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Abstract

A previously developed quantum search algorithm for solving 1-SAT problems in a
single step is generalized to apply to a range of highly constrained k-SAT problems. We
identify a bound on the number of clauses in satisfiability problems for which the general-
ized algorithm can find a solution in a constant number of steps as the number of variables
increases. This performance contrasts with the linear growth in the number of steps re-
quired by the best classical algorithms, and the exponential number required by classical
and quantum methods that ignore the problem structure. In some cases, the algorithm can
also guarantee that insoluble problems in fact have no solutions, unlike previously proposed
quantum search algorithms.

1. Introduction

Quantum computers (Benioff, 1982; Bernstein & Vazirani, 1993; Deutsch, 1985, 1989; Di-
Vincenzo, 1995; Feynman, 1986; Lloyd, 1993) offer a new approach to combinatorial search
problems (Garey & Johnson, 1979) with quantum parallelism, i.e., the ability to oper-
ate simultaneously on many classical search states, and interference among different paths
through the search space. A quantum algorithm to rapidly factor integers (Shor, 1994), a
problem thought to be intractable for classical machines, offers a dramatic example of how
these features of quantum mechanics can be exploited.

While several additional algorithms have been developed (Boyer, Brassard, Hoyer, &
Tapp, 1996; Cerny, 1993; Grover, 1997b, 1997a; Hogg, 1996, 1998a; Terhal & Smolin, 1997),
the extent to which quantum searches can improve on heuristically guided classical search
methods remains an open question. Quantum algorithms can be based directly on classical
heuristics, achieving a search cost that is the square root of the corresponding classical
method (Brassard, Hoyer, & Tapp, 1998; Cerf, Grover, & Williams, 1998). Obtaining
further improvement requires uniquely quantum mechanical methods. Heuristics exploit
the structure of the search problems to greatly reduce the search cost in many cases. The
success of these heuristics raises the question of whether the structure of search problems can
form the basis of even better quantum algorithms. A suggestion that this is possible has been
observed empirically for highly constrained problems (Hogg, 1998a), but the complexity of
the algorithm precluded a definitive theoretical analysis of its behavior.

This paper presents a new quantum search algorithm that is extremely effective for
some highly constrained search problems. These constraints also allow for effective classical
heuristics, i.e., these problems are relatively easy. However, the new quantum algorithm re-
quires even fewer steps than the best classical methods, providing another example of search
problems for which quantum computers can outperform classical ones. More significantly,
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this algorithm illustrates how knowledge of the structure inherent in search problems can
be used to develop new algorithms. Finally, because of its simplicity, the algorithm’s be-
havior can be readily characterized analytically in some cases, conclusively demonstrating
its asymptotic performance behavior in those cases.

Specifically the following two sections briefly review the ingredients of quantum programs
and the satisfiability problem. The quantum algorithm for a particularly simple case is
described in Section 4 and generalized in Section 5. The new algorithm is then evaluated for
a variety of highly constrained problems. Finally some open issues are discussed, including
a variety of ways this approach can be extended.

2. Quantum Computers

The state of a classical computer can be described by a string of bits, each of which is im-
plemented by some two-state device. Quantum computers use physical devices whose full
quantum state can be controlled. For example (DiVincenzo, 1995), an atom in its ground
state could represent a bit set to 0, and an excited state for 1. The atom can be switched
between these states and also be placed in a uniquely quantum mechanical superposition of

¢0 ), with a component (called an ampli-
1

tude) for each of the corresponding classical states for the system. These amplitudes are

these values, which can be denoted as a vector <

complex numbers. A superposition should not be confused with a probabilistic representa-
tion of ignorance about whether a classical bit is really 0 or 1. Nor is a superposition simply
in between a 0 or 1, as could be the case with a 3 volt value for classical bits implemented
as 0 and 5 volts. Instead, a superposition has no complete classical analog.

In contrast to a classical machine which, at any given step of its program, has a definite
value for each bit, a quantum machine with n quantum bits exists in a general superposition
of the 2" classical states for n bits, described by the vector

Yo
v=1 (1)
Yon_q

The amplitudes have a physical interpretation: when the computer’s state is measured, the
superposition randomly changes to one of the classical states with |15|? being the probability
to obtain the state s. Thus amplitudes satisfy the normalization condition 3, |¥,]? = 1.
This measurement operation is used to obtain definite results from a quantum computation.

Using this rich set of states requires operations that can rapidly manipulate the am-
plitudes in a superposition. Because quantum mechanics is linear and the normalization
condition must always be satisfied, these operations are limited to unitary linear opera-
tors (Hogg, 1996). That is, a state vector 7 can only change to a new vector 9’ related to
the original one by a unitary transformation, i.e., ¥ = Uv where U is a unitary matrix!
of dimension 2" x 2". In particular, this requires that the operations be reversible: each
output is the result of a single input. In spite of the exponential size of the matrix, in many

1. A complex matrix U is unitary when U7 = I, where U is the transpose of U with all elements changed
to their complex conjugates. Examples include permutations, rotations and multiplication by phases
(complex numbers whose magnitude is one).
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cases the operation can be performed in a time that grows only as a polynomial in n by
quantum computers (Boyer et al., 1996; Hoyer, 1997). Importantly, the quantum computer
does not explicitly form, or store, the matrix U. Rather it performs a series of elementary
operations whose net effect is to produce the new state vector ¢'. On the other hand,
the components of the new vector are not directly accessible: rather they determine the
probabilities of obtaining various results when the state is measured.

Important examples of such operations are reversible classical programs (Bennett &
Landauer, 1985; Feynman, 1996). Let P be such a program. Then for each classical state s,
i.e., a string of bit values, it produces an output s’ = P[s], and each output is produced by
only a single input. A simple example is a program operating with two bits that replaces
the first value with the exclusive-or of both bits and leaves the second value unchanged,
i.e., P[00] = 00, P[01] = 11, P[10] = 10 and P[11] = 01. When used with a quantum
superposition, such classical programs operate independently and simultaneously on each
component to give a new superposition. That is, a program operating with n bits gives

o %o
el s |- @)
Yan_q VYgn_q
where 9!, = 1, with s’ = P[s]. This quantum parallelism allows a machine with n bits to

operate simultaneously with 2" different classical states.
Unitary operations can also mix the amplitudes in a state vector. An example for n = 1

5 2) 0

. 1 . .
This converts <0>, which could correspond to an atom prepared in its ground state, to

is

1y . i . .
L ( ), i.e., an equal superposition of the two states. Since amplitudes are complex

V2 \ 1

numbers, such mixing can combine amplitudes to leave no amplitude in some of the states.
This capability for interference (Bernstein & Vazirani, 1993; Feynman, 1985) distinguishes
quantum computers from probabilistic classical machines.

