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Abstract

This article studies the problem of modifying the action ordering of a plan in order
to optimise the plan according to various criteria. One of these criteria is to make a plan
less constrained and the other is to minimize its parallel execution time. Three candidate
de�nitions are proposed for the �rst of these criteria, constituting a sequence of increasing
optimality guarantees. Two of these are based on deordering plans, which means that or-
dering relations may only be removed, not added, while the third one uses reordering, where
arbitrary modi�cations to the ordering are allowed. It is shown that only the weakest one
of the three criteria is tractable to achieve, the other two being NP-hard and even di�cult
to approximate. Similarly, optimising the parallel execution time of a plan is studied both
for deordering and reordering of plans. In the general case, both of these computations are
NP-hard. However, it is shown that optimal deorderings can be computed in polynomial
time for a class of planning languages based on the notions of producers, consumers and
threats, which includes most of the commonly used planning languages. Computing op-
timal reorderings can potentially lead to even faster parallel executions, but this problem
remains NP-hard and di�cult to approximate even under quite severe restrictions.

1. Introduction

In many applications where plans, made by man or by computer, are executed, it is impor-
tant to �nd plans that are optimal with respect to some cost measure, typically execution
time. Examples of such applications are manufacturing and error-recovery for industrial
processes, production planning, logistics and robotics. Many di�erent kinds of computa-
tions can be made to improve the cost of a plan|only a few of which have been extensively
studied in the literature. The most well-known and frequently used of these is schedul-
ing. A plan tells which actions (or tasks) to do and in which order to do them, while a
schedule assigns exact release times to these actions. The schedule must obey the action
order prescribed by the plan and must often also satisfy further metric constraints such as
deadlines and earliest release times for certain actions. A schedule is feasible if it satis�es all
such metric constraints. It is usually interesting to �nd a schedule that is optimal in some
respect, eg the feasible schedule having the shortest total execution time, or the schedule
missing the deadlines for as few actions as possible.

In principle, planning and scheduling follow in sequence such that scheduling can be
viewed as a post-processing step to planning|where planning is concerned with causal
relations and qualitative temporal relations between actions, while scheduling is concerned
with metric constraints on actions. In some planning systems, eg O-Plan (Currie & Tate,
1991) and Sipe (Wilkins, 1988), both planning and scheduling are integrated into one
single system. Similarly, temporal planners, eg Deviser (Vere, 1983) and IxTeT (Ghallab
& Laruelle, 1994), can often reason also about metric constraints. This does not make it
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irrelevant to study planning and scheduling as separate problems, though, as can be seen
from the vast literature on both topics. The two problems are of quite di�erent character
and studying them separately gives important insight also into such integrated systems as
was just discussed. For instance, Drabble1 says that it is often very di�cult to see when
O-Plan plans and when it schedules; it is easy to see that O-Plan works, but it is di�cult
to see why.

A further complication in understanding the di�erence between planning and scheduling,
both for integrated systems and for systems with separated planning and scheduling, is
that certain types of computations fall into a grey zone between planning and scheduling.
Planners are good at reasoning about e�ects of actions and causal relationships between
actions, but are usually very poor at reasoning about time and temporal relationships
between actions. Schedulers, on the other hand, are primarily designed to reason about
time and resource con
icts, but have no capabilities for reasoning about causal dependencies
between actions. The problems in the grey zone require reasoning of both kinds, so neither
planners nor schedulers can handle these problems properly. If these problems are not
solved, then the scheduler does not get su�cient information from the planner to do the
best of the situation|the planner and the scheduler may fail in their cooperation to �nd a
plan with a feasible schedule, even when such a plan exists.

This article focusses on one of these grey-zone problems, namely the problem of optimis-
ing the action order of a plan to allow for better schedules. Whenever two actions con
ict
with each other and cannot be allowed to execute in parallel, a planner must order these
actions. However, it usually does not have enough information and reasoning capabilities
to decide which of the two possible orders is the best one, so it makes an arbitrary choice.
One of the choices typically allows for a better schedule than the other one, so if the planner
makes the wrong choice it may prevent the scheduler from �nding a good, or even feasible,
schedule. This situation arises also when plans are made by a human expert, since it is dif-
�cult to see which choice of ordering is the best one in a large and complex plan. Planning
systems of today usually cannot do anything better than asking the planner for a new plan
if the scheduler fails to �nd a feasible schedule. This is an expensive and unsatisfactory
solution, especially if there is no feedback from the scheduler to help the planner making
a more intelligent choice next time. Another solution which appears in the literature is to
use a �lter between the planner and scheduler which attempts to modify the plan order to
put the scheduler in a better position. Such �lters could remove certain over-commitments
in the ordering, which will be referred to as deordering the plan, or even change the order
between certain actions, which will be referred to as reordering the plan.

This article is intended to provide a �rst formal foundation for studying this type of
problems. It de�nes a number of di�erent optimality criteria for plan order modi�cations,
both with respect to the degree of over-committment in the ordering and with respect to
the parallel execution time, and it also provides computational results for computing such
modi�cations. The article also analyses some �ltering algorithms suggested in the literature
for doing such order modi�cations.

The remainder of this article is structured as follows. Section 2 introduces the concepts
and computations studied in this article by means of an example. Then Section 3 starts the

1. Brian Drabble, personal communication, Aug. 1997.
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theoretical content of the article, de�ning the two planning formalisms used in the following
sections. The problems of making a plan least-constrained are studied in Section 4 where
some candidate de�nitions for this concept are introduced and their computational proper-
ties investigated. Section 5 de�nes the concepts of parallel plans and parallel executions of
plans. This is followed by Section 6 where optimal deorderings and reorderings of parallel
plans are introduced and the complexity of achieving such optimality is analysed. Section 7
then studies how the complexity of these problems is a�ected by restricting the language.
This includes the positive result that an algorithm from the literature �nds optimal de-
orderings for a class of plans for most common planning languages. Some other �ltering
algorithms from the literature as well as some planners incorporating some ordering opti-
misation are discussed in Section 8. Finally, Section 9 discusses some aspects of this article
and some related work, while Section 10 concludes by a brief recapitulation of the results.

2. Example

In order to illustrate the concepts and operations studied in this article a simple example
of assembling a toy car will be used. The example is a variation of the example used by
B�ackstr�om and Klein (1991), which is a much simpli�ed version of an existing assembly line
for toy cars used for undergraduate laborations in digital control at Link�oping University
(for a description of this assembly line, see eg. Klein, Jonsson, & B�ackstr�om, 1995, 1998;
Str�omberg, 1991). The problem is to assemble a LEGO2 car from pre-assembled parts as
shown in Figure 1. There is a chassis, a top and a set of wheels, the two latter to be mounted
onto the chassis.

Top

Chassis

Wheels

Car

Figure 1: Schematic assembly process for a toy car

The workpiece 
ow of the factory is shown in Figure 2. There are three storages, one
for each type of preassembled part, two workstations, number 1 for mounting the top and
number 2 for mounting the wheels, and there is a car storage for assembled cars. Tops can
be moved from the top storage to workstation 1 and sets of wheels can be moved from the

2. LEGO is a trade mark of the LEGO company
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wheels storage to workstation 2. Chassis can be moved from the chassis storage to either
workstation and also, possibly with other parts mounted, between the two workstations and
from either workstation to the car storage. Furthermore, before mounting the wheels on a
chassis, the tyres must be in
ated, so workstation 2 incorporates a compressed-air container
which must be pressurized before in
ating the tyres (this is not shown in the �gure).

Storage

Wheels

Car

Storage

Chassis

Storage

Top

Storage

Workstation 2

Workstation 1

Figure 2: Schematic lay-out of the toy-car factory

This article is concerned with modifying the order between the actions in a given plan,
and does not consider modifying also the set of actions. Hence, the example will assume
that a plan for assembling a toy car is given|whether this plan was produced by hand or
by a planning algorithm is not important. It will also be assumed that this assembly plan
contains exactly those actions listed in Table 1, in some order. Since most results in this
article are independent of the particular planning language used, no assumptions about
the planning language will be made in this example either. To make things simple, the
obvious common-sense constraints on which plans are valid will be used. For instance, a
part must be moved to a workstation before it is mounted there, the wheels must be in
ated
before being mounted and the air container must be pressurized before in
ating the tyres.
Furthermore, since a chassis can only be at one single place at a time, the top cannot be
mounted in parallel with mounting the wheels, and neither of the mounting operations can
be done in parallel with moving either the chassis or the part to be mounted.

The purpose of modifying the action order in a given plan is usually to optimize the
plan in some aspect, for instance, to make the plan least constrained. Consider the totally
ordered plan in Figure 3a, for producing a chassis with wheels, which is a subplan of the
plan for assembling a car. Note that since the plan is totally ordered, all pairs of actions
are ordered, but the implicit transitive arcs are not shown in the �gure. This plan is clearly
over-constrained. For instance, it is not necessary to move the set of wheels to workstation
2 before pressurizing the air container, and removing this ordering constraint results in
the plan in Figure 3b. Note that orderings have only been removed|the arc from MvW2
to IT existed already in the original plan, but was implicit by transitivity. A plan where
some orderings have been removed will be referred to as a deordering of the original plan.
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Action Description Duration

MvT1 Move top to workstation 1 1
MvW2 Move wheels to workstation 2 1
MvC1 Move chassis to workstation 1 2
MvC2 Move chassis to workstation 2 2
MvS Move chassis to car storage 3
MtT Mount top on chassis 7
MtW Mount wheels on chassis 4
PAC Pressurize air container 5
IT In
ate tyres 4

Table 1: Actions of the assembly plan

This new plan is less constrained than the original plan, since it is now possible to move
the wheels and pressurize the air container in either order or, perhaps, even in parallel.
However, further orderings can be removed; it is not necessary to in
ate the wheels before
moving the chassis to the workstation. Removing also this ordering results in the plan in
Figure 3c, which is a least constrained deordering of the original plan in the sense that
it is not possible to remove any further ordering constraints and still have a valid plan.
That is, if removing any further ordering constraint, it will be possible to sequence the
actions in such a way that the plan will no longer have its intended result. In addition to
deorderings, one may also consider arbitrary modi�cations of the ordering relation, that is,
both removing and adding relations. Such modi�cations will be referred to as reorderings.
Three di�erents least-constrainment criteria for plans based on deorderings and reorderings
will be studied in Section 4, and the plan in Figure 3c happens to be optimal according to
all three of these criteria.

