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Abstract

We argue that the analysis of agent/environment interactions should be extended to
include the conventions and invariants maintained by agents throughout their activity. We
refer to this thicker notion of environment as a lifeworld and present a partial set of formal
tools for describing structures of lifeworlds and the ways in which they computationally
simplify activity. As one speci�c example, we apply the tools to the analysis of the Toast
system and show how versions of the system with very di�erent control structures in fact
implement a common control structure together with di�erent conventions for encoding
task state in the positions or states of objects in the environment.

1. Introduction

Biologists have long sought concepts to describe the ways in which organisms are adapted to
their environments. Social scientists have likewise sought concepts to describe the ways in
which people become acculturated participants in the social worlds around them. Yet it has
been di�cult to approach these phenomena with the methods of computational modeling.
We can see at least two reasons for this di�culty. The �rst is that the tradition of modeling
in arti�cial intelligence developed around a concern with cognition, that is, mental processes
understood to intervene between stimuli and responses in human beings. Although minority
traditions such as ecological psychology reacted against this approach to studying human
life, they have not been able to translate their concepts into computational mechanisms that
match the expressive power of symbolic programming. The second reason is more subtle:
if one conceives both organisms and their environments as spatially extended mechanisms
that can be explained according to the same principles then the boundary between them
(the surface of the body) is not particularly di�erent from, or more interesting than, the
rest of the total organism-environment system. The challenge for computational modeling,
then, is to conceptualize agents' adaptations to their environments in ways that neither
treat agents as isolated black boxes or dissolve them into one big machine.

For these purposes, we �nd it useful to distinguish between two aspects of an agent's
involvement in its familiar environment: its embodiment and its embedding. \Embodiment"
pertains to an agent's life as a body: the �niteness of its resources, its limited perspective
on the world, the indexicality of its perceptions, its physical locality, its motility, and so
on. \Embedding" pertains to the agent's structural relationship to its world: its habitual
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paths, its customary practices and how they �t in with the shapes and workings of things,
its connections to other agents, its position in a set of roles or a hierarchy, and so forth.
The concept of embedding, then, extends from more concrete kinds of locatedness in the
world (places, things, actions) to more abstract kinds of location (within social systems,
ecosystems, cultures, and so on). Embodiment and embedding are obviously interrelated,
and they each have powerful consequences both for agents' direct dealings with other agents
and for their solitary activities in the physical world. Our principal focus in this article is on
embedding, and particularly on the ways in which agents maintain relationships to objects
that are functionally signi�cant for their tasks.

In this paper we develop some thoughts about embodiment and embedding as follows:

� Section 2 reviews the concept of the environment as it developed with the early work
of Newell and Simon.

� Section 3 introduces our own adaptation of the traditional idea, which we call life-
worlds, and we sketch what is involved in lifeworld analysis.

� Section 4 introduces informally the concept of factorization of lifeworlds; this refers
roughly to the structures of the lifeworld that permit agents' decisions to be made
independently of one another.

� Section 5 de�nes the basics of our formal theory of lifeworld analysis, namely the
concepts of environments, actions, policies, factorization, and the reduction of one
environment to another. The purpose of this formalism is to characterize the kinds of
interactions that can arise between agents and their familiar lifeworlds.

� Section 6 brie
y introduces the computer program we wrote to illustrate some of the
phenomena of lifeworlds.

� Section 7 then applies our formalism to modeling the world in which our program
operates; it proceeds by modeling successively more complicated versions of this world.

� Section 8 explains how our program keeps track of the objects in the world that
�gure in its activities, and discusses the issues that arise when trying to model this
keeping-track in formal terms.

� Section 9 sums up our formal work by explaining the precise relationship between the
program and the formal model of its world.

� Section 10 then expands our theory of lifeworlds more informally by introducing the
concept of cognitive autopoiesis, which is the collection of means by which agents ma-
nipulate their surroundings to provide the conditions of their own cognitive processes;
we provide a taxonomy of these phenomena.

� Section 11 concludes by suggesting some directions for future work.

