Journal of Artificial Intelligence Research 10 (1999) 271-289 Submitted 11/98; published 5/99

Issues in Stacked Generalization

Kai Ming Ting KMTING@DEAKIN.EDU.AU
School of Computing and Mathematics
Deakin University, Australia.

Ian H. Witten IHWQCS.WAIKATO.AC.NZ
Department of Computer Science
University of Waikato, New Zealand.

Abstract

Stacked generalization is a general method of using a high-level model to combine lower-
level models to achieve greater predictive accuracy. In this paper we address two crucial
issues which have been considered to be a ‘black art’ in classification tasks ever since the
introduction of stacked generalization in 1992 by Wolpert: the type of generalizer that is
suitable to derive the higher-level model, and the kind of attributes that should be used as
its input. We find that best results are obtained when the higher-level model combines the
confidence (and not just the predictions) of the lower-level ones.

We demonstrate the effectiveness of stacked generalization for combining three different
types of learning algorithms for classification tasks. We also compare the performance of
stacked generalization with majority vote and published results of arcing and bagging.

1. Introduction

Stacked generalization is a way of combining multiple models that have been learned for a
classification task (Wolpert, 1992), which has also been used for regression (Breiman, 1996a)
and even unsupervised learning (Smyth & Wolpert, 1997). Typically, different learning
algorithms learn different models for the task at hand, and in the most common form of
stacking the first step is to collect the output of each model into a new set of data. For each
instance in the original training set, this data set represents every model’s prediction of that
instance’s class, along with its true classification. During this step, care is taken to ensure
that the models are formed from a batch of training data that does not include the instance
in question, in just the same way as ordinary cross-validation. The new data are treated
as the data for another learning problem, and in the second step a learning algorithm is
employed to solve this problem. In Wolpert’s terminology, the original data and the models
constructed for them in the first step are referred to as level-0 data and level-0 models,
respectively, while the set of cross-validated data and the second-stage learning algorithm
are referred to as level-1 data and the level-1 generalizer.

In this paper, we show how to make stacked generalization work for classification tasks
by addressing two crucial issues which Wolpert (1992) originally described as ‘black art’
and have not been resolved since. The two issues are (i) the type of attributes that should
be used to form level-1 data, and (ii) the type of level-1 generalizer in order to get improved
accuracy using the stacked generalization method.

Breiman (1996a) demonstrated the success of stacked generalization in the setting of
ordinary regression. The level-0 models are regression trees of different sizes or linear

©1999 AT Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

TiNG & WITTEN

regressions using different number of variables. But instead of selecting the single model
that works best as judged by (for example) cross-validation, Breiman used the different level-
0 regressors’ output values for each member of the training set to form level-1 data. Then
he used least-squares linear regression, under the constraint that all regression coefficients
be non-negative, as the level-1 generalizer. The non-negativity constraint turned out to be
crucial to guarantee that the predictive accuracy would be better than that achieved by
selecting the single best predictor.

Here we show how stacked generalization can be made to work reliably in classification
tasks. We do this by using the output class probabilities generated by level-0 models to
form level-1 data. Then for the level-1 generalizer we use a version of least squares linear
regression adapted for classification tasks. We find the use of class probabilities to be crucial
for the successful application of stacked generalization in classification tasks. However,
the non-negativity constraints found necessary by Breiman in regression are found to be
irrelevant to improved predictive accuracy in our classification situation.

In Section 2, we formally introduce the technique of stacked generalization and describe
pertinent details of each learning algorithm used in our experiments. Section 3 describes
the results of stacking three different types of learning algorithms. Section 4 compares
stacked generalization with arcing and bagging, two recent methods that employ sampling
techniques to modify the data distribution in order to produce multiple models from a single
learning algorithm. The following section describes related work, and the paper ends with
a summary of our conclusions.

2. Stacked Generalization

Given a data set £ = {(yp,zn),n =1,..., N}, where y, is the class value and z,, is a vector
representing the attribute values of the nth instance, randomly split the data into J almost
equal parts Ly,...,L;. Define £; and LD = — L; to be the test and training sets for
the jth fold of a J-fold cross-validation. Given K learning algorithms, which we call level-0
generalizers, invoke the kth algorithm on the data in the training set £(=7) to induce a
model M\ for k =1,... K. These are called level-0 models.

For each instance z,, in L;, the test set for the jth cross-validation fold, let z, denote

the prediction of the model Mgcfj) on Zpn. At the end of the entire cross-validation process,
the data set assembled from the outputs of the K models is

LCV:{(ynﬂzlnﬂaan),nzl,,N}

These are the level-1 data. Use some learning algorithm that we call the level-1 generalizer
to derive from these data a model M for y as a function of (z1,...,zx). This is the level-1
model. Figure 1 illustrates the cross-validation process. To complete the training process,
the final level-0 models My, k =1,..., K, are derived using all the data in L.

Now let us consider the classification process, which uses the models My, k =1,..., K,
in conjunction with M. Given a new instance, models My, produce a vector (z1,...,2x).
This vector is input to the level-1 model M, whose output is the final classification result for
that instance. This completes the stacked generalization method as proposed by Wolpert
(1992), and also used by Breiman (1996a) and LeBlanc & Tibshirani (1993).

272

ISSUES IN STACKED (GENERALIZATION

M
Level-1
Level-0 _ . .
Ivl(l-l) M(kl) M S)
L(-i)

Figure 1: This figure illustrates the j-fold cross-validation process in level-0; and the level-1
data set Loy at the end of this process is used to produce level-1 model M.

