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Abstract

We present a new approach to path planning, called the “Ariadne’s clew algorithm”.
It is designed to find paths in high-dimensional continuous spaces and applies to robots
with many degrees of freedom in static, as well as dynamic environments — ones where
obstacles may move. The Ariadne’s clew algorithm comprises two sub-algorithms, called
SEARCH and EXPLORE, applied in an interleaved manner. EXPLORE builds a representation
of the accessible space while SEARCH looks for the target. Both are posed as optimization
problems. We describe a real implementation of the algorithm to plan paths for a six
degrees of freedom arm in a dynamic environment where another six degrees of freedom
arm is used as a moving obstacle. Experimental results show that a path is found in about
one second without any pre-processing.

1. Introduction

The path planning problem is of major interest for industrial robotics. A basic version of
this problem consists of finding a sequence of motions for a robot from a start configuration
to a given goal configuration while avoiding collisions with any obstacles in the environment.

A simple version of the problem, that of planning the motion of a point robot among
3-dimensional polyhedral obstacles, has been proved to be NP-complete (Canny, 1988).
Generally speaking, the complexity of the problem is exponential in the number of degrees of
freedom (DOF) of the robot, and polynomial in the number of obstacles in the environment.
Consequently, finding a path for a robot with many DOF (more than five) in an environment
with several obstacles is, indeed, a very difficult problem. Unfortunately, many realistic
industrial problems deal with robots of at least six DOF and hundreds of obstacles. Even
worse, often the environment is dynamic in the sense that some of the obstacles may move,
thereby further requiring that new paths be found in very short computing times.
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In this paper, we present a new approach to path planning, called the “Ariadne’s clew
algorithm 7. The approach is completely general and applies to a broad range of path
planning problems. However, it is particularly designed to find paths for robots with many
DOF in dynamic environments.

The ultimate goal of a planner is to find a path from the initial position to the target.
However, while searching for this path, the algorithm may consider collecting information
about the free space and about the set of possible paths that lie in that free space. The
Ariadne’s clew algorithm tries to do both at the same time: a sub-algorithm called EXPLORE
collects information about the free space with increasingly fine resolution, while, in parallel,
an algorithm called SEARCH opportunistically checks whether the target can be reached.

The EXPLORE algorithm works by placing landmarks in the searched space in such a
way that a path from the initial position to any landmark is known. In order to learn as
much as possible about the free space, the EXPLORE algorithm tries to spread the landmarks
uniformly all over the space. To do this, it places the landmarks as far as possible from one
another. For each new landmark produced by the EXPLORE algorithm, the SEARCH algo-
rithm checks (with a local method) whether the target can be reached from that landmark.
Both the EXPLORE and SEARCH algorithms are posed as optimization problems.

The Ariadne’s clew algorithm is efficient and general:

1. The algorithm is efficient in two senses:

(a) Experiments show that the algorithm is able to solve path planning problems fast
enough to move a six DOF arm in a realistic and dynamic environment where
another six DOF robot is used as a moving obstacle.

(b) It is well suited for parallel implementation and shows significant speed-up when
the number of processors increases.

2. The algorithm is general in two senses:

(a) It may be used for a wide range of applications in robotics with little additional
effort to adapt it.

(b) Finally, the algorithm is general in that it may be adapted for a large range of
search problems in continuous spaces that arise in fields that are not related to
robotics.

The paper is organized as follows. Section 2 presents the path planning problem and
discusses related work. Section 3 presents the principle of the Ariadne’s clew algorithm.
Section 4 describes the application of the algorithm to a six DOF arm in a dynamic envi-
ronment. Finally, Section 5 concludes the paper with a discussion of the contributions of
our approach, the main difficulties involved, and possible improvements of our method.

1. According to Greek legend, Ariadne, the daughter of Minos, King of Crete, helped Theseus kill the
Minotaur, a monster living in the Labyrinth, a huge maze built by Daedalus. The main difficulty faced
by Theseus was to find his way through the Labyrinth. Ariadne brilliantly solved the problem by giving
him a thread (or a clew) that he could unwind in order to find his path back.
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2. The Path Planning Problem

Many versions of the path planning problem exist. An exhaustive classification of these
problems and of the methods developed to solve them can be found in a survey by Hwang
and Ahuja (1992). We choose to illustrate our discussion with a particular case. A robot
arm is placed among a set of obstacles. Given an initial and a final position of the robot
arm, the problem is to find a set of motions that will lead the robot to move between the
two positions without colliding with the obstacles.

