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Abstract

Partially observable Markov decision processes (POMDPs) are a natural model for
planning problems where e�ects of actions are nondeterministic and the state of the world
is not completely observable. It is di�cult to solve POMDPs exactly. This paper pro-
poses a new approximation scheme. The basic idea is to transform a POMDP into another
one where additional information is provided by an oracle. The oracle informs the plan-
ning agent that the current state of the world is in a certain region. The transformed
POMDP is consequently said to be region observable. It is easier to solve than the origi-
nal POMDP. We propose to solve the transformed POMDP and use its optimal policy to
construct an approximate policy for the original POMDP. By controlling the amount of ad-
ditional information that the oracle provides, it is possible to �nd a proper tradeo� between
computational time and approximation quality. In terms of algorithmic contributions, we
study in details how to exploit region observability in solving the transformed POMDP.
To facilitate the study, we also propose a new exact algorithm for general POMDPs. The
algorithm is conceptually simple and yet is signi�cantly more e�cient than all previous
exact algorithms.

1. Introduction

In a completely observable and deterministic world, to plan is to �nd a sequence of actions
that will lead an agent to achieve a goal. In real-world applications, the world is rarely com-
pletely observable and e�ects of actions are almost always nondeterministic. For this reason,
a growing number of researchers concern themselves with planning in partially observable
stochastic domains (e.g., Dean & Wellman, 1991; Cassandra et al., 1994; Parr & Russell,
1995; Boutilier & Poole, 1996). Partially observable Markov decision processes (POMDPs)
can be used as a model for planning in such domains. In this model, nondeterminism in
e�ects of actions is encoded by transition probabilities, partial observability of the world
by observation probabilities, and goals and criteria for good plans by reward functions (see
Section 2 for details).

POMDPs are classi�ed into �nite horizon POMDPs and in�nite horizon POMDPs de-
pending on the number of time points considered. In�nite horizon POMDPs are usually
used for planning because one typically does not know beforehand the number of steps
it takes to achieve a goal. This paper is concerned with how to solve an in�nite horizon
POMDP.
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1.1 Di�culties in Solving POMDPs

When the world is fully observable, a POMDP reduces to aMarkov decision process (MDP).
MDPs have been studied extensively in the dynamic-programming literature (e.g., Puter-
man, 1990; Bertsekas, 1987, White, 1993). Recent works have concentrated on how to deal
with large state spaces (Dean et al., 1993; Boutilier et al., 1995; Dean & Lin, 1995).

We are concerned with the partially observable case. This case is considerably more
di�cult than the fully observable case for two related reasons. First, when the agent knows
exactly in which state the world currently is, information from the past (past observations
and actions) is irrelevant to the current decision. This is the Markov property. On the
other hand, when the agent does not fully observe the state of the world, past information
becomes relevant because it can help the agent to better estimate the current state of the
world. The problem is that the number of possible states of past information increases
exponentially with time.

Second, in MDPs the e�ects of an action are fully observed at the next time point. In
POMDPs, on the other hand, the e�ects of an action are not fully observed at the next
time point. Hence one cannot clearly tell the e�ects of the current action from those of the
agent's future behaviors. To properly evaluate the e�ects of an action, one needs to look
into the future and consider the combination of the action with each of the agent's possible
behaviors in a, possibly large, number of future steps. The problem is that the number of
ways the agent can behave is exponential in the number of future steps considered.

1.2 Previous Work

Previous methods for solving POMDPs are usually classi�ed into exact methods and approx-
imate methods (Lovejoy, 1991a). They can also can be classi�ed according to which of the
aforementioned two di�culties they directly address. Most previous methods address the
di�culty of exponential number of future behaviors (Sondik, 1971; Sondik & Mendelssohn,
1979; Monahan, 1982; Cheng, 1988; Lovejoy, 1991b; and Cassandra et al., 1994). They
prune from consideration behaviors that can never be optimal no matter what the infor-
mation state is (Section 4). Other methods deal with the problem of exponential number
of past information states either by aggregating them (Platzman, 1977; White & Schere,
1994) or by considering only a subset of them (Lovejoy, 1992; Brafman, 1997; Hauskrecht,
1997). They are approximation methods in nature.

1.3 Model Approximation

In previous approximation methods, approximation takes place in the process of solving
a POMDP. We advocate model approximation methods. Such a method approximates a
POMDP itself by another one that is easier to solve and uses the solution of the latter to
construct an approximate solution to the original POMDP.

Model approximation can be in the form of a more informative observation model, or
a more deterministic action model, or a simpler state space, or a combination of two or all
of the three alternatives. Cassandra et al. (1996) proposed to approximate POMDPs by
using MDPs. This is an example of model approximation in the form of a more informative
observation model. There is also some work on reducing the size of the state spaces of MDPs
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by aggregation (e.g., Bertsekas & Castanon, 1989; Dean & Lin, 1995; Dean & Givan, 1997).
Such work can be conceivably extended to POMDPs, leading to model approximation in
the form of a simpler state space. We are not aware of any model approximation schemes
in the form of a more deterministic action model.

1.4 Our Proposal

This paper proposes a new model approximation scheme in the form of a more informative
observation model. It is a generalization of the idea of approximating POMDPs by using
MDPs.

We transform a POMDP by assuming that, in addition to the observations obtained by
itself, the agent also receives a report from an oracle who knows the true state of the world.
The oracle does not report the true state itself. Instead, it selects, from a predetermined
list of candidate regions, a region that contains the true state and reports that region. The
transformed POMDP is said to be region observable because the agent knows for sure that
the true state is in the region reported by the oracle.

When all candidate regions are singletons, the oracle actually reports the true state of
the world. The region observable POMDP reduces to an MDP. MDPs are much easier to
solve than POMDPs. One would expect the region observable POMDP to be solvable when
all candidate regions are small.

In terms of approximation quality, the larger the candidate regions, the less additional
information the oracle provides and hence the more accurate the approximation. In the
extreme case when there is only one candidate region and it consists of all possible states
of the world, the oracle provides no additional information at all. Consequently, the region
observable POMDP is identical to the original POMDP.

A method for determining approximation quality will be described later in this paper.
It allows one to make the tradeo� between approximation quality and computational time
as follows: start with small candidate regions and increase their sizes gradually until the
approximation becomes accurate enough or the region observable POMDP becomes un-
tractable.

Due to problem characteristics, accurate approximation can usually be achieved with
small candidate regions. In many applications the agent often has a good idea about the
state of the world (e.g., Simmons & Koenig, 1995). Take robot path planning as an example.
Observing a landmark, a room number for instance, would imply that the robot is at the
proximity of that landmark. Observing a feature about the world, a corridor T-junction for
instance, might imply the robot is in one of several regions. Taking history into account, the
robot might be able to determine a unique region for its current location. Also, an action
usually moves the state of the world to only a few \nearby" states. Thus if the robot has a
good idea about the current state of world, it should continue to have a good idea about it
in the next few steps.

When the agent has a good idea about the state of the world at all times, the oracle
does not provide much additional information even with small candidate regions and hence
approximation is accurate. Region observable POMDPs with small candidate regions are
much easier to solve than general POMDPs.

201



Zhang & Liu

1.5 Organization

We will �rst show how POMDPs can be used as a model for planning in partially observable
stochastic domains (Section 2) and give a concise review of the theory of POMDPs (Sections
3 and 4). We will then propose a new method for dynamic-programming updates, a key
step in algorithms that solve POMDPs via value iteration (Section 5). Thereafter, we will
formally introduce the concept of region observable POMDPs (Section 6) and develop an
algorithm for solving region observable POMDPs (Sections 7, 8, and 9). In Section 10,
we will discuss decision making for the original POMDPs based on the solutions of their
region observable approximations, followed by a method for determining approximation
quality (Section 11) and a method to make the tradeo� between approximation quality and
computational time (Section 12). Finally, empirical results will be reported in Section 13
and conclusions will be provided in Section 14.

2. Planning in Stochastic Domains and POMDPs

To specify a planning problem, one needs to give a set S of possible states of the world,
a set O of possible observations, and a set A of possible actions. The sets O and A are
always assumed to be �nite in the literature, while the state space S can be continuous as
well as �nite. In this paper, we consider only �nite state space. One needs also to give an
observation model which describes the relationship between observations and the state of
the world, and an action model which describes e�ects of actions.