- -
PPPPq
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��1

- - - -

PPPPq
��
�*

PPPPq
��
��1

c) A least constrained

MvW2
MvC2 MtW

version of a
b) A less constrained version of a

IT

a) A total order plan

MvW2 IT MvC2 MtWPAC

PAC MvC2
MtW

IT
MvW2

PAC

Figure 3: Three plans for mounting the wheels
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Making a plan least constrained is clearly useful if certain actions can be executed in
parallel. However, even in the case where no parallel execution is possible, it may still be
worth making a plan least constrained. Although the partial order of this least constrained
plan must again be strengthened into a total order for execution purposes, this need not be
the same total order as in the original plan. Suppose the actions have temporal constaints
like deadlines and earliest release times and that a scheduler will post-process the plan to
try �nding a feasible schedule. It may then be the case that the original plan has no feasible
schedule, but a less constrained version of it can be sequenced into a feasible schedule. The
idea of a least constrained plan is that the scheduler will have as many alternative execution
sequences as possible to choose from.

The most important reason for modifying the action ordering of a plan, however, is to
execute the plan faster by executing actions in parallel whenever possible. For this purpose
it is better to use the length of the optimal schedule for a plan as a measure, rather than
some measure on the ordering itself. Suppose the following car-assembly plan is given

hMvW2; PAC; IT;MvC2;MtW;MvT1;MvC1;MtT;MvSi:

If the actions are executed sequentially in the given order, the minimum execution time
is the sum of the durations of the actions, that is 29 time units. However, just as in the
previous example this plan is over-constrained, since several of the actions could be executed
in either order, or in parallel.

It is possible to remove orderings as far as shown in Figure 4a, but no further, and
still have a valid plan (the implicit transitive orderings are not shown in the �gure). This
deordered version of the original assembly plan can be scheduled to execute in 25 time units
by exploiting parallelism whenever possible. An example of such a schedule is shown in
Figure 3b. However, no faster execution is possible, since the plan contains a subsequence
of actions which cannot be parallelized and which has a total execution time of 25 time
units.

It is obvious from the schedule in Figure 4b that not many actions can be executed in
parallel, and that the gain of deordering the plan is quite small. A much better performance
is possible if arbitrary modi�cations to the action ordering are allowed, that is, if also
reorderings are considered. For instance, in the assembly plan there is no particular reason
why the wheels should be mounted before the top is mounted, and it will be seen shortly
that much time can be saved by reversing the order of these two operations. A deordering
cannot do this, however, since removing the ordering between the wheel-mounting action
(MtW) and the top-mounting action (MtT) would make these unordered. This would be
interpreted as if the two actions could be executed in parallel, which is not possible. This
is also the reason why these actions must be ordered in the original plan. However, when
allowing arbitrary modi�cations, the order between these two actions can be reversed, and
Figure 5a shows such a reordering of the original plan. This plan can be scheduled to
execute in only 16 time units, which is a considerable improvement over both the original
plan and the optimal deordered version of it. An example of an optimal schedule is shown
in Figure 5b. In fact, this plan is an optimal reordering in the sense that no other ordering
of the actions results in a valid plan that can be scheduled to execute faster. The problems
of �nding optimal deorderings and reorderings of plan with respect to parallel execution is
the main topic of this article, and are studied in Sections 5 to 7.

104



Computational Aspects of Reordering Plans

MvC2
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MtT
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a) A deordering of the assembly plan admitting a shortest

parallel execution time

b) An optimal schedule for the plan above

MvS
MvW2

IT

MvC2

MtW MvC1

MvT1
MtT

PAC

PAC

Figure 4: An optimal deordering of the assembly plan

It is obvious that reordering is a more powerful operation than deordering, since the
reordered plan in Figure 5a allows for a shorter schedule than the optimal deordering in
Figure 4a. On the other hand, if the original plan had been

hMvT1;MvC1;MtT;MvS;MvW2; PAC; IT;MvC2;MtW i;

then deordering would have been su�cient for arriving at the optimal plan in Figure 5a.

3. Planning Formalisms

This section de�nes actions, plans and related concepts, which basically appear in two
di�erent guises in this article. De�nitions and tractability results will mostly be cast in a
general, axiomatic framework in order to be as general and independent of formalism as
possible. Hardness results, on the other hand, will mostly be cast in a speci�c formalism,
Ground Tweak, and often subject to further restrictions, this in order to strengthen the
results. Both these formalisms are de�ned below. In addition to these, a third formalism
will be used, but its de�nition will be deferred until it is used, in Section 7.
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a)

parallel execution time

b) An optimal schedule for the plan above

A reordering of the assembly plan admitting a shortest
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Figure 5: An optimal reordering of the assembly plan

3.1 The Axiomatic Planning Framework

The axiomatic framework makes only a minimum of assumptions about the underlying for-
malism. It may be instantiated to any planning formalism that de�nes some concept of
a planning problem a domain of entities called actions and a validity test. The planning
problem is assumed to consist of planning problem instances (ppis),3 with no further as-
sumptions about the inner structure of these. The validity test is a truth-valued function
taking a ppi and a sequence of actions as arguments. If the validity test is true for a ppi �
and an action sequence ha1; : : : ; ani, then the action sequence ha1; : : : ; ani is said to solve
�. While the inner structure of the ppis and the exact de�nition of the validity test are cru-
cial for any speci�c planning formalism, many results in this article can be proven without
making any such further assumptions. Results on the computational complexity of certain
problems will make an assumption about the complexity of the validity test, though. Based
on these concepts, the notion of plans can be de�ned in the usual way.

De�nition 3.1 A total-order plan (t.o. plan) is a sequence P = ha1; : : : ; ani of actions,
which can alternatively be denoted by the tuple hfa1; : : : ; ang;�i where for 1 � k; l � n,
ak � al i� k < l. Given a ppi �, P is said to be �-valid i� the validity test is true for �
and P .

3. This is the complexity-theoretic terminology for problems. Planning problem instances in the sense of

this article are sometimes referred to as planning problems in the planning literature.
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A partial-order plan (p.o. plan) is a tuple P = hA;�i where A is a set of actions and
� is a strict ( ie. irre
exive) partial order on A. The validity test is extended to p.o. plans
s.t. given a ppi �, P is �-valid i� hA;�0i is valid for every topological sorting �0 of �.

The actions of a t.o. plan must be executed in the speci�ed order, while unordered
actions in a p.o. plan may be executed in either order. That is, a p.o. plan can be viewed
as a compact representation for a set of t.o. plans. There is no implicit assumption that
unordered actions can be executed in parallel; parallel plans will be de�ned in Section 5.
p.o. plans will be viewed as directed acyclic graphs in �gures with the transitive arcs often
tacitly omitted to enhance readability. Furthermore, all proofs and algorithms in this article
are based on this de�nition, ie assuming the order of a plan is transitively closed, while
many practical planners do not bother about transitive closures. This di�erence does not
a�ect any of the results presented here.

3.2 The Ground TWEAK Formalism

The Ground TWEAK (GT) formalism is the TWEAK language (Chapman, 1987) restricted
to ground actions. This formalism is a variation on propositional STRIPS and it is known
to be equivalent under polynomial transformation to most other common variants on propo-
sitional STRIPS (B�ackstr�om, 1995). In brief, an action has a precondition and a postcon-
dition, both being sets of ground literals.

In order to de�ne the GT formalism, the following two de�nitions are required. Given
some set S, the notion Seqs(S) denotes the set of all sequences formed by members of S,
allowing repetition of elements and including the empty sequence. The symbol `;' will be
used to denote the sequence concatenation operator. Further, given a set P of propositional
atoms, the set LP of literals over P is de�ned as LP = P [ f:p j p 2 Pg. Since no other
formulae will be allowed than atoms and negated atoms, a double negation ::p will be
treated as identical to the unnegated atom p. Finally, given a set of literals L, the negation
Neg(L) of L is de�ned as Neg(L) = f:p j p 2 Lg[fp j :p 2 Lg and L is said to be consistent
i� there is no atom p s.t. both p 2 L and :p 2 L.

De�nition 3.2 An instance of the GT planning problem is a quadruple � = hP;O; I;Gi
where

� P is a �nite set of atoms;

� O is a �nite set of operators of the form hpre; posti where pre; post � LP are consistent
and denote the pre and post condition respectively;

� I;G � LP are consistent and denote the initial and goal state respectively.

For o = hpre; posti � O, we write pre(o) and post(o) to denote pre and post respectively. A
sequence ho1; : : : ; oni 2 Seqs(O) of operators is called a GT plan (or simply a plan) over �.

De�nition 3.3 The ternary relation valid � Seqs(O)� 2LP � 2LP is de�ned s.t. for arbi-
trary ho1; : : : ; oni 2 Seqs(O) and S; T � LP , valid(ho1; : : : ; oni; S; T ) holds i� either

1. n = 0 and T � S or
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2. n > 0, pre(o1) � S and
valid(ho2; : : : ; oni; (S �Neg(post(o1)) [ post(o1); T ).

A t.o. plan ho1; : : : ; oni 2 Seqs(O) solves � i� valid(ho1; : : : ; oni; I;G).

An action is a unique instance of an operator, ie a set of actions may contain several
instances of the same operator, and it inherits its pre- and post-conditions from the operator
it instantiates. Since all problems in this article will consider some �xed set of actions, the
atom and operator sets will frequently be tacitly omitted from the GT ppis. In �gures,
GT actions will be shown as boxes, with precondition literals to the left and postcondition
literals to the right.

4. Least Constrained Plans

It seems to have been generally assumed in the planning community that there is no di�er-
ence between t.o. plans and p.o. plans in the sense that a t.o. plan can easily be converted
into a p.o. plan and vice versa. However, while a p.o. plan can be trivially converted into
a t.o. plan in low-order polynomial time by topological sorting, it is less obvious that also
the converse holds. At least three algorithms for converting t.o. plans into p.o. plans have
been presented in the literature (Pednault, 1986; Regnier & Fade, 1991a; Veloso, P�erez, &
Carbonell, 1990) (all these algorithms will be analyzed later in this article). The claim that
a t.o. plan can easily be converted into a p.o. plan is vacuously true since any t.o. plan is
already a p.o. plan, by de�nition. Hence, no computation at all needs to be done. This
is hardly what the algorithms were intended to compute, however. In order to be useful,
such an algorithm must output a p.o. plan satisfying some interesting criterion, ideally some
optimality criterion. In fact, two of the algorithms mentioned above are claimed to produce
optimal plans according to certain criteria. For instance, Veloso et al. (1990, p. 207) claim
their algorithm to produce least constrained plans. They do not de�ne what they mean
by this term, however, and theirs is hardly the only paper in the literature using this term
without further de�nition.