To drive the robot amidst the obstacles, early methods (Brooks, 1983) directly used the
3D CAD models of the robot and of the obstacles to find a solution, i.e., they considered the
“operational 3D space”. In this space, the path planning problem consists of finding the
movements of a complex 3D structure (the robot) in a cluttered 3D space.

A major advance was to express the problem in another space known as the configuration
space, denoted by C (Lozano-Pérez, 1987). In this space, the position (or configuration)
of a robot is completely determined by a single point having n independent parameters
as coordinates. The positions that are not physically legal (because of a collision) are
represented by particular regions of C, and are called C-obstacles. In the configuration
space, the path planning problem consists of finding a continuous curve (representing a
path for a single geometrical point) that (i) connects the points representing the initial and
the final configuration of the robot, and (ii) does not intersect any C-obstacles. This method
trades a simplification of the path planning problem (it searches a path for a single point)
against a higher-dimensional search space (the dimension of C is the number DOF of the
robot) and against more complex shapes of obstacles (very simple physical obstacles may
result in very complex C-obstacles).

For example, let us consider the planar arm of Figure 1. Its position among the obstacles
is totally known once the values of the angles between its links (qo, ¢1) are known. Thus, for
each pair (qo, q1), it is possible to decide whether the robot collides with the surrounding
obstacles. This is what we did in Figure 2 to represent the mapping between the physical
obstacles in the operational space and the C-obstacles. Now, by moving a point along the
curve joining ¢, and ¢y one will also define a collision-free motion for the planar arm between
the corresponding positions P(g,) and P(gs) in the operational space. This curve is one
solution to this particular path planning problem.

A recent trend in the field is to consider the “trajectory space” (Ferbach, 1996) where
a whole path is represented by a single point. The coordinates of this point are the values
of the parameters defining the successive movements of the robot. For instance, the list of
successive commands sent to the robot controller indeed encode an entire path of the robot.
In this space, the path planning problem is reduced to the search for a single point. Once
again, we trade a simplification of the path planning problem (searching for a point) against
a higher dimension of the search space (the dimension of the trajectory space is the number
of parameters needed to specify completely a whole path). For example, in Figure 2, the
path between ¢, and ¢z can be represented by a point in a seven-dimensional space simply
by considering the length of its seven segments.
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Figure 1: A two DOF arm placed among obstacles in the operational space

2.1 Global Approaches

Global approaches are classically divided into two main classes: (i) retraction methods, and
(ii) decomposition methods. In the retraction methods, one tries to reduce the dimension of
the initial problem by recursively considering sub-manifolds of the configuration space. In
the decomposition methods, one tries to characterize the regions of the configuration space
that are free of obstacles. Both methods end up with a classical graph search over a discrete
space. In principle, these methods are complete because they will find a path if one exists
and will still terminate in a finite time if a path does not exist. Unfortunately, computing
the retraction or the decomposition graph is an NP-complete problem: the complexity of
this task grows exponentially as the number of DOF increases (Canny, 1988). Consequently,
these planners are used only for robots having a limited number (three or four) of DOF. In
addition, they are slow and can only be used off-line: the planner is invoked with a model
of the environment, it produces a plan that is passed to the robot controller which, in turn,
executes it. In general, the time necessary to achieve this is not short enough to allow the
robot to move in a dynamic environment.

2.2 Path Planning with Local Planners

One way to combat the complexity of the problem is to trade completeness against perfor-
mance. To do this, the local planners are guided by the gradient of a cost function (usually
the Euclidean distance to the goal) and take into account the constraints introduced by the
obstacles to avoid them (Faverjon & Tournassoud, 1987). Since the path planning problem
is NP-complete, knowing the cost function, it is always possible to design a deceptive envi-
ronment where the method will get trapped in a local minimum. However, these methods
are useful in many industrial applications because they can deal with complex robots and
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Figure 2: The configuration space corresponding to Figure 1. Note: (1) C is a torus, (2)
it is divided into two regions Cfreeéa and Cfreeéb that cannot be connected by
a continuous path, and (3) there is not a C-obstacle for B; because it does not
interfere with the arm.

environment models having thousands of faces, that are often too time-consuming for global
methods.