As a background example, consider path planning for a robot who acts in an o�ce
environment. Here S is the set of all location-orientation pairs, O is the set of possible
sensor readings, and A consists of actions move-forward, turn-left, turn-right, and
declare-goal.

The current observation o depends on the current state of the world s. Due to sensor
noise, this dependency is uncertain in nature. The observation o sometimes also depends
on the action that the robot has just taken a-. The minus sign in the subscript indicates
the previous time point. In the POMDP model, the dependency of o upon s and a- is
numerically characterized by a conditional probability P (ojs; a-), which is usually referred
to as the observation probability. It is the observation model.

In a region observable POMDP, the current observation also depends on the previ-
ous state of the world s-. The observation probability for this case can be written as
P (ojs; a-; s-).

The state s+ the world will be in at the next time point depends on the current action a
and the current state s. The plus sign in the subscript indicates the next time point. This
dependency is again uncertain in nature due to uncertainty in the actuator. In the POMDP
model, the dependency of s+ upon s and a is numerically characterized by a conditional
probability P (s+js; a), which is usually referred to as the transition probability. It is the
action model.

On many occasions, we need to consider the joint conditional probability P (s+; o+js; a)
of the next state of the world and the next observation given the current state and the
current action. It is given by

P (s+; o+js; a) = P (s+js; a)P (o+js+; a; s):
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Knowledge about the initial state, if available, is represented as a probability distribution
P0 over S. When the agent knows the initial state with certainty, P0 is 1 at the initial state
and 0 everywhere else. The planning goal is encoded by a reward function such as the
following:

r(s; a) =

(
1 if a=declare-goal and s=goal,
0 otherwise.

The preference for short plans is encoded by discounting future rewards with respect to the
current reward (see the next section).

In summary, a POMDP consists of a set of possible states of the world, a set of possible
observations, a set of possible actions, a observation probability, a transition probability,
and a reward function. An MDP has the same ingredients as an POMDP except that it has
no observation probability. This is because the state of the world is completely observed in
an MDP.

3. Basics of POMDPs

This section reviews several concepts and results related to POMDPs.

3.1 Belief States

In a POMDP, an agent chooses and executes an action at each time point. The choice
is made based on information from the past (past observations and past actions) and the
current observation. The amount of memory required to store past observations and actions
increases linearly with time. This makes it di�cult to maintain past information after a
long period of time.

The standard way to overcome this di�culty is to maintain, instead of past information,
the agent's belief state| the probability distribution P (stjot; at�1; ot�1; : : : ; a1; o1; P0) of the
current state st of the world given past information and the current observation. It is well
known that the belief state is a su�cient statistic in the sense that it captures all the
information contained in past information and the current observation that is useful for
action selection. Hence the agent can base its decision solely on the belief state.

Compared with maintaining past information, maintaining the belief state is desirable
because the number of possible states of the world is �nite. One needs only to maintain a
�xed and �nite number of probability values1.

The initial belief state is P0. One question is how the agent should update its belief
state as time goes by. Following Littman (1994), we use b to denote a belief state. For any
state s, b(s) is the probability that the world is in state s. The set of all possible belief
states will be denoted by B.

Suppose b is the current belief state, and a is the current action. If the observation o+
is obtained at the next time point, then the agent should update its belief state from b to
a new belief state b+ given by

b+(s+) = k
X
s

P (s+; o+js; a)b(s); (1)

1. Storing these values exactly could require unbounded precision. Approximations are implicitly being

made due to the fact that machine precision is bounded.
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where k=1=
P

s;s+
P (s+; o+js; a)b(s) is the normalization constant (e.g., Littman, 1994).

3.2 POMDPs as MDPs

For any belief state b and any action a, de�ne

r(b; a) =
X
s

b(s)r(s; a): (2)

It is the expected immediate reward for taking action a in belief state b.

For any belief state b, any action a, and any observation o+, de�ne

P (o+jb; a) =
X
s;s+

P (s+; o+js; a)b(s): (3)

It is the probability of observing o+ at the next time point given that the current belief state
is b and the current action is a. Let b+ be the belief state given by equation (1). P (o+jb; a)
can also be understood as the probability of the next belief state being b+ given that the
current action is a and the current belief state is b.

A POMDP over world state space S can be viewed as an MDP over the belief state
space B. The the reward function and the transition probability of the MDP are given by
Equations (2) and (3) respectively.

3.3 Optimal Policies

At each time point, the agent consults its belief state and chooses an action. A policy �
prescribes an action for each possible belief state. Formally it is a mapping from B to A.
For each belief state b, �(b) is the action prescribed by � for b.

Suppose b0 is the current belief state. If an agent follows a policy �, then its current
action is �(b0) and the immediate reward is r0(b; �(b0)); with probability P (o+jb0; �(b0)),
the agent's next belief state b1 will be as given by Equation (1), the next action will be
�(b1), and the next reward will be r1(b1; �(b1)); and so on and so forth. The quality of
a policy is measured by the expected discounted rewards it garners. Formally the value
function of a policy � is de�ned for each belief state b0 to be the following expectation:

V �(b0) = Eb0 [
1X
i=0


iri(bi; �(bi))]; (4)

where 0�
<1 is the discount factor.

A policy �1 dominates another policy �2 if for each belief state b2B

V �1(b) � V �2(b): (5)

Domination is a partial ordering among policies. It is well known that there exists a policy
that dominates all other policies (e.g., Puterman, 1990). Such a policy is called an optimal
policy. The value function of an optimal policy is called the optimal value function and is
denoted by V �.
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3.4 Value Iteration

Value iteration is a standard way for solving in�nite horizon MDPs (Bellman, 1957). It
begins with an arbitrary initial function V �0 (b) and improves it iteratively by using the
following equation

V �t (b) = maxa[r(b; a) + 

X
o+

P (o+jb; a)V
�
t�1(b+)]; (6)

where b+ is the belief state given by equation (1). If V �0 =0, then V �t is called the t-step
optimal value function. For any belief state b, V �t (b) is the optimal expected reward the
agent can get in t steps starting from b.

The following theorem (Puterman, 1990, page 361) tells one when to terminate value
iteration and how to construct a \good enough" policy.

Theorem 1 Let � the policy given by

�(b) = arg maxa[r(b; a) + 

X
o+

P (o+jb; a)V
�
t (b+)]: (7)

If maxb2BjV
�
t (b)� V �t�1(b)j � �, then

maxb2BjV
�(b)� V �(b)j �

2�


1� 

:2 (8)

The quantity maxb2BjV
�
t (b)�V

�
t�1(b)j is sometimes called the Bellman residual and the

policy � is called the greedy policy based on V �t .

Algorithms for POMDPs are classi�ed into exact or approximation algorithms depending
on whether they compute the t-step optimal value function V �t exactly (Lovejoy, 1991a).
In the next two sections, we discuss the theoretical foundations of exact algorithms and
develop a new exact algorithm. Thereafter, we propose a new approximation algorithm.

4. Piecewise Linearity and Implicit Value Iteration

Since the belief space is continuous, exact value iteration cannot be carried out explicitly.
Fortunately, it can be carried out implicitly due to the piecewise linearity of the t-step
optimal value functions. To explain piecewise linearity, we need the concept of policy trees.

4.1 Policy Trees

A t-step policy tree pt (Littman, 1994) prescribes an action for the current time point
and an action for each possible information scenario (o1; : : : ; oi; a0; : : : ; ai�1) at each of the
next t�1 time points i. Figure 1 shows a 3-step policy tree. The tree reads as follows.
Move-forward at the current time point. At the next time point, if o1=0 is observed then
turn-left. Thereafter if o2=0 is observed then turn-left again; else if o2=1 is observed
then declare-goal; else if o2=2 is observed then move-forward. And so on and so forth.
To relate back to the introduction, a t-step policy tree prescribes a way the agent might
behave at the current and the next t�1 time points.
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Figure 1: A 3-step policy tree.

When t>1, the subtree rooted at the o1 node will be called a o-rooted t�1-step policy
tree, and will be denoted by �t�1. It is a mapping from the set of possible observations O
to the set of all possible t�1-step policy trees; it prescribes a t�1 step policy tree �t�1(o)
for each possible observation o. In our example, �2(o1=0) is the 2-step policy tree rooted
at the uppermost a1 node.