Unfortunately, it is by no means obvious what constitutes an intuitive or good criterion
for when a p.o. plan is least constrained and, to some extent, this also depends on the
purpose of achieving least-constrainment. The major motivation for producing p.o. plans
instead of t.o. plans (see for instance Tate, 1975) is that a p.o. plan can be post-processed
by a scheduler according to further criteria, such as release times and deadlines or resource
limits. Either the actions are ordered into an (ideally) optimal sequence or, given criteria for
parallel execution, into a parallel plan that can be executed faster than if the actions were
executed in sequence. In both cases, the less constrained the original plan is, the greater
is the chance of arriving at an optimal schedule or optimal parallel execution respectively.
Both of the algorithms mentioned above are motivated by the goal of exploiting possible
parallelism to decrease execution time.

It is not only interesting to make t.o. plans partially ordered, but also to make partially
ordered plans more partially ordered, that is, to generalise the ordering. An algorithm
for this task has been presented in the literature in the context of case-based planning
(Kambhampati & Kedar, 1994). Since t.o. plan are just a special case of p.o. plans, this
section will study the general problem of making partially ordered plans less constrained.
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4.1 Least-constrainment Criteria

There is, naturally, an in�nitude of possible de�nitions of least-constrainment. Some seem
more reasonable than others, however. Three intuitively reasonable candidates are de�ned
and analyzed below. Although other de�nitions are possible, it is questionable whether
considerably better or more natural de�nitions, with respect to the purposes mentioned
above, can be de�ned without using more information than is usually present in a t.o. or
p.o. plan.

De�nition 4.1 Let P = hA;�i and Q = hA;�0i be two p.o. plans and � a ppi. Then,

1. Q is a reordering of P wrt. � i� both P and Q are �-valid.

2. Q is a deordering of P wrt. � i� Q is a reordering of P and �0��

3. Q is a proper deordering of P wrt. � i� Q is a reordering of P and �0��

De�nition 4.2 Given a ppi � and two p.o. plans P = hA;�i and Q = hA;�0i,

1. Q is a minimal-constrained deordering of P wrt. � i�

(a) Q is a deordering P wrt. � and

(b) there is no proper deordering of Q wrt. �;

2. Q is a minimum-constrained deordering of P wrt. � i�

(a) Q is a deordering P wrt. � and

(b) there is no deordering hA;�00iof Q wrt. � s.t. j �00 j < j � j;

3. Q is a minimum-constrained reordering of P wrt. � i�

(a) Q is a reordering P wrt. � and

(b) there is no reordering hA;�00iof Q wrt. � s.t. j �00 j < j � j;

Note that the previous publication (B�ackstr�om, 1993) used the terms LC1-minimality for
minimal-constrained deordering and LC2-minimality for minimum-constrained reordering.
This change in terminology has been done with the hope that more will be gained in clarity
than is lost by confusion.

It is easy to see that minimum-constrainment is a stronger criterion than minimal-
constrainment|any minimum-constrained deordering of a plan P is a minimal-constrained
deordering of P , but the opposite is not true. As an example, consider the plan in Figure 6a.
If removing all ordering constraints from action C, the result is the plan in Figure 6b, which
is still valid. This plan has an order of size 3 (there is one implicit transitive order) and it
is a minimal-constrained deordering since no further deordering can be made. It is not a
minimum-constrained deordering, however, since if instead breaking the ordering constraints
between the subsequences AB and CB, the result is the plan in Figure 6c, which is also valid.
This plan has an ordering of size 2 and it can easily be seen that it is a minimum-constrained
deordering, and that it happens to coincide with the minimum-constrained reordering in
this case. This coincidence is not always the case, however, since a reordering is allowed to
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do more modi�cations than a deordering; a minimum deordering can obviously never have
a smaller ordering relation than a minimum reordering. Examples of this di�erence was
shown already in Section 2, where Figure 4a shows a minimum-constrained deordering and
Figure 4b shows a minimum-constrained reordering.
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-

-

p
A

qp
B

q
C

q
D
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b) A minimal deordering b) A minimum deordering

a) A total-order plan

Figure 6: The di�erence between minimal and minimum constrained deorderings.

Other alternative de�nitions of least-constrainment could be, for instance, to maximize
the unorderdness or to minimize the length of the longest chain in the modi�ed plan. How-
ever, to �nd a de-/reordering which has as many pairs of unordered actions as possible is the
dual of computing a minimum de-/reordering and it is, thus, already covered. Minimizing
the length of the longest chain is a condition which may be relevant when actions can be
executed in parallel and the overall execution time is to be minimized. However, since the
number of ordering constraints is quadratic in the length of a chain (because of transitive
arcs), minimizing the size of the relation will often be a reasonable approximation of min-
imizing the chain length. Furthermore, minimizing the longest chain is still a rather weak
condition for this purpose, so it is better to study directly the problem of �nding shortest
parallel executions of plans, which will be done later in this article.

Another issue is whether to minimize the size of the ordering relation as given, or to
reduce the transitive or reductive closure of it. Since plans may have super
uous orderings
with no particular purpose, it is reasonable to standardize matters and either add all possible
transitive arcs, getting the transitive closure, or to remove all transitive arcs, getting the
reductive closure. The choice between these two is not important for the results to be
proven. However, minimizing the transitive closure will give a preference to plans with
many unordered short chains of actions over plans with a few long chains, and so seems to
coincide better with the term 'least constrained'.

4.2 Computing Least-constrained Plans

Minimal deordering is weaker than the two other least-constrainment criteria considered,
but it is the least costly to achieve|it is the only one of the three criteria which can be
satis�ed by a polynomial-time modi�cation to a plan.
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De�nition 4.3 The search problem Minimal-Constrained Deordering (MlCD) is
de�ned as follows:
Given: A ppi � and a �-valid plan P .
Output: A minimal-constrained deordering of P wrt. �.

Theorem 4.4 MlCD can be solved in polynomial time if validity for p.o. plans can be
tested in polynomial time.

Proof: Consider algorithm MLD in Figure 7 and let Q = hA;�0i be the plan output by
the algorithm on input P = hA;�i. The plan Q is obviously a valid deordering of P wrt.
�. It is further obvious from the termination condition in the while loop that there is no
other ordering �00��0 s.t. hA;�00i is �-valid. It follows that Q is a minimal-constrained
deordering. Since the algorithm obviously runs in polynomial time, the theorem follows.

2

Furthermore, if validity testing is expensive, this will be the dominating cost in the MLD

algorithm.

Corollary 4.5 If validity testing for p.o. plans can be solved in time O(f(n)) for some
function f(n), then MlCD can be solved in O(maxfn7=2; n2f(n)g) time.

1 procedure MLD
2 Input: A valid p.o. plan P = hA;�i and a ppi �
3 Output: A minimal deordering of P
4 while there is some e 2� s.t. hA; (� �feg)+i is �-valid do

5 remove e from �
6 return hA;�+i;

Figure 7: The minimal-deordering algorithm MLD

In particular, note that plan validation is polynomial for the usual variant of propo-
sitional STRIPS without conditional actions (Nebel & B�ackstr�om, 1994, Theorem 5.9).
More precisely, this proof pertains to the Common Propositional STRIPS formalism (CPS)
and, thus, holds also for the other common variants of propositional STRIPS, like Ground
TWEAK (B�ackstr�om, 1995). Furthermore, note that in practice it may not be necessary
to compute the transitive closure either for the output plan or for validating a plan in the
algorithm.

While minimum de-/reordering are stronger criteria than minimal deordering, they are
also more costly to achieve.

De�nition 4.6 The decision problem Minimum-Constrained Deordering (MmCD)

is de�ned as follows:
Given: A ppi �, a �-valid plan P and an integer k � 0.
Question: Is there a deordering hA;�i of P s.t. j � j � k?
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De�nition 4.7 The decision problem Minimum-Constrained Reordering (MmCR)
is de�ned as follows:
Given: A ppi �, a �-valid plan P and an integer k � 0.
Question: Is there a reordering hA;�i of P s.t. j � j � k?

Theorem 4.8 Minimum-Constrained Deordering is NP-hard.

Proof: Proof by reduction from Minimum Cover (Garey & Johnson, 1979, p. 222),
which is NP-complete. Let S = fp1; : : : ; png be a set of atoms, C = fC1; : : : ; Cmg a set of
subsets of S and k � jCj a positive integer. A cover of size k for S is a subset C 0 � C s.t.
jC 0j � k and S � [T2C0T . Construct, in polynomial time, the GT ppi � = h;; frgi and the
�-valid t.o. plan P = ha1; : : : ; am; aSi where pre(ai) = ; and post(ai) = Ci for 1 � i � m,
and further pre(aS) = S and post(aS) = frg. Obviously, S has a minimum cover of size k
i� there exists some �-valid p.o. plan Q = hfa1; : : : ; am; aSg;�i s.t. j � j � k, since only
those actions contributing to the cover need remain ordered wrt. to aS 2

Corollary 4.9 Minimum-Constrained Reordering is NP-hard.

Corollary 4.10 Minimum-Constrained Deordering and Minimum-Constrained

Reordering both remain NP-hard even when restricted to GT plans where the actions
have only positive pre- and post-conditions.

Theorem 4.11 If validity for p.o. plans is in some complexity class C, then Minimum-
Constrained Deordering and Minimum-Constrained Reordering are in NPC.

Proof: Guess a solution, verify that it is a de-/reordering and then validate it using an
oracle for C. 2

For most common planning formalisms without conditional actions and context-dependent
e�ects, minimal de-/reordering is NP-complete.

Theorem 4.12 If validity for p.o. plans can be tested in polynomial time, then Minimum-

Constrained Deordering and Minimum-Constrained Reordering are NP-complete.

Proof: Immediate from Theorems 4.8 and 4.11 and from Corollary 4.9. 2

It follows immediately that the corresponding search problems, that is, the problems of
generating a minimum-constrained de-/reordering are also NP-hard (and even NP-equivalent
if validity testing is tractable).

Furthermore, MmCD and MmCR are not only hard to solve optimally, but even to
approximate. Neither of these problems is in the approximation class APX (Crescenzi
& Panconesi, 1991), ie neither problem can be approximated within a constant factor.
(Both here and elsewhere in this article the term approximation is used in the constructive
sense, that is the results refer to the existence/non-existence of algorithms producing an
approximate solution in polynomial time).
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Theorem 4.13 Minimum-Constrained Deordering and Minimum- Constrained
Reordering cannot be approximated within a constant unless NP 2 DTIME (npoly log n).