As well as the situation described above, which results in the level-1 model M, the
present paper also considers a further situation where the output from the level-0 models is
a set of class probabilities rather than a single class prediction. If model M,g_]) is used to
classify an instance z in £, let Py;(x) denote the probability of the ith output class, and

the vector
Pkn = (Pkl(In), e ,P].”'(J?n), . ,Pk,](ﬂ?n))

gives the model’s class probabilities for the nth instance, assuming that there are I classes.
As the level-1 data, assemble together the class probability vector from all K models, along
with the actual class:

,CV: {(ynaplna"'apkna'--,PKn),n: 1,,N}

Denote the level-1 model derived from this as M’ to contrast it with M.
The following two subsections describe the algorithms used as level-0 and level-1 gener-
alizers in the experiments reported in Section 3.

2.1 Level-0 Generalizers

Three learning algorithms are used as the level-0 generalizers: C4.5, a decision tree learning
algorithm (Quinlan, 1993); NB, a re-implementation of a Naive Bayesian classifier (Cestnik,
1990); and IB1, a variant of a lazy learning algorithm (Aha, Kibler & Albert, 1991) which
employs the p-nearest-neighbor method using a modified value-difference metric for nominal
and binary attributes (Cost & Salzberg, 1993). For each of these learning algorithms we
now show the formula that we use for the estimated output class probabilities P;(z) for an
instance x (where, in all cases, >; P;j(z) = 1).

C4.5: Consider the leaf of the decision tree at which the instance x falls. Let m; be the
number of (training) instances with class 4 at this leaf, and suppose the majority class

273

TiNG & WITTEN

at the leaf is I. Let E = E#IA m;. Then, using a Laplace estimator,

E+1
Ezmz+2’

Pi(z) = (1 - Pi(z)) x % for i # 1.

Note that only pruned trees and default settings of C4.5 are used in our experiments.

NB: Let P(i|z) be the posterior probability of class ¢, given instance z. Then

o _Pll)
B = = p iy

Note that NB uses a Laplacian estimate for estimating the conditional probabilities
for each nominal attribute to compute P(i|z). For each continuous-valued attribute,
a normal distribution is assumed in which case the conditional probabilities can be
conveniently represented entirely in terms of the mean and variance of the observed
values for each class.

IB1: Suppose p nearest neighbors are used; denote them by {(ys,zs),s = 1,...,p} for
instance x. (We use p = 3 in the experiments.) Then

S)/, 5)
file) = o Vd(z,5)

where f(ys) =1 if i = y; and 0 otherwise, and d is the Euclidean distance function.

In all three learning algorithms, the predicted class of the level-0 model, given an instance
x, is that I for which

P:(z) > P;(x) for all i # I.

2.2 Level-1 Generalizers

We compare the effect of four different learning algorithms as the level-1 generalizer: C4.5,
IB1(using p = 21 nearest neighbors),! NB, and a multi-response linear regression algorithm,
MLR. Only the last needs further explanation.

MLR is an adaptation of a least-squares linear regression algorithm that Breiman (1996a)
used in regression settings. Any classification problem with real-valued attributes can be
transformed into a multi-response regression problem. If the original classification problem
has I classes, it is converted into I separate regression problems, where the problem for
class £ has instances with responses equal to one when they have class £ and zero otherwise.

The input to MLR is level-1 data, and we need to consider the situation for the model
M’, where the attributes are probabilities, separately from that for the model M, where

1. A large p value is used following Wolpert’s (1992) advice that “...it is reasonable that ‘relatively global,
smooth ...’ level-1 generalizers should perform well.”

274

ISSUES IN STACKED (GENERALIZATION

they are classes. In the former case, where the attributes are already real-valued, the linear
regression for class £ is simply

K
LR(z) =Y apePre(x).
k

In the latter case, the classes are unordered nominal attributes. We map them into binary
values in the obvious way, setting Pyy(z) to 1 if the class of instance x is £ and zero otherwise;
and then use the above linear regression.

Choose the linear regression coefficients {a/} to minimize

> > (yn—ZauP,EZj)(wn))Z-
k

J (ynszn)€L;

The coefficients {ay¢} are constrained to be non-negative, following Breiman’s (1996a) dis-
covery that this is necessary for the successful application of stacked generalization to regres-
sion problems. The non-negative-coefficient least-squares algorithm described by Lawson
& Hanson (1995) is employed here to derive the linear regression for each class. We show
later that, in fact, the non-negative constraint is unnecessary in classification tasks.

With this in place, we can now describe the working of MLR. To classify a new instance
x, compute LRy(x) for all I classes and assign the instance to that class ¢ which has the

greatest value:?
LRy(x) > LRy (x) for all £/ # £.

In the next section we investigate the stacking of C4.5, NB and IB1.

3. Stacking C4.5, NB and IB1
3.1 When Does Stacked Generalization Work?

The experiments in this section show that

e for successful stacked generalization it is necessary to use output class prob-
abilities rather than class predictions—that is, M’ rather than M;

e only the MLR algorithm is suitable for the level-1 generalizer, among the four
algorithms used.

We use two artificial datasets and eight real-world datasets from the UCI Repository of
machine learning databases (Blake, Keogh & Merz, 1998). Details of these are given in
Table 1.

For the artificial datasets—Led24 and Waveform—each training dataset £ of size 200
and 300, respectively, is generated using a different seed. The algorithms used for the
experiments are then tested on a separate dataset of 5000 instances. Results are expressed
as the average error rate of ten repetitions of this entire procedure.