When t>1, a t-step policy tree pt has two components: an action a for the current time
point and an o-rooted t�1-step policy tree �t�1 for the next t�1 time points. For this
reason, we shall sometimes write pt as a pair (a; �

t�1) and call a the �rst action of pt.
By altering the actions on the edges out of the a-nodes, one obtains di�erent t-step

policy trees. The set of all possible t-step policy trees will be denoted by Pt. A 1-step
policy tree is simply an action, and hence P1 is the same as the set of possible actions A.

4.2 State Value Functions of Policy Trees

For any state s and any t-step policy tree pt=(a; �
t�1), recursively de�ne

Vpt(s) = r(s; a) + 

X
o+

X
s+

V�t�1(o+)(s+)P (s+; o+js; a); (9)

where the second term is to be understood as 0 when t=1. It is the expected discounted
total reward the agent receives at the current time and during the next t�1 time points if
the world is currently in state s and the agent behaves according to the policy tree pt. We
call Vpt the state value function of the t-step policy tree pt.

Without mentioning the policy tree, we shall sometimes call Vpt a t-step state value
function. The collection of all t-step state value functions will be denoted by Vt, i.e.

Vt = fVpt jpt2Ptg:

For convenience, we let V0 consist of one single function of s that is zero for all s.
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4.3 State Space Functions and Belief Space Functions

It is worthwhile to point out that a t-step state value function is a state space function, i.e.
a function over the state space S, while the t-step optimal value function is a belief space
function, i.e. a function over the belief space B. We often use notations such as � or � to
refer to state space functions. A state space function �(s) induces a belief space function
through

�(b) =
X
s

�(s)b(s):

Regarding b as a vector with one component b(s) for each s, the induced belief space function
is a linear combination of the components of b. For convenience, we simply say that �(b) is
linear in b.

A collection V of state space functions induces a belief space function through

V(b) = max�2V�(b): (10)

Note that we are using V to denote both a set of state space functions and the belief space
function it induces. When V is empty, V(b) is 0 by de�nition.

The induced belief space function V(b) is piecewise linear in b in the sense that, for each
�2V, it equals �(b) in the region fbj�(b)��(b) for any other �2Vg of the belief space B and
hence is linear in b in that region.

4.4 Piecewise Linearity of Optimal Value Functions

The following theorem was �rst proved by Sondik (1971). It �rst appeared in its present
form in Littman (1994).

Theorem 2 (Piecewise Linearity) The t-step optimal value function V �t is the same as
the belief space function induced by the collection of all t-step state value functions Vt, i.e.
for any belief state b

V �t (b) = Vt(b):2

The theorem is true for the following reasons. V �t (b) is the reward the agent receives if it be-
haves optimally and for any policy tree pt, Vpt(b) is the reward the agent gets if it behaves ac-
cording to pt. Because one of the policy trees must be optimal, V �t (b) = maxptVpt(b)=Vt(b).
Due to this theorem, we say that the collection Vt of state value functions is representation
of V �t .

4.5 Parsimonious Representations

The size of Vt increases exponentially with t. As a matter of fact, the total number of t-step
policy trees (Cassandra, 1994) is:

jPtj = jAj
jOjt�1
jOj�1 :

There are potentially the same number of t-step state value functions. Fortunately, many of
the state value functions can be pruned without a�ecting the induced belief space function.
Let us make this property more explicit.
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Let W and X be two sets of state space functions. We say thatW covers X if it induces
the same belief space function as X does, i.e. if

W(b) = X (b)

for any belief state b. We say that W parsimoniously covers X if W covers X and none
of its proper subsets do. When W covers or parsimoniously covers X , we refer to W as a
covering or a parsimonious covering of X .

Theorem 3 All parsimonious coverings of a set of state space functions consist of the same
number of state space functions. 2

The theorem has been known for sometime (e.g., Littman, 1994). Due to this theorem, one
can also de�ne a parsimonious covering as a covering that contains the minimum number
of state space functions.

A parsimonious covering V̂t of Vt is also a representation of V �t in the sense that V̂t(b) =
V �t (b) for any belief state b. This representation is parsimonious because it consists of the
fewest number of state space functions among all the representations of V �t .

4.6 Dynamic-Programming Updates

The question now is how to obtain a parsimonious covering of Vt. As will be shown in
the next section, it is possible to obtain a parsimonious covering of Vt by starting from a
parsimonious covering of Vt�1. The process of computing a parsimonious covering of Vt
from a parsimonious covering of Vt�1 is called dynamic-programming updates (Littman et
al., 1995). It is a key step in algorithms that solve POMDPs via value iteration.

Previous algorithms for dynamic-programming updates include the enumeration and
pruning algorithms by Monahan (1992), Eagle (1984), and Lark (White, 1991), the one-
pass algorithm by Sondik (1971), the linear support and relaxed region algorithms by Cheng
(1988), and the witness algorithm by Cassandra et al. (1994) and Littman (1994). The
witness algorithm has been empirically proved to be the most e�cient among all those
algorithms (Littman et al., 1995).

4.7 Implicit Value Iteration

The procedure solvePOMDP shown in Figure 2 carries out value iteration implicitly: instead
inductively computing the t-step optimal value function V �t itself, it computes a parsimo-
nious covering of Vt | a set of state space functions that represents V �t . In the procedure,
the subroutine update(V̂t�1) takes a parsimonious covering V̂t�1 of Vt�1 and returns a parsi-
monious covering V̂t of Vt. It can be implemented using any of the algorithms mentioned in
the previous subsection. The subroutine stop(V̂t; V̂t�1; �) determines whether the Bellman
residual has fallen below the threshold � from the parsimonious coverings V̂t�1 and V̂t of
Vt�1 and Vt. See Littman (1994) for an implementation of this subroutine.

Procedure solvePOMDP terminates when the Bellam residual falls below the threshold
� and return a set of state space functions. The set V̂t of state space functions returned
represents the t-step optimal value function V �t . It is the solution to the input POMDP.
The planning agent keeps V̂t in its memory. When it needs to make a decision, the agent
consults its belief state b and chooses an action using (7) with V �t (b+) replaced by V̂t(b+).
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||||||||||||||||||||||

Procedure solvePOMDP(M; �):

� Input: M | A POMDP,
� | A positive number.

� Output: A set of state space functions.

1. t 0, V̂0  f0g.

2. Do

� t=t+1.

� V̂t  update(V̂t�1):

while stop(V̂t; V̂t�1; �) = no.

3. Return V̂t.

||||||||||||||||||||||

Figure 2: Implicit value iteration.

5. A New Algorithm for Dynamic-Programming Updates

This section proposes a new algorithm for dynamic-programming updates. There are four
subsections. In the �rst three subsections, we show that a parsimonious covering of Vt can
be obtained by starting from a parsimonious covering of Vt�1 and, while doing so, introduce
concepts and results that are necessary for the development of the new algorithm.

5.1 Relationship Between Vt�1 and Vt

Suppose W and X are two sets of state space functions. The cross sum W
L
X of W and

X is the following set of state space functions:

W
M
X = f�+�j�2W; �2Xg:

It is evident that the cross sum operation is commutative and associative. Consequently, we
can talk about the cross sum

LN
i=0Wi of a list of sets W0, . . . , WN of state space functions.

For any action a and any observation o+, de�ne

Qa;o+ = f

X
s+

�(s+)P (s+; o+js; a)j�2Vt�1g: (11)

Note that since a and o+ are given, each member 

P

s+
�(s+)P (s+; o+js; a) of the above

set is a function of s, in other words, a state space function. Hence Qa;o+ is a set of state
space functions. Let 0, 1, . . . , N be an enumeration of all possible values of o+. We useL

o+
Qa;o+ to denote the cross sum

LN
i=0Qa;i.