Proof: Suppose there were a polynomial-time algorithm A approximatingMmCD within
a constant. Since the reduction in the proof of Theorem 4.8 preserves the solutions exactly,
also approximations are preserved. Hence, Minimum Cover could be approximated within
a constant, but this is impossible unless NP 2 DTIME (npoly log n) (Lund & Yannakakis,
1994), which contradicts the assumption. The case for MmCR is a trivial consequence. 2

If using the number of propositional atoms in the plan as a measure of its size, this
bound can be strengthened to (1� ") ln jPj for arbitrary " unless NP 2 DTIME (nlog log n)
by substituting such a result for Minimum Cover (Feige, 1996) in the proof above.

5. Parallel Plans

In order to study the problem of �nding a shortest parallel execution of a plan, the for-
malisms used so far are not quite su�cient. Since they lack a capability of modelling when
actions can be executed in parallel or not, it is impossible to say with any reasonable pre-
cision how a certain action ordering will a�ect the parallel execution time. Partial-order
plans are sometimes referred to as parallel plans in literature. This is misleading, however.
That two actions are left unordered in such a plan means that they can be executed in
either order, without a�ecting the validity of the plan, but in the general case there is
no guarantee that the plan will remain valid also if the executions of the actions overlap
temporally. In some cases, unorderedness means that parallel or overlapping execution is
allowed, while in other cases it does not mean that, depending on the action modelling and
its underlying domain assumptions. In the �rst case, the plan must have a stronger ordering
committment, any two actions that must not have overlapping executions must be ordered,
thus making the plan over-committed.

In order to distinguish the two cases, a concept of parallel plans will be introduced below.
A parallel plan is a partial-order plan with an extra relation, a non-concurrency relation,
which tells which actions must not be executed in parallel. In this article two actions are
considered parallel if their executions have any temporal overlap at all. Plans where all
unordered actions can be executed in parallel constitute the special case of de�nite parallel
plans.

De�nition 5.1 A parallel plan is a triple P = hA;�;#i, where hA;�i is a p.o. plan and
# is an irre
exive, symmetric relation on A. A de�nite parallel p.o plan is a parallel plan
P = hA;�;#i s.t. # � (� [ ��1).

Intuitively, a parallel plan is a p.o. plan extended with an extra relation, # (a non-
concurrency relation), expressing which of the actions must not be executed in parallel.
This relation is primarily intended to convey information about actions that are unordered
under the � relation, although it is allowed to relate also such actions. That is, the #
relation is intended to capture information about whether two actions can be executed in
parallel or not, in general. That two actions are ordered in a plan forbids executing them
in parallel in this particular plan, but does not necessarily mean that the actions could not
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be executed in parallel under di�erent circumstances. Planning algorithms frequently pro-
duce overcommitted orderings on plans, and the whole purpose of this article is to study the
problem of optimizing plans by �nding and removing such overcommitted orderings. Hence,
there are no restrictions in general on the relation # in addition to those in De�nition 5.1.
For instance, a � b does not imply that a#b. However, the non-concurrency relation will
frequently be constrained to satisfy the post-exclusion principle.

De�nition 5.2 A parallel GT plan P = hA;�;#i satis�es the post-exclusion principle
i� for all actions a; b 2 A, a#b whenever there is some atom p s.t. p 2 post(a) and
:p 2 post(b).

The de�nition of plan validity is directly inherited from p.o. plans.

De�nition 5.3 Given a ppi �, a parallel plan hA;�;#i is �-valid i� the p.o. plan hA;�i
is �-valid.

The non-concurrency relation is, thus, not relevant for deciding whether a plan is valid or
not. Instead, it is used for constraining how parallel plans may be executed and it is the
core concept behind the de�nition of parallel executions.

Consider, for instance, the GT plan hfA;B;Cg; fhA;Big; fhB;Cigi which is shown in
Figure 8 (arrows denote ordering relations and dashed lines denote nonconcurrency rela-
tions). This plan is valid wrt. the ppi � = h;; fr; sgi, that is the �nal value of the atom q

does not matter. Since B#C holds the actions B and C are constrained not to be executed
in parallel, but may be executed in either order, that is, the plan is not de�nite. This could
be because the post-exclusion principle is employed, or for some other reason. Although
A#B does not hold the actions A and B clearly cannot be executed in parallel, since A � B

holds. There are four ways to execute this plan, in either of the three sequences A,B,C;
A,C,B and C,A,B, or by executing A and C in parallel, followed by B (unit length is as-
sumed). Also note that this plan would no longer be valid if the goal contained either q or
:q, since the �nal truth value of q depends on the actual execution order. Furthermore,
any reordering of the plan would have to keep the ordering constraint A � B to satisfy the
validity criterion, why it is not necessary to have the constraint A#B. It would do no harm
here to include this restriction, but in more complex plans it may be an over-constrainment,
if there are several producers for the atom p to choose between, for instance. To sum up,
the non-concurrency relation should primarily be used to mark which actions must not be
in parallel in addition to those already forbidden to be in parallel because of validity.

This framework for parallel plans admits expressing possible parallelism only; necessary
parallelism is out of the scope of this article and requires a planner having access to and
being able to make use of further additional information, perhaps a temporal algebra.
Furthermore, a set of non-concurrent actions can easily be expressed by making all actions
in the set pairwise non-concurrent, but the formalism is not su�cient to say that k of the
actions, but not more, in such a set may be executed in parallel. Similarly, it is not possible
to express that an action must executed before or after an interval, or that two sets of
actions must have non-overlapping executions.

De�nition 5.4 Let P = hA;�;#i be a parallel plan and let the function d : A 7! N denote
the duration of each action. A parallel execution of P is a function r : A 7! N, denoting
release times for the actions in A, satisfying that for all a; b 2 A,
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Figure 8: A parallel plan

1. if a � b, then r(a) + d(a) � r(b) and

2. if a#b, then either

(a) r(a) + d(a) � r(b) or

(b) r(b) + d(b) � r(a).

The length of the parallel execution is de�ned as maxa2Afr(a) + d(a)g, ie, the latest �nish-
ing time of any action. A minimum parallel execution of plan is a parallel execution with
minimum length among all parallel executions of the plan. The length of a parallel plan P ,
denoted length(P ), is the length of the minimum parallel execution(s) for P .

Obviously, every parallel plan has a parallel execution of length
P

a2A d(a) (which is the
trivial case of sequential execution). Furthermore, in certain cases, hardness results will be
strengthened by restricting the duration function.

De�nition 5.5 The special case where d(a) = 1 for all a 2 A is referred to as the unit
time assumption.

Deciding whether a release-time function is a parallel execution is tractable.

Theorem 5.6 Given a parallel plan P = hA;�;#i, a duration function d : A 7! N and a
release-time function r : A 7! N, it can be decided in polynomial time whether r is a parallel
execution for P and, in the case it is, what the length of this execution is.

Proof: Trivial. 2

Consider the plan in Figure 8 and three release-time functions r1, r2 and r3, de�ned as
follows

r1(A) = 1 r1(B) = 2 r1(C) = 3

r2(A) = 1 r2(B) = 2 r2(C) = 1

r3(A) = 1 r3(B) = 2 r3(C) = 2:

Both r1 and r2 are parallel executions of the plan, while r3 is not. Furthermore, r2 is
a minimum parallel execution for the plan, having length 2. However, computing the
minimum parallel execution of a parallel plan is di�cult in the general case.
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De�nition 5.7 The decision problem Parallel Plan Length (PPL) is de�ned as fol-
lows:
Given: A parallel plan P = hA;�;#i, a duration function d and an integer k.
Question: Does P have a parallel execution of length k or shorter?

Theorem 5.8 Parallel Plan Length is NP-hard.

Proof: Hardness is proven by transformation from Graph K-Colourability (Garey
& Johnson, 1979, p. 191), which is NP-complete. Let G = hV;Ei be an arbitrary undi-
rected graph, where V = fv1; : : : ; vng. Construct, in polynomial time, a GT ppi as fol-
lows. De�ne the ppi � = h;; fp1; : : : ; pngi. Also de�ne the parallel plan P = hA; ;;#i,
where A contains one action ai for each vertex vi 2 V , s.t. pre(ai) = ; and post(ai) =
fpi; qig [ f:qj j fvi; vjg 2 Eg. Finally, let ai#aj i� fvi; vjg 2 E, which satis�es the post-
exclusion principle. The plan P just constructed is obviously �-valid. It is easy to see that
G is k-colourable i� P has a parallel execution of length k wrt. � since each colour of G
will correspond to a unique release time in the parallel execution of P . 2

Corollary 5.9 Parallel Plan Length remains NP-hard even when restricted to GT ac-
tions with empty preconditions and under the assumption of unit time and the post-exclusion
principle.

Theorem 5.10 Parallel Plan Length is in NP.

Proof: Guess a parallel execution. Then verify it, which can be done in polynomial time
according to Theorem 5.6. 2

Computing a minimum parallel execution of a plan is tractable for the special case of de�nite
plans, however.

Theorem 5.11 Parallel Plan Length can be solved in polynomial time for de�nite
parallel plans.

Proof: Use the algorithm DPPL (Figure 9), which is a straightforward strati�cation
algorithm for directed DAGs. 2

6. Reordering Parallel Plans

Having de�ned the concept of parallel plan, it is possible to de�ne concepts similar to
the previous least-constrainment criteria which are more appropriate for minimizing the
execution time of parallel plans.

De�nition 6.1 Let P = hA;�;#i and Q = hA;�0;#i be two parallel plans and � a ppi.
Then,

1. Q is a parallel reordering of P wrt. � i� both P and Q are �-valid;
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1 procedure DPPL
2 Input: A de�nite parallel plan P = hA;�;#i
3 Output: A minimum parallel execution r for P
4 Construct the directed graph G = hA;�i
5 for all a 2 A do

6 r(a)  0
7 while A 6= ; do

8 Select some node a 2 A without predecessors in A

9 for all b 2 A s.t. a � b do

10 r(b) max(r(b); r(a) + d(a))
11 A A� fag
12 return r

Figure 9: Algorithm for computing a minimum parallel execution for de�nite parallel plans.

2. Q is a parallel deordering of P wrt. � i� Q is a parallel reordering of P and �0��;

3. Q is a minimum parallel reordering of P wrt. � i�

(a) Q is a parallel reordering of P wrt. � and

(b) no other parallel reordering of P wrt. � is of shorter length than Q;

4. Q is a minimum parallel deordering of P wrt. � i�

(a) Q is a parallel deordering of P wrt. � and

(b) no other parallel deordering of P wrt. � is of shorter length than Q.

Modifying plans to satisfy either of the latter two criteria is di�cult in the general case,
however.

De�nition 6.2 The decision problem Minimum Parallel Deordering (MmPD) is de-
�ned as follows.
Given: a ppi �, a parallel plan P , a duration function d and an integer k.
Question: Does P have a deordering with a parallel execution of length k wrt. �?