2. The Concept of the Environment

Intuitively, the notion of \the environment" in AI and robotics refers to the relatively endur-
ing and stable set of circumstances that surround some given individual. My environment is
probably not the same as yours, though they may be similar. On the other hand, although
my environment starts where I leave o� (at my skin, perhaps), it has no clear ending-point.
Nor is it necessarily de�ned in terms of metric space; if physically distant circumstances
have consequences for my life (via the telephone, say) then they are properly regarded as
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part of my environment as well. The environment is where agents live, and it determines the
e�ects of their actions. The environment is thus a matter of importance in computational
modeling; only if we know what an agent's environment is like can we determine if a given
pattern of behavior is adaptive. In particular we need a positive theory of the environment,
that is, some kind of principled characterization of those structures or dynamics or other
attributes of the environment in virtue of which adaptive behavior is adaptive.

Herbert Simon discussed the issue in his pre-AI work. His book Administrative Behav-
ior (1947), for example, presents the in
uential theory that later became known as limited
rationality. In contrast to the assumption of rational choice in classical economics, Simon
describes a range of cognitive limitations that make fully rational decision-making in orga-
nizations impracticable. Yet organizations thrive anyway, he argues, because they provide
each individual with a structured environment that ensures that their decisions are good
enough. The division of labor, for example, compensates for the individual's limited ability
to master a range of tasks. Structured 
ows of information, likewise, compensate for the
individual's limited ability to seek this information out and judge its relevance. Hierarchy
compensates for the individual's limited capacity to choose goals. And �xed procedures
compensate for individuals' limited capacity to construct procedures for themselves.

In comparison to Simon's early theory in Administrative Behavior, AI has downplayed
the distinction between agent and environment. In Newell and Simon's early work on
problem solving (1963), the environment is reduced to the discrete series of choices that it
presents in the course of solving a given problem. The phrase \task environment" came to
refer to the formal structure of the search space of choices and outcomes. This is clearly a
good way of modeling tasks such as logical theorem-proving and chess, in which the objects
being manipulated are purely formal. For tasks that involve activities in the physical world,
however, the picture is more complex. In such cases, the problem solving model analyzes the
world in a distinctive way. Their theory does not treat the world and the agent as separate
constructs. Instead, the world shows up, so to speak, phenomenologically: in terms of the
di�erences that make a di�erence for this agent, given its particular representations, actions,
and goals. Agents with di�erent perceptual capabilities and action repertoires, for example,
will inhabit di�erent task environments, even though their physical surroundings and goals
might be identical.

Newell and Simon's theory of the task environment, then, tends to blur the di�erence
between agent and environment. As a framework for analysis, we �nd the phenomenological
approach valuable, and we wish to adapt it to our own purposes. Unfortunately, Newell and
Simon carry this blurring into their theory of cognitive architecture. They are often unclear
whether problem solving is an activity that takes place wholly within the mind, or whether
it unfolds through the agent's potentially complicated interactions with the physical world.
This distinction does not arise in cases such as theorem-proving and chess, or in any other
domain whose workings are easily simulated through mental reasoning. But it is crucial
in any domain whose actions have uncertain outcomes. Even though we wish to retain
Newell and Simon's phenomenological approach to task analysis, therefore, we do not wish
to presuppose that our agents reason by conducting searches in problem spaces. Instead,
we wish to develop an analytical framework that can guide the design of a wide range of
agent architectures. In particular, we want an analytical framework that will help us design
the simplest possible architecture for any given task.
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3. Lifeworlds

We will use the term lifeworld to mean an environment described in terms of the customary
ways of structuring the activities that take place within it | the conventional uses of
tools and materials, the \loop invariants" that are maintained within it by conventional
activities, and so on. The term originally comes from phenomenological sociology (Schutz
& Luckmann, 1973), where it refers to the familiar world of everyday life, and speci�cally
to that world as described in the terms that make a di�erence for a given way of life. Cats
and people, for example, can be understood as inhabiting the same physical environment
but di�erent lifeworlds. Kitchen cupboards, window sills, and the spaces underneath chairs
have di�erent signi�cances for cats and people, as do balls of yarn, upholstery, television
sets, and other cats. Similarly, a kitchen a�ords a di�erent kind of lifeworld to a chef
than to a mechanic, though clearly these two lifeworlds may overlap in some ways as well.
A lifeworld, then, is not just a physical environment, but the patterned ways in which a
physical environment is functionally meaningful within some activity.

This idea is similar to Gibson's theory of perception (1986), but the two theories also
di�er in important ways. Whereas Gibson believes that the perception of worldly a�ordances
is direct, we believe that the perceptual process can be explained in causal terms. Also,
whereas Gibson treated the categories of perception as essentially biological and innate, we
regard them as cultural and emergent.