2.3 Path Planning with Randomized Techniques and Landmarks

The stochastic or random approach was first introduced by Barraquand and Latombe (1990),
and later used by Overmars (1992), and more recently by Kavraki (1996). The main idea
behind these algorithms is to build a graph in the configuration space. The graph is ob-
tained incrementally as follows: a local planner is used to try to reach the goal. Should
the motion stop at a local minimum, a new node (or landmark) is created by generating
a random motion starting from that local minimum. The method iterates these two steps
until the goal configuration has been reached from one of these intermediary positions by
a gradient descent motion. These algorithms work with a discretized representation of the
configuration space. They are known to be probabilistically complete because the probability
of terminating with a solution (a path has been found or no path exists) converges to one
as the allowed time increase towards infinity. As in the previous section, it is also possible
to design simple deceptive environments that will make this kind of algorithm slower than
a pure random approach. However, they have been tested for robots with a high num-
ber of DOF and they have been shown to work quickly in relatively complex and natural
environments.

Other methods using landmarks have been devised. For example, SANDROS, introduced
by Chen and Hwang(1992), makes use of landmarks to approximate the free space. This
approach is similar to the “hierarchical planning” approach used in A1: should the method
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fail to reach a goal, new subgoals are generated until the problem is easy enough to be
solved. In their approach, first a local planner is used to reach the final position: should the
local planner fail, the configuration space is divided into two subspaces, one containing the
goal and the other a new sub-goal. The problem is therefore divided into two sub-problems:
(i) going from the initial position to the subgoal, and (ii) going from the subgoal to the
final position. SANDROS has been shown to be particularly well adapted to find paths for
manipulators. It has been implemented and tested for planning paths for Puma and Adept
robots.

2.4 Path Planning in the Trajectory Space

The previous methods were essentially based on the configuration space: the retraction, the
decomposition, or the optimization is made in this space. An alternative is to consider the
“trajectory space”. For example, in his method vDP, Ferbach (1996) starts by considering
the straight line segment joining the initial and the final configuration in C. This path is
progressively modified in such a manner that the forbidden regions it crosses are reduced.
At each iteration, a sub-manifold of C containing the current path is randomly generated.
It is then discretized and explored using a dynamic programming method that uses the
length across the forbidden region as the cost function in order to minimize. The search
results in a new trajectory whose intersection with the forbidden regions is smaller than the
original trajectory. The process is repeated until an admissible trajectory is found. As in
the previous sections, it is also possible to design simple deceptive environments that will
make this kind of algorithm slower than a pure random approach.

The work of Lin, Xiao, and Michalewicz (1994) is similar to our approach. As in an early
version of our algorithm (Ahuactzin, Mazer, Bessiére, & Talbi, 1992), genetic algorithms are
used to carry out optimization in the trajectory space. Trajectories are parameterized using
the coordinates of intermediary via-points. An evolutionary algorithm is used to optimize
a cost function based on the length of the trajectory and the forbidden region crossed.
The standard operators of the genetic algorithms have been modified and later extended
to produce a large variety of paths (Xiao, Michalewicz, & Zhang, 1996). The number of
intermediary via-points is fixed and chosen using an heuristic. Given this number, nothing
prevents to design a deceptive problem which solution will require more intermediary points,
leading the algorithm to fail while one solution exists.

3. Principle of the Ariadne’s Clew Algorithm

As we have seen in the previous section, the computation of the configuration space C is a
very time-consuming task. The main idea behind the Ariadne’s clew algorithm is to avoid
this computation. In order to do this, the algorithm searches directly for a feasible path in
the trajectory space. The configuration space C is never explicitly computed.

As will be shown, in the trajectory space, path planning may be seen as an optimization
problem and solved as such by an algorithm called SEARCH. It is possible to build an
approximation of free space by another algorithm called EXPLORE that is also posed as
an optimization problem. The Ariadne’s clew algorithm is the result of the interleaved
execution of SEARCH and EXPLORE.
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Figure 3: A parameterized trajectory (6',d',0%,d?,...6',d") and a starting point g implic-
itly define a path (in the operational space) for a holonomic mobile robot.

3.1 Path Planning as an Optimization Problem: SEARCH

Given a robot with & DOF, a trajectory of length [ may be parameterized as a sequence
of n = k % [ successive movements. A starting point §, along with such a parameterized
trajectory implicitly define a path and a final configuration §; in the configuration space.
For example, for a holonomic mobile robot the trajectory (6',d!,62, d?,...0',d") can be
interpreted as making a ' degree turn, moving straight d', making a #? degree turn and
so on. Given the starting configuration ¢,, this trajectory leads to the final configuration ¢
(see Figure 3).