For the real-world datasets, W-fold cross-validation is performed. In each fold of this
cross-validation, the training dataset is used as £, and the models derived are evaluated

2. The pattern recognition community calls this type of classifier a linear machine (Duda & Hart, 1973).

275

TiNG & WITTEN

Datasets # Samples | # Classes | # Attr & Type
Led24 200/5000 10 10N
Waveform 300/5000 3 40C
Horse 368 2 3B+12N+7C
Credit 690 2 4B+5N+6C
Vowel 990 11 10C
Euthyroid 3163 2 18B+7C
Splice 3177 3 60N
Abalone 4177 3 IN+7C
Nettalk(s) 5438 5 7N
Coding 20000 2 15N

N-nominal; B-binary; C-Continuous.

Table 1: Details of the datasets used in the experiment.

on the test dataset. The result is expressed as the average error rate of the W-fold cross-
validation. Note that this cross-validation is used for evaluation of the entire procedure,
whereas the J-fold cross-validation mentioned in Section 2 is the internal operation of
stacked generalization. However, both W and J are set to 10 in the experiments.

In this section, we present results of model combination using level-1 models M and
M, as well as a model selection method, employing the same J-fold cross-validation pro-
cedure. Note that the only difference between model combination and model selection here
is whether the level-1 learning is employed or not.

Table 2 shows the average error rates, obtained using W-fold cross-validation, of C4.5,
NB and IB1, and BestCV, which is the best of the three, selected using J-fold cross-
validation. As expected, BestCV is almost always the classifier with the lowest error rate.?

Table 3 shows the result of stacked generalization using the level-1 model M, for which
the level-1 data comprise the classifications generated by the level-0 models, and M, for
which the level-1 data comprise the probabilities generated by the level-0 models. Results
are shown for all four level-1 generalizers in each case, along with BestCV. The lowest error
rate for each dataset is given in bold.

Table 4 summarizes the results in Table 3 in terms of a comparison of each level-1
model with BestCV totaled over all datasets. Clearly, the best level-1 model is M’ derived
using MLR. It performs better than BestCV in nine datasets and equally well in the tenth.
The best performing M is derived from NB, which performs better than BestCV in seven
datasets but significantly worse in two (Waveform and Vowel). We regard a difference of
more than two standard errors as significant (95% confidence). The standard error figures
are omitted in this table to increase readability.

The datasets are shown in the order of increasing size. MLR performs significantly
better than BestCV in the four largest datasets. This indicates that stacked generalization
is more likely to give significant improvements in predictive accuracy if the volume of data
is large—a direct consequence of more accurate estimation using cross-validation.

3. Note that BestCV does not always select the same classifier in all W folds. That is why its error rate is
not always equal to the lowest error rate among the three classifiers.

276

ISSUES IN STACKED (GENERALIZATION

Datasets Level-0 Generalizers
C4.5 NB IB1 BestCV

Led24 35.4 354 32.2 | 32.8 £0.6
Waveform | 31.8 17.1 26.2 | 17.1 +£0.3
Horse 15.8 17.9 15.8 | 17.1 £1.6
Credit 174 17.3 28.1 | 17.4 +1.2
Vowel 22.7 51.0 2.6 2.6 £0.2
Euthyroid 1.9 938 8.6 | 1.9 +0.3
Splice 5.5 4.5 4.7 | 4.5 +04

Abalone | 41.4 421 40.5 | 40.1 £0.6
Nettalk(s) | 17.0 15.9 12.7 | 12.7 0.4
Coding 27.6 28.8 25.0 | 25.0 £0.3

Table 2: Average error rates of C4.5, NB and IB1, and BestCV-—the best among them
selected using J-fold cross-validation. The standard errors are shown in the last

column.
Datasets Level-1 model, M Level-1 model, M’
BestCV | C4.5 NB 1IB1 MLR | C45 NB IB1 MLR
Led24 32.8 | 34.0 324 35.0 33.3 | 41.7 357 32.1 31.3
Waveform 17.1 | 17.7 192 187 172 | 206 176 178 16.8
Horse 17.1 | 16.9 14.9 17.6 16.3 | 18.0 185 17.7 15.2
Credit 174 184 16.1 169 174 | 154 159 14.3 16.2
Vowel 2.6 2.6 3.8 3.6 2.6 2.7 7.2 3.3 2.5
Euthyroid 1.9 1.9 1.9 1.9 1.9 2.2 4.3 2.0 1.9
Splice 4.5 3.9 3.9 3.8 3.8| 4.0 39 3.8 3.8
Abalone 40.1 | 38.5 38.5 382 38.1 | 433 37.1 392 383
Nettalk(s) 127 | 124 119 124 12.6 | 14.0 14.6 12.0 11.5
Coding 25.0 | 23.2 23.1 232 23.2 | 223 21.2 21.2 20.7

Table 3: Average error rates for stacking C4.5, NB and IB1.

Level-1 model, M Level-1 model, M’
C4.5 NB 1IB1 MLR | C4.5 NB 1IB1 MLR
#Win vs. #Loss | 3-b 2-7 4-5 2-5 7-3 64 4-6 0-9

Table 4: Summary of Table 3—Comparison of BestCV with M and M'.

277

TiNG & WITTEN

When one of the level-0 models performs significantly much better than the rest, like in
the Euthyroid and Vowel datasets, MLR performs either as good as BestCV by selecting
the best performing level-0 model, or better than BestCV.

MLR has an advantage over the other three level-1 generalizers in that its model can
easily be interpreted. Examples of the combination weights it derives (for the probability-
based model M’) appear in Table 5 for the Horse, Credit, Splice, Abalone, Waveform, Led24
and Vowel datasets. The weights indicate the relative importance of the level-0 generalizers
for each prediction class. For example, in the Splice dataset (in Table 5(b)), NB is the
dominant generalizer for predicting class 2, NB and IB1 are both good at predicting class
3, and all three generalizers make a worthwhile contribution to the prediction of class 1.
In contrast, in the Abalone dataset all three generalizers contribute substantially to the
prediction of all three classes. Note that the weights for each class do not sum to one
because no such constraint is imposed on MLR.