3. The Satisfiability Problem

NP search problems have exponentially many possible states and a procedure that quickly
checks whether a given state is a solution (Garey & Johnson, 1979). Constraint satisfac-
tion problems (CSPs) (Mackworth, 1992) are an example. A CSP consists of n variables,
Vi,..., Vy, and the requirement to assign a value to each variable to satisfy given constraints.
An assignment specifies a value for each variable.

One important CSP is the satisfiability problem (SAT), which consists of a logical propo-
sitional formula in n variables and the requirement to find a value (true or false) for each
variable that makes the formula true. This problem has N = 2" assignments. For k-SAT,
the formula consists of a conjunction of clauses and each clause is a disjunction of k variables,
any of which may be negated. For & > 3 these problems are NP-complete. An example of
such a clause for k£ = 3, with the third variable negated, is V3 OR V2 OR (NOT V3), which
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is false for exactly one assignment for these variables: {V; = false, V5 = false, V3 = true}. A
clause with k variables is false for exactly one assignment to those variables, and true for the
other 2F — 1 choices. Since the formula is a conjunction of clauses, a solution must satisfy
every clause. We say an assignment conflicts with a particular clause when the values the
assignment gives to the variables in the clause make the clause false. For example, in a four
variable problem, the assignment

{V1 = false, V, = false, V3 = true, V4 = true}
conflicts with the £ = 3 clause given above, while
{V1 = false, V, = false, V3 = false, V4 = true}

does not. Thus each clause is a constraint that adds one conflict to all assignments that
conflict with it. The number of distinct clauses m is then the number of constraints in the
problem.

The assignments for SAT can also be viewed as bit strings with the correspondence that
the " bit is 0 or 1 according to whether V; is assigned the value false or true, respec-
tively. In turn, these bit strings are the binary representation of integers, ranging from 0
to 2" — 1. For definiteness, we arbitrarily order the bits so that the values of V4 and V,
correspond, respectively, to the least and most significant bits of the integer. For example,
the assignment

{V1 = false, V, = false, V3 = true, V4 = false}

corresponds to the integer whose binary representation is 0100, i.e., the number 4.

For bit strings r and s, let |s| be the number of 1-bits in s and r A s the bitwise AND
operation on r and s. Thus |r A s| counts the number of 1-bits both assignments have in
common. We also use d(r, s) as the Hamming distance between r and s, i.e., the number of
positions at which they have different values. These quantities are related by

d(r,s) = [r| +|s| = 2fr A o (4)

An example 1-SAT problem with n = 2 is the propositional formula (NOT V;) AND
(NOT V3). This problem has a unique solution: {V; = false, V, = false}, an assignment
with the bit representation 00. The remaining assignments for this problem have bit repre-
sentations 01, 10, and 11.

3.1 Highly Constrained SAT Problems

In general, SAT problems are difficult to solve. However, in a few simple cases the very
regular structure of the search space allows much more effective algorithms. One example is
given by 1-SAT problems. In this case, each clause eliminates one value for a single variable
allowing classical algorithms to examine the variables independently, giving an overall search
cost of O(n) in spite of the exponentially large number of assignments. A 1-SAT problem
has a solution if and only if each of the m clauses involves a distinct variable. Otherwise,
both values for some variable will be in conflict, i.e., making a clause false, resulting in no
solutions.
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This simple structure allows for rapid search. SAT problems with larger clauses have a
more complicated structure. Nevertheless, when the £-SAT problems are highly constrained,
their structure is close to that of 1-SAT. To see this, consider a soluble k-SAT problem. With
respect to a particular solution of that problem, define the good value for each variable as
the value (true or false) it is assigned in that solution, while the opposite value is the bad one
for that variable. For k-SAT problems with many constraints, the number of bad values in
an assignment can usually be determined rapidly from its number of conflicts, even though
determining exactly which variables have incorrect assigned values requires first finding the
solution. In such cases, using the number of bad values results in a tractable algorithm as
long as a priori knowledge of the solution is not assumed.

For example, consider soluble problems with the largest possible number of constraints.
For k-SAT, these maximally constrained soluble problems have m = my,x where

Mmax = (Z) (Qk - 1) (5)

i.e., the single solution precludes any clause that conflicts with it.

An assignment with j bad values contains (”;] ) sets of k variables all of which have the
same values as the solution. Each of the remaining sets conflicts with at least one clause in
the problem. Thus each assignment with j bad values has

Cmas(j) = (Z) - (";j) (6)

conflicts. This quantity grows strictly monotonically with 7 for 7 < n — k, so in these cases
7 is directly determined by the number of conflicts. Assignments with n —k+1 <5< n
are not distinguishable.

Assignments with 7 = n — k£ 4+ 1 can also be corrrectly determined by including neigh-
borhood information. To see this, consider an assignment s with j bad values, and its n
neighbors, i.e., assignments at Hamming distance one from s. Of these neighbors, j have
7 — 1 bad values, and the remaining n — j have 7 + 1 bad values. For j < n — k, s has
j neighbors with fewer conflicts and n — 7 with more. Thus for these assignments, exam-
ining the number of conflicts in the neighbors readily determines the value of j. When
j=mn—k+ 1, the assignment continues to have j neighbors with fewer conflicts, but now
the remaining £ — 1 neighbors have the same number of conflicts since the additional bad
value does not increase the number of conflicts. Finally, the neighbors of assignments with
n—k+1 < 7 <n all have the same number of conflicts. Thus examining the number of
conflicts in an assignment’s neighbors determines the value of j, with the exception that
assignments with n — k£ 4+ 1 < 7 < n are not distinguishable.

The value of j is the number of conflicts that s would have in the maximally constrained
1-SAT problem with the same solution as the given maximally constrained k-SAT problem.
Thus for a maximally constrained k-SAT problem let

Ceff(S):{ J Hys -kl (7)

n—k4+ 2 otherwise
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The value of ce(s) can be determined rapidly, in much the same way that a classical local
search method checks the number of conflicts among neighbors of its current state to deter-
mine which assignment to move to next (Minton, Johnston, Philips, & Laird, 1992; Selman,
Levesque, & Mitchell, 1992). Thus ceq is a computationally tractable approximation to
the number of conflicts each assignment would have in the corresponding 1-SAT problem.
Except for a few assignments with many conflicts, c.g gives the correct value. Specifically,
only assignments with at least n — k£ + 3 bad values are given an incorrect value of j by this
approximation. In particular, the approximation is completely correct for k = 2.

