving very large factored MDPs.

The algorithms in both (Singh & Cohn, 1998) and (Meuleau et al., 1998) can be seen
to rely at least implicitly on structured MDP representations involving almost independent
subprocesses. It seems likely that such approaches could take further advantage of automatic
MDP decomposition algorithms such as that of (Boutilier et al., 1997), where factored
representations explicitly play a part.

5.4 Summary

We have seen a number of ways in which intensional representations can be exploited to
solve MDPs e�ectively without enumeration of the state space. These include techniques
for abstraction of MDPs, including those based on relevance analysis, goal regression and
decision-theoretic regression; techniques relying on reachability analysis and serial decom-
position; and methods for parallel MDP decomposition exploiting the multiattribute nature

53. Singh and Cohn (1998) also incorporate methods for removing unreachable states during value iteration.
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of reward functions. Many of these methods can, in fortunate circumstances, o�er exponen-
tial reduction is solution time and space required to represent a policy and value function;
but none come with guarantees of such reductions except in certain special cases. While
most of the methods described provide approximate solutions (often with error bounds pro-
vided), some of them o�er optimality guarantees in general, and most can provide optimal
solutions under suitable assumptions.

One avenue that has not been explored in detail is the relationship between the struc-
tured solution methods developed for MDPs described above and techniques used for solving
Bayesian networks. Since many of the algorithms discussed in this section rely on the struc-
ture inherent in the 2TBN representation of the MDP, it is natural to ask whether they
embody some of the intuitions that underlie solution algorithms for Bayes nets, and thus
whether the solution techniques for Bayes nets can be (directly or indirectly) applied to
MDPs in ways that give rise to algorithms similar to those discussed here. This remains an
open question at this point, but undoubtedly some strong ties exist. Tatman and Shachter
(1990) have explored the connections between in
uence diagrams and MDPs. Kjaerul�
(1992) has investigated computational considerations involved in applying join tree methods
for reasoning tasks such as monitoring and prediction in temporal Bayes nets. The abstrac-
tion methods discussed in Section 5.1.2 can be interpreted as a form of variable elimination
(Dechter, 1996; Zhang & Poole, 1996). Elimination of variables occurs in temporal order,
but good orderings within a time slice must also exploit the tree or graph structure of the
CPTs. Approximation schemes based on variable elimination (Dechter, 1997; Poole, 1998)
may also be related to certain of the approximation methods developed for MDPs. The
independence-based decompositions of MDPs discussed in Section 5.3 can clearly be viewed
as exploiting the independence relations made explicit by \unrolling" a 2TBN. The develop-
ment of these and other connections to Bayes net inference algorithms will no doubt prove
very useful in enhancing our understanding of existing methods, increasing their range of
applicability and pointing to new algorithms.

6. Concluding Remarks

The search for e�ective algorithms for controlling automated agents has a long and impor-
tant history, and the problem will only continue to grow in importance as more decision-
making functionality is automated. Work in several disciplines, among them AI, decision
analysis, and OR, has addressed the problem, but each has carried with it di�erent prob-
lem de�nitions, di�erent sets of simplifying assumptions, di�erent viewpoints, and hence
di�erent representations and algorithms for problem solving. More often than not, the as-
sumptions seem to have been made for historical reasons or reasons of convenience, and it
is often di�cult to separate the essential assumptions from the accidental. It is important
to clarify the relationships among problem de�nitions, crucial assumptions, and solution
techniques, because only then can a meaningful synthesis take place.

In this paper we analyzed various approaches to a particular class of sequential deci-
sion problems that have been studied in the OR, decision analysis, and AI literature. We
started with a general, reasonably neutral statement of the problem, couched, for conve-
nience, in the language of Markov decision processes. From there we demonstrated how
various disciplines de�ne the problem (i.e., what assumptions they make), and the e�ect
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of these assumptions on the worst-case time complexity of solving the problem so de�ned.
Assumptions regarding two main factors seem to distinguish the most commonly studied
classes of decision problems:

� observation or sensing: does sensing tend to be fast, cheap, and accurate or laborious,
costly and noisy?

� the incentive structure for the agent: is its behavior evaluated on its ability to perform
a particular task, or on its ability to control a system over an interval of time?

Moving beyond the worst-case analysis, it is generally assumed that, although patho-
logical cases are inevitably di�cult, the agent should be able to solve \typical" or \easy"
cases e�ectively. To do so, the agent needs to be able to identify structure in the problem
and to exploit that structure algorithmically.

We identi�ed three ways in which structural regularities can be recognized, represented,
and exploited computationally. The �rst is structure induced by domain-level simplifying
assumptions like full observability, goal satisfaction or time-separable value functions, and
so on. The second is structure exploited by compact domain-speci�c encodings of states,
actions, and rewards. The designer can use these techniques to make structure explicit, and
decision-making algorithms can then exploit the structural regularities as they apply to the
particular problem at hand. The third involves aggregation, abstraction and decomposi-
tion techniques, whereby structural regularities can be discovered and exploited during the
problem-solving process itself. In developing this framework|one that allows comparison
of domains, assumptions, problems, and techniques drawn from di�erent disciplines|we
discover the essential problem structure required for speci�c representations and algorithms
to prove e�ective; and we do so in such a way that the insights and techniques developed
for certain problems, or within certain disciplines, can be evaluated and potentially applied
to new problems, or within other disciplines.

A main focus of this work has been the elucidation of various forms of structure in
decision problems and of how each can be exploited representationally or computationally.
For the most part, we have focused on propositional structure, which is most commonly as-
sociated with planning in AI circles. A more complete treatment would also have included
other compact representations of dynamics, rewards, policies, and value functions often
considered in continuous, real-valued domains. For instance, we have not discussed linear
dynamics and quadratic cost functions, often used in control theory (Caines, 1988), or the
use of neural-network representations of value functions, as frequently adopted within the
reinforcement learning community (Bertsekas & Tsitsiklis, 1996; Tesauro, 1994),54 nor have
we discussed the partitioning of continuous state spaces often addressed in reinforcement
learning (Moore & Atkeson, 1995). Neither have we addressed the relational or quanti�ca-
tional structure used in �rst-order planning representations. However, even these techniques
can be cast within the framework described here; for example, the use of piecewise-linear
value functions can be seen as a form of abstraction in which di�erent linear components
are applied to di�erent regions or clusters of state space.

54. Bertsekas and Tsitsiklis (1996) provide an in-depth treatment of neural network and linear function
approximators for MDPs and reinforcement learning.
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Although in certain cases we have indicated how to devise methods that exploit several
types of structure at once, research along these lines has been limited. To some extent,
many of the representations and algorithms described in this paper are complementary and
should pose few obstacles to combination. It remains to be seen how they interact with
techniques developed for other forms of structure, such as those used for continuous state
and action spaces.

So our analysis raises opportunities and challenges: by understanding the assumptions,
the techniques, and their relationships, a designer of decision-making agents has many more
tools with which to build e�ective problem solvers; and the challenges lie in the development
of additional tools and the integration of existing ones.
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