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Abstract

There are many applications in which it is desirable to order rather than classify in-
stances. Here we consider the problem of learning how to order instances given feedback
in the form of preference judgments, i.e., statements to the e�ect that one instance should
be ranked ahead of another. We outline a two-stage approach in which one �rst learns by
conventional means a binary preference function indicating whether it is advisable to rank
one instance before another. Here we consider an on-line algorithm for learning preference
functions that is based on Freund and Schapire's \Hedge" algorithm. In the second stage,
new instances are ordered so as to maximize agreement with the learned preference func-
tion. We show that the problem of �nding the ordering that agrees best with a learned
preference function is NP-complete. Nevertheless, we describe simple greedy algorithms
that are guaranteed to �nd a good approximation. Finally, we show how metasearch can
be formulated as an ordering problem, and present experimental results on learning a com-
bination of \search experts," each of which is a domain-speci�c query expansion strategy
for a web search engine.

1. Introduction

Work in inductive learning has mostly concentrated on learning to classify. However, there
are many applications in which it is desirable to order rather than classify instances. An
example might be a personalized email �lter that prioritizes unread mail. Here we will
consider the problem of learning how to construct such orderings given feedback in the
form of preference judgments, i.e., statements that one instance should be ranked ahead of
another.

Such orderings could be constructed based on a learned probabilistic classi�er or regres-
sion model and in fact often are. For instance, it is common practice in information retrieval
to rank documents according to their probability of relevance to a query, as estimated by a
learned classi�er for the concept \relevant document." An advantage of learning orderings
directly is that preference judgments can be much easier to obtain than the labels required
for classi�cation learning.

For instance, in the email application mentioned above, one approach might be to rank
messages according to their estimated probability of membership in the class of \urgent"
messages, or by some numerical estimate of urgency obtained by regression. Suppose,
however, that a user is presented with an ordered list of email messages, and elects to read
the third message �rst. Given this election, it is not necessarily the case that message three
is urgent, nor is there suÆcient information to estimate any numerical urgency measures.
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However, it seems quite reasonable to infer that message three should have been ranked
ahead of the others. Thus, in this setting, obtaining preference information may be easier
and more natural than obtaining the labels needed for a classi�cation or regression approach.

Another application domain that requires ordering instances is collaborative �ltering; see,
for instance, the papers contained in Resnick and Varian (1997). In a typical collaborative
�ltering task, a user seeks recommendations, say, on movies that she is likely to enjoy. Such
recommendations are usually expressed as ordered lists of recommended movies, produced
by combining movie ratings supplied by other users. Notice that each user's movie ratings
can be viewed as a set of preference judgements. In fact, interpreting ratings as preferences
is advantageous in several ways: for instance, it is not necessary to assume that a rating of
\7" means the same thing to every user.

In the remainder of this paper, we will investigate the following two-stage approach to
learning how to order. In stage one, we learn a preference function, a two-argument function
PREF(u; v) which returns a numerical measure of how certain it is that u should be ranked
before v. In stage two, we use the learned preference function to order a set of new instances
X; to accomplish this, we evaluate the learned function PREF(u; v) on all pairs of instances
u; v 2 X, and choose an ordering of X that agrees, as much as possible, with these pairwise
preference judgments.

For stage one, we describe a speci�c algorithm for learning a preference function from a
set of \ranking-experts". The algorithm is an on-line weight allocation algorithm, much like
the weighted majority algorithm (Littlestone & Warmuth, 1994) and Winnow (Littlestone,
1988), and, more directly, Freund and Schapire's (1997) \Hedge" algorithm. For stage two,
we show that �nding a total order that agrees best with such a preference function is NP-
complete. Nevertheless, we show that there are eÆcient greedy algorithms that always �nd
a good approximation to the best ordering.

We then present some experimental results in which these algorithm are used to combine
the results of several \search experts," each of which is a domain-speci�c query expansion
strategy for a web search engine. Since our work touches several di�erent �elds we defer
the discussion of related work to Sec. 6.

2. Preliminaries

Let X be a set of instances. For simplicity, in this paper, we always assume that X is
�nite. A preference function PREF is a binary function PREF : X �X ! [0; 1]. A value of
PREF(u; v) which is close to 1 (respectively 0) is interpreted as a strong recommendation
that u should be ranked above (respectively, below) v. A value close to 1=2 is interpreted
as an abstention from making a recommendation. As noted earlier, the hypothesis of our
learning system will be a preference function, and new instances will be ranked so as to
agree as much as possible with the preferences predicted by this hypothesis.

In standard classi�cation learning, a hypothesis is constructed by combining primitive
features. Similarly, in this paper, a preference function will be a combination of primitive
preference functions. In particular, we will typically assume the availability of a set of N
primitive preference functions R1; : : : ; RN . These can then be combined in the usual ways,
for instance with a boolean or linear combination of their values. We will be especially
interested in the latter combination method.
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Figure 1: Left and middle: Two ordering functions and their graph representation. Right:
The graph representation of the preference function created by a weighted (14 and
3
4) combination of the two functions. Edges with weight of 1

2 or 0 are omitted.

It is convenient to assume that the Ri's are well-formed in certain ways. To this end, we
introduce a special kind of preference function called a rank ordering which is de�ned by
an ordering function. Let S be a totally ordered set. We assume without loss of generality
that S � R. An ordering function into S is any function f : X ! S, where we interpret an
inequality f(u) > f(v) to mean that u is ranked above v by f . It is sometimes convenient
to allow an ordering function to \abstain" and not give a preference for a pair u, v. We
therefore allow S to include a special symbol ? not in R, and we interpret f(u) = ? to
mean that u is \unranked." We de�ne the symbol ? to be incomparable to all the elements
in S (that is, ? 6< s and s 6< ? for all s 2 S).

An ordering function f induces the preference function Rf , de�ned as

Rf (u; v) =

8><
>:

1 if f(u) > f(v)
0 if f(u) < f(v)
1
2 otherwise.

We call Rf a rank ordering for X into S. If Rf (u; v) = 1, then we say that u is preferred
to v, or u is ranked higher than v. Note that Rf (u; v) =

1
2 if either u or v (or both) is

unranked.
We will sometimes describe and manipulate preference functions as directed weighted

graphs. The nodes of a graph correspond to the instances in X. Each pair (u; v) is con-
nected by a directed edge with weight PREF(u; v). Since an ordering function f induces
a preference function Rf , we can also describe ordering functions as graphs. In Fig. 1 we
give an example of two ordering functions and their corresponding graphs. For brevity, we
do not draw edges (u; v) such that PREF(u; v) = 1

2 or PREF(u; v) = 0.
To give a concrete example of rank orderings, imagine learning to order documents

based on the words that they contain. To model this, let X be the set of all documents in
a repository, and for N words w1; : : : ; wN , let fi(u) be the number of occurrences of word
wi in document u. Then Rfi will prefer u to v whenever wi occurs more often in u than v.
As a second example, consider a metasearch application in which the goal is to combine the
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rankings of several web search engines on some �xed query. For N search engines e1; : : : ; eN ,
one might de�ne fi so that Rfi prefers web page u to web page v whenever u is ranked
ahead of v in the list Li produced by the corresponding search engine. To do this, one could
let fi(u) = �k for the web page u appearing in the k-th position in the list Li, and let
fi(u) = �M (where M > jLij) for any web page u not appearing in Li.