Given a distance function d on the configuration space, if we find a trajectory such that
it does not collide with any obstacles and such that the distance between ¢; and the goal ¢,
is zero, then we have a solution to our path planning problem. Therefore, the path planning
problem may be seen as a minimization problem where:

1. The search space is a space of suitably parameterized trajectories, the trajectory space.

2. The function to minimize is d(§;, e ) if the path is collision-free, and d(§;, ¢s) otherwise
(¢; being the first collision point).>2

2. Another possible choice would be to give the 400 value to the distance when a collision occurs. However,
this is less informative than the chosen function because the first part of a colliding path could be a
good start toward the goal and should not be discarded. Note that the cost function does not include
any optimality criteria such as the length of the trajectory or the amount of energy used.
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The algorithm SEARCH, based on this very simple technique and a randomized optimiza-
tion method, is already able to solve quite complex problems of robot motion planning. For
example, Figure 4 represents the two paths found for the holonomic mobile robot. Each
path was computed on a standard workstation (SPARC 5) in less than 0.5 second without
using any pre-computation of the configuration space. Thus, it is possible, albeit slowly, to
get a planner that can be used in a dynamic environment (where the obstacles may move)
by “dropping” a new world into the system every 0.5 second. SEARCH is very efficient but it
is not complete, since it may fail to find a path even if one exists for two different reasons:

1. Due to the optimization-based formulation, SEARCH can get trapped by local minima

of the objective function, which in turn may place the robot far away from the goal
(see Figure 5).

2. The length [ of the trajectories considered may be too short to reach all the accessible
regions of the configuration space.

I petit robot I petit robot

I
i ey
<

-|-|-l-"‘-'-‘l
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Figure 4: Reactive replanning in a changing environment

3.2 Exploring as an Optimization Problem: EXPLORE

In order to build a complete planner, we propose a second algorithm called EXPLORE. While
the purpose of SEARCH was to look directly for a path from §, to ds, the purpose of EXPLORE
is to compute an approximation of the region of the configuration space accessible from go.

The EXPLORE algorithm builds an approximation of the accessible space by placing
landmarks in the configuration space C in such a way that a path from the initial position
go to any landmark is known. In order to learn as much as possible about the free space, the
EXPLORE algorithm tries to spread the landmarks uniformly over the space (see Figure 6).

To do this, it tries to put the landmarks as far as possible from one another by maximizing
the distances between them.

Therefore, EXPLORE may be seen as a maximization problem where:
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Figure 5: A problem leading to a local minimum. In such a case, a solution path has first
to move away from the goal. The goal’s “attraction” based on the minimization
of the Fuclidean distance prevents SEARCH from finding such a path.
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Figure 6: The first picture represents the initial position and the first landmark. The sub-
sequent landmarks are then uniformly spread over the search space while the
method keeps track of all paths joining the landmarks to the initial position.
The algorithm is named after Ariadne because by placing landmarks, EXPLORE
unwinds as if it were using a thread as Theseus did.

1

1. The search space is the set of all paths starting from one of the previously placed
landmarks.

2. The function to maximize is d(§;, A), where A is the set of landmarks already placed.

3.3 The Ariadne’s Clew Algorithm: EXPLORE + SEARCH

In order to have a planner that is both complete and efficient, we combined the two previous
algorithms SEARCH and EXPLORE to obtain the Ariadne’s clew algorithm.
The principle of the Ariadne’s clew algorithm is very simple:

1. Use the SEARCH algorithm to find whether a “simple” path exists between ¢, and g,.

303



MAZER, AHUACTZIN, & BESSIERE

2 2

1 A

Figure 7: Bouncing against C-obstacles. Figure (a) presents the original path in the con-
figuration space. Figure (b) shows the same path after two bounces along the
second segment on obstacle 2 and on obstacle 1. Figure (c) is the result obtained
after a bounce of segment 3 against obstacle 2. Finally, Figure (d) presents a
valid path obtained after a final bounce of segment 4 against obstacle 2.

2. If no “simple” path is found by step 1, then continue until a path is found.

(a) Use EXPLORE to generate a new landmark.

(b) Use SEARCH to look for a “simple” path from that landmark to g,.

The Ariadne’s clew algorithm will find a path if one exists. In an overwhelming number
of cases, just a few landmarks are necessary for the Ariadne’s clew algorithm to reach the
target and stop.