While classical searches use the number of conflicts in an assignment and its neighbors,
another possibility for maximally constrained problems is to use the number of conflicts in
the assignment and its complement (i.e., the assignment with opposite values for all the
variables). If the assignment has j bad values, its complement will have n —j. As described
above, the number of conflicts in an assignment uniquely determines the corresponding value
of j provided j < n — k. On the other hand, the number of conflicts in the complement
assignment uniquely determines j when n — j < n —k, or j > k. Thus, as long as n > 2k,
at least one of these conditions will be true for all 0 < 57 < n and the correct value of j can
be determined.

3.2 Random SAT Problems

Theoretically, search algorithms are often evaluated for the worst possible case. However,
in practice, search problems are often found to be considerably easier than suggested by
these worst case analyses (Hogg, Huberman, & Williams, 1996). This observation leads to
examining the typical behavior of search algorithms with respect to a specified ensemble of
problems, i.e., a class of problems and a probability for each to occur. For instance, the
ensemble of random k-SAT is specified by the number of variables n, the size of the clauses
k and the number of distinct? clauses m.

The quantum algorithm presented in this paper is effective for highly constrained soluble
k-SAT problems. When there are many constraints, soluble problems are very rare among
randomly generated instances. Thus to study the algorithm’s behavior we generate random
problems with a prespecified solution. That is, a random assignment is selected to be a
solution and used to restrict the selection of clauses for the problem. In the remainder of
this section we describe two methods for generating such problems, and how they can be
related to corresponding 1-SAT problems.

3.2.1 PRESPECIFIED SOLUTION

The most common use of a prespecified solution is to simply avoid selecting any clauses
that conflict with it. Thus, we generate problems by randomly selecting a set of m distinct
clauses from among the mmyay, given by Eq. (5), available clauses (Nijenhuis & Wilf, 1978).

Consider a given soluble k-SAT problem with m clauses, and let the assignment r be
one of its solutions. With respect to the solution r, we can define the bad value for each

2. This ensemble differs slightly from other studies where the clauses are not required to be distinct.
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variable. For an assignment with j bad values, the probability it has ¢ conflicts is

. (Cmaz (])) (mmaxn;EnC]aX (]))
Pconf(c|.]) = (mmax) (8)

m

where ¢max(7), given by Eq. (6), is the largest possible number of conflicts for an assignment
with j bad values. The probability that an assignment has j bad values is

Poag(j)=27" (j)

From these expressions and the definition of conditional probability, the probability that
an assignment with ¢ conflicts has j bad values is

Praa(jle) o< Peont(c|g) Poaa(J) (9)

Hence, for a given assignment s with ¢ conflicts, we can estimate the number of bad values
it has by picking 7 that maximizes Phaq(j|c). We use this maximum likelihood value for j
as cef(s) instead of Eq. (7) for random soluble k-SAT problems. This estimate is readily
computed from the number of conflicts.

3.2.2 BALANCED CLAUSES

Generating problems with a prespecified solution as described above is commonly used to
study search problems. However, for each variable there are more allowable clauses where
the variable is assigned its bad value than its good value. This makes highly constrained
instances particularly easy since the good value for each variable can often be determined
from its assigned value that appears most often in the clauses (Gent, 1998).

This bias in clause selection can be removed by a slight change in the generation
method (Van Gelder & Tsuji, 1993). Specifically, instead of only avoiding those clauses
that conflict with the prespecified solution, i.e., specify zero bad values, we also avoid any
clauses that have an even number of bad values with respect to the prespecified solution.
This selection method means both values for each variable appear equally often among the
clauses. These balanced problems can have at most

M = (Z)Q’H (10)

clauses. Furthermore, an assignment with j bad values can have at most

bl =Y (3) (2 jj) (11)

conflicts, where the sum is over odd values of ¢. Using these values in Eq. (8) instead of
Mmax and €max(j) gives the maximum likelihood estimate for 7 in this “balanced clause”
ensemble conditioned on the number of conflicts in the assignment.
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4. Solving 1-SAT

A quantum computer, operating on superpositions of all assignments for any 1-SAT prob-
lem, can find a solution in a single search step (Hogg, 1998b). As a basis for solving highly
constrained problems with larger clause sizes, we focus on maximally constrained 1-SAT
which, from Eq. (5), has m = n clauses and allows a simple specification. Specifically, we
first motivate and define the algorithm for this case and illustrate it with small examples.
Then we show that it is guaranteed to find a solution if one exists, and finally describe how
the algorithm can be efficiently implemented on a quantum computer. The remainder of

the paper then shows how this algorithm can form the basis for effectively solving highly
constrained k-SAT for £ > 1.

4.1 Motivation

Solving a search problem with a quantum computer requires finding a unitary operator L
that transforms an easily constructed initial state vector to a new state with large am-
plitude in those components of the state vector corresponding to solutions. Furthermore,
determining this operator and evaluating it with the quantum computer must be tractable
operations. This restriction means that any information used for a particular assignment
must itself be easily computed, and the algorithm only uses readily computable unitary
operations.

To design a single-step quantum algorithm, we consider superpositions of all assignments
for the problem. Since we have no a priori knowledge of the solution, an unbiased initial
state vector 1 is one with equal amplitude in each assignment: v, = 27"/2,

We must then incorporate information about the particular problem to be solved into
this state vector. As in previous algorithms (Grover, 1997b; Hogg, 1996, 1998a), we do
this by adjusting the phases in parallel, based on a readily computed property of each
assignment: its number of conflicts with the constraints of the problem. This amounts
to multiplication by a diagonal matrix R, with the entries on the diagonal having unit
magnitude so that R is unitary. The resulting amplitude for assignment s is then of the
form p(s)2="/% where |p(s)| = 1 and p(s) depends only on the number of conflicts in s. While
this operation adds problem specific information to the state vector, in itself it does not
solve the problem: at this point a measurement would return assignment s with probability
|p(8)]?27" = 27", the same as random selection.

This operation also illustrates how the unitarity requirement, |p(s)| = 1, prevents us
from using a computationally more desirable selection, i.e., p(s) = 0 if s is not a solution,
and nonzero otherwise. Such a choice, if possible, would immediately give a state vector
with all amplitude in the solution. While determining whether a given assignment is a
solution can be done rapidly for any NP problem, that information can not be directly used
to set amplitudes of the nonsolutions to zero. Thus, while quantum parallelism allows rapid
testing of all assignments, the restriction to unitary operators severely limits the use that
can be made of this information.

For a single-step search algorithm, the remaining operations must not require any addi-
tional evaluation of the problem constraints, i.e., these operations will be the same for all
problems of a given size. One the other hand, this restriction has the advantage of allowing
more general unitary matrices than just phase adjustments. Specifically, this allows oper-
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ations that mix the various components of the state vector. We need to identify a mixing
operator U that makes all contributions to the solution add together in phase, but with U
independent of the particular problem.