Feedback from the user will be represented in a similar but more general way. We will
assume that feedback is a set element pairs (u; v), each representing an assertion of the form
\u should be preferred to v." This de�nition of feedback is less restricted than ordering
functions. In particular, we will not assume that the feedback is consistent|cycles, such as
a > b > a, will be allowed.

3. Learning a Combination of Ordering Functions

In this section, we consider the problem of learning a good linear combination of a set of
ordering functions. Speci�cally, we assume access to a set of ranking experts, each of which
generates an ordering function when provided with a set of instances. For instance, in a
metasearch problem, each ranking expert might be a function that submits the user's query
to a di�erent search engine; the domain of instances might be the set of all web pages
returned by any of the ranking experts; and the ordering function associated with each
ranking expert might be represented as in the example above (i.e., letting fi(u) = �k for
the k-the web page u returned by i-th search engine, and letting fi(u) = �M for any web
page u not retrieved by the i-th search engine). The user's feedback will be a set of pairwise
preferences between web pages. This feedback may be obtained directly, for example, by
asking the user to explicitly rank the URL's returned by the search engine; or the feedback
may be obtained indirectly, for example, by measuring the time spent viewing each of the
returned pages.

We note that for the metasearch problem, an approach that works directly with the
numerical scores associated with the di�erent search engines might not be feasible; these
numerical scores might not be comparable across di�erent search engines, or might not
be provided by all search engines. Another problem is that most web pages will not be
indexed by all search engines. This can be easily modeled in our setting: rather than
letting fi(u) = �M for a web page u that is not ranked by search engine i, one could let
fi(u) = ?. This corresponds to the assumption that the search engine's preference for u
relative to ranked web pages is unknown.

We now describe a weight allocation algorithm that uses the preference functions Ri to
learn a preference function of the form PREF(u; v) =

PN
i=1wiRi(u; v). We adopt the on-line

learning framework �rst studied by Littlestone (1988) in which the weight wi assigned to
each ranking expert i is updated incrementally.

Formally, learning is assumed to take place in a sequence of rounds. On each round t, we
assume the learning algorithm is provided with a set Xt of instances to be ranked, for which
each ranking expert i 2 f1; : : : ; Ng provides an ordering function f ti . (In metasearch, for
instance, f ti is the ordering function associated with the list Lt

i of web pages returned by the
i-th ranking expert for the t-th query, and Xt is the set of all web pages that appear in any
of the lists Lt

1; : : : ; L
t
N .) Each ordering function f ti induces a preference function Rft

i
, which

we denote for brevity by Rt
i. The learner may compute Rt

i(u; v) for any and all preference
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functions Rt
i and pairs u; v 2 Xt before producing a combined preference function PREFt,

which is then used to produce an ordering �̂t of Xt. (Methods for producing an ordering
from a preference function will be discussed below.)

After producing the ordering �̂t, the learner receives feedback from the environment.
We assume that the feedback is an arbitrary set of assertions of the form \u should be
preferred to v." That is, the feedback on the t-th round is a set F t of pairs (u; v).

The algorithm we propose for this problem is based on the \weighted majority algo-
rithm" of Littlestone and Warmuth (1994) and, more directly, on Freund and Schapire's
(1997) \Hedge" algorithm. We de�ne the loss of a preference function R with respect to
the user's feedback F as

Loss(R;F ) =

P
(u;v)2F (1�R(u; v))

jF j
= 1�

1

jF j

X
(u;v)2F

R(u; v) : (1)

This loss has a natural probabilistic interpretation. IfR is viewed as a randomized prediction
algorithm that predicts that u will precede v with probabilityR(u; v), then Loss(R;F ) is the
probability of R disagreeing with the feedback on a pair (u; v) chosen uniformly at random
from F .

It is worth noting that the assumption on the form of the feedback can be further relaxed
by allowing the user to indicate the degree to which she prefers u over v. In this case, the
loss should be normalized by the weighted sum of feedback pairs. Since this generalization
is rather straightforward, we assume for brevity that the feedback is an unweighted set of
assertions over element pairs.

We now can use the Hedge algorithm almost verbatim, as shown in Figure 2. The
algorithm maintains a positive weight vector whose value at time t is denoted by wt =
(wt

1; : : : ; w
t
N ). If there is no prior knowledge about the ranking experts, we set all initial

weights to be equal so that w1
i = 1=N .

On each round t, the weight vector wt is used to combine the preference functions of the
di�erent experts to obtain the preference function PREFt(u; v) =

PN
i=1w

t
iR

t
i(u; v). This

preference function is next converted into an ordering �̂t on the current set of elements
Xt. For the purposes of this section, the method of producing an ordering is immaterial; in
particular, any of the methods described in Sec. 4 could be used here. Based on this ordering,
the user provides feedback F t, and the loss for each preference function Loss(Rt

i; F
t) is

evaluated as in Eq. (1). Finally, the weight vector wt is updated using the multiplicative
rule

wt+1
i =

wt
i � �

Loss(Rt
i
;F t)

Zt

where � 2 [0; 1] is a parameter, and Zt is a normalization constant, chosen so that the
weights sum to one after the update. Thus, in each round, the weights of the ranking
experts are adjusted so that experts producing preference functions with relatively large
agreement with the feedback are increased.

We now give the theoretical rationale behind this algorithm. Freund and Schapire (1997)
prove general results about Hedge which can be applied directly to this loss function. Their
results imply almost immediately a bound on the cumulative loss of the preference function
PREFt in terms of the loss of the best ranking expert, speci�cally:
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Allocate Weights for Ranking Experts

Parameters: � 2 [0; 1], initial weight vector w1 2 [0; 1]N with
PN

i=1 w
1
i = 1

N ranking experts, number of rounds T

Do for t = 1; 2; : : : ; T

1. Receive a set of elements Xt and ordering functions f t1; : : : ; f
t
N . Let Rt

i denote the
preference function induced by f ti .

2. Compute a total order �̂t which approximates

PREFt(u; v) =
NX
i=1

wt
iR

t
i(u; v)

(Sec. 4 describes several ways of approximating a preference function with a total
order.)

3. Order Xt using �̂t.

4. Receive feedback F t from the user.

5. Evaluate losses Loss(Rt
i; F

t) as de�ned in Eq. (1).

6. Set the new weight vector

wt+1
i =

wt
i � �

Loss(Rt
i
;F t)

Zt

where Zt is a normalization constant, chosen so that
PN

i=1 w
t+1
i = 1.

Figure 2: The on-line weight allocation algorithm.

Theorem 1 For the algorithm of Fig. 2,

TX
t=1

Loss(PREFt; F t) � a�min
i

TX
t=1

Loss(Rt
i; F

t) + c� lnN

where a� = ln(1=�)=(1 � �) and c� = 1=(1 � �).