De�nition 6.3 The decision problem Minimum Parallel Reordering (MmPR) is de-
�ned as follows.
Given: a ppi �, a parallel plan P , a duration function d and an integer k.
Question: Does P have a reordering with a parallel execution of length k wrt. �?

Theorem 6.4 Minimum Parallel Deordering is NP-hard.

Proof: Similar to the proof of Theorem 6.4. Given a graph G and an integer k, construct
a ppi � and a plan P = hA;�;#i in the same way as in the proof of Theorem 5.8, but
let � be an arbitrary total order on A. Obviously, P is �-valid and Q = hA; ;;#i is a
deordering of P s.t. no other deordering of P is shorter than Q. Hence, Q, and thus P , has
a deordering with a parallel execution of length k i� G is k-colourable. 2
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Corollary 6.5 Minimum Parallel Reordering is NP-hard.

Corollary 6.6 Minimum Parallel Deordering and Minimum Parallel Reorder-

ing remain NP-hard even when restricted to totally ordered GT plans and under the as-
sumptions of unit time and simple concurrency.

Note that the restriction to de�nite input plans is covered by this corollary. If output
plans are also required to be de�nite, then the reordering case remains NP-hard.

Theorem 6.7 Minimum Parallel Reordering remains NP-hard also when the output
plan is restricted to be de�nite.

Proof: Reuse the proof for Theorem 6.4 as follows. Let r be a shortest parallel execution
for the plan Q and assume this execution is of length n. Construct an order �0 on A s.t.
for all actions a; b 2 A, a �0 b i� r(a) < r(b). Obviously the plan hA;�0;#i is a de�nite
minimum parallel reordering of P . It follows that P has a de�nite parallel reordering of
length k i� G is k-colourable. 2

It is an open question whether minimum deordering remains NP-hard when also output
plans must be de�nite, but an important special case is polynomial, as will be proven in
the next section.

Theorem 6.8 Minimum Parallel Deordering and Minimum Parallel Reorder-

ing are in NPC if validation of p.o. plans is in some complexity class C.

Proof: Given a plan hA;�;#i, a duration function d and a parameter k, guess a
de/reordering �0 and a release-time function r. Then verify, using an oracle for C, that
hA;�0;#i is valid. Finally, verify that r is a parallel execution of length � k, which is
polynomial according to Theorem 5.6. 2

Theorem 6.9 Minimum parallel de-/reordering is NP-complete if p.o. plans can be vali-
dated in polynomial time.

Proof: Immediate from Theorems 6.4 and 6.8 and Corollary 6.5. 2

The problems MmPD and MmPR are not only hard to solve optimally, but also to
approximate.

Theorem 6.10 Minimum Parallel Deordering and Minimum Parallel Reorder-

ing cannot be approximated within jAj1=7�" for any " > 0, unless P=NP.

Proof: Suppose there were a polynomial-time algorithm A approximatingMmCD within
jAj1=7�" for some " > 0. Then it is immediate from the proof of Theorem 6.4 that also

Graph K-Colourability could be approximated within jAj1=7�", which is impossible
unless P=NP (Bellare, Goldreich, & Sudan, 1995). 2

With the same reasoning, this bound can be strengthened to jAj1�", under the assumption
that co-RP 6=NP (Feige & Kilian, 1996).
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7. Restricted Cases

Since the problems of computing minimum de-/reorderings are very di�cult, and are even
di�cult to approximate, an alternative way of tackling them could be to study restricted
cases. One special case already considered is the restriction to de�nite plans only. While the
problem MmPR is still NP-complete under this restriction, it is an open question whether
also MmPD is NP-complete. A positive result can be proven, though, to the e�ect that
MmPD is polynomial for de�nite plans for a large class of planning languages, including
most of the commonly used ones. This result will be proven by generalising an algorithm
from the literature for deordering total-order plans.

Based on the (not necessarily true) argument that it is easier to generate a t.o. plan than
a p.o. plan when using complex action representations, Regnier and Fade (1991a, 1991b)
have presented an algorithm for converting a t.o. plan into a p.o. plan. The resulting plan
has the property that all its unordered actions can be executed in parallel, that is, the plan
is de�nite. The authors of the algorithm further claim that the algorithm �nds all pairs
of actions that can be executed in parallel and, hence, the plan can be post-processed to
�nd an optimal parallel execution. They do not de�ne what they mean by this criterion,
however.

Incidentally, the algorithm proposed by Regnier and Fade is a special case of an algo-
rithm earlier proposed for the same problem by Pednault (1986), who did not make any
claims about optimality. If removing from Regnier and Fade's algorithm all details relevant
only for their particular implementation and planning language, the two algorithms coincide
and they are thus presented here as one single algorithm, the PRF algorithm4 (Figure 10).
PRF is slightly modi�ed from the original algorithms. First, it does not assume that the in-
put plan is totally ordered, since it turns out to be su�cient that it is a de�nite partial-order
plan. Second, PRF returns a parallel plan, rather than a p.o. plan|a harmless modi�ca-
tion since the only additional piece of information is the non-concurrency relation, which
is already given as input, either explicitly or implicitly. Third, PRF returns the transitive
closure of its ordering relation. This is by no means necessary, and is motivated, as usual,
by conforming to the de�nitions of this article.

1 procedure PRF;
2 Input: A ppi �, a �-valid de�nite p.o. plan hA;�i and a non-concurrency

relation #
3 Output: A �-valid parallel plan
4 for all a; b 2 A s.t. a � b do

5 if a#b then

6 Order a �0 b;
7 return hA;�0+;#i;

Figure 10: The PRF algorithm

Obviously, PRF computes a deordering of its input, and it is unclear whether it is pos-
sible to compute a minimal de�nite deordering in polynomial time. However, the algorithm

4. Here and afterwards, the algorithms from the literature will be referred to by acronyms consisting of the

initials of its authors, in this case Pednault, Regnier and Fade.
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has been abstracted here to a very general formalism, and an analysis for restricted for-
malisms reveals more about its performance. The language used by Regnier and Fade is
unnecessarily restricted so the algorithm will be shown to work for a considerably more
general formalism, based on generalising and abstracting the concepts of producers, con-
sumers and threats used in most common planners and planning languages, eg STRIPS and
TWEAK. This formalism will be referred to as the Producer-Consumer-Threat formalism
(PCT).

Let prod(a; �) denote that a produces the condition �, cons(a; �) that a consumes � and
threat(a; �) that a is a threat to �. To simplify the de�nitions, the standard transformation
will be used of simulating the initial and goal states with actions. That is, every PCT plan
contains an action ordered before all other actions which consumes nothing and produces
the initial state. Similarly, there is an action ordered after all other actions which consumes
the goal state and produces nothing. This means that the ppi is contained within the plan
itself, so all references to ppis can be omitted in the following. Validity of plans can then
be de�ned as follows.

De�nition 7.1 A t.o. PCT plan ha1; : : : ; ani is valid i� for all i, 1 � i � n and all
conditions � s.t. cons(ai; �), there is some j, 1 � j < i s.t. prod(aj ; �) and there is no k,
j � k � i s.t. threat(ak; �). A p.o. PCT plan is valid i� all topological sortings of it are
valid.

Chapman's Modal-truth Criterion (MTC) (Chapman, 1987) can be abstracted to the
PCT formalism and be analogously used for validating p.o. plans.

De�nition 7.2 The modal truth criterion (MTC) for a PCT plan hA;�i is:

8aC8�(cons(aC ; �)!
9aP (prod(aP ; �) ^ aP � aC^

8aT (threat(aT ; �)!
aC � aT_
9aW (prod(aW ; �) ^ aT � aW ^ aW � aC))))

Theorem 7.3 The MTC holds for a PCT plan P i� it is valid.

Proof: Trivial generalization of the proofs leading to Theorem 5.9 in Nebel and B�ackstr�om
(1994). 2

Only a minimum of constraints for when two actions may not be executed in parallel
will be required. These constraints are obeyed by most planners in the AI literature.

De�nition 7.4 Simple concurrency holds if for all actions a, b s.t. a 6= b, the non-
concurrency relation satis�es the following three conditions

1. prod(a; �) ^ cons(b; �)! a#b

2. prod(a; �) ^ threat(b; �)! a#b

3. cons(a; �) ^ threat(b; �)! a#b
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Note that it is not required that two producers, two consumers or two threats of the same
condition are non-concurrent, thus allowing, for instance, plans with multiple producers, eg
Nebel and B�ackstr�om (1994, Fig. 4) and Kambhampati (1994). The axioms do not prevent
adding such restrictions, though. Furthermore, note that the de�nition only states a nec-
essary condition for non-concurrency|it is perfectly legal to add further non-concurrency
constraints on the actions in a plan. It may also be worth noting that the MTC requires
producers and threats to be ordered only if there is a correpsonding consumer, while a
de�nite plan satisfying the simple concurrency criterion always require them to be ordered.

The following observation about PRF is immediate from the algorithm and will be used
in the proofs below.

Observation 7.5 If hA;�;#i is the input to PRF and hA;�0;#i is the corresponding
output, then it holds that a �0 b i� a � b and a#b.

Based on this lemma, it can be proven that PRF preserves validity.

Lemma 7.6 If the plan input to PRF is a valid PCT plan and # satis�es the simple
concurrency criterion, then the output plan is valid.

Proof: Let P = hA;�;#i be the input plan and Q = hA;�0;#i the output plan. Since
P is valid, it follows from Theorem 7.3 that the MTC holds for P . Adding the implied
simple-concurrency constraints to the MTC yields the following condition:

8aC8�(cons(aC ; �)!
9aP (prod(aP ; �) ^ aP � aC ^ aP#aC^

8aT (threat(aT ; �)!
(aC � aT ^ aC#aT )_
9aW (prod(aW ; �)^aT � aW ^ aT#aW^

aW � aC ^ aW#aC)))).

By applying Observation 7.5 this can be simpli�ed to:

8aC8�(cons(aC ; �)!
9aP (prod(aP ; �) ^ aP �0 aC^

8aT (threat(aT ; �)!
aC �0 aT_
9aW (prod(aW ; �) ^ aT �

0 aW ^ aW �0 aC)))),

which is the MTC for the plan Q. Once again using Theorem 7.3, it follows that Q is valid.
2

This allows for proving that PRF produces de�nite minimum deorderings of de�nite PCT
plans under simple concurrency.

Theorem 7.7 If using the PCT formalism and simple concurrency, then PRF produces a
minimum-deordered de�nite version of its input.

121



B�ackstr�om

Proof: Let P = hA;�;#i be the input plan, which is assumed valid and de�nite, and
Q = hA;�0;#i the output plan. It is obvious that �0�� and it follows from Lemma 7.6 that
Q is valid, so Q is a deordering of P . It remains to prove that Q is a minimum deordering
of P .