In analyzing a lifeworld, one attempts to draw out the individual structures within it
that facilitate its customary activities. For example, lifeworlds typically contain artifacts
such as tools that have been speci�cally evolved to support those activities. These tools
are also arranged in the world in ways that simplify life and reduce the cognitive burden
on individuals: cups are typically found in cupboards, food in refrigerators and grocery
stores. No one needs to remember where butter is found in a speci�c grocery store because
butter in all grocery stores is found in a well-de�ned dairy section, usually along a wall,
which can be recognized from a distance; once the dairy section is in view, the butter will
be visible in a de�nite area. Artifacts are also designed to make their functional properties
perceptually obvious. Handles are perceptibly suited for picking up, knobs are perceptibly
suited for turning, forks are perceptibly suited for impaling things, and so on (Brady,
Agre, Braunegg, & Connell, 1984; Winston, Binford, Katz, & Lowry, 1983). Contrarily,
it can generally be assumed that artifacts that provide no readily perceptible grounds for
drawing functional distinctions are in fact interchangeable. Usually, when some functionally
signi�cant property of an object is not obvious, the lifeworld provides some alternate way
of marking it. If you see a record player in my house, for example, then you will assume
that it is mine unless you have some speci�c reason not to. These aspects of lifeworlds
tend to make it easy to perform particular kinds of activities within them without having
to remember too many facts or reinvent the screwdriver from �rst principles.

Lifeworlds contain networks of interacting conventions and practices that simplify spe-
ci�c aspects of speci�c activities. The practices relieve agents of the burden of solving certain
problems on the spot and di�use their solutions throughout the activity of the agent or of
many agents. For example, a hospital might try to get along without maintaining sterile
conditions. People always have germs, so technically they are always infected. The problem
is making sure that those infections never get out of control. The most direct solution would
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be constantly to monitor patients, assess their degree of infection and treat them when it
becomes severe. Since this is undesirable for any number of reasons, a hospital instead tries
to prevent infections in patients by maintaining sterile conditions. They might do this, for
example, by looking for contaminated objects and surfaces and disinfecting them. Unfortu-
nately, sterility is not a visible surface characteristic. Instead, hospitals solve the problem
by structuring space and activity. Di�erent locations are kept more or less sterile depending
on their conventional uses: operating rooms are more sterile than hallway 
oors. Objects
that can generate germs (people) are washed, masked, and gloved. Critical instruments
that come in contact with them are specially sterilized after use. Tongue depressors are
assumed to be dirty when they are in the trash can (or biohazard bag) and clean when
they are wrapped in paper. All objects and surfaces are periodically disinfected regardless
of their level of contamination. These practices are maintained regardless of the immediate
need for them. If a hospital were (for some reason) to temporarily �nd itself without any
patients, its workers would not stop washing their hands or disinfecting the bathrooms.

4. Factorization of Lifeworlds

Simon, in Sciences of the Arti�cial (1970), argued that complex systems had to be \nearly
decomposable." His model for this was the rooms in a building, whose walls tend to minimize
the e�ects that activity in one room has upon activity in another. Sussman (1975), in
his analysis of block-stacking tasks, classi�ed several types of \subgoal interactions" that
result from attempts to break tasks down into subtasks; one hopes that these tasks will be
decomposable, but bugs arise when they are not decomposable enough. One assumes that a
task is decomposable unless one has reason to believe otherwise. Sussman's research, and the
rich tradition of planning research that it helped inaugurate, concerned the di�cult problem
of constructing plans in the presence of subgoal interactions. Our goal, complementary to
theirs, is to analyze the many ways in which tasks really are decomposable, and to derive the
broadest range of conditions under which moment-to-moment activity can proceed without
extensive analysis of potential interactions.

A non-pathological lifeworld will be structured in ways that limit or prevent interactions
among subtasks. Some of these structures might be taxonomized as follows:

� Activity partition. Most lifeworlds separate activities under discrete headings: sewing
is a distinct activity from bathing, gathering food is a separate activity from giving
birth, and so on. These distinctions provide the basis for reckoning \di�erent activ-
ities" for the purposes of most of the rest of the partitions. The boundaries among
the various activities are often marked through some type of ritual.