Note that
P

t Loss(PREF
t; F t) is the cumulative loss of the combined preference func-

tions PREFt, and
P

t Loss(R
t
i; F

t) is the cumulative loss of the ith ranking expert. Thus,
Theorem 1 states that the cumulative loss of the combined preference functions will not be
much worse than that of the best ranking expert.
Proof: We have that

Loss(PREFt; F t) = 1�
1

F t

X
(u;v)2F t

X
i

wt
iR

t
i(u; v)

=
X
i

wt
i

0
@1� 1

F t

X
(u;v)2F t

Rt
i(u; v)

1
A
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=
X
i

wt
iLoss(R

t
i(u; v); F

t):

Therefore, by Freund and Schapire's (1997) Theorem 2,

TX
t=1

Loss(PREFt; F t) =
TX
t=1

X
i

wt
iLoss(R

t
i(u; v); F

t)

� a�min
i

TX
t=1

Loss(Rt
i; F

t) + c� lnN:

2

Of course, we are not interested in the loss of PREFt (since it is not an ordering), but
rather in the performance of the actual ordering �̂t computed by the learning algorithm.
Fortunately, the losses of these can be related using a kind of triangle inequality. Let

DISAGREE(�;PREF) =
X

u;v:�(u)>�(v)

(1� PREF(u; v)) : (2)

Theorem 2 For any PREF, F and total order de�ned by an ordering function �,

Loss(R�; F ) �
DISAGREE(�;PREF)

jF j
+Loss(PREF; F ): (3)

Proof: For x; y 2 [0; 1], let us de�ne d(x; y) = x(1 � y) + y(1 � x). We now show
that d satis�es the triangle inequality. Let x, y and z be in [0; 1], and let X, Y and Z be
independent Bernoulli (f0; 1g-valued) random variables with probability of outcome 1 equal
to x, y and z, respectively. Then

d(x; z) = Pr[X 6= Z]

= Pr[(X 6= Y ^ Y = Z) _ (X = Y ^ Y 6= Z)]

� Pr[X 6= Y _ Y 6= Z]

� Pr[X 6= Y ] + Pr[Y 6= Z]

= d(x; y) + d(y; z):

For [0; 1]-valued functions f; g de�ned on X �X, we next de�ne

D(f; g) =
X

u;v:u6=v

d(f(u; v); g(u; v)):

Clearly, D also satis�es the triangle inequality.
Let �F be the characteristic function of F so that �F : X�X ! f0; 1g and �F (u; v) = 1

if and only if (u; v) 2 F . Then from the de�nition of Loss and DISAGREE, we have

jF j Loss(R�; F ) = D(R�; �F )

� D(R�;PREF) +D(PREF; �F )

= DISAGREE(�;PREF) + jF j Loss(PREF; F ):

2

Notice that the learning algorithm Hedge minimizes the second term on the right hand
side of Eq. (3). Below, we consider the problem of �nding an ordering � which minimizes
the �rst term, namely, DISAGREE.
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4. Ordering Instances with a Preference Function

4.1 Measuring the Quality of an Ordering

We now consider the complexity of �nding a total order that agrees best with a learned
preference function. To analyze this, we must �rst quantify the notion of agreement between
a preference function PREF and an ordering. One natural notion is the following: Let X
be a set, PREF be a preference function, and let � be a total ordering of X, expressed again
as an ordering function (i.e., �(u) > �(v) if and only if u is above v in the order). For
the analysis of this section, it is convenient to use the measure AGREE(�;PREF), which is
de�ned to be the sum of PREF(u; v) over all pairs u; v such that u is ranked above v by �:

AGREE(�;PREF) =
X

u;v:�(u)>�(v)

PREF(u; v): (4)

Clearly, AGREE is a linear transformation of the measure DISAGREE introduced in Eq. (2),
and hence maximizing AGREE is equivalent to minimizing DISAGREE. This de�nition is
also closely related to similarity metrics used in decision theory and information process-
ing (Kemeny & Snell, 1962; Fishburn, 1970; Roberts, 1979; French, 1989; Yao, 1995) (see
the discussion in Sec. 6).

4.2 Finding an Optimal Ordering is Hard

Ideally one would like to �nd a � that maximizes AGREE(�;PREF). The general opti-
mization problem is of little interest in our setting, since there are many constraints on the
preference function that are imposed by the learning algorithm. Using the learning algo-
rithm of Sec. 3, for instance, PREF will always be a linear combination of simpler functions.
However, the theorem below shows that this optimization problem is NP-complete even if
PREF is restricted to be a linear combination of well-behaved preference functions. In par-
ticular, the problem is NP-complete even if all the primitive preference functions used in
the linear combination are rank orderings which map into a set S with only three elements,
one of which may or may not be ?. (Clearly, if S consists of more than three elements then
the problem is still hard.)

Theorem 3 The following decision problem is NP-complete for any set S with jSj � 3:
Input: A rational number �; a set X; a collection of N ordering functions fi : X ! S;
and a preference function PREF de�ned as

PREF(u; v) =
NX
i=1

wiRfi(u; v) (5)

where w = (w1; : : : ; wN ) is a rational weight vector in [0; 1]N with
PN

i=1 wi = 1.
Question: Does there exist a total order � such that AGREE(�;PREF) � �?

Proof: The problem is clearly in NP since a nondeterministic algorithm can guess a total
order and check the weighted number of agreements in polynomial time.

To prove that the problem is NP-hard we reduce from CYCLIC-ORDERING (Galil &
Megido, 1977; Gary & Johnson, 1979), de�ned as follows: \Given a set A and a collection

250



Learning to Order Things

C of ordered triples (a; b; c) of distinct elements from A, is there a one-to-one function
f : A! f1; 2; : : : ; jAjg such that for each (a; b; c) 2 C we have either f(a) > f(b) > f(c) or
f(b) > f(c) > f(a) or f(c) > f(a) > f(b)?"

Without loss of generality, S is either f0; 1;?g or f0; 1; 2g. We �rst show that the
problem of �nding an optimal total order is hard when S = f0; 1;?g. Given an instance of
CYCLIC-ORDERING, we let X = A. For each triplet t = (a; b; c) we will introduce three
ordering functions ft;1, ft;2, and ft;3, and de�ne them so that ft;1(a) > ft;1(b), ft;2(b) >
ft;2(c), and ft;3(c) > ft;3(a). To do this, we let ft;1(a) = ft;2(b) = ft;3(c) = 1, ft;1(b) =
ft;2(c) = ft;3(a) = 0, and ft;i(�) = ? in all other cases. We let the weight vector be uniform,
so that wt;i =

1
3jCj . Let

� =
5

3
+
jAj(jAj � 1)=2 � 3

2
:

De�ne Rt(u; v) =
P3

i=1 wt;iRft;i(u; v), which is the contribution of these three functions

to PREF(u; v). Notice that for any triplet t = (a; b; c) 2 C, Rt(a; b) = 2
3jCj whereas

Rt(b; a) =
1

3jCj , and similarly for b; c and c; a. In addition, for any pair u; v 2 A such that

at least one of them does not appear in t, we get that Rt(u; v) =
1

2jCj . Since a total order

� can satisfy at most two of the three conditions �(a) > �(b), �(b) > �(c), and �(c) > �(a),
the largest possible weighted number of agreements associated with this triple is exactly
�=jCj.

If the number of weighted agreements is at least �, it must be exactly �, by the argument
above; and if there are exactly � weighted agreements, then the total order must satisfy
exactly 2 out of the possible 3 relations for each three elements that form a triplet from
C. Thus, the constructed rank ordering instance will be positive if and only if the original
CYCLIC-ORDERING instance is positive.

The case for S = f0; 1; 2g uses a similar construction; however, for each triplet t =
(a; b; c), we de�ne six ordering functions, f jt;1, f

j
t;2, and f jt;3, where j 2 f0; 1g. The basic

idea here is to replace each ft;i with two functions, f0t;i and f1t;i, that agree on the single
ordering constraint associated with ft;i, but disagree on all other orderings. For instance,

we will de�ne these functions so that f jt;1(a) > f jt;1(b) for j = 0 and j = 1, but for all other

pairs u; v, f1t;1(u) > f1t;1(v) i� f0t;1(v) > f0t;1(u). Averaging the two orderings f0t;1 and f1t;1
will thus yield the same preference expressed by the original function ft;1 (i.e., a preference
for a > b only).