3.4 A Major Improvement: Bouncing on C-Obstacles

A typical difficulty for a path planning algorithm is to find a collision-free path through
a small corridor in the configuration space. This is also the case for the basic version of
the Ariadne’s clew algorithm, presented above. The problem is that very few trajectories
encode such paths and therefore they are very difficult to find. Most trajectories collide with
the obstacles. We propose a very simple idea to deal with this problem: going backwards at
each collision point. If, for a given trajectory, a collision is detected along the corresponding
path, then we simply consider transforming that trajectory so that it encodes a new path,
one that is found by bouncing off the obstacle at the collision point (see Figure 7). Note
that this construction is applied recursively until the entire trajectory corresponds to a
collision-free path.
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Using this technique, all trajectories are so transformed that they encode valid paths.
This improved version of the Ariadne’s clew algorithm no longer cares about obstacles. From
the point of view of a search in the trajectory space, it is as if the obstacles have simply
vanished. This method is especially efficient for narrow corridors in the configuration space.
Without bouncing, the mapping of a corridor in the configuration space to the trajectory
space is a set of very few points. With bouncing, every single trajectory going through a
part of the corridor is “folded” into the corridor (see Figure 7). The resultant mapping
of the corridor in the trajectory space is consequently a much larger set of points, and
therefore it is much easier to find a member of this set. This empirical improvement has
a major practical impact because it makes the proposed algorithm faster (fifteen times) in
the problem considered below.

3.5 The Algorithm

We can now give a final version of the Ariadne’s clew algorithm. It has three inputs: ¢,
(the initial position), ¢, (the goal position), and p (the maximum allowed distance for a
path to the C-obstacles). It returns a legal path or terminates if no path exists at the given
resolution.

ALGORITHM_ARIADNE(go, o, p)
begin
i =1 = o
/* Initialize the set of landmarks with the initial position
A= {:\1}; €1 = +00;
do while (g; > p);
/* run SEARCH : look for the goal with a local method
if (minye e d(da, d(0)) == 0)
return; /* A path has been found !
else
/* run EXPLORE : place a new landmark
1 = 1+ 1
Ai = q s supepe d(Ai—1, 4(1));
Ai = A U{ A
g; := d(Ni—1, \i);
endif
enddo
A=Ay
€ = &j;
return(e); /* No path !
end

Figure 8: The Ariadne’s Clew Algorithm
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The algorithm is based on the following optimization problems:

.} sup d(Ai1,4(1))
EXPLORE.{ g

. ) min d(4(1), )
SEARCH : { le Rt

G(l) denotes the extremity of a legal path parameterized with £ real parameters and
starting either from each of the previously placed landmarks (EXPLORE) or from the latest
placed landmark (SEARCH).

The algorithm is resolution-complete under the following assumptions:

e “Space filling completeness”: The global maximum distance can be found by the
optimization algorithm used in EXPLORE; the configuration space is a compact set.

e “p completeness”: The optimization procedure used in SEARCH always find a complete
path (or returns 0) when the starting and the goal positions are located within a ball
of radius p of the free space.

In practice, the first condition cannot be met with a randomized optimization algorithm
in a bounded time, and only local maxima are found. However, the landmarks placed
according to the new algorithm are better distributed over the free space than landmarks
placed randomly, leading to better performances. The goal of the next section is to justify
this claim, experimentally.

4. Path Planning for a Six DOF Arm in a Dynamic Environment

In order to demonstrate the feasibility and qualities of the Ariadne’s clew algorithm, we
have developed a realistic application of the algorithm. We selected a problem where we
want to have a path planner for a six DOF robot arm in a dynamic environment where
another arm is used as a mobile obstacle. The robot (robot A) is under the control of the
Ariadne’s clew algorithm. It shares its workspace with a second robot (robot B) that is
moving under the control of a random motion generator. The Ariadne’s clew algorithm
must be able to compute paths for A in “real time” (here, real time means fast enough to
ensure that robot A will never collide with robot B).

In order to reach such a level of performance, we chose to implement the Ariadne’s
clew algorithm on a massively parallel machine (Meganode with 128 T800 Transputers).
Furthermore, we selected a genetic algorithm as our optimization technique. The reasons
for this choice are:

1. Genetic algorithms are well suited for problems where the search space is huge but
where there are many acceptable solutions. This is exactly the case here. The tra-
jectory space is huge but there are, barring exceptional cases, numerous acceptable
paths going from §, to ¢, without collision.
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2. Genetic algorithms, unlike a number of the other optimization techniques (Bessiére,
Talbi, Ahuactzin, & Mazer, 1996), are very easy to implement on parallel architec-
tures. We have previously developed a parallel genetic algorithm (PGA) and we have
already had significant experience using it (Talbi, 1993).

3. PGA, unlike most parallel programs, shows linear speed-up (when you double the
number of processors you reduce the computation time by half) and even super-linear
speed-up under certain circumstances (Talbi & Bessiére, 1996).