Suppose that P has a deordering R = hA;�00;#i s.t. j �00 j < j �0 j. Then, there must
be some a; b 2 A s.t. a �0 b, but not a �00 b. It can be assumed that a �0 b is not
a transitive arc in �0, since the transitive closure is anyway computed at the end of the
algorithm. Since the order �0 is produced by PRF, it follows from Observation 7.5 that
a � b and a#b. Because of the latter constraint, it is necessary that either, a �00 b or
b �00 a holds, but only the former is possible since a � b and R is a deordering of P . This
contradicts the assumption, so Q must be a minimum deordering of P . 2

Since PRF is a polynomial algorithm, it follows that de�nite minimum deorderings of
de�nite PCT plans can be computed in polynomial time under simple concurrency. Fur-
thermore, since PRF produces de�nite plans it is possible to actually compute the shortest
parallel execution e�ciently.

Theorem 7.8 If the plan input to PRF is a valid and de�nite PCT plan satisfying the
simple concurrency criterion, then PRF outputs a de�nite minimum deordering of this plan.

Proof: PRF runs in polynomial time and obviously produces de�nite parallel plans.
Hence, it follows from Theorem 5.11 that a minimum parallel execution for the output plan
can be found in polynomial time, which proves the theorem. 2

It seems likely that this is what Regnier and Fade meant with their optimality claim, al-
though for a special instance of the PCT formalism. This result says nothing about the
di�culty of �nding a minimum reordering of a plan, since PRF only considers deorderings.
Since minimum deorderings do not approximate minimum reorderings well, it can be sus-
pected that it is more di�cult to compute the latter. The following theorem con�rms this
suspicion, showing that the latter problem remains NP-hard under quite severe restrictions,
including the following two.

De�nition 7.9 A GT action a is toggling i� for all literals l 2 post(a), it is also the case
that :l 2 pre(a). A GT action a is unary i� jpost(a)j = 1.

Theorem 7.10 Minimum Parallel Reordering remains NP-hard even when restricted
to total-order GT plans with only toggling unary actions and under the assumption of unit
time, simple concurrency and that no actions are redundant.

The proof of this theorem appears in Appendix A.
While minimum reorderings are more di�cult to compute than minimum deorderings,

they can also produce arbitrarily better results.

Theorem 7.11 Minimum Parallel Deordering cannot approximate Minimum Par-

allel Reordering within jAjk for any constant k � 0.

The proof of this theorem appears in Appendix A.
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Corollary 7.12 Minimum Parallel Deordering cannot approximate Minimum Par-
allel Reordering within jAjk for any constant k � 0 even when the problems are re-
stricted to GT plans with only positive preconditions and under the assumption of simple
concurrency.

It may, thus, appear as though minimum reordering is a preferable, albeit more costly,
operation than minimum deordering. However, if the plan modi�cation is to be followed
by scheduling, it is no longer obvious that a reordering is to prefer. Since scheduling may
take further information and constraints into account, eg upper and lower bounds on the
release time and limited resources, a feasible schedule for the original plan may no longer be
a feasible schedule for a reordering of the same plan. That is, some or all feasible solutions
may be lost when reordering a plan. In contrast to this, deordering a plan is harmless
since all previously feasible schedules are preserved in the deordering. Of course, the de-
/reordered plan may have new and better schedules than the old plan, which is why the
problems studied in this article are interesting at all. However, while minimum deordering
is a safe and, usually cheap, operation, minimum reordering is neither and must thus be
applied with more care. To �nd a reordering of a plan with an optimum schedule would
require combining minimum reordering and scheduling into one single computation, but it
is out of the scope of this article to study such combinations. Su�ce it to observe that such
a computation is never cheaper than either of its constituent computations.

8. Related work

This section analyses and discusses some algorithms suggested in the literature for gener-
alising the ordering of a plan, in addition to the PRF algorithm already analysed in the
preceeding section. Also some planners that generate plans with some optimality 
avour
on the ordering are discussed.

Some of the algorithms to be analysed use the common trick of simulating the initial
state and the goal of a planning instance by two extra operators, in the following way. Let
P = hA;�i be a plan and � = hI;Gi a ppi, both in the GT language. Introduce two extra
actions aI , with pre(aI) = ; and post(aI) = I, and aG, with pre(aG) = G and post(aG) = ;.
De�ne the plan Q = hA [ faI ; aGg;�

0i where �0=� [faI � a; a � aG j a 2 Ag[faI � aGg,
that is aI is ordered before all other actions and aG is ordered after all other actions. The
planQ is a representation of both the plan P and the ppi �. Such a combined representation
will be referred to as a self-contained plan. A self-contained plan is valid i� it is valid wrt.
to the ppi h;; ;i. It is trivial to convert a plan and a ppi into a corresponding self-contained
plan and vice versa. Hence, both ways of representing a plan will be used alternately
without further notice.

8.1 The VPC Algorithm

Veloso et al. (1990) have presented an algorithm (here referred to as VPC5) for converting
t.o. plans into `least-constrained' p.o. plans. They use the algorithm in the following context.
First a total-order planner (NoLimit) is used to produce a t.o. plan. VPC converts this plan

5. In the original publication the algorithm was named Build Partial Order.
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1 procedure VPC;
2 Input: a valid self-contained t.o. plan ha1; : : : ; ani

where a1 = aI and an = aG
3 Output: A self-contained valid p.o. plan
4 for 1 � i � n do

5 for p 2 pre(ai) do

6 Find max k < i s.t. p 2 post(ak);
7 if such a k exists then

8 Order ak � ai
9 for :p 2 post(ai) do

10 for 1 � k < i s.t. p 2 pre(ak) do

11 Order ak � ai
12 for each primary e�ect p 2 post(ai) do

13 for 1 � k � i s.t. :p 2 post(ak) do

14 Order ai � ak
15 for 1 < i < n do

16 Order aI � ai and ai � aG
17 return hfa1; : : : ; ang;�+i;

Figure 11: The VPC algorithm

into a p.o. plan which is then post-processed to determine which actions can be executed
in parallel. The action language used is a STRIPS-style language allowing quanti�ers and
context-dependent e�ects. However, the plans produced by the planner, and thus input
to VPC, are ground and without context-dependent e�ects. That is, they are ordinary
propositional STRIPS plans. The VPC algorithm is presented in Figure 11, with a few minor
di�erences in presentation as compared to its original appearance: First, the algorithm is
presented in the GT formalism, in order to minimize the number of formalisms in this article,
but all preconditions are assumed to be positive, thus coinciding with the original algorithm.
Second, while the original algorithm returns the transitive reduction of the computed order
it instead returns the transitive closure here, an unimportant di�erence in order to coincide
with the de�nition of plans in this article. Furthermore, Veloso6 has pointed out that the
published version of the VPC algorithm is incorrect and that a corrected version exists.
The version presented in Figure 11 is this corrected version. A proposition is a primary
e�ect if it appears either in the goal or in the subgoaling chain of a goal proposition.

VPC is a greedy algorithm which constructs an entirely new partial order by analysing
the action conditions, using the original total order only to guide the greedy strategy. The
algorithm is claimed (Veloso et al., 1990, p. 207) to produce a `least-constrained' p.o. plan,
although no de�nition is given of what this means. Veloso7 has con�rmed that the term `least
constrained plan' was used in a `loose sense' and no optimality claim was intended. However,
if this term is not de�ned, then it is impossible to know what problem the algorithm is
intended to solve or how to judge whether it makes any improvement over using no algorithm
at all. In the absence of such a de�nition from its authors, the algorithm will be analysed
with respect to the least-constrainment criteria de�ned in Section 4. This is admittedly a

6. Personal communication, oct. 1993.

7. Veloso, ibid.
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Figure 12: The p.o. plans in the failure example for VPC.

somewhat unfair analysis, but it reveals some interesting facts about the algorithm, and
about what problems it does not solve. It is immediate from Theorem 4.8 and Corollary 4.9
that VPC cannot be expected to produce minimum-constrained de-/reorderings. Perhaps
more surprisingly, VPC does not even guarantee that its output is a minimal-constrained
deordering of its input, a problem already proven trivially polynomial (Theorem 4.4). This
is illustrated by the following example.

Suppose a total-order planner is given the ppi � = h;; fr; sgi as input. It may then
return either of the �-valid t.o. plans ha; b; ci and ha; c; bi, with action conditions as shown
in Figure 12. When used as input to VPC, these two t.o. plans will give quite di�er-
ent results|the plan ha; c; bi will be converted to the p.o. plan P1 in Figure 12, while
the plan ha; b; ci will be converted to the p.o. plan P2 in Figure 12. That is, in the �rst
case VPC produces a plan which is not only a minimal-constrained deordering but even
a minimum-constrained deordering, while in the second case it does not even produce a
minimal-constrained deordering.8

The reason that VPC may fail to produce a minimal-constrained deordering is that it
uses a non-admissible greedy strategy. Whenever it needs to �nd an operator a achieving
an e�ect required by the precondition of another operator b, it chooses the last such action
ordered before b in the input t.o. plan. However, there may be other actions earlier in the
plan having the same e�ect and being a better choice.

8.2 The KK algorithm

Kambhampati and Kedar (1994) have presented an algorithm for generalising the order-
ing of a p.o. plan, using explanation-based generalisation. The algorithm is based on �rst
constructing a validation structure for the plan and then use this as a guide in the gen-
eralisation phase. In the original paper, these computations are divided into two separate
algorithms (EXP-MTC and EXP-ORD-GEN), but are here compacted into one single al-
gorithm, KK (Figure 13). Furthermore, the version presented here is restricted to ground
GT plans, while the original algorithm can also handle partially instantiated plans. This is
no restriction for the results to be shown below.