3.2 Are Non-negativity Constraints Necessary?

Both Breiman (1996a) and LeBlanc & Tibshirani (1993) use the stacked generalization
method in a regression setting and report that it is necessary to constrain the regression
coefficients to be non-negative in order to guarantee that stacked regression improves pre-
dictive accuracy. Here we investigate this finding in the domain of classification tasks.

To assess the effect of the non-negativity constraint on performance, three versions of
MLR are employed to derive the level-1 model M':

i. each linear regression in MLR is calculated with an intercept constant (that is,
I + 1 weights for the I classes) but without any constraints;

ii. each linear regression is derived with neither an intercept constant (I weights
for I classes) nor constraints;

iii. each linear regression is derived without an intercept constant, but with non-
negativity constraints (I non-negative weights for I classes).

The third version is the one used for the results presented earlier. Table 6 shows the
results of all three versions. They all have almost indistinguishable error rates. We conclude
that in classification tasks, non-negativity constraints are not necessary to guarantee that
stacked generalization improves predictive accuracy.

However, there is another reason why it is a good idea to employ non-negativity con-
straints. Table 7 shows an example of the weights derived by these three versions of MLR on
the Led24 dataset. The third version, shown in column (iii), supports a more perspicuous
interpretation of each level-0 generalizer’s contribution to the class predictions than do the
other two. In this dataset, IB1 is the dominant generalizer in predicting classes 4, 5 and 8,
and both NB and IB1 make a worthwhile contribution in predicting class 2, as evidenced
by their high weights. However, the negative weights used in predicting these classes render
the interpretation of the other two versions much less clear.

278

ISSUES IN STACKED (GENERALIZATION

Class

Horse
C4.5 NB 1IB1

Credit
C4.5 NB 1IB1

1
2

0.36 0.20 0.42
0.39 0.19 041

0.63 030 0.04
0.65 0.28 0.07

C4.5 for a; NB for as; IB1 for ag.

Table 5: (a) Weights generated by MLR (model M’) for the Horse and Credit datasets.

Splice Abalone Waveform
Class | C4.5 NB IB1 |C4.5 NB 1IB1 | C4.5
1 0.23 043 0.36 | 0.25 0.25 0.39 | 0.16 0.59 0.34
2 0.15 0.72 0.12 | 0.27 0.20 0.25| 0.14 0.72 0.07
3 0.08 0.52 040 | 0.30 0.18 0.39 | 0.04 0.65 0.23

Table 5: (b) Weights generated by MLR (model M’) for the Splice, Abalone and Waveform

datasets.

Led24 Vowel
Class | C4.5 NB 1IB1 | C4.5 NB 1IB1
1 0.46 0.65 0.00 | 0.04 0.00 0.96
2 0.00 0.37 0.43 | 0.03 0.00 0.97
3 0.47 0.00 0.54 | 0.01 0.00 1.00
4 0.00 0.13 0.65 | 0.05 0.25 0.86
5 0.00 0.19 0.64 | 0.01 0.08 0.97
6 0.35 0.14 0.35 | 0.15 0.00 0.92
7 0.15 0.43 0.36 | 0.03 0.01 1.02
8 0.00 0.00 0.68 | 0.04 0.01 0.96
9 0.00 0.38 0.29 | 0.03 0.00 1.02
10 0.00 0.50 0.24 | 0.08 0.01 0.93
11 - - -1 0.00 0.04 0.96

Table 5: (c) Weights generated by MLR (model M') for the Led24 and Vowel datasets.

279

TiNG & WITTEN

Datasets MLR with

No Constraints No Intercept Non-Negativity
Led24 31.4 31.4 31.3
Waveform 16.8 16.8 16.8
Horse 15.8 15.8 15.2
Credit 16.2 16.2 16.2
Vowel 2.4 2.4 2.5
Euthyroid 1.9 1.9 1.9
Splice 3.7 3.8 3.8
Abalone 38.3 38.3 38.3
Nettalk(s) 11.6 11.5 11.5
Coding 20.7 20.7 20.7

Table 6: Average error rates of three versions of MLR.

B (i) (i)
Class (7)) (03]} a9 Qa3 a1 a9 Qa3 a1 a9 Qa3
1 0.00 045 065 0.00| 046 0.65 0.00 | 0.46 0.65 0.00
2 0.02 -042 047 0.56 | -040 049 0.56 | 0.00 0.37 0.43
3 0.00 046 -0.01 0.54| 047 -0.01 0.54 | 0.47 0.00 0.54
4 0.04 -033 015 084 |-029 021 0.81|0.00 0.13 0.65
) 0.03 -037 026 0.84|-032 026 0.84|0.00 0.19 0.64
6 0.01 035 012 035| 036 014 035|035 0.14 0.35
7 0.01 015 043 036]| 015 043 0.36|0.15 043 0.36
8 0.02 -0.05 -0.25 0.72|-0.03 -0.19 0.72 | 0.00 0.00 0.68
9 0.04 -0.08 032 0.32]-0.05 040 0.30|0.00 0.38 0.29
10 0.04 -0.06 043 0.25|-0.01 050 0.24 |0.00 0.50 0.24

Table 7: Weights generated by three versions of MLR: (i) no constraints, (ii) no intercept,
and (iii) non-negativity constraints, for the LED24 dataset.