In more detail, we let f jt;1(a) = f jt;2(b) = f jt;3(c) = 2�j, f jt;1(b) = f jt;2(c) = f jt;3(a) = 1�j,

and f jt;i(�) = 2j in all other cases. We again let the weight vector be uniform, so that

wj
t;i =

1
6jCj . Similar to the �rst case, we de�ne Rt(u; v) =

P
i;j wt;iRf

j
t;i

(u; v). It can be

veri�ed that Rt is identical to the Rt constructed in the �rst case. Therefore, by the same
argument, the constructed rank ordering instance will be positive if and only if the original
CYCLIC-ORDERING instance is positive. 2

Although this problem is hard when jSj � 3, the next theorem shows that it becomes
tractable for linear combinations of rank orderings into a set S of size two. Of course, when
jSj = 2, the rank orderings are really only binary classi�ers. The fact that this special
case is tractable underscores the fact that manipulating orderings (even relatively simple
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ones) can be computationally more diÆcult than performing the corresponding operations
on binary classi�ers.

Theorem 4 The following optimization problem is solvable in linear time:

Input: A set X; a set S with jSj = 2; a collection of N ordering functions fi : X ! S;
and a preference function PREF de�ned by Eq. (5).
Output: A total order de�ned by an ordering function � which maximizes

AGREE(�;PREF).

Proof: Assume without loss of generality that the two-element set S is f0; 1g, and
de�ne �(u) =

P
iwifi(u). We now show that any total order1 consistent with � maximizes

AGREE(�;PREF). Fix a pair u; v 2 X and let

qb1b2 =
X

i s.t. fi(u)=b1;fi(v)=b2

wi :

We can now rewrite � and PREF as

�(u) = q10 + q11 PREF(u; v) = q10 +
1
2q11 +

1
2q00

�(v) = q01 + q11 PREF(v; u) = q01 +
1
2q11 +

1
2q00 :

Note that both �(u)� �(v) and PREF(u; v)� PREF(v; u) are equal to q10 � q01. Hence, if
�(u) > �(v) then PREF(u; v) > PREF(v; u). Therefore, for each pair u; v 2 X, the order
de�ned by � agrees on all pairs with the pairwise preference de�ned by PREF. In other
words, we have shown that

AGREE(�;PREF) =
X
fu;vg

maxfPREF(u; v);PREF(v; u)g (6)

where the sum is over all unordered pairs. Clearly, the right hand side of Eq. (6) maximizes
the right hand side of Eq. (4) since at most one of (u; v) or (v; u) can be included in the
latter sum. 2

4.3 Finding an Approximately Optimal Ordering

Theorem 3 implies that we are unlikely to �nd an eÆcient algorithm that �nds the optimal
total order for a weighted combination of rank orderings. Fortunately, there do exist eÆ-
cient algorithms for �nding an approximately optimal total order. In fact, �nding a good
total order is closely related to the problem of �nding the minimum feedback arc set, for
which there exist good approximation algorithms; see, for instance, (Shmoys, 1997) and
the references therein. However, the algorithms that achieve the good approximation re-
sults for the minimum feedback arc set problem are based on (or further approximate) a
linear-programming relaxation (Seymour, 1995; Even, Naor, Rao, & Schieber, 1996; Berger
& Shor, 1997; Even, Naor, Schieber, & Sudan, 1998) which is rather complex to implement
and quite slow in practice.

1. Notice that in case of a tie, so that �(u) = �(v) for distinct u; v, � de�nes only a partial order. The
theorem holds for any total order which is consistent with this partial order, i.e., for any �

0 so that
�(u) > �(v)) �

0(u) > �
0(v).

252



Learning to Order Things

Algorithm Greedy-Order

Inputs: an instance set X; a preference function PREF
Output: an approximately optimal ordering function �̂
let V = X
for each v 2 V do �(v) =

P
u2V PREF(v; u)�

P
u2V PREF(u; v)

while V is non-empty do
let t = argmaxu2V �(u)
let �̂(t) = jV j
V = V � ftg
for each v 2 V do �(v) = �(v) + PREF(t; v) � PREF(v; t)

endwhile

Figure 3: The greedy ordering algorithm.

We describe instead a simple greedy algorithm which is very simple to implement. Fig-
ure 3 summarizes the greedy algorithm. As we will shortly demonstrate, this algorithm
produces a good approximation to the best total order.

The algorithm is easiest to describe by thinking of PREF as a directed weighted graph,
where initially, the set of vertices V is equal to the set of instances X, and each edge u! v
has weight PREF(u; v). We assign to each vertex v 2 V a potential value �(v), which is the
weighted sum of the outgoing edges minus the weighted sum of the ingoing edges. That is,

�(v) =
X
u2V

PREF(v; u) �
X
u2V

PREF(u; v) :

The greedy algorithm then picks some node t that has maximum potential2, and assigns it
a rank by setting �̂(t) = jV j, e�ectively ordering it ahead of all the remaining nodes. This
node, together with all incident edges, is then deleted from the graph, and the potential
values � of the remaining vertices are updated appropriately. This process is repeated
until the graph is empty. Notice that nodes removed in subsequent iterations will have
progressively smaller and smaller ranks.

As an example, consider the preference function de�ned by the leftmost graph of Fig. 4.
(This graph is identical to the weighted combination of the two ordering functions from
Fig. 1.) The initial potentials the algorithm assigns are: �(b) = 2, �(d) = 3=2, �(c) = �5=4,
and �(a) = �9=4. Hence, b has maximal potential. It is given a rank of 4, and then node b
and all incident edges are removed from the graph.

The result is the middle graph of Fig. 4. After deleting b, the potentials of the remaining
nodes are updated: �(d) = 3=2, �(c) = �1=4, and �(a) = �5=4. Thus, d will be assigned
rank jV j = 3 and removed from the graph, resulting in the rightmost graph of Fig. 4.

After updating potentials again, �(c) = 1=2 and �(a) = �1=2. Now c will be assigned
rank jV j = 2 and removed, resulting in a graph containing the single node a, which will

2. Ties can be broken arbitrarily in case of two or more nodes with the same potential.
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Figure 4: Behavior of the greedy ordering algorithm. The leftmost graph is the original
input. From this graph, node b will be assigned maximal rank and deleted,
leading to the middle graph; from this graph, node d will deleted, leading to the
rightmost graph. In the rightmost graph, node c will be ranked ahead of node a,
leading the total ordering b > d > c > a.

�nally be assigned the rank jV j = 1. The ordering produced by the greedy algorithm is
thus b > d > c > a.

The next theorem shows that this greedy algorithm comes within a factor of two of
optimal.

Theorem 5 Let OPT(PREF) be the weighted agreement achieved by an optimal total order

for the preference function PREF, and let APPROX(PREF) be the weighted agreement

achieved by the greedy algorithm. Then

APPROX(PREF) �
1

2
OPT(PREF) :

Proof: Consider the edges that are incident on the node vj which is selected on the
j-th repetition of the while loop of Figure 3. The ordering produced by the algorithm will
agree with all of the outgoing edges of vj and disagree with all of the ingoing edges. Let
aj be the sum of the weights of the outgoing edges of vj, and dj be the sum of the weights

of the ingoing edges. Clearly APPROX(PREF) �
PjV j

j=1 aj. However, at every repetition,
the total weight of all incoming edges must equal the total weight of all outgoing edges.
This means that

P
v2V �(v) = 0, and hence for the node v? that has maximal potential,

�(v?) � 0. Thus on every repetition j, it must be that aj � dj , so we have that

OPT(PREF) �

jV jX
j=1

(aj + dj) �

jV jX
j=1

(aj + aj) � 2 �APPROX(PREF):

The �rst inequality holds because OPT(PREF) can at best include every edge in the graph,
and since every edge is removed exactly once, each edge must contribute to some aj or some
dj . 2
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Figure 5: An example of a graph (left) for which the node-based greedy algorithm achieves
an approximation factor of 1

2 by constructing the partial order on the right.