The final result of the algorithm is ¢, = >, Ump(s)Q_”/Q. Suppose t is the solution.
The maximum possible contribution to ¢; will be when all values in the sum combine in-
phase. This will be the case if Uys = ,0*(5)2_”/2 where p* is the complex conjugate of p. In
this case, ¢y = >, |p(s)|?2™™ which is just equal to 1. However, the mixing matrix itself
is to be independent of any particular problem. Thus the issue is whether it is possible to
create a U whose values will have the required phases no matter where the solution is. One
approach is to note that the mixing should have no bias as to the amount of amplitude that
will need to be moved from one assignment to another in the state vector. This means that
the magnitude of each element in U will be the same, i.e., |U,s| = 277/2_ For the phase
of each element, we can consider using the feature of assignments used in classical local
searches, namely the neighbors of each assignment. This suggests having U,; depend only
on the Hamming distance between r and s, i.e., U,s = 2_”/2,ud(7,75) where |pg| = 1.

With the elements of U depending only on the Hamming distance, the matrix is inde-
pendent of any particular problem’s constraints. The question is then whether some feasible
choices of p(s) and pq allow 27" 37 pig¢; 5 p(s) = 1 for the solution ¢. This will be the case
provided p4:5) = p*(s), where p(s) = p. depends only on the number of conflicts ¢ in
assignment s. This relation does not hold for all search problems. However, for the maxi-
mally constrained 1-SAT considered here, the Hamming distance of assignment s from the
solution, d(%, s), which is the number of bad values in s, is precisely equal to the number of
conflicts in s. Thus, to ensure all amplitude is combined into the solution, we merely need
to have ug = pj.

The final question is what choices for the p4 values are consistent with U being a unitary
matrix. This requirement restricts the available choices, e.g., having all g = 1 results in
the nonunitary matrix with all elements equal to 27"/2.

To examine the possible choices, consider the smallest possible case, n = 1. One max-
imally constrained, but still solvable, problem has the single clause NOT V; and solution
V1 = false. The two assignments, 0 and 1, have, respectively, 0 and 1 conflicts. Since overall
phase factors are irrelevant, we can select pg = 1 leaving a single remaining choice for p;.
For the matrix U, we have pairs of assignments with Hamming distance 0 and 1. Requiring

pq = py then gives
oo (L)
V2 \pi 1

The unitarity condition, UTU = I, then requires that p; be purely imaginary, i.e., p; = +i.
We arbitrarily pick p; = ¢. Starting from the initial state with equal amplitude in both
assignments we then have the results of applying R followed by U:

H(0)-50)-0)

giving all the amplitude in the solution. The overall operation L. = UR is
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It is important to note that the same operations also work if, instead, the other assign-
ment is the solution, i.e., the problem has the clause V; and solution V; = true. In this
case, the assignments 0 and 1 now have, respectively, 1 and 0 conflicts so the p; = 7 phase
adjustment is now applied to assignment 0. The operation then gives

20 m()-()

Again, all amplitude is in the single solution, and the overall operation is

/i —i
L‘§<1 1)

While the overall operation L depends on the location of the solution, for these problems
it can be implemented by composing operators U and R that do not require knowledge of
the solution. Instead, as described more generally in Section 4.5, R is implemented by
using the classical function for evaluating the number of conflicts in a given assignment,
but applied to a superposition of all assignments.

With these motivating arguments for the form of the operations, examining a few larger
values of n establishes the simple pattern of phases used in the algorithm described in the
remainder of this section.

4.2 The Algorithm for Maximally Constrained 1-SAT

Briefly, the algorithm starts with an equal superposition of all the assignments, adjusts the
phases of the amplitudes based on the number of conflicts in the assignments, and then
mixes the amplitudes from different assignments. This algorithm requires only a single
testing of the assignments, corresponding to a single classical search step.

Specifically, the initial state is ¢, = 277/2
state vector is

for each of the 2" assignments s, and the final

b= URY (12)
where the matrices R and U are defined as follows. The matrix R is diagonal with R,; = p(s)
depending on the number of conflicts ¢ in the assignment s, ranging from 0 to n:

pls) = po = i (13)
The mixing matrix elements Uys = ug(,s) depend only on the Hamming distance between

the assignments r and s, with
ug = 27" (—i)? (14)

and d ranging from 0 to n.

4.3 Examples

To illustrate the algorithm, consider the example problem in Section 3. It has n = m = 2.
With the assignments ordered according to the corresponding interger value, i.e., 00, 01,
10, and 11, U = A®)/2 where

1 - - =1

-1 =1 —

- =1 1 = (15)

-1 - - 1

A(2) =
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The resulting behavior is:

assignment s 00 01 10 11
number of conflicts | 0 1 1 2
p(s) 1 i i -1
W /2 1/2 1/2 1/2
R 1/2 i/2 /2 —-1/2
¢ =URY 1 0 0 0

giving an amplitude of 1 in the solution assignment 00.

Another example, with n = m = 3 is the propositional formula (NOT V;) AND (NOT
V2) AND V3, with assignments 000,001,010,...,110,111, represented as bit vectors, and
solution {V; = false, V, = false, V5 = true}, i.e., the bit vector 100. In this case U can be
expressed in terms of A from Eq. (15) in block form:

| AR ;A0)
=% <_Z-A<2) A®) ) (16)

For this case, the algorithm’s behavior is:

assignment s 000 001 010 011 100 101 110 111
number of conflicts 1 2 2 3 0 1 1 2
p(s) i -1 -1 - 1 i i -1
V8 1 1 1 1 1 1 1 1
V&R i -1 -1 —i 1 i i =1
¢ = URy 0 0 0 0 1 0 0 0

Again, all the amplitude is in the solution.

4.4 Performance of the Algorithm

Consider a maximally constrained soluble 1-SAT problem with n variables. As described
in Section 3, in such a problem each clause involves a separate variable and there is exactly
one solution. To show that the algorithm works for all n, we evaluate Eq. (12).

For each assignment s, (R); = p(s)27"/? from Eq. (13). Then for each assignment 7,
(URY), = 2723 U,sp(s). Bach s in this sum can be characterized by

e z: the number of conflicts s shares with r
e y: the number of conflicts of s that are not conflicts of r

Let h be the number of conflicts in the assignment r, i.e., the number of the n variables to
which r assigns an incorrect value. In terms of these quantities, s has z 4+ y conflicts and
is at Hamming distance d(r,s) = (h — z) + y from r. The number of such assignments is

(:ﬁ) (n;h), so the sum can be written as

(URp), = 27/ E (h> E (n ; h) Uh—z+yPoty (17)

Z
T Yy
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Substituting the values from Eq. (13) and (14), gives

27"} (h) > (" - h) (i) rtviet (18)

z y y
—-n Nhon—h (h) x
= ity (M)

This gives (U Rw), = dp0 where 6, = 1 if 2 = y and 0 otherwise by use of the identity

h h
Z(—l)l( ) = bno (19)

x

(UR),

Thus, ¢ = U R has all its amplitude in the state with no conflicts, i.e., the unique solution.
A measurement made on this final state is guaranteed to produce a solution.