280

ISSUES IN STACKED (GENERALIZATION

Dataset #SE | BestCV Majority MLR
Horse 0.5 17.1 15.0 15.2
Splice 2.5 4.5 4.0 3.8
Abalone 3.3 40.1 39.0 38.3
Led24 8.7 32.8 31.8 31.3
Credit 8.9 17.4 16.1 16.2
Nettalk(s) | 10.8 12.7 12.2 11.5
Coding 12.7 25.0 23.1 20.7
Waveform | 18.7 17.1 19.5 16.8
Euthyroid | 26.3 1.9 8.1 1.9
Vowel 242.0 2.6 13.0 2.5

Table 8: Average error rates of BestCV, Majority Vote and MLR, (model M), along with
the number of standard error (#SE) between BestCV and the worst performing
level-0 generalizers.

3.3 How Does Stacked Generalization Compare To Majority Vote?

Let us now compare the error rate of M’, derived from MLR, to that of majority vote,
a simple decision combination method which requires neither cross-validation nor level-
1 learning. Table 8 shows the average error rates of BestCV, majority vote and MLR.
In order to see whether the relative performances of level-0 generalizers have any effect
on these methods, the number of standard errors (#SE) between the error rates of the
worst performing level-0 generalizer and BestCV is given, and the datasets are re-ordered
according to this measure. Since BestCV almost always selects the best performing level-0
generalizer, small values of #SE indicate that the level-0 generalizers perform comparably
to one another, and vice versa.

MLR compares favorably to majority vote, with eight wins versus two losses. Out of
the eight wins, six have significant differences (the two exceptions are for the Splice and
Led24 datasets); whereas both losses (for the Horse and Credit datasets) have insignificant
differences. Thus the extra computation for cross-validation and level-1 learning seems to
have paid off.

It is interesting to note that the performance of majority vote is related to the size of
#SE. Majority vote compares favorably to BestCV in the first seven datasets, where the
values of #SE are small. In the last three, where #SE is large, majority vote performs
worse. This indicates that if the level-0 generalizers perform comparably, it is not worth
using cross-validation to determine the best one, because the result of majority vote—which
is far cheaper—is not significantly different. Although small values of #SE are a necessary
condition for majority vote to rival BestCV, they are not a sufficient condition—see Matan
(1996) for an example. The same applies when majority vote is compared with MLR. MLR
performs significantly better in the five datasets that have large #SE values, but in only
one of the other cases.

281

TiNG & WITTEN

M versus M’
C4.5 NB IB1 MLR
#Win vs. #Loss | 82 54 3-6 1-7

Table 9: M versus M’ for each generalizer—summarized results from Table 3.

It is worth mentioning a method that averages P;(z) for each 7 over all level-0 models,
yielding P;(z), and then predicts class I for which P;(z) > P;(x) for all i # I. According to
Breiman (1996b), this method produces an error rate almost identical to that of majority
vote.

3.4 Why Does Stacked Generalization Work Best With M’ Generated From
MLR?

We have shown that stacked generalization works best when output class probabilities
(rather than class predictions) are used with the MLR algorithm (rather than C4.5, IB1,
NB). In retrospect, this is not surprising, and can be explained intuitively as follows. The
level-1 model should provide a simple way of combining all the evidence available. This
evidence includes not just the predictions, but the confidence of each level-0 model in
its predictions. A linear combination is the simplest way of pooling the level-0 models’
confidence, and MLR provides just that.

The alternative methods of NB, C4.5, and IB1 each have shortcomings. A Bayesian ap-
proach could form the basis for a suitable alternative way of pooling the level-0 models’ confi-
dence, but the independence assumption central to Naive Bayes hampers its performance in
some datasets because the evidence provided by the individual level-0 models is certainly not
independent. C4.5 builds trees that can model interaction amongst attributes—particularly
when the tree is large—but this is not desirable for combining confidences. Nearest neigh-
bor methods do not really give a way of combining confidences; also, the similarity metric
employed could misleadingly assume that two different sets of confidence levels are similar.

Table 9 summarizes the results in Table 3 by comparing M with M’ for each level-1
generalizer, across all datasets. C4.5 is clearly better off with a label-based representation,
because discretizing continuous-valued attributes creates intra-attribute interaction in ad-
dition to interactions between different attributes. The evidence from Table 9 is that NB
is indifferent to the use of labels or confidences: the normal distribution assumption that
it embodies in the latter case could be another reason why it is unsuitable for combining
confidence measures. Both MLR and IB1 handle continuous-valued attributes better than
label-based ones, since this is the domain in which they are designed to work.

SUMMARY

We summarize our findings in this section as follows.

e None of the four learning algorithms used to obtain model M perform satisfactorily.

282

ISSUES IN STACKED (GENERALIZATION

e MLR is the best of the four learning algorithms to use as the level-1 generalizer for
obtaining the model M'.

e When obtained using MLR, M’ has lower predictive error rate than the best model
selected by J-fold cross-validation, for almost all datasets used in the experiments.

e Another advantage of MLR over the other three level-1 generalizers is its interpretability.
The weights ay, indicate the different contributions that each level-0 model k£ makes
to the prediction classes /.

e Model M’ can be derived by MLR with or without non-negativity constraints. Such
constraints make little difference to the model’s predictive accuracy.

e The use of non-negativity constraints in MLR has the advantage of interpretability. Non-
negative weights agy support easier interpretation of the extent to which each model
contributes to each prediction class.

e When derived using MLR, model M’ compares favorably with majority vote.

e MLR provides a method of combining the confidence generated by the level-0 models into
a final decision. For various reasons, NB, C4.5, and IB1 are not suitable for this task.