Proposition 1 Vt = [a[fr(s; a)g
L
(
L

o+
Qa;o+)]:
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Proof: By the de�nition of the set Vt and Equation (9), a state space function � is in Vt
if and only if there exist action a and �o+ 2 Vt�1 for each o+ 2 O such that

�(s) = r(s; a) +
X
o+



X
s+

�o+(s+)P (s+; o+js; a):

The proposition follows. 2

5.2 Properties of Coverings

Lemma 1 Suppose W, X , and Y are three sets of state space functions. If W parsimo-
niously covers X and X covers Y, then W parsimoniously covers of Y. 2

Lemma 2 Let W, W 0, X , and X 0 be four sets of state space functions. If W 0 covers W
and X 0 covers X , then

1. W 0LX 0 covers WLX .
2. W 0[X 0 covers W[X .2

5.3 Coverings of Vt from Parsimonious Coverings of Vt�1

Let V̂t�1 be a parsimonious covering of Vt�1. For any action a and any observation o+,
de�ne

Q0a;o+ = f

X
s+

�(s+)P (s+; o+js; a)j�2V̂t�1g:

Note that the de�nition of Q0a;o+ is the same as that of Qa;o+ except that Vt�1 is replaced

by V̂t�1. Also de�ne

V 0t = [a[fr(s; a)g
M

(
M

o+
Q0a;o+)]:

Proposition 2 The set V 0t covers Vt.

Formal proof of this proposition is given in Appendix A. Informally, the fact that V̂t�1
covers Vt�1 implies that Q0a;o+ covers Qa;o+ , which in turn implies that V 0t covers Vt due to
Proposition 1 and Lemma 2.

According to Proposition 2 and Lemma 1, one can obtain a parsimonious covering of
Vt by �nding a parsimonious covering of V 0t and V

0
t is de�ned in terms of a parsimonious

covering V̂t�1 of Vt�1. This is why we said that a parsimonious covering of Vt can be
obtained by starting from a parsimonious covering of Vt�1.

Monahan's exhaustive method �nds a parsimonious covering of V 0t by enumerating all
the state space functions in V 0t one by one and detecting those that can be pruned by solving
linear programs. Lark's algorithm works in a similar fashion except that its linear programs
have fewer constraints. Since V 0t consists of jAjjV̂t�1j

jOj state space functions, enumerating
them one by one is very expensive. Other algorithms (Sondik, 1971; Cheng, 1988; Littman,
1994) avoid this di�culty by exploiting the structures of V 0t.
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|||||||||||||||||||||||

Procedure incrPruning(fW0;W1; : : : ;WNg):

1. W W0.

2. For i = 1 to N ,

W  purge(W
M
Wi):

3. Return W.

Procedure update(V̂t�1):

� Input: V̂t�1 | a parsimonious covering of Vt�1.

� Input: a parsimonious covering of Vt.

1. For each a2A,

(a) Compute the sets Q0a;0, Q
0
a;1, . . . , and Q

0
a;N .

(b) Wa  incrPruning(fQ0a;0;Q
0
a;1; : : : ;Q

0
a;Ng).

2. Return purge([a[fr(s; a)g
L
Wa]).

|||||||||||||||||||||||

Figure 3: Incremental pruning and dynamic-programming updates.

5.4 A New Algorithm for Dynamic-Programming Updates

Let purge(W) be a subroutine that takes a set W of state space functions and returns a
parsimonious covering of W. An implementation of purge can be found in the appendix.

Let W0, . . . , WN be sets of state space functions. Consider the procedure incrPruning
shown in Figure 3. Let n be a number between 0 and N . Using Lemmas 1 and 2, one can
easily show by induction that, at the end of the nth pass through the for-loop, the set W is
a parsimonious covering of

Ln
i=0Wi. Consequently, the procedures returns a parsimonious

covering of
LN

i=0Wi. The procedure is named incremental pruning because pruning takes
place after each cross sum.

Let 0, 1, . . . , N be an enumeration of all the possible observations, i.e. possible in-
stantiations of o+. For any action a, suppose the sets Q0a;0, Q

0
a;1, . . . , and Q

0
a;N have

been computed. Applying incrPruning to those sets, we get a parsimonious covering ofLN
i=0Q

0
a;i. Denote it by Wa. According to Lemma 2, [a[fr(s; a)g

L
Wa] covers V

0
t. Due

to Lemma 1, this fact implies that a parsimonious covering of [a[fr(s; a)g
L
Wa] is also a

parsimonious covering of V 0t and hence of Vt. Thus, a parsimonious covering of Vt can be
found from a parsimonious covering of Vt�1 using the procedure update shown in Figure 3.

We also use the term incremental pruning to refer to the above algorithm for dynamic-
programming updates. It has been shown elsewhere (Cassandra et al., 1977) that incremen-
tal pruning has the same asymptotic complexity as the witness algorithm and empirically
it signi�cantly outperforms the latter.
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6. Region-Based Model Approximation

We have so far been concerned with exact algorithms. Experiments with incremental prun-
ing, presently the most e�cient exact algorithm, have revealed that it can solve only small
POMDPs (Cassandra et al., 1997). One needs to resort to approximation in order to solve
large real-world problems.

Most previous approximation methods solve a POMDP directly; they approximate the
t-step optimal value function of the POMDP. In the rest of this paper, we develop a new
method that approximates a POMDP itself by another that has a more informative obser-
vation model and is hence easier to solve. The latter POMDP is solved and its solution is
used to construct a solution to the original POMDP.

6.1 The Basic Idea

We make the following assumption about problem characteristics. in a POMDP M, even
though an agent does not know the true state of the world, it often has a good idea about
the state. Justi�cations for this assumption were given in the introduction and empirical
evidence is presented by Simmons & Koenig (1995).

Consider another POMDP M0 that is the same as M except that in addition to the
observation made by itself, the agent also receives a report from an oracle who knows the
true state of the world. The oracle does not report the true state itself. Instead it selects,
from a predetermined list of candidate regions, a region that contains the true state and
reports that region.

More information is available to the agent in M0 than in M; additional information
is provided by the oracle. Since in M the agent already has a good idea about the true
state of the world, the oracle might not provide much additional information even when the
candidate regions are small. Consequently,M0 could be a good approximation ofM.

InM0, the agent knows for sure that the true state of the world is in the region reported
by the oracle. For this reason, we say that it is region observable. The region observable
POMDPM0 can be much easier to solve thanM when the candidate regions are small. For
example, if the oracle is allowed to report only singleton regions, then it actually reports
the true state of the world and henceM0 is an MDP. MDPs are much easier to solve than
POMDPs. One would expect the region observable POMDP M0 to be solvable when the
candidate regions are small.

6.2 Spectrum of Approximations

If the region reported by the oracle is always the set of all possible states, then no additional
information is provided, because the report that the true state of the world is one of the
possible states has no information content. In this case, M0 has the same solution as M
and solvingM0 is equivalent to solvingM directly. This is one extreme of the spectrum.

At the other extreme, if all the candidate regions are singletons, the oracle reports the
true state of the world. Maximum amount of additional information is provided and M0

is actually an MDP. The MDP might not be a good approximation of M but it is much
easier to solve thanM.
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Previous methods for solving a POMDP either solve it directly or to approximate it
by using a MDP. By allowing the oracle to report regions that are neither singletons nor
the set of all possible states, this paper opens up the possibility of exploring the spectrum
between those two extremes. One way to explore the spectrum is to start with singleton
candidate regions and increase their sizes gradually. Approximation quality and computa-
tional time both increase as one goes along. One stops when the approximation is accurate
enough or the region observable POMDP becomes intractable. A method for determining
approximation quality will be described later.

We now set out to make these ideas more concrete by starting with the concept of region
systems.

6.3 Region Systems

A region is simply a subset of states of the world. A region system is a collection of regions
such that no region is a subset of another region in the collection and the union of all regions
equals the set of all possible states of the world. We use R to denote a region and R to
denote a region system.

Region systems are used to restrict the regions that the oracle can choose to report. The
choice of a region system determines the computational complexity of the region observable
POMDP M0 and approximation quality. How to choose regions so as to make proper
tradeo� between computational time and approximation quality is an open research issue.
Here is a preliminary approach. The idea is to create a region for each state by including
its \nearby" states. We say a state s0 is ideally reachable in one step from another state s
if after executing a certain action in state s, the probability of the world ending up in state
s0 is the highest. A state sk is ideally reachable in k steps from another state s0 if there are
state s1, . . . , sk�1 such that si+1 is ideally reachable from si in one step for all 0�i�k�1.
Any state is ideally reachable from itself in 0 step.

For any non-negative integer k, the radius-k region centered at a state s is the set of
states that are ideally reachable from s in k or less steps. A radius-k region system is the one
obtained by creating a radius-k region for each state and then removing, one after another,
regions that are subsets of others.