� Spatial partition. Di�erent things are often done in di�erent places. Tasks may be
con�ned to the places where their associated tools or materials are stored, or where
suitable conditions or lighting or safety obtain. These places may even be close to-
gether, as when di�erent recipes are prepared in di�erent sections of countertop space
or di�erent kinds of food are kept in di�erent parts of one's plate, with boundary
regions perhaps employed to assemble forkfuls of neighboring foods. In general, ac-
tivities are arranged in space, and decisions made in one place tend to have minimal
interaction with decisions made in other places. Of course spatial distance brings no
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absolute guarantees about functional independence (using up all the resources at one
location will prevent them from being carted to another location for another use later
on), so these are just general tendencies.

� Material partition. Di�erent activities often involve di�erent materials, so that deci-
sions that a�ect the materials in one activity do not interact with decisions that a�ect
the materials of the other activity.

� Temporal partition. Di�erent activities often take place at di�erent times, thus lim-
iting the channels through which they might constrain one another. These times
might be standardized points during the cycle of the day or week, or their ordering
might be constrained by some kind of precondition that the �rst activity produces
and successive ones depend upon.

� Role partition. Simon pointed out that division of labor eases cognitive burdens. It
does this in part by supplying individuals with separate spheres in which to conduct
their respective activities.

� Background maintenance. Many activities have background conditions that are main-
tained without reference to speci�c goals. For example, one maintains stocks of sup-
plies in the pantry, puts things back where they belong, and so forth. Hammond,
Converse, and Grass (1995) call some of these \stabilization." (See Section 5.) What
these practices stabilize are the relationships between an agent and the materials used
in its customary activities. They tend to ensure, for example, that one will encounter
one's hammer or the currently opened box of corn 
akes in de�nite sorts of recurring
situations. They thus reduce the complexity of life, and the variety of di�erent hassles
that arise, by encouraging the rise of routine patterns and cycles of activity rather
than a constant stream of unique puzzles.

� Attributes of tools. Numerous properties of tools limit the interactions among separate
decisions. Virtually all tools are resettable, meaning that regardless of what one has
been doing with them, they can be restored to some normal state within which their
full range of functionalities is accessible. (This of course assumes that one has only
been using the tools in the customary ways and has not been breaking them.) Thus
the properties of the tool do not place any ordering constraints on the activities that
use it. Likewise, most tools are not committed to tasks over long periods. Once you
have turned a screw with a screwdriver, for example, the screwdriver does not stay
\stuck" to that screw for any long period. Thus it is not necessary to schedule the
use of a screwdriver unless several people wish to use it at once. Exceptions to this
general rule include bowls (whose ingredients must often sit waiting for future actions
or conditions, and which cannot contain anything else in the meantime), stove burners
(which sometimes must remain committed to heating particular dishes until they have
reached certain states and not before), and clamps (which must remain fastened until
the glue has dried or the sawing operations have been completed).

� Supplies of tools. These latter tools raise the spectre of generalized scheduling prob-
lems and the potential for deadlock among multiple activities, and such problems do
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in fact sometimes arise when cooking for more people than the number to which a
given kitchen is adapted. Most of the time, though, one solves such problems not
through scheduling but simply through having enough of the tools that must remain
committed to particular purposes over a period of time. Lansky and Fogelsong (1987)
modeled the e�ects on search spaces of limited interactions between di�erent cooks
using overlapping sets of tools.

� Warning signs. When things go wrong, unpleasant subgoal interactions can ensue.
To avoid such di�culties, an individual, community, or species keeps track of warning
signs and cultivates the capacity to notice them; these warning signs include supplies
running low and funny smells. This is often done on a primitive associative level, as
when rats stay away from smells that were associated with stu� that made them sick
or people develop phobias about things that were present when they su�ered traumas.
Communities often arrange for certain warning signs to become obtrusive, as when
kettles whistle or natural gas is mixed with another gas that has a distinctive smell.

� Simple impossibility. Sometimes things are just impossible, and obviously so, so that
it is not necessary to invest great e�ort in deciding not to do them.

� Monotonicity. Many actions or changes of state are irreversible. Irreversible changes
cause decisions to interact when certain things must be done before the change takes
place. But it also provides a structure for the decision process: the lifeworld needs to
make it evident what must be done before a given irreversible change occurs.