4.5 Implementation

Conceptually, the operation of Eq. (12) can be performed classically by matrix multipli-
cation. However, since the matrices have 2" rows and columns, this is not be a practical
algorithm. As described in Section 2, quantum computers can rapidly perform many matrix
operations of this size. Here we show how this is possible for the operations used by this
algorithm.

For describing the implementation, it is useful to denote the individual components in
a superposition explicitly. Traditionally, this is done using the ket notation introduced by
Dirac (1958). For instance, the superposition described by the state vector of Eq. (1) is
equivalently written as 3", ¥,|s) where |s) just represents a unit basis vector corresponding
to the assignment s. An example of these alternate, and equivalent, notations is:

<i?) =% ((1)) + 1 <(1)> = %0[0) + ¢[1)

4.5.1 FORMING THE INITIAL SUPERPOSITION

The initialization of ¥ can be performed rapidly by applying the matrix of Eq. (3) separately
to each of the n bits. For instance, when n = 2, starting from both bits set to 0, the state
vector is changed as:

00) — %(|00>+|01>)
5 (100} +110)) + (Jo1) +[11))

Equivalently, in terms of state vectors, this is

1

—_ -

V2

o O O =
o O ==
DN | —
— = = =
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4.5.2 ADJUSTING PHASES

For the operation R, note that each value in Eq. (13) has unit magnitude so R is a unitary
diagonal matrix. Furthermore each p. only requires using the efficient classical procedure
f(s) that counts the number of conflicts in an assignment s. We require a reversible version
of this procedure, which can be made with an additional program register. When the phases
to be introduced are just £1, this additional register needs to take on only two values, 0
or 1, corresponding to whether the phase should be 1 or —1, respectively. Thus it can
be represented with a single additional quantum bit, beyond those required to represent
the assignment. Such phases have been used in previous algorithms (Hogg, 1996; Grover,
1997b) and can be implemented through a single evaluation of f(s) by setting the extra
variable to be a superposition of its two values (Boyer et al., 1996).

In the algorithm presented here, Eq. (13) requires phases that are powers of ¢, which
can take on four different values: 1, 7, —1 and —2. The technique used with £1 phases can
be generalized to work with these four values, again with a single evaluation of f(s). The
additional register must consist of two quantum bits, so it can take on the values 0, 1, 2 or
3. For an assignment s and register z, we use the reversible operation

F:ls,z) — |s,2 + ¢ mod 4)

where ¢ = f(s) is the number of conflicts in assignment s. It then remains to show how
this operation can be used to perform the required phase adjustments. Just as we operate
with a superposition of all possible assignments, to implement the phase adjustment, we set
register z to be a particular superposition of its four values: ¥ = 1(|0) — i[1) — [2) + [3)).
One way to construct this superposition is to start with both bits of x set to 1, operate on
the most significant bit with Eq. (3) and then operate on the other bit with

1 /- 1
ﬁ<1 —i)
to get
) - (lo1) = [11))

((100) = ]01)) = (|10) —4|11)))

Sl

N | —

This is just the superposition ¥ when we make the correspondence between the 2-bit vectors
00,...,11 and the integers 0, ..., 3, respectively.

We start with the equal superposition of amplitudes for the assignments and this super-
position for z:

3
2723 sy = 272NN (i), @)
s s =0

As illustrated with Eq. (2), the operation F' acts on each term in this superposition sepa-
rately, to produce

27 n/2-1 Z(—i)ﬂs, z+ c¢mod 4)
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where ¢ is the number of conflicts in assignment s. Let y =  + ¢ mod 4. Then, for a given
assignment s, as z ranges from 0 to 3, y also takes on these values, but not necessarily in
the same order. Thus this resulting superposition can also be written as

272 Y S (i) s, )

s y:O
because (—%)* = 1. In this form, the sums separate to give finally

3

223 ) S (=i ) = 2772 Y i)

s y=0 s

The net result of applying F using the superposition ¥ for the additional register is to
change the phase of each assignment s by ¢, as required by Eq. (13). Importantly, the
final result reproduces the original factored form in which the superposition of assignments
is not correlated with the superposition of the register. This factored form means the
register plays no role in the subsequent mixing operation applied by the matrix U to the
superposition of assignments. Thus this procedure produces the required phase changes
using only one evaluation of f(s), showing how the phases of a superposition of assignments
can be adjusted without requiring any prior explicit knowledge of the solution.

4.5.3 THE MIXING MATRIX

To implement U specified by Eq. (14) we use two simpler matrices, W and I' defined as
follows. For assignments r and s,

WTS — 2—n/2(_1)|7‘/\8| (20)

is the Walsh transform and I is a diagonal matrix whose elements I',, = v(r) depend only
on the number of 1-bits in each assignment, namely,

y(r)=n = ihe—tmn/4 (21)

_””/4, is not essential for the

where h = |r|, ranging from 0 to n. The overall phase, e
algorithm. It merely serves to make the final amplitude in the solution be one rather than
¢™/4 Whether or not this overall phase is used, the probability to find a solution is one.

The matrix W is unitary and can be implemented efficiently (Boyer et al., 1996; Grover,
1997b). For n = 1, W is just the matrix of Eq. (3). The phases in the matrix I' are powers
of 7 and so can be computed rapidly using similar procedures to those described above for
the matrix R. In this case we use a procedure that counts the number of 1-bits in each
assignment rather than the number of conflicts.

Finally we show that U can be implemented by the product WI'W. To see this, let

U = WI'W. Then

Us=2"" Z YSn(r, 8) (22)
h=0

where

Su(ris)= 3 (~lran (23)

t,|t|=h
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with the sum over all assignments ¢ with A 1-bits. Fach 1-bit of ¢ contributes 0, 1 or 2 to
|r A t]+]|s A t| when the corresponding positions of 7 and s are both 0, have exactly a single
1-bit, or are both 1, respectively. Thus (—1)I"MtlsA! equals (—1)* where 2 is the number
of 1-bits in ¢ that are in exactly one of r and s. There are (|r| — [r A s|) + (|s| — |7 A s|)
positions from which such bits of ¢ can be selected, and by Eq. (4) this is just d(r,s). Thus
the number of assignments ¢ with h 1-bits and z of these bits in exactly one of r and s is
given by () (72%) where d = d(r,s). Thus Sy(r,s) = Sl(;;) where

h—z
S5 = Y-y (d) (Z - ") (24)

z

so that U, = tg(r,s) With dg = 27757, "/hS}(LZ). Substituting the value of v from Eq. (21)

then gives
: d\ {n—d
S _ —n  —irn/4 -h z
4y = 27"ei™/ g i"(—=1) (2) (h—z)

hz
_ Q—ne—iwn/4(1 N ’L)d(l T i)n—d

which equals ug as defined in Eq. (14). Thus U = WTW, allowing U to be efficiently
implemented. As a final note, except for a different choice of the 7y, phases, this is the same

implementation as used for the mixing matrix defined in an unstructured quantum search
algorithm (Grover, 1997b).