When k is 0, the radius-k region system consists of singleton regions. On the other
hand, if each state is reachable from any other state in k or less steps, there is only one
region in the radius-k region system | the set of all possible states.

6.4 Region Observable POMDPs

Given a region system R and a POMDPM, we construct a region observable POMDPM0

by assuming that at each time point the agent not only obtains an observation by itself but
also receives a report from an oracle who knows the true state of the world. The oracle does
not report the true state itself. Instead it chooses from R one region that contains the true
state and reports that region.

The amount of additional information provided by the oracle depends not only on the
region system used but also on the way the oracle chooses regions. For example, if the
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oracle always reports the region centered at the true state, then it implicitly reports the
true state itself.

In order to provide as little additional information as possible, the oracle should consider
what the agent already knows. However, it cannot take the entire history of past actions
and observations into account because if it did,M0 would not be a POMDP. The current
observation would depend on the entire history.

For any non-negative state space function f(s) and any region R, we call the quantity
supp(f;R)=

P
s2R f(s)=

P
s2S f(s) the degree of support of f by R. Note that when f is a

probability distribution, the denominator is 1. If R supports f to degree 1, we say that R
fully supports f .

We suggest the following region-selection rule for the oracle. Let s- be the previous true
state of the world, a- be the previous action, and o be the current observation. The oracle
should choose, among all the regions in R that contain the true state of the world, one that
supports the function P (s; ojs-; a-) of s to the maximum degree. Where there is more than
one such regions, choose the one that comes �rst in a predetermined ordering among the
regions.

Here are some arguments in support of the rule. If the previous world state s- were
known to the agent, then its current belief state b(s), a function of s, would be proportional
to P (s; ojs-; a-). In this case, the rule minimizes additional information in the sense that
the region reported supports the current belief state to the maximum degree. If the pre-
vious world state is known to be around s-, the same is roughly true. Also if the current
observation is informative enough, being a landmark for instance, to ensure that the world
state is in a certain region, then the region chosen using the rule fully supports the current
belief state. In such a case, no additional information is provided. Despite those arguments,
we do not claim that the rule described above is optimal. Finding a rule that minimizes
additional information is still an open problem.

The probability P (Rjs; o; s-; a-) of a region R being chosen under the above scheme is
given by

P (Rjs; o; s-; a-) =

8><
>:

1 if R is the �rst region s.t. s2R and for any other region R0P
s02R P (s

0; ojs-; a-)�
P

s02R0 P (s
0; ojs-; a-)

0 otherwise.

The region observable POMDPM0 di�ers from the original POMDPM only in terms
of observation; in addition to the observation o made by itself, the agent also receives a
report R from the oracle. We shall denote an observation inM0 by z and write z=(o;R).
The observation model ofM0 is given by

P (zjs; a-; s-) = P (o;Rjs; a-; s-) = P (ojs; a-)P (Rjs; o; s-; a-):

The joint conditional probability P (s+; z+js; a) of the next state s+ of the world and the
next observation z+ given the current state s and the current action a is

P (s+; z+js; a) = P (s+js; a)P (z+js+; a; s):
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7. Solving Region Observable POMDPs

In principle, the region observable POMDP M0 can be solved in the same way as general
POMDPs using the procedure solvePOMDP. It is not advisable to do so, however, since
solvePOMDP does not automatically exploit region observability. This section and the next
two sections develop an algorithm for solvingM0 that takes advantage of region observabil-
ity.

7.1 Restricted Value Iteration

For any region R, let BR be the set of belief states that are fully supported by R. Let R be
the region system underlying the region observable POMDPM0. De�ne BR = [R2RBR.

It is easy to see that, inM0, no matter what the current belief state b is, the next belief
state b+ must be in BR. We assume that the initial belief state is in BR. Then all possible
belief states the agent might encounter are in BR. This implies that policies for M0 need
only be de�ned over BR and value iteration forM0 can be restricted to the subset BR of B.

We restrict value iteration for M0 to BR for the sake of e�ciency. Doing so implies
that the t-step optimal value function of M0, denoted by U�t , is de�ned only over BR and
the Bellman residual is now maxb2BR jU

�
t (b) � U�t�1(b)j. To avoid confusion, we call it the

restricted Bellman residual and call U�t the restricted t-step optimal value function.
Since BR is continuous, restricted value iteration cannot be carried out implicitly. The

next subsection shows how it can be carried implicitly.

7.2 Implicit Restricted Value Iteration

Let W and X be two sets of state space functions and let R be a region. We say that W
covers X in region R if, for any b2BR,

W(b) = X (b):

We say that W parsimoniously covers X in region R if W covers X in region R and none
of its proper subsets do. When W covers or parsimoniously covers X in a region, we refer
to W as a regional covering or a parsimonious regional covering of X .

Let Ut be the set of all t-step state value functions ofM0. According to Theorem 2,

U�t (b) = Ut(b)

for any belief state b2BR.
For each region R, suppose Ût;R is a set of state space functions that parsimoniously

covers Ut in region R. Then the collection fÛt;RjR2Rg is a representation of U�t in the sense
that for any b2BR,

U�t (b) = Ût;Rb
(b); (12)

where Rb is such that b2BR, i.e. such that Rb fully supports b.
As will be shown in the next section, parsimonious regional coverings of Ut can be ob-

tained from parsimonious regional coverings of Ut�1. Let ROPOMDPupdate(R; Ût�1;R+
jR+2Rg)

be a procedure that takes a region R and parsimonious regional covering fÛt�1;R+
jR+2Rg
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|||||||||||||||||||||||||||

Procedure solveROPOMDP(M0; �)

� Input: M0 | A region observable POMDP,
� | A positive number.

� Output: A list of sets of state space functions.

1. t 0.

2. For R2R, Û0;R  f0g.

3. Do

� t t+1.

� For each R2R,

Ût;R  ROPOMDPupdate(R; fÛt�1;R+
jR+2Rg):

while ROPOMDPstop(fÛt;RjR2Rg; fÛt�1;R+
jR+2Rg; �) = no.

4. Return fÛt;RjR2Rg.

|||||||||||||||||||||||||||

Figure 4: Implicit restricted value iteration for region-observable POMDPs.

of Ut�1 and returns a set of state space functions that parsimoniously covers Ut in region R
2. Let ROPOMDPstop be a procedure that determines, from parsimonious regional coverings
of Ut�1 and Ut, whether the restricted Bellman residual has fallen below a predetermined
threshold.

The procedure solveROPOMDP shown in Figure 4 carries out restricted value iteration
implicitly: instead inductively computing the restricted t-step optimal value function U�t
itself, it computes parsimonious regional coverings of Ut. In other words, it computes sets
of state space functions that represent U�t in the sense of (12).

Let �0 be the greedy policy for M0 based on U�t . For any b2BR, �
0(b) is de�ned by

Equation (7) with o+ replaced by z+=(o+; R+) and V �t replaced by U�t . Since the list
fÛt;RjR2Rg of sets of state space functions returned by solveROPOMDP represents U�t in the
sense of (12), we have that for any b2BR

�0(b) = arg maxa[r(b; a) + 

X

o+;R+

P ((o+; R+)jb; a)Ût;R+
(b+)]: (13)

The next two sections show how to implement the procedures ROPOMDPupdate and
ROPOMDPstop.

2. The string \ROPOMDP" in ROPOMDPupdate stands for region-observable POMDP.
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8. Dynamic-Programming Updates for Region Observable POMDPs

This section shows how the incremental pruning algorithm developed in Section 5 can
be adapted to compute parsimonious regional coverings of Ut from parsimonious regional
coverings of Ut�1.

8.1 Properties of Regional Coverings

Lemma 3 Let R be a region and let W, X , and Y be three sets of state space functions. If
W parsimoniously covers X in region R and X covers Y in region R, thenW parsimoniously
covers Y in region R. 2

Lemma 4 Let R be a region and letW, W 0, X , and X 0 be four sets of state space functions.
If W 0 and X 0 respectively cover W and X in region R, then

1. W 0LX 0 covers WLX in region R.

2. W 0[X 0 covers W[X in region R. 2

8.2 Regional Coverings of Ut from Parsimonious Regional Coverings of Ut�1

From parsimonious regional coverings Ût�1;R+
(R+2R) of Ut�1, this subsection constructs,

for each region R2R, a set Ut;R of state space functions and shows that it covers Ut in region
R.