4.1 Parallel Genetic Algorithm

Genetic algorithms are stochastic optimization techniques introduced by Holland (1975)
twenty years ago. They are used in a large variety of domains including robotics (Ahuactzin
et al., 1992; Lawrence, 1991; Falkenauer & Bouffouix, 1991; Falkenauer & Delchambre, 1992;
Meygret & Levine, 1992) because they are easy to implement and do not require algebraic
expression for the function to be optimized.

4.1.1 PRINCIPLE OF GENETIC ALGORITHM

The goal of the algorithm is to find a point reaching a “good” value of a given function F
over a search space S. First, a quantization step is defined for S and the search is conducted
over a discrete subset, S; of S. S; contains 2V elements. In practice, the cardinality of S
can be eztremely large. For example, in our implementation of EXPLORE, N = 116. Thus,
a continuous domain is discretized with a given resolution.

During an initialization phase a small subset of S; is drawn at random. This subset is
called a population. Each element of this population is coded by a string of N bits.

The genetic algorithm iterates the following four steps until a solution is found.

1. Evaluation: Rank the population according to the value of F' for each element of S;.
Decide if the best element can serve as an acceptable solution; if yes, exit.

2. Selection: Use the function F' to define a probability distribution over the population.
Select a pair of elements randomly according to this probability distribution.

3. Reproduction: Produce a new element from each pair using “genetic” operators.

4. Replacement: Replace the elements of the starting population by better new ele-
ments produced in step 3.

Many genetic operators (Davidor, 1989) are available. However, the more commonly
used are the mutation and the cross-over operators. The mutation operator consists of
randomly flipping some bits of an element of the population. The cross-over operator
consists of first randomly choosing a place where to cut the two strings of bits, and then
building two new elements from this pair by simply gluing the right and the left parts of
the initial pair of strings (see Figure 9).

We use both operators to produce new elements. First, we use the cross-over operator
to get an intermediate string. Then, the mutation operator is used on this intermediate
string to get the final string.
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PARENTS NEW ELEMENTS

Cross—over

Figure 9: The cross-over operation.

4.1.2 PRINCIPLE OF THE PARALLEL GENETIC ALGORITHM (PGA)

There are many parallel versions of genetic algorithms: the standard parallel version (Robert-
son, 1987), the decomposition version (Tanese, 1987) and the massively parallel version (Talbi,
1993). We chose this last method. The main idea is to allocate one element of the popula-
tion for each processor so that steps 1, 3, and 4 can be executed in parallel. Furthermore,
the selection step (step 2) is carried out locally, in that each individual may mate only
with the individuals placed on processors physically connected to it. This ensures that the
communication overhead does not increase as the number of processors increases. This is
the reason why PGA shows linear speed-up.

The parallel genetic algorithm iterates the following four steps until a solution is found.

1. Evaluation: Evaluate in parallel all the individuals.
2. Selection: Select in parallel, among the neighbors, the mate with the best evaluation.
3. Reproduction: Reproduce in parallel with the chosen mate.

4. Replacement: Replace in parallel the parents by the offspring.

On the Meganode, we implemented the PGA on a torus of processors where each indi-
vidual has four neighbors (see Figure 10)

4.2 Parallel Evaluation of the Cost Function

The evaluation functions used in SEARCH and EXPLORE are very similar: they both compute
the final position of the arm given a Manhattan path of a fixed order. In our implementation,
based on experience, we chose to use Manhattan paths of order 2. Order 2 appeared
to be a good compromise between the number of landmarks needed (increases as order
decreases) and the computing time necessary for the optimization functions (increases as
order increases). Since our robot has six DOF, the argument of the cost function in SEARCH is
a vector in R'2: (A1, AL, ... AL ... A2 ... A2) and the argument of the cost function used
for EXPLORE is a vector in IN x IR'? : (i,Al, A} .. A}, ... A2 ... A2) where i codes the
landmark used as a starting point for the path. In both cases the functions are defined only
on a bounded subset of IR'? and IN x IR'?, whose limits are fixed by the mechanical stops
of the robot and the maximum number of landmarks. A discretization step is chosen for
these two subsets by defining the resolution at which each elementary motion is discretized.
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Figure 10: A torus with sixteen processors. One individual is placed on each processor.
Each individual has four neighbors.

In our case, each Ag is discretized with 9 bits and the number of landmarks is limited to
256. Thus, given a binary string of 116 = 8 4+ 12 x 9 bits, we can convert it into a vector
(as an argument) for the cost function of SEARCH, or EXPLORE, respectively.

Manhattan paths are evaluated in a simplified model of the environment. This model
is obtained by enclosing each element of the scene into a bounding rectangular box.

The evaluation of a vector is performed as follows:

For each Al in (A1, AL, .., AL, ..., A} ... A2)
Compute the limits on the motion for joint ;.