In passing, we note that there are other natural greedy algorithms that do not achieve
good approximations. Consider, for example, an algorithm that starts from a graph con-
sisting of all the nodes but with no edges, and iteratively adds the highest weighted edge in
the graph, while avoiding cycles. It can be shown that this algorithm can produce a very
poor partial order, given an adversarially chosen graph; there are cases where the optimal
total order achieves a multiplicative factor of O(jV j) more weighted agreements than this
\edge-based" greedy algorithm.

4.4 Improvements to the Greedy Algorithm

The approximation factor of two given in Theorem 5 is tight. That is, there exist problems
for which the greedy algorithm approximation is worse than the optimal solution by a
factor arbitrarily close to two. Consider the graph shown on the left-hand side of Fig. 5. An
optimal total order ranks the instances according to their position in the �gure, left to right,
breaking ties randomly, and achieves OPT(PREF) = 2k+2 weighted agreements. However,
the greedy algorithm picks the node labeled k + 1 �rst and orders all the remaining nodes
randomly, achieving as few as APPROX(PREF) = k+2 agreements. For large k, the ratio
APPROX(PREF)=OPT(PREF) approaches 1

2 .

For graph of Figure 5, there is another simple algorithm which produces an optimal
ordering: since the graph is already a partial order, picking any total order consistent with
this partial order gives an optimal result. To cope with problems such as the one of Figure 5,
we devised an improvement to the greedy algorithm which combines a greedy method with
topological sorting. The aim of the improvement is to �nd better approximations for graphs
which are composed of many strongly connected components.

As before, the modi�ed algorithm is easiest to describe by thinking of PREF as a
weighted directed graph. Recall that for each pair of nodes u and v, there exist two edges:
one from u to v with weight PREF(u; v) and one from v to u with weight PREF(v; u). In
the modi�ed greedy algorithm we will pre-process the graph. For each pair of nodes, we
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Algorithm SCC-Greedy-Order

Inputs: an instance set X; a preference function PREF
Output: an approximately optimal ordering function �̂

De�ne PREF0(u; v) = maxfPREF(u; v)� PREF(v; u); 0g :
Find strongly connected components U1; : : : ; Uk of the graph G = (V;E) where

V = X and E = f(u; v) j PREF0(u; v) > 0g :

Order the strongly connected components in any way consistent with the partial order
<scc:

U <scc U
0 i� 9u 2 U; u0 2 U 0 : (u; u0) 2 E

Use algorithm Greedy-Order or full enumeration to order the instances within each com-
ponent Ui according to PREF0.

Figure 6: The improved greedy ordering algorithm.

remove the edge with the smaller weight and set the weight of the other edge to be

j PREF(v; u)� PREF(u; v) j :

For the special case where PREF(v; u) = PREF(u; v) = 1
2 , we remove both edges. In the

reduced graph, there is at most one directed edge between each pair of nodes. Note that
the greedy algorithm would behave identically on the transformed graph since it is based
on the weighted di�erences between the incoming and outgoing edges.

We next �nd the strongly connected components3 of the reduced graph, ignoring (for
now) the weights. One can now split the edges of the reduced graph into two classes: inter-
component edges connect nodes u and v, where u and v are in di�erent strongly connected
components; and intra-component edges connect nodes u and v from the same strongly
connected component. It is straightforward to verify that any optimal order agrees with all
the inter-component edges. Put another way, if there is an edge from node u to node v of
two di�erent connected components in the reduced graph, then �(u) > �(v) for any optimal
total order �.

The �rst step of the improved algorithm is thus to totally order the strongly connected
components in some way consistent with the partial order de�ned by the inter-component
edges. More precisely, we pick a total ordering for the components consistent with the
partial order <scc, de�ned as follows: for components U and U 0, U <scc U

0 i� there is an
edge from some node u 2 U to some node u0 2 U 0 in the reduced graph.

We next order the nodes within each strongly connected component, thus providing a
total order of all nodes. Here the greedy algorithm can be used. As an alternative, in
cases where a component contains only a few elements (say at most �ve), one can �nd the
optimal order between the elements of the component by a brute-force approach, i.e., by
full enumeration of all permutations.

3. Two nodes u and v are in the same strongly connected component i� there are directed paths from u to
v and from v to u.
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Figure 7: An illustration of the approximation algorithm for �nding a total order from
a weighted combination of ordering functions. The original graph (top left) is
reduced by removing at least one edge for each edge-pair (u; v) and (v; u) (middle).
The strongly connected components are then found (right). Finally, an ordering
is found within each strongly connected component which yield the order b > c >
d > a (bottom).

The improved algorithm is summarized in Figure 6 and illustrated in Figure 7. There
are four elements in Figure 7 which constitute two strongly connected components in the
reduced graph (fbg and fa; c; dg). Therefore, b is assigned the top rank and ranked above
a, c and d. If the brute-force algorithm were used to order the components, then we would
check all 3! permutations between a, c and d and output the total order b > c > d > a,
which is the optimal order in this toy example.

In the worst case, the reduced graph contains only a single strongly connected com-
ponent. In this case, the improved algorithm generates the same ordering as the greedy
algorithm. However, in the experiments on metasearch problems described in Sec. 5, many
of the strongly connected components are small; the average size of a strongly connected
component is less than �ve. In cases such as these, the improved algorithm will often
improve on the simple greedy algorithm.

4.5 Experiments with the Ordering Algorithms

Ideally, each algorithm would be evaluated by determining how closely it approximates the
optimal ordering on large, realistic problems. Unfortunately, �nding the optimal ordering
for large graphs is impractical. We thus performed two sets of experiments with the ordering
algorithms described above. In the �rst set of experiments, we evaluated the algorithms on
small graphs|speci�cally, graphs for which the optimal ordering could be feasibly found
with brute-force enumeration. In these experiments, we measure the \goodness" of the
resulting orderings relative to the optimal ordering. In the second set of experiments, we
evaluated the algorithms on large graphs for which the optimal orderings are unknown. In
these experiments, we compute a \goodness" measure which depends on the total weight
of all edges, rather than the optimal ordering.

257



Cohen, Schapire, & Singer

In addition to the simple greedy algorithm and its improvement, we also considered the
following simple randomized algorithm: pick a permutation at random, and then output
the better of that permutation and its reverse. It can be easily shown that this algorithm
achieves the same approximation bound on expected performance as the greedy algorithm.
(Brie
y, one of the two permutations must agree with at least half of the weighted edges
in the graph.) The random algorithm can be improved by repeating the process, i.e.,
examining many random permutations and their reverses, and choosing the permutation
that achieves the largest number of weighted agreements.