The �rst part of the KK algorithm constructs a validation structure V for the plan, that
is, an explanation for each precondition of every action in the plan. The validity criterion
underlying this phase is a simpli�ed version of Chapmans modal-truth criterion (Chapman,

8. Note that transitive arcs are omitted in the �gures, so P2 really has an ordering relation of size three.

Although this example would not work if plans had been de�ned in the equally reasonable way that

ordering relations should be intransitive, it is possible to construe similar examples also for this case.
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1 procedure KK
2 Input: A valid self-contained p.o. plan hA;�i
3 Output: A deordering of the input plan
4 comment Build a validation structure V for the plan

5 V  ;
6 Let ha1; : : : ; ani be a topologically sorted version of hA;�i
7 for 1 � i � n do

8 for p 2 pre(ai) do

9 Find min k < i s.t.
10 1. p 2 post(ak) and
11 2. there is no j s.t. k < j < i and :p 2 post(aj)
12 Add hak; p; aii to V
13 comment Construct a generalised ordering �0 for the plan

14 for each ha; bi 2� do

15 Add ha; bi to �0 if either of the following holds
16 1. a = aI or a = aG
17 2. ha; p; bi 2 V for some p
18 3. hc; p; ai 2 V and :p 2 post(b)
19 4. hb; p; ci 2 V and :p 2 post(a)
20 return hA;�0i

Figure 13: The KK algorithm

1987) without white knights. Since the algorithm is simpli�ed to only handle ground plans
here, an explanation is a causal link haP ; p; aCi, meaning that the action aP produces the
condition p which is consumed by the action aC . The algorithm constructs exactly one
causal link for each precondition, and it chooses the earliest producer of p preceeding aC
with no intervening action producing :p between this producer and aC . The second phase
of the algorithm builds a generalised ordering �0 for the plan based on this validation
structure. To put things simply, only those orderings of the original plan are kept which
either correspond to a causal link in the validation structure or that is required to prevent
a threatening action to be unordered wrt. the actions in such a causal link.

It turns out that also the KK algorithm fails in generating plans that are guaran-
teed to be even minimal-constrained deorderings. Consider the t.o. plan hA;B;C;Di
with action conditions as indicated in Figure 14. This t.o. plan is valid for the ppi

h;; fr; s; t; ugi. Since the KK algorithm always chooses the earliest possible producer
of a precondition for the validation structure, it will build the validation structure
fhA; p;Di; hA; s; aGi; hB; q;Di; hB; t; aGi; hC; r; aGi; hD;u; aGig. Hence, the �nal ordering
produced by KK will be as shown in Figure 14a. However, this plan is not a minimal-
constrained deordering of the original plan, since it can be further deordered as shown in
Figure 14b and remain valid. In this example, the input plan was totally ordered. In the
case of partially ordered input plans, the behaviour of the algorithm depends on the particu-
lar topological order choosen. So the algorithm may or may not �nd a minimal-constrained
deordering, but it is impossible to guarantee that it will succeed for all plans. Similarly, the
authors mention that one may consider di�erent ways of constructing the validation struc-
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ture. This would clearly also modify the behaviour and it remains an open question whether
it is possible to generate, in polynomial time, a validation structure that guarantees that a
minimal-constrained deordering is constructed in the second phase of the algorithm. Find-
ing a validation structure that guarantees a minimum-constrained deordering is obviously
an NP-hard problem since the second phase of the algorithm is polynomial.
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Figure 14: Failure example for the KK algorithm

8.3 Planners with Optimality Guarantees

The planning algorithm Graphplan (Blum & Furst, 1997) has a notion of time steps and
tries to pack as many non-interacting actions as possible into one single time step. Further-
more, Graphplan �nds the shortest plan, using the number of time steps as the measure.
If assuming unit time and that all actions considered as non-interacting by Graphplan

can be executed in parallel, then there is no plan having a shorter parallel execution than
the plan produced by Graphplan. That is, Graphplan produces minimum reordered
parallel plans under these assumptions. The second assumption is no limitation in practice,
since each non-concurrency relation can be encoded by introducing a new atom and letting
one of the interacting actions add it while the other one deletes it. The unit time assump-
tion is more serious, however, especially since this assumption is likely not to hold in most
applications. In the car-assembly scenario in Section 2, for instance, Graphplan would
produce a plan that corresponds to the plan in Figure 5. Hence, the plan produced under
the unit-time assumption happens to coincide with the optimal plan when taking actual
execution times into account. This is just a fortunate coincidence, however, depending on
the particular durations of actions in this example. Suppose instead that the durations of
the actions are slightly di�erent such that PAC has duration 2 and MvT1 has duration 8.
Then the plan produced by Graphplan, which corresponds to the plan in Figure 5, does
not have a faster schedule than 19 time units. This is not optimal since the plan in Figure 4
can be scheduled to execute in 17 time units for these particular duration times. Further-
more, it must be remembered that Graphplan is anyway restricted to those cases where
a GT-equivalent planning language is su�cient, although recent improvements extend it to

127



B�ackstr�om

somewhat more expressive languages (Gazen & Knoblock, 1997; K�ohler, Nebel, Ho�man,
& Dimopoulos, 1997).

Knoblock (1994) has modi�ed the UCPOP planner with a resource concept which makes
it avoid unordered interacting actions. This means that the resulting planner produces
de�nite parallel plans. Knoblock further modi�ed the evaluation heuristic of the search to
take parallel execution time into account. It thus seems as if this planner might be able to
produce minimum reordered parallel plans, but the paper does not provide su�cient details
to determine whether this is the case. It is also unclear whether the heuristic can handle
actions with di�erent duration times.

Yet another example is the polynomial-time planner for the SAS+-IAO planning lan-
guage (Jonsson & B�ackstr�om, 1998) which produces plans which are minimum-constrained
reordered. That is, for this restricted formalism it is clearly possible to optimise the ordering
in polynomial time.

9. Discussion

The previous section listed a few planning algorithms from the literature that produce or
attempt to produce plans which are least constrained or minimum parallel reordered. They
do so only under certain restrictions, though. Furthermore, plans are not always generated
`from scratch', but can also be generated by modifying some already existing plan, referred
to as case-based planning, or by repairing a plan that has failed during the execution phase.
In such cases, the old plan may contain many ordering relations that will be obsolete in
the modi�ed/repaired plan. In fact, the KK algorithm (Kambhampati & Kedar, 1994) is
motivated in the context of case-based planning. It is also important to remember that
today, and probably for a long time into the future, very few plans are generated entirely
by computer programs. The vast majority of plans in various applications are designed by
humans, possibly with computer support. Already for quite small plans, it is very di�cult
for a human to see whether the ordering constraints are optimal or not, so computer support
for such analyses is vital for designing optimal plans. For the same reason, also hierarchical-
task-network planners, eg O-Plan (Currie & Tate, 1991) and Sipe (Wilkins, 1988), produce
plans where reordering actions could lead to better schedules. Such a planner often commits
to one of the two possible orderings for a pair of actions based on expert-knowledge rules.
However, it is hardly possible for a human expert to design rules that in all situations will
guarantee that the optimal ordering choice is made.

On the coarseness level of complexity analysis it does not matter whether the tasks
of planning, plan optimization and scheduling are integrated or separated since the total
resulting complexity will be the same in both cases|the latter two computations are at most
NP-complete and will, thus, be dominated by the planning, which is PSPACE-complete or
worse. However, for good reasons this has not prevented the research community from
studying planning and scheduling as separate problems, since understanding each problem
in isolation also helps understanding the overall process. For the same reason, it is important
to also study separately the problems discussed and analysed in this article. Furthermore,
on a more �ne-grained, practical level there might be considerable di�erences in e�ciency
between integrating the three computations and doing them separately. For instance, even
if all three computations take exponential time, each of the problems considered in isolation
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may have fewer parameters, in which case it may be much more e�cient to solve them in
isolation. On the other hand, solving the whole problem at once may make it easier to
do global optimisation. Which is the better will depend both on which methods are used
and on various properties of the actual application, and it seems unlikely that one of the
methods should always be the better.

As has been shown in this article, minimum reordering is a much better optimality
criterion than minimum deordering, if only considering the overall parallel execution time.
However, this is not necessarily true if also considering further metric constraints for subse-
quent scheduling. Deordering a plan can only add to the number of feasible schedules, while
reordering may also remove some or, in the worst case, all feasible schedules. On the other
hand, reordering may also lead to new and better schedules not reachable via deordering.
Deordering can thus be viewed as a safe and, sometimes, cheap way to allow for better
schedules, while reordering is an expensive method which has a potential for generating
considerably better plans, but which may also make things worse. If using reordering in
practice in cases where also metric scheduling constraints are involved, it seems necessary
to use feedback from the scheduler to control the reordering process, or to try other re-
orderings. One could imagine a reordering algorithm which uses either heuristic search or
randomized local-search methods �a la GSAT (Selman, Levesque, & Mitchell, 1992) to �nd
reorderings and then use the scheduler as evaluation function for the proposed reorderings.

While the plan modi�cations studied in this article may add considerably to the opti-
mizations that are possible with traditional scheduling only, there is still a further potential
of optimization left to study|modifying not only the action order, but also the set of ac-
tions. Such modi�cation is already done in plan adaptation, but then only for generating a
new plan from old cases, and optimizations in the sense of this article are not considered.
Some preliminary studies of action-set modi�cations appear in the literature, though. Fink
and Yang (1992) study the problem of removing redundant actions from total-order plans,
de�ning a spectrum of redundancy criteria and analysing the complexity of achieving these.
It is less clear that it is interesting to study action addition; adding actions to a plan could
obviously not improve the execution time of it if it is to be executed sequentially. However,
in the case of parallel execution of plans it has been shown that adding actions to a plan can
sometimes allow for faster execution (B�ackstr�om, 1994). Finally, if allowing both removal
and addition of actions, an even greater potential for optimising plans seems available, but
this problems seems not yet studied in the literature.

10. Conclusions

This article studies the problem of modifying the action ordering of a plan in order to
optimise the plan according to various criteria. One of these criteria is to make a plan
less constrained and the other is to minimize its parallel execution time. Three candidate
de�nitions are proposed for the �rst of these criteria, constituting a spectrum of increasing
optimality guarantees. Two of these are based on deordering plans, which means that or-
dering relations may only be removed, not added, while the last one builds on reordering,
where arbitrary modi�cations to the ordering are allowed. The �rst of the three candidates,
subset-minimal deordering, is tractable to achieve, while the other two, deordering or re-
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ordering a plan to minimize the size of the ordering, are both NP-hard and even di�cult
to approximate.

Similarly, optimising the parallel execution time of a plan is studied both for deordering
and reordering of plans. In the general case, both of these computations are NP-hard and
di�cult to approximate. However, based on an algorithm from the literature it is shown
that optimal deorderings can be computed in polynomial time for de�nite plans for a class
of planning languages based on the notions of producers, consumers and threats, which
includes most of the commonly used planning languages. Computing optimal reorderings
can potentially lead to even faster parallel executions, but this problem remains NP-hard
and di�cult to approximate even under quite severe restrictions. Furthermore, deordering
a plan is safe with respect to subsequent scheduling, while reordering a plan may remove
feasible schedules, making deordering a good, but often suboptimal, approach in practice.
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Appendix A

Theorem 7.10 Minimum Parallel Reordering remains NP-hard even when restricted
to total-order GT plans with only toggling unary actions and under the assumption of unit
time, simple concurrency and that no actions are redundant.