Compute A*g , by bouncing on these limits (see Section 3.4).
Update the position of the robot.

The limits on the motion of joint ¢ are obtained by merging the legal ranges of motion
of all the links that move when joint ¢ moves, and all the obstacles. To obtain a legal range
of motion between a link and an obstacle, we consider the two enclosing parallelepipeds and
express their coordinates in the joint frame. Then, we use a classical method to compute
the range (Lozano-Pérez, 1987).

In our parallel implementation, we distributed the geometric computations among sev-
eral processors. Each processor is dedicated to the computation of a single type of interac-
tion.

4.3 Parallel Implementation of the Ariadne’s Clew Algorithm

Finally, the Ariadne’s clew algorithm is implemented in parallel with three levels of paral-
lelism.

1. Obviously, a first level of parallelization can be obtained by running SEARCH and
EXPLORE at the same time on two sets of processors. While SEARCH is checking
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whether a path exists between the last placed landmark and the goal, EXPLORE is
generating the next landmark.

2. The second level of parallelism corresponds to a parallel implementation of both ge-
netic algorithms employed by SEARCH and EXPLORE to treat their respective opti-
mization problems.

3. The third level corresponds to a parallelization of the collision checking function and
range computation.

We completed a full implementation of these three levels on a Meganode with 128 T800
transputers. Figure 11 represents our parallel implementation of the Ariadne’s clew algo-
rithm and Figure 12 shows how we have embedded this architecture into our experimental
setup. A CAD system (ACT) is used to model the scene with the two robots. The robots
are under the control of KALI (Hayward, Daneshmend, & Hayati, 1988). First, a simplified
geometric model of the scene is downloaded into the memory of the transputers. Then, a
Silicon Graphics workstation works as a global controller and loops over the following steps:

1. Generate and execute a legal random motion for robot B.

2. Send the new configuration of robot B to the Meganode as well as the desired final
configuration for robot A.

3. Get the planned path for robot A from the Meganode and execute it.
4. Wait for a random time and stop robot A.

5. Go to 1.

This sequence allows us to test our algorithm extensively in real situations by having
to deal with many different environments. Of course, the most interesting figure we can
obtain from this experiment is the mean time necessary to compute one path given a new
environment. For this experimental setup this mean time is 1.421 seconds. Using the same
architecture with more up-to-date processors (T9000) would reduce this time by a factor of
ten. The same computation on a single processor (SPARC 5) would take three times longer
than the current implementation.

In summary, we have achieved our main goal by proving that it is indeed possible (with
the Ariadne’s clew algorithm) to plan collision-free paths for a real robot with many DOF in
a dynamic realistic environment.

5. Conclusion: Contributions, Difficulties, and Perspectives

As mentioned in the Introduction, the Ariadne’s clew algorithm has two main qualities:
efficiency, and generality. Let us, in conclusion, explain and discuss these two qualities.

310



THE ARIADNE’S CLEW ALGORITHM

Ariadne’s clew algorithm

Master
7 ’ 1 ~ N
L Search i \ Explore N
| .

Gamma

Gamma

\ \
Psi_C \
\
/ ' 2 \
i \ \ ’ ' 3
! ! \ s ! v \
I I
/ ' i \ g / \ \
/ \ / \
/ /
, / J I \ ' \ Y ' / K ' Vo \ N
i I ! L \ \ \ ’ I L \ I \
I \ T v \ i i ] 1 \ B v \
I \ v v \ ' ' / ' ' v ' \
' \ ' \ \ / ' / ' ' ' \ \
' \ i 1 \ ’ I B i \ \ \ \
' \ \ \ \ ! i i ' \ i \ \
I \ \ \ \ ’ ' / 1 \ \ y \
' l ' ' \ / | , ' \ \ \ \
' ' /) ' i ' \ ! v
I \ o / o v
/ I \ /type A et B i \ 1 typeC
) \ I \
I \ ' .
I \ ' \
1 \ ! '
1 1 ! . '
' /__psi_ab \
\ -7 \
\ ! \
1 ! \
1 ' '
\ ! |
\ ! 1
1 ! '
1 ! \
\ ! 1
\ ! '
1 ! 1
1 ! \
I o
- ! -7 '
P ! - \
. ' sic !
. i ¢
psic ! P '
1
|
h
h

Figure 11: A parallel implementation of the Ariadne’s clew algorithm
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5.1 Performance

Comparing the performance of this kind of algorithm is a very delicate subject. Performance
may be a matter of computing time, efforts needed to program, or ease of application to
different problems (see Section 5.2). Evaluating the performance in terms of computing

time is very difficult for one fundamental and three practical reasons:
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1. The fundamental reason is, once again, the NP-completeness of the path planning
problem. As deceptive cases may always be designed, the only performance results
one may reasonably present are always specific.