In a �rst set of experiments, we compared the performance of the greedy approximation
algorithm, the improved algorithm which �rst �nds strongly connected components, and the
randomized algorithm on graphs of nine or fewer elements. For each number of elements, we
generated 10;000 random graphs by choosing PREF(u; v) uniformly at random, and setting
PREF(v; u) to 1 � PREF(u; v). For the randomized algorithm, we evaluated 10n random
permutations (and their reverses) where n is the number of instances (nodes). To have
a fair comparison between the di�erent algorithms on the smaller graphs, we always used
the greedy algorithm (rather than a brute-force algorithm) to order the elements of each
strongly connected component of a graph.

To evaluate the algorithms, we examined the reduced graph and calculated the average
ratio of the weights of the edges chosen by the approximation algorithm to the weights of
the edges that were chosen by the optimal order. More precisely, let � be the optimal order
and �̂ be an order chosen by an approximation algorithm. Then for each random graph, we
calculated X

u; v : �̂(u) > �̂(v)

maxfPREF(u; v) � PREF(v; u); 0g

X

u; v : �(u) > �(v)

maxfPREF(u; v) � PREF(v; u); 0g
:

If this measure is 0.9, for instance, then the total weight of the edges in the total order
picked by the approximation algorithm is 90% of the corresponding �gure for the optimal
algorithm.

We averaged the above ratios over all random graphs of the same size. The results
are shown on the left hand side of Figure 8. On the right hand side of the �gure, we
show the average running time for each of the algorithms as a function of the number of
elements. When the number of ranked elements is more than �ve, the greedy algorithms
outperform the randomized algorithm, while their running time is much smaller. Thus, if
a full enumeration had been used to �nd the optimal order of small strongly connected
components, the approximation would have been consistently better than the randomized
algorithm.

We note that the greedy algorithm also generally performs better on average than
the lower bound given in Theorem 5. In fact, combining the greedy algorithm with pre-
partitioning of the graph into strongly connected components often yields the optimal order.

In the second set of experiments, we measured performance and running time for larger
random graphs. Since for large graphs we cannot �nd the optimal solution by brute-force
enumeration, we use as a \goodness" measure the ratio of the weights of the edges that were
left in the reduced graph after applying an approximation algorithm to the total weight of
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Figure 8: Comparison of goodness (left) and the running time (right) of the approximations
achieved by the greedy algorithms and the randomized algorithm as a function of
the number of ranked elements for random preference functions with 3 through 9
elements.

5 10 15 20 25 30

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of elements

F
ra

ct
io

n 
of

 to
ta

l w
ei

gh
t

Greedy
SCC + Greedy
Randomized

5 10 15 20 25 30

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of elements

R
un

ni
ng

 ti
m

e 
(s

ec
on

ds
)

Greedy
SCC + Greedy
Randomized
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achieved by the greedy algorithms and the randomized algorithm as a function of
the number of ranked elements for random preference functions with 3 through 30
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edges in the graph. That is, for each random graph we calculated

X

u; v : �̂(u) > �̂(v)

maxfPREF(u; v) � PREF(v; u); 0g

X
u; v

maxfPREF(u; v) � PREF(v; u); 0g
:

We ran the three algorithms with the same parameters as above (i.e., 10;000 random
graphs). The results are given in Figure 9. The advantage of the greedy algorithms over
the randomized algorithm is even more apparent on these larger problems. Note also that
for large graphs the performance of the two greedy algorithms is indistinguishable. This is
mainly due to the fact that large random graphs are strongly connected with high proba-
bility.

To summarize the experiments, when there are six or more elements the greedy algorithm
clearly outperforms the randomized algorithm even if many randomly chosen permutations
are examined. Furthermore, the improved algorithm which �rst �nds the strongly connected
components outperforms the randomized algorithm for all graph sizes. In practice the
improved greedy algorithm achieves very good approximations|within about 5 percent of
optimal, for the cases in which optimal graphs can be feasibly found.

5. Experimental Results for Metasearch

So far, we have described a method for learning a preference function, and a means of
converting a preference function into an ordering of new instances. We will now present
some experimental results in learning to order. In particular, we will describe results on
learning to combine the orderings of several web \search experts" using the algorithm of
Figure 2 to learn a preference function, and the simple greedy algorithm to order instances
using the learned preference function. The goals of these experiments are to illustrate the
type of problems that can be solved with our method; to empirically evaluate the learning
method; to evaluate the ordering algorithm on large, non-random graphs, such as might arise
in a realistic application; and to con�rm the theoretical results of the preceding sections.
We thus restrict ourselves to comparing the learned orderings to individual search experts,
as is suggested by Theorem 1, rather than attempt to compare this application of learning-
to-order with previous experimental techniques for metasearch, e.g., (Lochbaum & Streeter,
1989; Kantor, 1994; Boyan, Freitag, & Joachims, 1994; Bartell, Cottrell, & Belew, 1994).

We note that this metasearch problem exhibits several properties that suggest a general
approach such as ours. For instance, approaches that learn to combine similarity scores
are not applicable, since the similarity scores of web search engines are often unavailable.
In the experiments presented here, the learning algorithm was provided with ordered lists
for each search engine without any associated scores. To further demonstrate the merits of
our approach, we also describe experiments with partial feedback|that is, with preference
judgments that are less informative than the relevance judgments more typically used in
improving search engines.
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ML Search Experts UNIV Search Experts

NAME NAME
\NAME" \NAME"
title:\NAME" \NAME" PLACE
NAME +LASTNAME title:\home page" title:NAME
NAME +LASTNAME title:homepage title:\NAME"
NAME +LASTNAME machine learning title:\NAME" PLACE
NAME +LASTNAME \machine learning" NAME title:\home page"
NAME +LASTNAME case based reasoning NAME title:\homepage"
NAME +LASTNAME \case based reasoning" NAME welcome
NAME +LASTNAME PLACE NAME url:index.html
NAME +LASTNAME \PLACE" NAME url:home.html
NAME +LASTNAME url:index.html \NAME" title:\home page"
NAME +LASTNAME url:home.html \NAME" title:\homepage"
NAME +LASTNAME url:~*LASTNAME* \NAME" welcome

NAME +LASTNAME url:~LASTNAME \NAME" url:index.html
NAME +LASTNAME url:LASTNAME \NAME" url:home.html

\NAME" PLACE title:\home page"
\NAME" PLACE title:\homepage"
\NAME" PLACE welcome
\NAME" PLACE url:index.html
\NAME" PLACE url:home.html

Table 1: Search (and ranking) experts used in the metasearch experiments. In the asso-
ciated queries, NAME is replaced with the person's (or university's) full name,
LASTNAME with the person's last name, and PLACE is replaced with the per-
son's aÆliation (or university's location). Sequences of words enclosed in quotes
must appear as a phrase, and terms pre�xed by title: and url: must appear
in that part of the web page. Words pre�xed by a \+" must appear in the web
page; other words may or may not appear.

5.1 Test Problems and Encoding

We chose to simulate the problem of learning a domain-speci�c search engine|i.e., an engine
that searches for pages of a particular, narrow type. Ahoy! (Shakes, Langheinrich, & Etzioni,
1997) is one instance of such a domain-speci�c search engine. As test cases, we picked two
problems: retrieving the home pages of machine learning researchers (ML), and retrieving
the home pages of universities (UNIV). To obtain sample queries, we obtained a listing of
machine learning researchers, identi�ed by name and aÆliated institution, together with
their home pages,4 and a similar list for universities, identi�ed by name and (sometimes)
geographical location.5 Each entry on a list was viewed as a query, with the associated
URL the sole relevant web page.