4. Comparison With Arcing And Bagging

This section compares the results of stacking C4.5, NB and IB1 with the results of arcing
(called boosting by its originator, Schapire, 1990) and bagging that are reported by Breiman
(1996b; 1996¢). Both arcing and bagging employ sampling techniques to modify the data
distribution in order to produce multiple models from a single learning algorithm. To
combine the decisions of the individual models, arcing uses a weighted majority vote and
bagging uses an unweighted majority vote. Breiman reports that both arcing and bagging
can substantially improve the predictive accuracy of a single model derived using a base
learning algorithm.

4.1 Experimental Results

First we describe the differences between the experimental procedures. Our results for
stacking are averaged over ten-fold cross-validation for all datasets except Waveform, which
is averaged over ten repeated trials. Standard errors are also shown. Results for arcing and
bagging are those obtained by Breiman (1996b; 1996¢), which are averaged over 100 trials.
In Breiman’s experiments, each trial uses a random 9:1 split to form the training and test
sets for all datasets except Waveform. Also note that the Waveform dataset we used has 19
irrelevant attributes, but Breiman used a version without irrelevant attributes (which would
be expected to degrade the performance of level-0 generalizers in our experiments). In both
cases 300 training instances were used for this dataset, but we used 5000 test instances
whereas Breiman used 1800. Arcing and bagging are done with 50 decision tree models
derived from CART (Breiman et al., 1984) in each trial.

283

TiNG & WITTEN

Dataset #Samples | stacking arcing bagging
Waveform 300 16.8 +0.2 17.8 19.3
Glass 214 28.4 £2.9 22.0 23.2
Tonosphere 351 9.7 £1.5 6.4 7.9
Soybean 683 4.3 £1.1 5.8 6.8
Breast Cancer 699 2.7 £0.8 3.2 3.7
Diabetes 768 24.2 +1.2 26.6 23.9

Table 10: Comparing stacking with arcing and bagging classifiers.

The results on six datasets are given in Table 10, and indicate that the three methods
are very competitive.? Stacking performs better than both arcing and bagging in three
datasets (Waveform, Soybean and Breast Cancer), and is better than arcing but worse than
bagging in the Diabetes dataset. Note that stacking performs very poorly on Glass and
Tonosphere, two small real-world datasets. This is not surprising, because cross-validation
inevitably produces poor estimates for small datasets.

4.2 Discussion

Like bagging, stacking is ideal for parallel computation. The construction of each level-0
model proceeds independently, no communication with the other modeling processes being
necessary.

Arcing and bagging require a considerable number of member models because they
rely on varying the data distribution to get a diverse set of models from a single learning
algorithm. Using a level-1 generalizer, stacking can work with only two or three level-0
models.

Suppose the computation time required for a learning algorithm is C', and arcing or
bagging needs h models. The learning time required is T, = hC. Suppose stacking requires
g models and each model employs J-fold cross-validation. Assuming that time C' is needed
to derive each of the g level-0 models and the level-1 model, the learning time for stacking
is Ts = (g(J + 1) + 1)C. For the results given in Table 10, h = 50, J = 10, and g = 3; thus
T, = 50C and Ts = 34C. However, in practice the learning time required for the level-0
and level-1 generalizers may be different.

Users of stacking have a free choice of level-0 models. They may either be derived from a
single learning algorithm, or from a variety of different algorithms. The example in Section
3 uses different types of learning algorithms, while bag-stacking—stacking bagged models
(Ting & Witten, 1997)—uses data variation to obtain a diverse set of models from a single
learning algorithm. In the former case, performance may vary substantially between the
level-0 models—for example NB performs very poorly in the Vowel and Euthyroid datasets
compared to the other two models (see Table 2). Stacking copes well with this situation.
The performance variation among the member models in bagging is rather small because
they are derived from the same learning algorithm using bootstrap samples. Section 3.3

4. The heart dataset used by Breiman (1996b; 1996¢) is omitted because it was very much modified from
the original one.

284

ISSUES IN STACKED (GENERALIZATION

shows that a small performance variation among member models is a necessary condition
for majority vote (as employed by bagging) to work well.

It is worth noting that arcing and bagging can be incorporated into the framework of
stacked generalization by using arced or bagged models as level-0 models. Ting & Witten
(1997) show one possible way of incorporating bagged models with level-1 learning, em-
ploying MLR instead of voting. In this implementation, £ is used as a test set for each
of the bagged models to derive level-1 data rather than the cross-validated data. This is
viable because each bootstrap sample leaves out about 37% of the examples. Ting & Witten
(1997) show that bag-stacking almost always has higher predictive accuracy than bagging
models derived from either C4.5 or NB. Note that the only difference here is whether an
adaptive level-1 model or a simple majority vote is employed

According to Breiman (1996b; 1996¢), arcing and bagging can only improve the predic-
tive accuracy of learning algorithms that are ‘unstable.’”> An unstable learning algorithm
is one for which small perturbations in the training set can produce large changes in the
derived model. Decision trees and neural networks are unstable; NB and IB1 are stable.
Stacking works with both.

While MLR is the most successful candidate for level-1 learning that we have found,
other algorithms might work equally well. One candidate is neural networks. However,
we have experimented with back-propagation neural networks for this purpose and found
that they have a much slower learning rate than MLR. For example, MLR only took 2.9
seconds as compare to 4790 seconds for the neural network in the nettalk dataset; while
both have the same error rate. Other possible candidates are the multinomial logit model
(Jordan & Jacobs, 1994), which is a special case of generalized linear models (McCullagh
& Nelder, 1983), and the supra Bayesian procedure (Jacobs, 1995) which treats the level-0
models’ confidence as data that may be combined with prior distribution of level-0 models
via Bayes’ rule.