For any action a and any observation z+=(o+; R+) of M
0, let Qa;z+;R be the set of all

state space functions � that are of the following form:

�(s) =

(


P

s+
�(s+)P (s+; z+js; a) if s2R

0 otherwise.
(14)

where � 2 Ût�1;R+
. De�ne

Ut;R = [a[fr(s; a)g
M

(
M

z+
Qa;z+;R)]:

Proposition 3 The set Ut;R covers Ut in region R.

Formal proof of this proposition can be found in Appendix A. Informally, the fact that
Ût�1;R+

covers Ut�1 in region R+ implies that Qa;z+;R covers Qa;z+ in region R, where Qa;z+

is given by (11) with o+ and Vt�1 replaced by z+ and Ut�1. This fact in turn implies that
Ut;R covers Ut in region R because of Proposition 1 and Lemma 4.

8.3 Possible Observations at the Next Time Point

In the de�nition of Ut;R, the cross sum is taken over all possible observations. This subsection
shows that some of the possible observations can be skipped.

For any action a and any region R, de�ne

Za;R = fz+j
X
s+

P (s+; z+js; a) > 0 for some s2R g:
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||||||||||||||||||||||||||||||||||

Procedure ROPOMDPupdate(R; Ût�1;R+
jR+2Rg):

� Inputs: R | A region, and for any region R+,
Ût�1;R+

parsimoniously covers Ut�1 in region R+.

� Output: A set of state space functions that parsimoniously covers Ut in
region R.

1. For each action a,

(a) Compute the set Za;R and enumerate its members as 0; 1; : : : ;M .

(b) For i=0 to M , compute the set Qa;i;R.

(c) Wa restrictedIncrPruning(fQa;0;R;Qa;1;R; : : : ;Qa;M;Rg; R):

2. Return purge([a[fr(s; a)g
L
Wa]; R).

Subroutine restrictedIncrPruning(fW0;W1; : : : ;WMg; R):

1. Let W W0.

2. For i=1 to M ,
W purge(W

M
Wi; R):

3. Return W.

||||||||||||||||||||||||||||||||||

Figure 5: Dynamic-programming updates for region observable POMDPs.

It is the set of observations that the agent can possibly receive at the next time point given
that the current state of the world lies in region R and the current action is a. There are
many observations outside this set. As a matter of fact, an observation z+=(o+; R+) is not
in the set if it is not possible to reach region R+ from region R in one step.

For any z+=(o+; R+), if z+ =2Za;R, then
P

s+
P (s+; z+js; a) = 0 for all s2R. In such a

case, Qa;z+;R = f0g according to (14). Since, f0g
L
W=W for any set W of state space

functions, we have

Ut;R = [a[fr(s; a)g
M

(
M

z+2Za;R

Qa;z+;R)]:

8.4 Parsimonious Regional Covering of Ut

Proposition 3 and Lemma 3 imply that, for any region R, a set of state space functions
parsimoniously covers Ut in region R if and only if it parsimoniously covering Ut;R in region
R. According to Lemmas 3 and 4, a set of state space functions that parsimoniously covers
Ut;R in region R can be found using the procedure ROPOMDPupdate shown in Figure 5 (c.f.
Section 5.4). In the procedure, the subroutine purge(W; R) takes a set W of state space
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|||||||||||||||||||||||||||

Procedure ROPOMDPstop(fÛt;RjR2Rg; fÛt�1;RjR2Rg; �)

� Inputs: � | A positive number, and for any region R
Ût;R covers Ut in region R, and

Ût�1;R covers Ut�1 in region R.

� Outputs: yes | If the restricted Bellman residual � �,
no | Otherwise.

1. For each region R,

(a) 
ag  yes.

(b) For each �2Ût�1;R,


ag  no if dominate(�; Ût;R; R; �) 6= nil:

(c) For each �2Ût;R,


ag  no if dominate(�; Ût�1;R; R; �) 6= nil:

(d) Return no if 
ag = no.

2. Return yes.

|||||||||||||||||||||||||||

Figure 6: Procedure for determining whether the restricted Bellman residual has fallen
below a threshold.

functions and region R, and returns a set of state space functions that parsimoniously covers
W in region R. An implementation of this subroutine can be found in Appendix B.

9. The Stopping Condition

This section shows how to determine whether the restricted Bellman residual has fallen
below a predetermined threshold � from regional coverings of Ut and Ut�1. For any region
R, let Ût;R and Ût�1;R be two sets of state space functions that respectively cover Ut and
Ut�1 in region R. By the de�nition of regional coverings, we have

Lemma 5 The restricted Bellman residual is no larger than � if and only if for any region
R and any belief state b2BR,

1. For any �2Ût;R,

�(b) � Ût�1;R(b)+�; and

2. For any �2Ût�1;R,

�(b) � Ût;R(b)+�:2
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Let dominate(�;W; R; �) be a procedure that returns a belief state b in BR such that
�(b) > W(b)+�. If such a belief state does not exist, it returns nil. An implementation
of this procedure can be found in Appendix B. The procedure ROPOMDPupdate shown in
Figure 6 returns yes if the restricted Bellman residual has fallen below � and no otherwise.

A couple of notes are in order. First, when the reward function r(s; a) is non-negative, U�t
increases with t. In this case, the restricted Bellman residual becomesmaxb2BR(U

�
t (b)�U

�
t�1(b)).

Consequently, step (c) can be skipped. Second, when r(s; a) takes negative values for some
s and some a, a constant can be added to it so that it becomes non-negative. Adding a con-
stant to r(s; a) does not a�ect the optimal policy. However, it makes it easier to determine
whether the restricted Bellman residual has fallen below a threshold.

10. Decision Making for the Original POMDP

Suppose we have solved the region observable POMDPM0. The next step is to construct
a policy � for the original POMDPM based on the solution forM0.

Even though it is our assumption that in the original POMDPM the agent has a good
idea about the state of the world at all times, there is no guarantee that its belief state are
always in BR. There is no oracle inM. A policy should prescribe actions for belief states
in BR as well as for belief states outside BR. One issue here is that the policy �0 forM0 is
de�ned only for belief states in BR. Fortunately, �

0 can be naturally extended to the entire
belief space by ignoring the constraint b2BR in Equation (13). We hence de�ne a policy �
forM as follows: for any b2B,

�(b) = arg maxa[r(b; a) + 

X

o+;R+

P ((o+; R+)jb; a)Ût;R+
(b+)]: (15)

Let k be the radius of the region system underlyingM0. The policy � given above will
be referred to as the radius-k approximate policy for M. The entire process of obtaining
this policy, including the construction and solving of the region observable POMDP M0,
will be referred to as region-based approximation.

It is worthwhile to compare this equation with Equation (7). In Equation (7), there are
two terms on the right hand side. The �rst term is the immediate reward for taking action
a and the second term is the discounted future reward the agent can expect to receive if it
behaves optimally. Their sum is the total expected reward for taking action a. The action
with the highest total reward is chosen.

The second term is di�cult to obtain. In essence, Equation (15) approximates the
second term using the optimal expected future reward the agent can receive with the help
of the oracle, which is easier to compute.

It should be emphasized that the presence of the oracle is assumed only in the process
of computing the radius-k approximate policy. The oracle is not present when executing
the policy.

11. Quality of Approximation and Simulation

In general, the quality of an approximate policy � is measured by the distance between its
value function V �(b) and the optimal value function V �(b). This measurement does not
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consider what an agent might know about the initial state of the world. As such, it is not
appropriate for a policy obtained through region-based approximation. One cannot expect
such a policy to be of good quality if an agent is very uncertain about the initial state of
the world because it is obtained under the assumption that an agent has a good idea about
the state of the world at all times.

This section describes a scheme for determining the quality of an approximate policy in
cases where an agent knows the initial state of the world with certainty. The scheme can
be generalized to cases where there is a small amount of uncertainty about the initial state;
for example, cases where the initial state is known to be in some small region.

An agent might need to reach a goal from di�erent initial states at di�erent times. Let
P (s) be the frequency it will start from state s3. The quality of an approximate policy �
can be measured by

P
s jV

�(s) � V �(s)jP (s), where V �(s) and V �(s) denote the rewards
the agent can expect to receive starting from state s if it behaves optimally or according to
� respectively.