4. From http://www.aic.nrl.navy.mil/�aha/research/machine-learning.html, a list maintained by David
Aha.

5. From Yahoo!
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We then constructed a series of special-purpose \search experts" for each domain. These
were implemented as query expansion methods which converted a name/aÆliation pair (or
a name/location pair) to a likely-seeming Altavista query. For example, one expert for the
UNIV domain searched for the university name appearing as a phrase, together with the
phrase \home page" in the title; another expert for the ML domain searched for all the
words in the person's name plus the words \machine" and \learning," and further enforces
a strict requirement that the person's last name appear. Overall, we de�ned 16 search
experts for the ML domain and 22 for the UNIV domain; these are summarized in Table 1.
Each search expert returned the top 30 ranked web pages. In the ML domain, there were
210 searches for which at least one search expert returned the named home page; for the
UNIV domain, there were 290 such searches. The task of the learning system is to �nd an
appropriate way of combining the output of these search experts.

To give a more precise description of the search experts, for each query t, we �rst
constructed the set Xt consisting of all web pages returned by all of the expanded queries
de�ned by the search experts. Next, each search expert i was represented as a preference
function Rt

i. We chose these preference functions to be rank orderings de�ned with respect
to an ordering function f ti in the natural way: we assigned a rank of f ti = 30 to the �rst
listed page, f ti = 29 to the second-listed page, and so on, �nally assigning a rank of f ti = 0
to every page not retrieved in the top 30 by the expanded query associated with expert i.

To encode feedback, we considered two schemes. In the �rst, we simulated complete
relevance feedback|that is, for each query, we constructed feedback in which the sole
relevant page was preferred to all other pages. In the second, we simulated the sort of
feedback that could be collected from \click data"|i.e., from observing a user's interactions
with a metasearch system. For each query, after presenting a ranked list of pages, we noted
the rank of the one relevant web page. We then constructed a feedback ranking in which the
relevant page is preferred to all preceding pages. This would correspond to observing which
link the user actually followed, and making the assumption that this link was preferred to
previous links.

It should be emphasized that both of these forms of feedback are simulated, and contain
less noise than would be expected from real user data. In reality some fraction of the
relevance feedback would be missing or erroneous, and some fraction of click data would
not satisfy the assumption stated above.

5.2 Evaluation and Results

To evaluate the expected performance of a fully-trained system on novel queries in this
domain, we employed leave-one-out testing. For each query t, we trained the learning system
on all the other queries, and then recorded the rank of the learned system on query t. For
complete relevance feedback, this rank is invariant of the ordering of the training examples,
but for the \click data" feedback, it is not; the feedback collected at each stage depends on
the behavior of the partially learned system, which in turn depends on the previous training
examples. Thus for click data training, we trained on 100 randomly chosen permutations
of the training data and recorded the median rank for t.
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5.2.1 Performance Relative to Individual Experts

The theoretical results provide a guarantee of performance relative to the performance of
the best individual search (ranking) expert. It is therefore natural to consider comparing
the performance of the learned system to the best of the individual experts. However, for
each search expert, only the top 30 ranked web pages for a query are known; if the single
relevant page for a query is not among these top 30, then it is impossible to compute any
natural measures of performance for this query. This complicates any comparison of the
learned system to the individual search experts.

However, in spite of the incomplete information about the performance of the search
experts, it is usually possible to tell if the learned system ranks a web page higher than a
particular expert.6 Motivated by this, we performed a sign test: we compared the rank of
the learning systems to the rank given by each search expert, checking to see whether this
rank was lower, and discarding queries for which this comparison was impossible. We then
used a normal approximation to the binomial distribution to test the following two null
hypotheses (where the probability is taken over the distribution from which the queries are
drawn):

H1. With probability at least 0.5, the search expert performs better than the learning
system (i.e., gives a lower rank to the relevant page than the learning system does.)

H2. With probability at least 0.5, the search expert performs no worse than the learning
system (i.e., gives an equal or lower rank to the relevant page.)

In training, we explored learning rates in the range [0:001; 0:999]. For complete feedback
in the ML domain, hypothesis H1 can be rejected with high con�dence (p > 0:999) for every
search expert and every learning rate 0:01 � � � 0:99. The same holds in the UNIV domain
for all learning rates 0:02 � � � 0:99. The results for click data training are nearly as strong,
except that 2 of the 22 search experts in the UNIV domain show a greater sensitivity to
the learning rate: for these engines, H1 can only be rejected with high con�dence for
0:3 � � � 0:6. To summarize, with high con�dence, in both domains, the learned ranking
system is no worse than any individual search expert for moderate values of �.

Hypothesis H2 is more stringent since it can be rejected only if we are sure that the
learned system is strictly better than the expert. With complete feedback in the ML domain
and 0:3 � � � 0:8, hypothesis H2 can be rejected with con�dence p > 0:999 for 14 of the 16
search experts. For the remaining two experts the learned system does perform better more
often, but the di�erence is not signi�cant. In the UNIV domain, the results are similar. For
0:2 � � � 0:99, hypothesis H2 can be rejected with con�dence p > 0:999 for 21 of the 22
search experts, and the learned engine tends to perform better than the single remaining
expert.

Again, the results for click data training are only slightly weaker. In the ML domain,
hypothesis H2 can be rejected for all but three experts for all but the most extreme learning
rates; in the UNIV domain, hypothesis H2 can be rejected for all but two experts for 0:4 �
� � 0:6. For the remaining experts and learning rates the di�erences are not statistically

6. The only time this cannot be determined is when neither the learned system nor the expert ranks the
relevant web pages in the top 30, a case of little practical interest.
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signi�cant; however, it is not always the case that the learned engine tends to perform
better.

To summarize the experiments, for moderate values of � the learned system is, with
high con�dence, strictly better than most of the search experts in both domains, and never
signi�cantly worse than any expert. When trained with full relevance judgments, the learned
system performs better on average than any individual expert.

5.2.2 Other Performance Measures

We measured the number of queries for which the correct web page was in the top k ranked
pages, for various values of k. These results are shown in Figure 10. Here the lines show the
performance of the learned systems (with � = 0:5, a generally favorable learning rate) and
the points correspond to the individual experts. In most cases, the learned system closely
tracks the performance of the best expert at every value of k. This is especially interesting
since no single expert is best at all values of k.

The �nal graph in this �gure investigates the sensitivity of this measure to the learning
rate �. As a representative illustration, we varied � in the ML domain and plotted the
top-k performance of the system learned from complete feedback for three values of k. Note
that performance is roughly comparable over a wide range of values for �.

Another plausible measure of performance is the average rank of the (single) relevant
web page. We computed an approximation to average rank by arti�cially assigning a rank
of 31 to every page that was either unranked, or ranked above rank 30. (The latter case is
to be fair to the learned system, which is the only one for which a rank greater than 30 is
possible.) A summary of these results for � = 0:5 is given in Table 2, together with some
additional data on top-k performance. In the table, we give the top-k performance for three
values of k, and average rank for several ranking systems: the two learned systems; the naive
query, i.e., the person or university's name; and the single search expert that performed
best with respect to each performance measure. Note that not all of these experts are
distinct since several experts scored the best on more than one measure.

The table illustrates the robustness of the learned systems, which are nearly always
competitive with the best expert for every performance measure listed. The only exception
to this is that the system trained on click data trails the best expert in top-k performance for
small values of k. It is also worth noting that in both domains, the naive query (simply the
person or university's name) is not very e�ective: even with the weaker click data feedback,
the learned system achieves a 36% decrease in average rank over the naive query in the ML
domain, and a 46% decrease in the UNIV domain.