4.5.4 REQUIRED SEARCH TIME

While search algorithm performances are often compared based on the number of search
steps required, i.e., the number of sequentially examined assignments, it is also important to
compare the number of more elementary computational operations required. At the most
fundamental level, these operations are logic operators on one or two bits at a time (e.g.,
the logical not or exclusive-or operations). As described above, the matrix operations and
forming the initial state can be done with a series of O(n) bit operations (Boyer et al.,
1996).

The time required to count the number of conflicts in an assignment depends on data
structures used to represent the problem. A single evaluation will be comparable for both
the quantum and classical algorithms. For a SAT problem with m clauses, examining each
clause to see if it conflicts with a given assignment uses O(m) tests. Each of these tests
will, in turn, require comparing at least part of the clause to the assignment. Because the
clauses in k-SAT are of fixed size, this gives an overall cost of O(m) to evaluate the number
of conflicts.

For local classical search, the number of conflicts in neighboring assignments will also
be evaluated to determine which assignment should be examined at the next step of the
search. Since neighbors differ by the value of only one variable, in fact it is only necessary
to examine clauses that involve that variable to determine the difference in the number of
conflicts between an assignment and one of its neighbors. This evaluation will thus require
only O(m/n) tests. Examining each, or a least a good portion, of the n neighbors results in
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a total of O(m) tests to find the next assignment. Selecting an initial assignment requires
a value for each variable, a cost of O(n).

Thus we can expect both algorithms to involve costs of O(n 4+ m) to evaluate a single
search step. That is, the cost for a single search step is about the same for the quantum
algorithm and classical searches when neighbors are examined. However, the quantum
algorithm is able to examine the characteristics of all assignments in superposition while
a classical search examines just one state, allowing the quantum algorithm to complete in
just one step while the best classical methods for k-SAT require O(n) steps. For the highly
constrained k-SAT problems with k£ > 1, discussed below, m > n so the dominant cost will
be in the evaluation of the number of conflicts.

This discussion indicates how a comparison of search steps gives a reasonable compari-
son in terms of elementary operations as well. However, a full comparison will also depend
on details of actual implementations, such as any additional operations required for con-
trolling errors that cannot themselves be performed in parallel with the higher level steps
of the algorithm. These remain significant issues in the development of quantum compu-
tation (Landauer, 1994; Unruh, 1995; Haroche & Raimond, 1996; Monroe & Wineland,
1996), but at this point seem unlikely to be fundamental difficulties (Berthiaume, Deutsch,
& Jozsa, 1994; Shor, 1995; Knill, Laflamme, & Zurek, 1998). In particular, because the
algorithm requires only a single step, decoherence is likely to be less of a difficulty for it
than search algorithms that require multiple repeated steps to move significant amplitude
to solutions (Grover, 1997b; Hogg, 1998a).

Finally, search algorithms can be compared based on elapsed execution time. Current
hardware implementations (Barenco, Deutsch, & Ekert, 1995; Bouwmeester et al., 1997;
Chuang, Vandersypen, Zhou, Leung, & Lloyd, 1998; Cirac & Zoller, 1995; Cory, Fahmy, &
Havel, 1996; Gershenfeld, Chuang, & Lloyd, 1996; Sleator & Weinfurter, 1995) are quite
limited in size, so such a comparison will need to await the construction of quantum machines
with a sufficient number of bits to perform interesting searches.

5. Applying the Algorithm to k-SAT

The algorithm presented above is effective for 1-SAT by exploiting the simple structure of
such problems. As described in Section 3, many highly constrained £-SAT problems have
a similar structure. This observation allows the 1-SAT algorithm to be applied to more
general problems, although with a reduction in performance. Specifically, applying Eq. (13)
requires knowing the number of conflicts the assignments would have in the corresponding
maximally constrained 1-SAT problem whose solution is equal to one of the solutions of the
original k-SAT problem. As described in Section 3.1, for the most part this can be computed
efficiently using the neighborhood relations for the problem. This suggests simply changing
the 1-SAT algorithm to use p(s) = pe . (s)-

To see how this approximation changes the performance, consider an assignment s with
y bad values with respect to a specific solution r and let

8(5) = Peor(s) = Py (25)

The vector v*) = Rt used with the k-SAT problem is related to the vector from the
(k) (1)

corresponding 1-SAT problem oW by v3") = vy +6,. Except for this change, the remaining
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transformations of the algorithm are the same as in the 1-SAT case. Thus
URp = ¢ + UAY

where ¢() is the result of the corresponding 1-SAT problem, i.e., all amplitude in the
solution, and A is a diagonal matrix, with elements given by é(s). It is convenient to define
the average value of §(s) over all assignments with y bad values:

5, = %Zlé(s) (26)

where the sum is restricted to just the (Z) assignments with y bad values.

The change in the amplitude in the solution state is determined by n = (UA%), when
r is the solution. This change can be expressed using Eq. (17) by recalling that ~ = 0 for
the solution and replacing the phases p, by the error in the phases, ¢,:

n=2y (y) uyé, (27)

y=0

Since all the p, have unit magnitude, |6,| < 2. If the problem has only one solution, the
probability the algorithm will find it is P = |1+ /2. If there are multiple solutions, this
is a lower bound on the probability.

The following sections use these observations to extend the range of problems to which
the 1-SAT algorithm can be effectively applied.

6. Solving Maximally Constrained k-SAT

The regular structure of maximally constrained soluble k-SAT problems allows them to be
solved in O(1) steps. That is, the probability to find a solution remains O(1) as n increases.
Thus a solution is very likely to be found by repeating the algorithm O(1) times, and, as
described above, each trial of the algorithm involves only one evaluation of the conflicts.
To see this, we use ce(s) from Eq. (7). For k£ > 2, this approximation results in incorrect
phase choices for only a few, high-conflict assignments. Because the proportion of incorrect
phases is small, we can expect this approximation will introduce only small amplitudes
in nonsolution states. However, it will also make the algorithm incomplete: it can find a
solution if one exists but not prove no solutions exist.