2. The three practical reasons are:

(a) Obviously, the first requirement for such a comparison is that different algorithms
run on the same machines with the same available memory. This may seem simple
but it is a main difficulty in our case because our algorithm has been designed
to run on rather specific kinds of machines, namely, massively parallel ones. It
could also be implemented on non-parallel machines, but then it may lose part
of its interest. A fair comparison would be to compare the algorithms on both
types of machines. This would imply programming other algorithms in parallel,
which is very difficult in practice.

(b) Many known path planning algorithms first compute the configuration space
(or an approximation of it) off-line, and then efficiently solve the path planning
problem on-line. As we saw, in order to deal with a dynamic environment, the
Ariadne’s clew algorithm adopts a completely different approach.

(c) For practical reasons, many test problems are toy problems (2D, few obstacles,
few faces, simulated robots) and the performance results using these kinds of
problems are very difficult to generalize to realistic industrial problems (3D, tens
of obstacles, hundreds of faces, real robots).

Considering all these reasons, we tested our algorithm by implementing a realistic robotic
application to the very end. To achieve this goal, we assembled a complex experimental
setup including six different machines (1 MEGANODE, 2 68030, 2 SUN 4, and 1 SILICON
GRAPHICS), two mechanical arms, and running seven different cooperative programs (2
KALI, 1 ACT, 2 VXWORKS, 1 PARX, and 1 Ariadne’s clew algorithm).

Our challenge was to be able to solve the path planning problem fast enough to drive a
real six DOF arm in a dynamic environment. The Ariadne’s clew algorithm indeed achieved
this goal in our experiments where the environment is composed of five fixed obstacles and
a six DOF arm moving independently.

We are not aware of any other methods capable of such performance. To the best of our
knowledge, currently implemented planners would take a number of seconds (ten) to place a
set of landmarks on a 2D example for a robot with five DOF (Kavraki et al., 1996). Despite
the fact that finding a general purpose planning technique for real industrial application is
a very difficult problem, we believe that the Ariadne’s clew algorithm provides an effective
approach to such problems.

The number of range computations for a Manhattan motion of order 1 is C 1922—""“ * 1
where n is the number of faces, £ the number of DOF, and C a constant factor, depending
on the number of parts used to model the robot. Obviously, such a number of faces may be
a severe difficulty for the implementation of the Ariadne’s clew algorithm described so far.
To speed up the computation we use a number of geometric filters that reduce the number
of pairs of entities to be analyzed.

However, it was possible to follow two research tracks in combination. First, we could
use collision checking methods that allow access to the pairs in collision in a logarithmic
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time (Faverjon & Tournassoud, 1987). Second, we could preserve part of the landmark
graph when the environment is changing (McLean & Mazon, 1996).

5.2 Generality

The Ariadne’s clew algorithm is general in the sense that it may be used for numerous and
very different applications in robotics. Basically, the main thing that needs to be changed
in the algorithm is the distance d used in the evaluation functions of the two optimization
problems.

Several planners have been implemented in this way: a fine motion planner (De la Rosa,
Laugier, & Najera, 1996), two motion planners for holonomic and non-holonomic mobile
robots (Scheuer & Fraichard, 1997), a reorientation planner for an articulated hand(Gupta,
1995), a planner for grasping and regrasping (Ahuactzin, Gupta, & Mazer, 1998), and a
planner for a robotic arm placed in the steam generator of a nuclear plant (McLean &
Mazon, 1996). Adapting the algorithm to a new application is, therefore, clearly a very
easy task. For instance, the application to path planning for the non-holonomic trailer was
developed in three days.

The Ariadne’s clew algorithm is also general in the sense that it may be used for any kind
of path planning problem in a continuous space, in fields other than robotics. Although it
may be sufficient to change the distance function d, one may also consider changing the form
of the function d, or even the nature of the searched spaces. For instance, the concept of
obstacles may be reconsidered. Instead of “hard” obstacles, one could replace them by zones
of constraints. In that case, the path planning problem does not consist of finding a path
without collisions but rather finding a path best satisfying the different constraints. Such
a planner has been developed for a naval application where the problem was to find a path
for a boat with various constraints on the trajectory. This opens numerous perspectives of
applications for applying the Ariadne’s clew algorithm in a broader field than pure robotics.
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