To summarize the experiments, on these domains the learned system not only performs
much better than naive search strategies, but also consistently performs at least as well as,
and perhaps slightly better than, any single domain-speci�c search expert. This observation
holds regardless of the performance metric considered; for nearly every metric we computed,
the learned system always equals, and usually exceeds, the performance of the search expert
that is best for that metric. Finally, the performance of the learned system is almost as
good with the weaker \click data" training as with complete relevance feedback.
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Figure 10: Top and middle: Performance of the learned system versus individual experts
for two di�erent domains. Bottom: the percentage of time the relevant web page
was in the top-k list for k = 1,4, and 8.
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ML Domain University Domain
Top 1 Top 10 Top 30 Avg Rank Top 1 Top 10 Top 30 Avg Rank

Learned (Full Feed.) 114 185 198 4.9 111 225 253 7.8

Learned (Click Data) 93 185 198 4.9 87 229 259 7.8

Naive 89 165 176 7.7 79 157 191 14.4

Best (Top 1) 119 170 184 6.7 112 221 247 8.2
Best (Top 10) 114 182 190 5.3 111 223 249 8.0
Best (Top 30) 97 181 194 5.6 111 223 249 8.0
Best (Avg Rank) 114 182 190 5.3 111 223 249 8.0

Table 2: Comparison of learned systems and individual search queries.

6. Related Work

Problems that involve ordering and ranking have been investigated in various �elds such as
decision theory, the social sciences, information retrieval and mathematical economics (Black,
1958; Kemeny & Snell, 1962; Cooper, 1968; Fishburn, 1970; Roberts, 1979; Salton &McGill,
1983; French, 1989; Yao, 1995). Among the wealth of literature on the subject, the closest to
ours appears to be the work of Kemeny and Snell (1962) which was extended by Yao (1995)
and used by Balabanov��c and Shoham (1997) in their FAB collaborative �ltering system.
These works use a similar notion of ordering functions and feedback; however, they assume
that both the ordering functions and the feedback are complete and transitive. Hence, it
is not possible to leave elements unranked, or to have inconsistent feedback which violates
the transitivity requirements. It is therefore diÆcult to combine and fuse inconsistent and
incomplete orderings in the Kemeny and Snell model.

There are also several related intractability results. Most of them are concerned with the
diÆculty in reaching consensus in voting systems based on preference ordering. Speci�cally,
Bartholdi, Tovey and Trick (1989) study the problem of �nding a winner in an election
when the preferences of all voters are irre
exive, antisymmetric, transitive, and complete.
Thus, their setting is more restrictive than ours. They study two similar schemes to decide
on a winner of an election. The �rst was invented by Dodgson (1876) (better known by
his pen name, Lewis Carroll) and the second is due to Kemeny (1959). For both models,
they show that the problem of �nding a winner in an election is NP-hard. Among these
two models, the one suggested by Kemeny is the closest to ours. However, as mentioned
above, this model is more restrictive as it does not allow voters to abstain (preferences are
required to be complete) or to be inconsistent (all preferences are transitive).

As illustrated by the experiments, the problem of learning to rank is closely related to
the problem of combining the results of di�erent search engines. Many methods for this
have been proposed by the information retrieval community, and many of these are adap-
tive, using relevance judgments to make an appropriate choice of parameters. However,
generally, rankings are combined by combining the scores that were used to rank docu-
ments (Lochbaum & Streeter, 1989; Kantor, 1994). It is also frequently assumed that other
properties of the objects (documents) to be ranked are available, such as word frequencies.
In contrast, in our experiments, instances are atomic entities with no associated properties
except for their position in various rank-orderings. Similarly, we make minimal assump-
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tions about the rank-orderings|in particular, we do not assume scores are available. Our
methods are thus applicable to a broader class of ranking problems.

General optimization methods have also been adopted to adjust parameters of an IR
system so as to improve agreement with a set of user-given preference judgments. For in-
stance, Boyan, Freitag, and Joachims (1994) use simulated annealing to improve agreement
with \click data," and Bartell, Cottrell and Belew (1994) use conjugate gradient descent
to choose parameters for a linear combination of scoring functions, each associated with
a di�erent search expert. Typically, such approaches o�er few guarantees of eÆciency,
optimality, or generalization performance.

Another related task is collection fusion. Here, several searches are executed on disjoint
subsets of a large collection, and the results are combined. Several approaches to this prob-
lem that do not rely on combining ranking scores have been described (Towell, Voorhees,
Gupta, & Johnson-Laird, 1995; Voorhees, Gupta, & Johnson-Laird, 1994). However, al-
though the problem is super�cially similar to the one presented here, the assumption that
the di�erent search engines index disjoint sets of documents actually makes the problem
quite di�erent. In particular, since it is impossible for two engines to give di�erent relative
orderings to the same pair of documents, combining the rankings can be done relatively
easily.

Etzioni et al. (1996) formally considered another aspect of metasearch|the task of
optimally combining information sources with associated costs and time delays. Our formal
results are disjoint from theirs, as they assume that every query has a single recognizable
correct answer, rendering ordering issues unimportant.

There are many other applications in machine learning, reinforcement learning, neural
networks, and collaborative �ltering that employ ranking and preferences, e.g., (Utgo� &
Saxena, 1987; Utgo� & Clouse, 1991; Caruana, Baluja, & Mitchell, 1996; Resnick & Varian,
1997), While our work is not directly relevant, it might be possible to use the framework
suggested in this paper in similar settings. This is one of our future research goals.

Finally, we would like to note that the framework and algorithms presented in this paper
can be extended in several ways. Our current research focuses on eÆcient batch algorithms
for combining preference functions, and on using restricted ranking experts for which the
problem of �nding an optimal total ordering can be solved in polyomial time (Freund, Iyer,
Schapire, & Singer, 1998).

7. Conclusions

In many applications, it is desirable to order rather than classify instances. We investigated
a two-stage approach to learning to order in which one �rst learns a preference function by
conventional means, and then orders a new set of instances by �nding the total ordering
that best approximates the preference function. The preference function that is learned is
a binary function PREF(u; v), which returns a measure of con�dence re
ecting how likely
it is that u is preferred to v. This is learned from a set of \experts" which suggest speci�c
orderings, and from user feedback in the form of assertions of the form \u should be preferred
to v".

We have presented two sets of results on this problem. First, we presented an online
learning algorithm for learning a weighted combination of ranking experts which is based
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on an adaptation of Freund and Schapire's Hedge algorithm. Second, we explored the
complexity of the problem of �nding a total ordering that agrees best with a preference
function. We showed that this problem is NP-complete even in a highly restrictive case,
namely, preference predicates that are linear combinations of a certain class of well-behaved
\experts" called rank orderings. However, we also showed that for any preference predicate,
there is a greedy algorithm that always obtains a total ordering that is within a factor of
two of optimal. We also presented an algorithm that �rst divides the set of instances into
strongly connected components and then uses the greedy algorithm (or full enumeration,
for small components) to �nd an approximately good order within large strongly connected
components. We found that this approximation algorithm works very well in practice and
often �nds the best order.

We also presented experimental results in which these algorithms were used to combine
the results of a number of \search experts," each of which corresponds to a domain-speci�c
strategy for searching the web. We showed that in two domains, the learned system closely
tracks and often exceeds the performance of the best of these search experts. These results
hold for either traditional relevance feedback models of learning, or from weaker feedback
in the form of simulated \click data." The performance of the learned systems also clearly
exceeds the performance of more naive approaches to searching.
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