Specifically, é(s) can be nonzero only for y > n — k + 3, where y is the number of bad
values in assignment s. Thus using Eq. (27), |6,] < 2 and Eq. (14),

<22 Y (")
y=n—k+3 y

When n — k + 3 > n/2, the sum over binomial coefficients can be bounded (Palmer, 1985)

to give
o —(k-3) oy nF3
B Y L W o Bl " g—ln=1) "
nl <2 (k—3)n—|—1—2(k—3) 2 (k—3)! (28)
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Thus the probability to obtain a solution is

k-3

C(meay FT
P = |1+ 7> > (1 —|g|)* ~ 1 - 27 2)m—>1 (29)

which rapidly approaches 1. Hence, this algorithm is able to find the solution in O(1) search
steps as n increases. This behavior is illustrated in Figure 1.

1-P

5 10 15 20 25 30

Figure 1: Behavior of 1 — Py, vs. n for maximally constrained soluble £-SAT for k& = 3
(black) and 4 (gray). For comparison, the bounds (1 — |5])? from Eq. (28) are
shown as the dashed lines.

Similarly, soluble balanced k-SAT problems with the maximum possible number of
clauses, given by Eq. (10), give good performance as shown in Figure 2. The behavior
in this case is rather irregular and continues for larger values of n, but still gives a high
probability to find a solution. For odd &, the probability for a solution is exactly one for
many values of n. In fact, by including neighborhood information, the errors in the remain-
ing cases can also be eliminated, giving a perfect algorithm for these problems. For even
k, the balanced clauses force the problem to have two solutions with opposite values. Even
though this problem structure differs significantly from that of a 1-SAT problem with a
single solution, the algorithm is able to find solutions for £ = 4 with probability of about
1/2, even as n increases.

7. Solving Highly Constrained Random £-SAT

The discussion of Section 3.2 shows how a maximum likelihood estimate for c.g can be
computed for each assignment. This value can then be used to extend the algorithm to
arbitrary k-SAT problems. To the extent that the errors introduced by this approximation
are small, the quantum algorithm will have a substantial probability to find a solution in a
single step.
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NPV |

20 30 40 50

Figure 2: Behavior of Py, vs. m for maximally constrained balanced soluble £-SAT for
k = 3 (black) and 4 (gray). For comparison, the bounds (1 — |5|)? based on
Eq. (27) are shown as the dashed lines, and is quite small for the k = 4 case.

When averaged over the problem ensemble, the error given by Eq. (27) becomes

J— _n n n
N < B=2 22( )py
y=0 \Y

where p, is the probability an assignment with y bad values is (incorrectly) determined to
have a different number of bad values. In terms of the conditional probabilities of Section 3.2,

Py = 1- ZPconf(C|y)ch

where x., = 1 when the maximum likelihood estimate for a state with ¢ conflicts is y (i.e.,
Ceff = Y), and 0 otherwise.

For simplicity, these maximum likelihood estimates are determined solely from the num-
ber of conflicts in each state. The ceg values could be made a bit more accurate by including
neighborhood information, as was used for maximally constrained random problems in Sec-
tion 6.

Because highly constrained random SAT problems are relatively easy, they have not been
well-studied with classical algorithms. Hence, to provide comparison with the quantum
search results presented below, these problems were also solved with the classical GSAT
procedure (Selman et al., 1992), limiting each trial to use no more than 2n steps before
a new random initial state was selected. For both random and balanced ensembles, the
median number of search steps required to find a solution grows linearly over the range
of sizes considered here when m = O(n?). In particular, while the balanced ensemble has
larger search costs, it still grows linearly when there is such a large number of clauses.
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7.1 Random k-SAT

For random k-SAT with prespecified solution, Stirling’s asymptotic expansion in Eq. (8)
shows that p, = O(1) for y = O(n) when m grows as O(n?), which is much less that
the maximum mpyax = O(nk). In this case, the asymptotic behavior of the bound B is
determined by the values near the maximum of the binomial coefficient, i.e., near y = n/2.
Thus if m = pn?, we have B ~ 2p, ;. From Eq. (29), Pswin = O(1) at least when B < 1.
This is the case for p > perit where

)21/ (2+18¢%) if k=2
Berit = { 22k — 1)3C2/k? if k> 2 (30)

where ( = erf_l(%) ~ 0.477. For instance, pcit is 1.01 and 17.3 for £ = 2 and 3, respectively.
Thus, the algorithm presented here is simple enough to allow an analytic bound on its
behavior for highly constrained problems, thus demonstrating its asymptotic effectiveness in
these cases. Other, more complex, structured quantum algorithms have only been evaluated
empirically (Hogg, 1996, 1998a), which is limited to small problems.

The algorithm’s behavior with fewer constraints, i.e., g < perit, is not easily evaluted
analytically since the bound provided by B is no longer useful. Instead, the behavior can be
examined empirically using a classical simulation (Hogg & Yanik, 1998), which is however
limited to problems with a relatively small number of variables. These empirical studies may
eventually be extendable to larger problems using approximate evaluation techniques (Cerf
& Koonin, 1997).

An example is given in Figure 3. This shows good performance for highly constrained
problems, as expected from the behavior of the lower bound. Performance is also good with
few constraints; not because the algorithm is capturing the problem structure particularly
well but rather because there are many solutions to weakly constrained problems. As with
other classical and quantum search methods that use problem structure, the hardest cases
are for problems with an intermediate number of constraints (Hogg et al., 1996).

From Figure 4 we see that the nonzero asymptotic limit for the probability of a solution
appears to continue for somewhat fewer constraints than expected from the value of pcit.
Below this value, the probability for finding a solution appears to decrease as a power
of n, indicated by linear scaling on the log-log plot of Figure 4 for m = n?. Similar
empirical evaluations of the scaling with an intermediate number of constraints where the
hard problems are concentrated, e.g., m = 4n for 3-SAT, shows linear scaling on a log-
plot, indicating exponential decrease in the probability to find a solution. Moreover, the
resulting search costs in these cases are larger than those of other structured quantum search
algorithms (Hogg, 1996, 1998a). Thus the structure of these harder cases differs enough

from the simple 1-SAT problems that this algorithm is not effective for them.

In summary, the algorithm solves highly constrained problems with m = un? in O(1)
steps for p > pierit, and possibly for somewhat smaller values of p as well. As the number
of clauses is further reduced, the required number of steps appears to grow polynomially
when g > 0 and exponentially when m = O(n).
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_4‘ ‘ ‘ ‘ ‘
10 1 5 10 50 100 m n

Figure 3: Probability to find a solution for random 3-SAT for n = 10 (solid) and 20 (dashed)
vs. m/n, on a log-log scale. Each point is an average over at least 100 problem
instances, and includes error bars for the standard deviation in this estimate of
the averge. The error bars are smaller than the size of the plotted points. The
gray lines show the corresponding lower bounds (1 — B)?2.