By de�nition V �(s)�V �(s) for all s. Let U� be the optimal value function of the
region observable POMDP M0. Since more information is available to the agent in M0,
U�(s)�V �(s) for all s. Therefore,

P
s[U

�(s)�V �(s)]P (s) is an upper bound on
P

s[V
�(s)�

V �(s)]P (s).

Let �0 be the policy forM0 given by (13). When the restricted Bellman residual is small,
�0 is close to optimal forM0 and the value function V �0 of �0 is close to U�. Consequently,P

s[V
�0(s)� V �(s)]P (s) is an upper bound on

P
s[V

�(s)� V �(s)]P (s) when the restricted
Bellman residual is small enough.

One way to estimate the quantity
P

s[V
�0(s)�V �(s)]P (s) is to conduct a large number

of simulation trials. In each trial, an initial state is randomly generated according to P (s).
The agent is informed of the initial state. Simulation takes place in both M and M0. In
M, the agent chooses, at each step, an action using � based on its current belief state. The
action is passed to a simulator which randomly generates the next state of the world and the
next observation according to the transition and observation probabilities. The observation
(but not the state) is passed to the agent, who updates its belief state and chooses the next
action. And so on and so forth. The trial terminates when the agent chooses the action
declare-goal or a maximum number of steps is reached. Simulation inM0 takes place in a
similar manner except that the observations and the observation probabilities are di�erent
and actions are chosen using �0.

If the goal is correctly declared at the end of a trial, the agent receives a reward in the
amount 
n, where n is the number of steps. Otherwise, the agent receive no reward. The
quantity

P
s[V

�0(s)�V �(s)]P (s) can be estimated using the di�erence between the average
reward received in the trials forM0 and the average reward received in the trials forM.

12. Tradeo� Between Quality and Complexity

Intuitively, the larger the radius of the region system, the less the amount of additional
information the oracle provides. Hence the closer M0 is to M and the narrower the gap
between

P
s V

�0(s)P (s) and
P

s V
�(s)P (s). Although we have not theoretically proved this,

3. This is not to be confused with the initial belief state P0, which represents the agent's knowledge about

the ninitial state at a particular trial.
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empirical results (see the next section) do suggest that
P

s V
�(s)P (s) increases with the

radius of the region system while
P

s V
�0(s)P (s) decreases with it. In the extreme case

when there is one region in the region system that contains all the possible states of the
world,M andM0 are identical and hence so are

P
s V

�0(s)P (s) and
P

s V
�(s)P (s).

These discussions lead to the following scheme for making the tradeo� between com-
plexity and quality: Start with the radius-0 region system and increase the radius gradually
until the quantity

P
s[V

�0(s)�V�(s)]P (s) becomes su�ciently small or the region observable
POMDPM0 becomes untractable.

13. Simulation Experiments

Simulation experiments have been carried out to show that (1) approximation quality in-
creases with radius of region system and (2) where there is not much uncertainty, a POMDP
can be accurately approximated by a region-observable POMDP that can be solved exactly.
This section reports on the experiments.

13.1 Synthetic O�ce Environments

Our experiments were conducted using two synthetic o�ce environments borrowed from
Cassandra et al. (1996) with some minor modi�cations. Layouts of the environments
are shown in Figure 7, where squares represent locations. Each location is represented as
four states in the POMDP model, one for each orientation. The dark locations are rooms
connected to corridors by doorways.

In each environment, a robot needs to reach the goal location with the correct orien-
tation. At each step, the robot can execute one of the following actions: move-forward,
turn-left, turn-right, and declare-goal. The two sets of action models given in Figure
7 were used in our experiments. For the action move-forward, the term F-F (0.01) means
that with probability 0.01 the robot actually moves two steps forward. The other terms are
to be interpreted similarly. If an outcome cannot occur in a certain state of the world, then
the robot is left in the last state before the impossible outcome.

In each state, the robot is able to perceive in each of three nominal directions (front,
left, and right) whether there is a doorway, wall, open, or it is undetermined. The two
sets of observation models shown in Figure 7 were used in our experiments.

13.2 Complexity of Solving the POMDPs

One of the POMDPs has 280 possible states while the other has 200. They both have 64
possible observations and 4 possible actions. Since the largest POMDPs that researchers
have been able to solve exactly so far have less than 20 states and 15 observations, it is safe
to say no existing exact algorithms can solve those two POMDPs.

We were able to solve the radius-0 and radius-1 approximations (region observable
POMDPs) of the two POMDPs on a SUN SPARC20 computer. The threshold for the
Bellman residual was set at 0.001 and the discount factor at 0.99. The amounts of time it
took in CPU seconds are collected in the following table.
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N

Goal
(east)

Environment A

N

Goal
(south)

Enviroment B

 

Transition Probabilities

Action Standard outcomes Noisy outcomes

move-forward N (0.11), F (0.88), F-F (0.01) N (0.2), F (0.7), F-F (0.1)
turn-left N (0.05), L (0.9), L-L (0.05) N (0.15), L (0.7), L-L (0.15)
turn-right N (0.05), R (0.9), R-R (0.05) N (0.15), R (0.7), R-R (0.15)
declare-goal N (1.0) N (1.0)

Observation Probabilities

Actual case Standard observations Noisy observations

wall wall (0.90), open (0.04), doorway

(0.04), undetermined (0.02)
wall (0.70), open (0.19), doorway

(0.09), undetermined (0.02)

open wall (0.02), open (0.90), doorway

(0.06), undetermined (0.02)
wall (0.19), open (0.70), doorway

(0.09), undetermined (0.02)

doorway wall (0.15), open (0.15), doorway

(0.69), undetermined (0.01)
wall (0.15), open (0.15), doorway

(0.69), undetermined (0.01)

Figure 7: Synthetic O�ce Environments.

Environment Standard models Noisy models
Radius-0 Radius-1 Radius-0 Radius-1

A 1.26 3373 1.35 5984
B 0.61 2437 0.72 3952

We see that the radius-1 approximations took much longer time to solve than the radius-0
approximations. Also notice that the region observable POMDPs with noisy action and
observation models took more time to solve that those with the standard models. This sug-
gests that the more nondeterministic the actions and the less informative the observations,
the more di�cult it is to solve a POMDP.
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We were unable to solve the radius-2 approximations. Other approximation techniques
need to be incorporated in order to solve the approximations based on region systems with
radius larger than or equal to 2.

13.3 Approximation Quality for Standard Models

To determine the quality of the radius-0 and radius-1 approximate policies for the POMDPs
with standard action and observation models, 1000 simulation trials were conducted using
the scheme described in Section 11. It was assumed that the agent is equally likely to start
from any state. Average rewards obtained in the original POMDPs M (i.e. without the
help of the oracle) and in the corresponding region-observable POMDPsM0 (i.e. with the
help of the oracle) are shown in the following table.

Environment A Environment B
radius-0 radius-1 radius-0 radius-1

Average reward inM 0.806535 0.815695 0.866118 0.868533
Average reward inM0 0.827788 0.818534 0.883271 0.876356

Di�erence 0.021253 0.002839 0.017153 0.007823

We see that, when the radius-0 policies were used, the di�erences between the rewards
obtained inM and those obtained inM0 are very small in both environments. This indicates
that the radius-0 region observable POMDPs (i.e. MDPs) are accurate approximations of
the original POMDPs. The radius-0 approximate policies are close to optimal for the
original POMDPs. When the radius-1 policies were used, the di�erences are even smaller;
the rewards obtained inM and those obtained inM0 are essentially the same.

Consider the rewards obtained in the original POMDPs. We see that they are larger
when radius-1 policies were used than when radius-0 policies were used. This supports our
claim that approximation quality increases with radius of region system.

There is a another fact worth mentioning. The di�erences between rewards obtained in
M and those obtained inM0 are larger in Environment B than in Environment A. This is
because Environment B is more symmetric and consequently observations are less e�ective
in disambiguating uncertainty in the agent's belief about the state of the world.

13.4 Approximation Quality for Noisy Models

One thousand trials were also conducted for the POMDPs with noisy action and observa-
tion models. Results are shown in the following table.