5. Related Work

Our analysis of stacked generalization was motivated by that of Breiman (1996a), discussed
earlier, and LeBlanc & Tibshirani (1993). LeBlanc & Tibshirani (1993) examine the stacking
of a linear discriminant and a nearest neighbor classifier and show that, for one artificial
dataset, a method similar to MLR performs better with non-negativity constraints than
without. Our results in Section 3.2 show that these constraints are irrelevant to MLR’s
predictive accuracy in the classification situation.

LeBlanc & Tibshirani (1993) and Ting & Witten (1997) use a version of MLR that
employs all class probabilities from each level-0 model to induce each linear regression. In
this case, the linear regression for class £ is

K 1
LRy(x) = agiePri().
ki

This implementation requires the fitting of K1 parameters, as compared to K parameters
for the version used in this paper (see the corresponding formula in Section 2.2). Both

5. Schapire, R.E., Y. Freund, P. Bartlett, & W.S. Lee (1997) provide an alternative explanation for the
effectiveness of arcing and bagging.

285

TiNG & WITTEN

versions give comparable results in terms of predictive accuracy, but the version used in
this paper runs considerably faster because it needs to fit fewer parameters.

The limitations of MLR are well-known (Duda & Hart, 1973). For a I-class problem, it
divides the description space into I convex decision regions. Every region must be singly
connected, and the decision boundaries are linear hyperplanes. This means that MLR is
most suitable for problems with unimodal probability densities. Despite these limitations,
MLR still performs better as a level-1 generalizer than IB1, its nearest competitor in deriving
M'. These limitations may hold the key to a fuller understanding of the behavior of stacked
generalization. Jacobs (1995) reviews linear combination methods like that used in MLR.

Previous work on stacked generalization, especially as applied to classification tasks,
has been limited in several ways. Some only applies to a particular dataset (e.g., Zhang,
Mesirov & Waltz, 1992). Others report results that are less than convincing (Merz, 1995).
Still others have a different focus and evaluate the results on just a few datasets (LeBlanc
& Tibshirani, 1993; Chan & Stolfo, 1995; Kim & Bartlett, 1995; Fan et al., 1996).

One might consider a degenerate form of stacked generalization that does not use cross-
validation to produce data for level-1 learning. Then, level-1 learning can be done ‘on the
fly’ during the training process (Jacobs et al., 1991). In another approach, level-1 learning
takes place in batch mode, after all level-0 models are derived (Ho et al., 1994).

Several researchers have worked on a still more degenerate form of stacked generalization
without any cross-validation or learning at level 1. Examples are neural network ensembles
(Hansen & Salamon, 1990; Perrone & Cooper, 1993; Krogh & Vedelsby, 1995), multiple
decision tree combination (Kwok & Carter, 1990; Buntine, 1991; Oliver & Hand, 1995), and
multiple rule combination (Kononenko & Kovaci¢, 1992). The methods used at level 1 are
majority voting, weighted averaging and Bayesian combination. Other possible methods are
distribution summation and likelihood combination. There are various forms of re-ordering
class rank, and Ali & Pazzani (1996) study some of these methods for a rule learner. Ting
(1996) uses the confidence of each prediction to combine a nearest neighbor classifier and a
Naive Bayesian classifier.

6. Conclusions

We have addressed two crucial issues for the successful implementation of stacked general-
ization in classification tasks. First, class probabilities should be used instead of the single
predicted class as input attributes for higher-level learning. The class probabilities serve as
the confidence measure for the prediction made. Second, the multi-response least squares
linear regression technique should be employed as the high-level generalizer. This technique
provides a method of combining level-0 models’ confidence. The other three learning algo-
rithms have either algorithmic limitations or are not suitable for aggregating confidences.

When combining three different types of learning algorithms, this implementation of
stacked generalization was found to achieve better predictive accuracy than both model
selection based on cross-validation and majority vote; it was also found to be competi-
tive with arcing and bagging. Unlike stacked regression, non-negativity constraints in the
least-squares regression are not necessary to guarantee improved predictive accuracy in
classification tasks. However, these constraints are still preferred because they increase the
interpretability of the level-1 model.

286

ISSUES IN STACKED (GENERALIZATION

The implication of our successful implementation of stacked generalization is that earlier
model combination methods employing (weighted) majority vote, averaging, or other com-
putations that do not make use of level-1 learning, can now apply this learning to improve
their predictive accuracy.

Acknowledgment

The authors are grateful to the New Zealand Marsden Fund for financial support for this
research. This work was conducted when the first author was in Department of Computer
Science, University of Waikato. The authors are grateful to J. Ross Quinlan for providing
C4.5 and David W. Aha for providing IB1. The anonymous reviewers and the editor have
provided many helpful comments.

References

Aha, D.W., D. Kibler & M.K. Albert (1991). Instance-Based Learning Algorithms. Ma-
chine Learning, 6, pp. 37-66.

Ali, KM. & M.J. Pazzani (1996). Error Reduction through Learning Multiple Descrip-
tions. Machine Learning, Vol. 24, No. 3, pp. 173-206.

Blake, C., E. Keogh & C.J. Merz (1998). UCI Repository of machine learning databases
[http:// www.ics.uci.edu/ mlearn/MLRepository.html]. Irvine, CA: University of Cal-
ifornia, Department of Information and Computer Science.

Breiman, L. (1996a). Stacked Regressions. Machine Learning, Vol. 24, pp. 49-64.
Breiman, L. (1996b). Bagging Predictors. Machine Learning, Vol. 24, No. 2, pp. 123-140.

Breiman, L. (1996¢). Bias, Variance, and Arcing Classifiers. Technical Report 460. De-
partment of Statistics, University of California, Berkeley, CA.