5 10 15 20

Figure 4: Probability to find a solution for random soluble 3-SAT vs. n with, from top to
bottom, m = 18n?%, 8n? and n?, respectively, on a log-log plot. For each value
of n, at least 100 problem instances were used. Error bars showing the expected
error in the estimate are included but are smaller than the size of the plotted
points.

7.2 Balanced Clauses

In a similar way, the behavior of problems with balanced clauses can be evaluated, as shown
in Figure 5. In this case the lower bound is much looser than for random soluble problems.
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This is because, unlike the previous case, significant errors are made in assigning c.g for the
large number of assignments with about n/2 bad values. The bound assumes that any such
mistake gives the maximum possible contribution to Eq. (27), but in fact because of the
limited phase choices in Eq. (13), some such mistakes will nevertheless give the correct value
of the phase. Again, the intermediate problems are the most difficult for this algorithm.

L ]
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10 ~ 1 2 5 10 20 50 100 200

Figure 5: Probability to find a solution for random balanced 3-SAT for n = 10 (solid)
and 20 (dashed) vs. m/n, on a log-log scale. Each point represents 100 problem
instances and includes error bars which, in most cases, are smaller than the size of
the plotted points. The gray lines show the corresponding lower bounds (1 — B)?

Because the bound is so poor, its asymptotic behavior does not offer a useful guide
to the behavior of the algorithm for highly constrained problems. Instead, the scaling for
m = O(n?) is illustrated in Figure 6. The behavior is consistent with a polynomial decrease
in the probability to find a solution, but definitive statements cannot be made from such
small problem sizes.

8. Discussion

The algorithm presented in this paper provides an analytic demonstration that quantum ma-
chines can significantly exploit the structure of highly constrained k-SAT problems, thereby
extending the range of search problems that definitely have effective quantum algorithms.
This contrasts with previous work on structured quantum algorithms that could only be
evaluated empirically.

In addition, for maximally constrained 2-SAT problems and many maximally con-
strained balanced k-SAT problems, the algorithm finds a solution with probability one.
Thus in these cases, failure to find a solution definitely indicates the problem is not soluble,
i.e., the search method is complete. As described in Section 3.1, with the slight additional
cost of evaluating the number of conflicts in the complement of an assignment as well as
the assignment itself for maximally constrained k-SAT, the correct corresponding 1-SAT
problem can be determined. This additional information thus gives a complete search algo-
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10 10 15 20

Figure 6: Probability to find a solution for random balanced 3-SAT vs. n with, from top
to bottom, m = 8n? and n?, respectively, on a log-log plot. For each value of n,
100 problem instances were used. Frror bars showing the expected error in the
estimate are included but are smaller than the size of the plotted points.

rithm for maximally constrained k-SAT. This contrasts with previously proposed quantum
algorithms that find solutions with probability less than one and hence cannot guarantee
no solutions exist.

One direction for future work is generalizing this algorithm to other types of combinato-
rial search. For instance, the algorithm is restricted to CSPs with two values per variable,
such as SAT. While other CSPs can be recast as satisfiability problems, this mapping may
obscure structure inherent in the original formulation. Thus it would be useful to find algo-
rithms that apply directly to more general CSP formulations. One possible approach would
be based on search methods that construct solutions incrementally from smaller parts, i.e.,
expanding the set of states to include assignments that give values to only some of the vari-
ables in the problem. Such a representation can apply readily to CSPs with any number
of values for the variables (Hogg, 1996, 1998a). Another approach would examine replac-
ing Walsh transforms with the approximate Fourier transform (Kitaev, 1995) as has been
proposed to extend an unstructured search method to cases where the size of the search
space is not a power of two (Boyer et al., 1996). Beyond CSPs, it would be interesting to
investigate optimization problems.

Search problems with an intermediate number of constraints are the most difficult for
classical heuristics as well as structure-based quantum searches (Hogg, 1996, 1998a) based on
analogies with these classical methods. For k-SAT, these hard cases occur when the number
of clauses grows linearly with the number of variables, which is much smaller than the
O(n?) used in Section 7. The intermediate number of clauses creates considerable variance
in the detailed structure of the search space from one problem instance to another. Thus
one cannot rely on precise a priori knowledge of the structure in designing the algorithm.
Nevertheless, the average or typical structure of these harder search problems has been
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characterized (Cheeseman, Kanefsky, & Taylor, 1991; Hogg et al., 1996; Hogg & Williams,
1994; Kirkpatrick & Selman, 1994; Monasson & Zecchina, 1996; Williams & Hogg, 1994)
and may be suitable as a basis for developing appropriate search methods. Instead of
aiming for a single-step algorithm, the large variation in structure is likely to require a
series of smaller changes to the amplitudes, along with repeated tests of the consistency
of all assignments, as with previous proposals (Grover, 1997b; Hogg, 1998a). However,
since a quantum algorithm can explore all search paths simultaneously, it can avoid some
of the variability encountered in classical methods: namely, that due to random selection of
initial states or random tie-breaking when evaluating heuristics. Thus a quantum algorithm
can focus on variation due only to differences in problem instances rather than also to the
particular choices made in exploring a single search path. Ultimately, this observation
may allow quantum algorithms to more usefully exploit improved understanding of typical
problem structure than is feasible for classical methods.

This discussion raises the general issue of optimally using the information that can
be readily extracted from CSP search states, as commonly used in classical heuristics.
Such information includes the number of conflicts a state has and how it compares with
its neighbors. Additional information is available on partial assignments, as used with
incremental searches, but at the cost of involving a greatly expanded search space. The
approach described in Section 5 suggests a useful technique is matching quantum algorithms
to the average structure of search problem ensembles.

The most significant open question is the extent to which quantum algorithms can
solve problems in polynomial time that require exponential time classically. Factoring pro-
vides one example (Shor, 1994), if, as commonly believed, it cannot be done in polynomial
time classically. By contrast, highly constrained searches can be solved in polynomial time
by both classical heuristics and, as shown in this paper, quantum machines. At the other
extreme, searches that ignore problem structure are exponential, requiring O(2") steps clas-
sically, and 0(2”/2) steps on quantum computers (Boyer et al., 1996). These observations
can be summarized as:

cost scaling

type of problem classical quantum
unstructured exponential  exponential
factoring exponential polynomial

highly constrained | polynomial polynomial

This comparison suggests some problems, including factoring, have enough structure to al-
low quantum machines to operate in polynomial time but not enough for classical machines
to do so. Identifying the class of such problems is an important research direction for quan-
tum computation. For example, an interesting open question is whether there is a scaling
regime for the number of clauses, m, as a function of n where the probability of finding a so-
lution with a quantum machine decreases only polynomially with n while classical searches
require an exponential number of steps, even with the best known heuristics. This question
is difficult to treat empirically, pointing to the need for further analytic investigation of
quantum algorithms and the structure of search problems.
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