Environment A Environment B
radius-0 radius-1 radius-0 radius-1

Average reward inM 0.596670 0.634934 0.445653 0.565099
Average reward inM0 0.812898 0.722441 0.871903 0.818365

Di�erence 0.214228 0.087507 0.426250 0.253266
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We see that the di�erences between rewards obtained in M and rewards obtained in
M0 are signi�cantly smaller when the radius-1 policies were used than when the radius-0
policies were used. This is the case especially in Environment A. Also the rewards obtained
inM are larger when the radius-1 policies were used than when the radius-0 policies were
used. Those again support our claim that approximation quality increases with radius of
region system.

As far as absolute approximation quality is concerned, the radius-0 POMDPs (i.e.
MDPs) are obviously very poor approximations of the original POMDPs; when the radius-0
policies were used, the rewards obtained inM are signi�cantly smaller than the rewards ob-
tained inM0. For Environment A, the radius-1 approximation is fairly accurate. However,
the radius-1 approximation remains poor for Environment B. The radius of region system
needs to be increased.

Tracing through the trials step by step, we observed some interesting facts. In Envi-
ronment B, the agent, under the guidance of the radius-1 approximate policy, was able to
quickly get to the neighborhood of the goal even when starting from far way. The fact
that the Environment around the goal is highly symmetric was the cause of the poor per-
formance. Often the agent was not able to determine whether it was at the goal location
(room), or in the opposite room, or in the left most room, or in the room to the right of
the goal location. The performance would be close to optimal if the goal location had some
distinct features.

In Environment A, the agent, again under the guidance of the radius-1 approximate
policy, was able to reach and declare the goal successfully once it got to the neighborhood.
However, it often took many unnecessarily steps before reaching the neighborhood due to
uncertainty in the e�ects of the turning actions. For example, when the agent reached
the lower left corner from above, it was facing downward. The agent executed the action
turn_left. Fifteen percent of the time, it ended up facing upward instead of to the right.
The agent then decided to move-forward, thinking that it was approaching the goal. But
it was actually moving upward and did not realize this until a few steps later. The agent
would perform much better if there were informative landmarks around the corners.

14. Conclusions

We propose to approximate a POMDP by using a region observable POMDP. The region
observable POMDP has more informative observations and hence is easier to solve. A
method for determining approximation quality is described, which allows one to make the
tradeo� between approximation quality and computational time by starting with a coarse
approximation and re�ning it gradually. Simulation experiments have shown that when
there is not much uncertainty in the e�ects of actions and observations are informative,
a POMDP can be accurately approximated by a region observable POMDP that can be
solved exactly. However, this becomes infeasible as the degree of uncertainty increases.
Other approximate methods need to be incorporated in order to solve region observable
POMDPs whose radiuses are not small.
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Appendix A: Proofs of Propositions 2 and 3

Lemma 6 Suppose W and X are two sets of state space functions. If W covers X , then
for any non-negative function f(s),

max�2W
X
s

�(s)f(s) = max�2X
X
s

�(s)f(s):2

Proof of Proposition 2: Because of Proposition 1 and Lemma 2, it su�ces to show that
Q0a;o+ covers Qa;o+ . By the de�nition of Qa;o+ and Equation (10), we have, for any belief
state b, that

Qa;o+(b) = max�2Vt�1
X
s

[

X
s+

�(s+)P (s+; o+js; a)]b(s)

= 
 max�2Vt�1
X
s+

�(s+)[
X
s

b(s)P (s+; o+js; a)]

Since V̂t�1 covers Vt�1 and the term within the square brackets is a non-negative function
of s+, by Lemma 6 we have

Qa;o+(b) = 
 max
�2V̂t�1

X
s+

�(s+)[
X
s

b(s)P (s+; o+js; a)]

= max
�2V̂t�1

X
s

[

X
s+

�(s+)P (s+; o+js; a)]b(s)

= Q0a;o+(b);

where the last equation is due to the de�nition of Q0a;o+ and Equation (10). So, Q0a;o+ does
cover Qa;o+ . The proposition is proved. 2

Lemma 7 For any observation z+=(o+; R+) of the region observable POMDPM0,

P (s+; z+js; a) = 0;

for any s+ =2R+. 2

Informally, this lemma says that the true state of the world must be in the region reported
by the oracle.

Lemma 8 LetW and X be two sets of state space functions and R be a region. IfW covers
X in region R, then for non-negative function f(s) that is 0 when s=2R, we have

max�2W
X
s

�(s)f(s) = max�2X
X
s

�(s)f(s):2
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Proof of Proposition 3: Because of Proposition 1 and Lemma 4, it su�ces to show that
Qa;z+;R covers Qa;z+ in region R, where Qa;z+ is given by (11) with o+ and Vt�1 replaced
by z+ and Ut�1.

Let b be any belief state in BR. Similar to the proof of Theorem 2, we have

Qa;z+(b) = 
 max�2Ut�1
X
s+

�(s+)[
X
s

b(s)P (s+; z+js; a)]

= 
 max
�2Ût�1;R+

X
s+

�(s+)[
X
s

b(s)P (s+; z+js; a)]

= max
�2Ût�1;R+

X
s2R

[

X
s+

�(s+)P (s+; z+js; a)]b(s)

= max�2Qa;z+;R

X
s

�(s)b(s)

= Qa;z+;R(b);

where the second equation is true because of the fact that Ût�1;R+
covers Ut�1 in region R+

and of Lemma 8. The term within the square brackets is a non-negative function of s+ and
it is 0 when s+=2R+ because of Lemma 7. The fourth equation is true because that b(s)=0
when s=2R. The proposition is proved. 2

Appendix B: Domination and Pruning

This appendix describes implementation of the procedures dominate(�;W; R; �), purge(W; R),
and purge(W). They were not given in the main text because they are minor adaptations
of existing algorithms.

The procedure dominate(�;W; R; �) takes, as inputs, a state space function �, a set of
state space functions W, a region R, and a nonnegative number �. It returns a belief state
b in BR such that �(b)>W(b)+�. If such a belief state does not exist, it returns nil. It can
be implemented as follows.

Procedure dominate(�;W; R; �)

� Inputs: � | A state space function,
W | A set of state space functions,
R | A region, � | A nonnegative number.

� Output: A belief state in BR or nil.

1. If W=;, return an arbitrary belief state in BR.

2. Solve the following linear program:

Variables: x, b(s) for each s2R.

Maximize: x

Constraints:X
s2R

�(s)b(s) � x+
X
s2R

�(s)b(s) for all �2W;

X
s2R

b(s) = 1

b(s) � 0 for all s2R:
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3. If x��, return nil, else return b.

The procedure purge(W; R) takes a set of state space functions W and a region R
and returns a set of state space functions that parsimoniously covers W in region R. To
implement it, we need two subroutines.

A state space function � pointwise dominates another state space function � in a region
R if �(s)��(s) for all s2R. The subroutine pointwisePurge(W; R) returns a minimal
subset W 0 of W such that each state space function in W is pointwise dominated in the
region R by at least one state space function in W 0. Implementation of this subroutine is
straightforward.

The subroutine best(b;W; R) returns a state space function � inW such that
P

s2R b(s)�(s) �P
s2R b(s)�(s) for any other state space function � inW. Implementation of the subroutine

is straightforward except for the issue of tie breaking. If the ties are not broken properly,
purge(W; R) might return a regional covering ofW that is not parsimonious. A correct way
to break ties is as follows: Fix an ordering among states in R. This induces a lexicographic
ordering among all state space functions. Among the tied state space functions, chose the
one that is the largest under the lexicographic ordering (Littman, 1994).

The following implementation of purge is based on Lark's algorithm (White, 1991).

Procedure purge(W; R)

� Inputs: W | A set of state space functions,
R | A region.

� Output: A set of state space functions that parsimoniously covers W in
region R.

1. W pointwisePurge(W; R).

2. X ;.

3. While W6=;,

(a) Pick a state space function � from W.

(b) b dominate(�;X ; R; 0).

(c) If b =nil, remove � from W.

(d) Else remove best(b;W; R) from W and add it to X .

4. Return X .

Finally, the procedure purge(W) takes a set of state space functions W and returns a
parsimonious covering of W. It can be implemented simply as follows.

Procedure purge(W):

� purge(W;S).

Here, S is the set of all possible states of the world.
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