Breiman, L., J.H. Friedman, R.A. Olshen & C.J. Stone (1984). Classification And Regres-
sion Trees. Belmont, CA: Wadsworth.

Cestnik, B. (1990). Estimating Probabilities: A Crucial Task in Machine Learning. In
Proceedings of the Furopean Conference on Artificial Intelligence, pp. 147-149.

Chan, P.K. & S.J. Stolfo (1995). A Comparative Evaluation of Voting and Meta-learning
on Partitioned Data. In Proceedings of the Twelfth International Conference on Ma-
chine Learning, pp. 90-98, Morgan Kaufmann.

Cost, S & S. Salzberg (1993). A Weighted Nearest Neighbor Algorithm for Learning with
Symbolic Features. Machine Learning, 10, pp. 57-78.

Fan, D.W., P.K. Chan, S.J. Stolfo (1996). A Comparative Evaluation of Combiner and
Stacked Generalization. In Proceedings of AAAI-96 workshop on Integrating Multiple
Learned Models, pp. 40-46.

Hansen, L.K. & P. Salamon (1990). Neural Network Ensembles. IEEE Transactions of
Pattern Analysis and Machine Intelligence, 12, pp. 993-1001.

287

TiNG & WITTEN

Ho, T.K., J.J. Hull & S.N. Srihari (1994). Decision Combination in Multiple Classifier
Systems. IEEFE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16,
No. 1, pp. 66-75.

Jacobs, R.A. (1995). Methods of Combining Experts’ Probability Assessments. Neural
Computation 7, pp. 867-888, MIT Press.

Jacobs, R.A., M.I. Jordan, S.J. Nowlan & G.E. Hinton (1991). Adaptive Mixtures of Local
Experts. Neural Computation 3, pp. 79-87.

Jacobs, R.A. & M.I. Jordan (1994). Hierachical Mixtures of Experts and the EM Algo-
rithms. Neural Computation 6, pp. 181-214.

Kim, K. & E.B. Bartlett (1995). Error Estimation by Series Association for Neural Network
Systems. Neural Computation 7, pp. 799-808, MIT Press.

Kononenko, I. & M. Kovaci¢ (1992). Learning as Optimization: Stochastic Generation
of Multiple Knowledge. In Proceedings of the Ninth International Conference on
Machine Learning, pp. 257-262, Morgan Kaufmann.

Krogh, A. & J. Vedelsby (1995). Neural Network Ensembles, Cross Validation, and Active
Learning. Advances in Neural Information Processing Systems 7, G. Tesauro, D.S.
Touretsky & T.K. Leen (Editors), pp. 231-238, MIT Press.

Kwok, S. & C. Carter (1990). Multiple Decision Trees. Uncertainty in Artificial Intel-
ligence 4, R. Shachter, T. Levitt, L. Kanal and J. Lemmer (Editors), pp. 327-335,
North-Holland.

Lawson C.L. & R.J. Hanson (1995). Solving Least Squares Problems. STAM Publications.

LeBlanc, M. & R. Tibshirani (1993). Combining Estimates in Regression and Classifica-
tion. Technical Report 9318. Department of Statistics, University of Toronto.

Matan, O. (1996). On Voting Ensembles of Classifiers (extended abstract). In Proceedings
of AAAI-96 workshop on Integrating Multiple Learned Models, pp. 84-88.

McCullagh, P. & J.A. Nelder (1983). Generalized Linear Models. London: Chapman and
Hall.

Merz, C.J. (1995). Dynamic Learning Bias Selection. In Proceedings of the Fifth In-
ternational Workshop on Artificial Intelligence and Statistics, Ft. Lauderdale, FL:
Unpublished, pp. 386-395.

Oliver, J.J. & D.J. Hand (1995). On Pruning and Averaging Decision Trees. In Proceedings
of the Twelfth International Conference on Machine Learning, pp. 430-437, Morgan
Kaufmann.

Perrone, M.P. & L.N. Cooper (1993). When Networks Disagree: Ensemble Methods for
Hybrid Neural Networks. Artificial Neural Networks for Speech and Vision, R.J.
Mammone (Editor). Chapman-Hall.

Quinlan, J.R. (1993). C4.5: Program for machine learning. Morgan Kaufmann.

288

ISSUES IN STACKED (GENERALIZATION

Schapire, R.E. (1990). The Strength of Weak Learnability. Machine Learning, 5, pp.
197-227, Kluwer Academic Publishers.

Schapire, R.E., Y. Freund, P. Bartlett, & W.S. Lee (1997). Boosting the margin: A new
explanation for the effectiveness of voting methods. In Proceedings of the Fourteenth
International Conference on Machine Learning, pages 322-330, Morgan Kaufmann.

Smyth, P. & D. Wolpert (1997). Stacked Density Estimation. Advances in Neural Infor-
mation Processing Systems.

Ting, K.M. (1996). The Characterisation of Predictive Accuracy and Decision Combina-
tion. In Proceedings of the Thirteenth International Conference on Machine Learning,
pp- 498-506, Morgan Kaufmann.

Ting, K.M. & L.H. Witten (1997). Stacking Bagged and Dagged Models. In Proceedings of
the Fourteenth International Conference on Machine Learning, pp. 367-375, Morgan
Kaufmann.

Weiss S. M. & C. A. Kulikowski (1991). Computer Systems That Learns. Morgan Kauf-
mann.

Wolpert, D.H. (1992). Stacked Generalization. Neural Networks, Vol. 5, pp. 241-259,
Pergamon Press.

Zhang, X., J.P. Mesirov & D.L. Waltz (1992). Hybrid System for Protein Secondary
Structure Prediction. Journal of Molecular Biology, 225, pp. 1049-1063.

289