Proof: Proof by reduction from 3SAT (Garey & Johnson, 1979, p. 259). Let P =
fp1; : : : ; png be a set of atoms and C = fC1; : : : ; Cmg a set of clauses over P s.t. for
1 � i � m, Ci = fli;1; li;2; li;3g is a set of three literals over P.

First de�ne the set of atoms

Q = fpFi ; p
T
i ; qi j 1 � i � ng [ fci;j ; ri;j j 1 � i � n; 1 � j � 3g:

Then de�ne a GT ppi � = hI;Gi with initial and goal states de�ned as

I = Neg(Q)

G = fpFi ; p
T
i ;:qi j 1 � i � ng [ fci;j ;:ri;j j 1 � i � n; 1 � j � 3g

Also, for each atom pi 2 P, de�ne four actions according to Table 2.
Further, for each clause Ci 2 C, de�ne nine actions according to Table 3 where

l�i;j =

(
pFk if li;j = :pk
pTk if li;j = pk:

Let A be the set of all 4n + 9m actions thus de�ned. Clearly there is some total order �
s.t. the plan P = hA;�i is �-valid. It is also obvious that none of the actions is redundant.
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It is a trivial observation that any parallel execution r of any �-valid reordering of P
must satisfy that for each i, 1 � i � n, either

r(AF
i ) < r(A+

i ) < r(AT
i ) < r(A�i )

or

r(A+
i ) < r(AT

i ) < r(A�i ) < r(AF
i );

and for each i, 1 � i � m,

r(C+
i;k1

) < r(B+
i;k1

) <

(
r(C�

i;k1
)

r(C+
i;k2

)

)
< r(B+

i;k2
) <

(
r(C�

i;k2
)

r(C+
i;k3

)

)
< r(B+

i;k3
) < r(C�

i;k3
);

where k1; k2; k3 is a permutation of the numbers 1; 2; 3. (This is to be interpreted s.t. the
actions C�

i;k1
and C+

i;k2
can be released in either order, or simultaneously, and analogously

for the actions C�
i;k2

and C+
i;k3

).

The remainder of this proof shall show that P can be reordered to have a parallel
execution of length 8 i� the set C of clauses is satis�able.

if: Suppose C is satis�able. Let I be a truth assignment for the atoms in P that satis�es
C. Wlg. assume I(pi) = T for all i. Further, for each clause Cj , let lj be any literal in Cj

which is satis�ed by I. Disregarding the action order for a moment, choose a release-time
function r for the actions as follows. For 1 � i � n, let

r(A+
i ) = 0; r(AT

i ) = 1; r(A�i ) = 2; r(AF
i ) = 3:

Further, for each j, 1 � j � m, choose k1 s.t. lj;k1 2 Cj is satis�ed by I (at least one such
choice must exist by the assumption). Let lj;k2 and lj;k3 be the remaining two literals in Cj .
Assign release times s.t. for 1 � h � 3,

r(C+
j;kh

) = 2h� 1; r(B+
j;kh

) = 2h ; r(C�
j;kh

) = 2h+ 1:

Now de�ne the partial order �0 on A s.t. for all actions a; b 2 A, a �0 b i� r(a) < r(b).
Clearly, the plan hA;�0i is a �-valid reordering of P and r is a parallel execution of length
8 for hA;�0i. (Note that no other choice of I could force a longer execution, while there is
an execution of length 7 in the case where C is satis�ed by setting all atoms false.)

operator precond. postcond.

AF
i :pFi ;:qi pFi

AT
i :pTi ; qi pTi

A+
i :qi qi

A�i qi :qi

Table 2: Generic actions for each atom pi in the proof of Theorem 7.10.
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operator precond. postcond.

B+
i;1 l�i;1; ri;1;:ri;2;:r1;3;:ci;1 ci;1

B+
i;2 l�i;2;:ri;1; ri;2;:r1;3;:ci;2 ci;2

B+
i;3 l�i;3;:ri;1;:ri;2; r1;3;:ci;3 ci;3

C+
i;1 :ri;1 ri;1

C�
i;1 ri;1 :ri;1

C+
i;2 :ri;2 ri;2

C�
i;2 ri;2 :ri;2

C+
i;3 :ri;3 ri;3

C�
i;3 ri;3 :ri;3

Table 3: Generic atoms for each clause Ci in the proof of Theorem 7.10.

only if: Suppose C is not satis�able. Further suppose that Q is a minimum reordering
of P and that r is a parallel execution of length 8 or shorter for Q. Wlg. assume that every
action is released as early as possible by r. Then, according to the observation above it
must hold for each i, 1 � i � n, that either

r(AF
i ) = 0; r(A+

i ) = 1; r(AT
i ) = 2; r(A�i ) = 3

or
r(A+

i ) = 0; r(AT
i ) = 1; r(A�i ) = 2; r(AF

i ) = 3:

Hence, exactly one of the atoms pFi and pTi is true at time 2. Let p�i denote this atom. Since
r is of length 8, it follows from the earlier observation that for all j, 1 � j � m, r(B+

j;k) � 2
for some k, 1 � k � 3. Hence, lj;k = p�i for some i, since Q is �-valid and r is a parallel
execution for Q. De�ne an interpretation I s.t. for all i, 1 � i � n,

I(pi) =

(
F; if p�i = pFi
T; otherwise :

However, this interpretation is obviously a model for C, which contradicts the assumption.
It follows that r must be of length 9 or longer.

This concludes the proof and shows that C is satis�able i� P has a reordering with a
parallel execution of length 8 or not. 2

Theorem 7.11 Minimum Parallel Deordering cannot approximate Minimum

Parallel Reordering within jAjk for any constant k � 0.

Proof: The proof assumes GT plans and simple concurrency. First, de�ne the generic
actions aki (m), bki and cki (m) according to Table 10. Further, de�ne recursively the generic
plans

P k
i (m) =

(
ha1(i�1)m+1(1); b

0
(i�1)m+1; c

1
(i�1)m+1(1); : : : ; a

1
im(1); b

0
im; c

1
im(1)i; for k = 1

hak(i�1)m+1(m);P k�1
(i�1)m+1(m); ck1(m); : : : ; akim(m);P k�1

im (m); ckim(m)i; for k > 1:
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Furthermore, for arbitrary k; n > 0 de�ne the ppi �k
n = hfpk1 ; : : : ; p

k
ng; fq

k
1 ; : : : ; q

k
ngi.

Now, prove the claim that for arbitrary k; n > 0, the plan P k
1 (n)

1. is �k
n-valid,

2. has no deordering of length less than 3nk +
Pk�1

i=1 2n
i and

3. has a reordering of length 2k + 1.

Proof by induction over k.
Base case (k=1): Choose an arbitrary n > 0. The plan P 1

1 (n) is obviously �
k
n-valid and

has no deordering other than itself, which is of length 3n. Consider the reordering Q1
1(n) of

P 1
1 (n) with the same actions and with ordering relation � de�ned s.t. for all i, 1 � i � n,

a1i (1) � b0i � c1i (1) and for all i, 1 < i � n, a1i (1) � b0i�1. This reordering is �
k(n)-valid and

has a parallel execution r11(n) of length 3, de�ned s.t. for all i, 1 � i � n, r11(n)(a
1
i (1)) = 1,

r11(n)(b
0
i ) = 2 and r11(n)(c

1
i (1)) = 3. (This plan is shown in Figure 15.) The claim is thus

satis�ed for the base case.
Induction: Suppose the claim is satis�ed for all l < k, for some k � 1 and prove that

the claim holds also for l = k. Choose an arbitrary n > 0. It follows from the induction
hypothesis that none of the subplans P k�1

1 (n) : : : ; P k�1
n (n) can be deordered, so they have

to remain totally ordered. Furthermore, for all i, 1 � i � n, it is necessary that the action
aki (n) is ordered before the subplan P k�1

i (n) and that the action cki (n) is ordered after it.
It is also clear that for no i, 1 � i � n can the order cki (n) � aki+1(n) be removed without
making the plan invalid. Hence, P k

1 (n) has no other deordering than itself, which is of
length

nX
i=1

(2 + length(P k�1
i (n)) = n(2 + length(P k�1

1 (n)))

= 2n+ n(3nk�1 +
k�2X
i=1

2ni) = 3nk +
k�1X
i=1

2ni;

which proves the deordering case of the claim.
For the reordering case, de�ne a reordering Qk

1(n) of P
k
1 (n) with the same actions and

with ordering relation de�ned as follows. For each subplan P k�1
i (n) of P k

1 (n), reorder its
actions so it has length 2(k�1)+1, which is possible according to the induction hypothesis.
Further, for each i, 1 � i � n, and each j, (i� 1)n+1 � j � in order aki (n) � ak�1j (n) and

ck�1j (n) � cki (n) (or a
k
i+1(n) � ak�1j (1) and ck�1j (1) � cki (n) for the case k = 2). Hence, each

action pre-condition post-condition

aki (m) fpki g fpk�1(i�1)m+1; : : : ; p
k�1
im ;:qk�1(i�1)mg

bki fpki g fqki g

cki (m) fqk�1(i�1)m+1; : : : ; q
k�1
im g post(cki (m)) = fqki g:

Table 4: Generic actions for the proof of Theorem 7.11.
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P 1
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Figure 15: The reordering Q2
1(n) of the plan P 2

1 (n) as an example of the induction case in
the proof of Theorem 7.11 (solid arrows denote orderings required by producer-
consumer relationships and are labelled with the atom produced/consumed,
while dashed arrows denote ordering constraints to avoid threats and are la-
belled with the possibly con
icting atom).

segment of the type aki (n);P
k�1
i (n); cki (n) is reordered to have length 2k + 1. Finally, for

each i, 1 � i � n, order aki (n) � ak�1(i�1)n(n) (or a
k
i (n) � ak�1(i�1)n(1) for the case k = 2). The

plan Qk
1(n) is �

k(n)-valid since the subplans P k�1
1 (n); : : : ; P k�1

n (n) do not have any atoms
in common and, thus, the # relation does not hold between any two actions belonging to
di�erent such subplans. This reordered plan can be executed under the parallel execution
rki (n) de�ned s.t. rki (n)(a

k
i (n)) = 1, rki (n)(c

k
i (n)) = 2k + 1 and for all i, 1 � i � n and

all actions a0 2 Qk�1
i (n), rki (n)(a

0) = rk�1i (n)(a0) + 1. Since this is a parallel execution of
length 2k + 1 for the reordered plan, the claim holds also for k.

This concludes the induction, so the claim holds for all k > 0. Since

3nk +
Pk�1

i=1 2n
i

2k + 1
�

1

(2k + 1)3k�1
jAjk

for all k > 0, the theorem holds. 2
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