� Flow paths. Often a lifeworld will be arranged so that particular materials (parts on an
assembly line, paperwork in an organization, food on its way from refrigerator to stove
to table) follow de�nite paths. These paths then provide a great deal of structure for
decision-making. By inspecting various points along a path, for example, one can see
what needs to be done next. Or by determining where an object is, one can determine
what must be done to it and where it must be taken afterward. Some of these paths
are consciously mapped out and others are emergent properties of a set of customs.

� Cycles. Likewise, many lifeworlds involve stable cycles of activities, perhaps with
some of the cycles nested inside of others. The resulting rhythms are often expressed
in recurring combinations of materials, decisions, spatial arrangements, warning signs,
and so on.

� Externalized state. To computer people, \state" (used as a mass noun) means dis-
cernible di�erences in things that can be modi�ed voluntarily, and that can be inter-
preted as functionally signi�cant in some way. Early AI did not treat internal state
(memory) and external state (functionally signi�cant mutable states of the world) as
importantly di�erent, and it is often analytically convenient to treat them in a uniform
fashion. It is often advantageous to record state in the world, whether in the relative
locations of things and the persistent states (in the count noun sense) that they are
left in (Beach, 1988). For example, one need not remember whether the eggs have
been broken if that fact is readily perceptible, if one's attention will be drawn to it on
a suitable occasion, and if one understands its signi�cance for the task. Likewise, one
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can save a great deal of memory by retrieving all of the ingredients for an evening's
recipes from the cupboards and placing them in a customary place on the shelf.

Lifeworlds, then, have a great deal of structure that permits decisions to be made inde-
pendently of one another. The point is not that real lifeworlds permit anyone to live in a
100% \reactive" mode, without performing any signi�cant computation, or even that this
would be desirable. The point, rather, is that the nontrivial cognition that people do per-
form takes place against a very considerable background of familiar and generally reliable
dynamic structure.

The factorability of lifeworlds helps particularly in understanding the activities of an
agent with a body. A great deal of focusing is inherent in embodiment. If you can only look
in one place at a time, or handle only one tool at a time, your activities will necessarily
be serial. Your attention will have a certain degree of hysteresis: having gotten to work
on one countertop or using one particular tool, for example, the most natural step is to
carry on with that same task. It is crucial, therefore, that di�erent tasks be relatively
separate in their consequences, that the lifeworld provide clues when a change of task is
necessary, and that other functionally signi�cant conditions can generally be detected using
general-purpose forms of vigilance such as occasionally looking around. Of course, certain
kinds of activities are more complex than this, and they require special-purpose strategies
that go beyond simple heuristic policies such as \�nd something that needs doing and do
it." The point is that these more complex activities with many interacting components are
rare, that they are generally conducted in specially designed or adapted lifeworlds, and that
most lifeworlds are structured to minimize the di�culty of tasks rather than to increase it.

These various phenomena together formed the motivation for the concept of indexical-
functional or deictic representation (Agre & Chapman, 1987; Agre, 1997). Embodied agents
are focused on one activity and one set of objects at a time; many of these objects are speci�-
cally adapted for that activity; their relevant states are generally readily perceptible; objects
which are not perceptibly di�erent are generally interchangeable; and stabilization practices
help ensure that these objects are encountered in standardized ways. It thus makes sense,
for most purposes, to represent objects in generic ways through one's relationships to them.
The 
ashlight I keep in the car is the-
ashlight-I-keep-in-the-car and not FLASHLIGHT-13.
I maintain a stable relationship to this 
ashlight by keeping it in a standard place, putting
it back there when I am done with it, using it only for its intended purposes, keeping its
batteries fresh, and so on. Its presence in the environment ensures that I have ready access
to light when my car breaks down at night, and therefore that I need not separately plan
for that contingency each time I drive. The conventional structures of my own activity
maintain the 
ashlight's presence as a \loop invariant." Both the presence of the 
ashlight
and the activities that ensure it are structures of my lifeworld.

5. Environments, Policies, and Reducibility

In this section, we will introduce our formalism. The purpose of the formalism is not directly
to specify the workings of the agent's cognitive machinery. Instead, its purpose is to con-
struct \principled characterizations of interactions between agents and their environments
to guide explanation and design" (Agre, 1995). The formalism, in other words, describes
an agent's embodied activities in a particular environment. Having characterized the dy-
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namics of those activities, it becomes possible to design suitable machinery. As a matter
of principle, we want to design the simplest possible machinery that is consistent with a
given pattern of interaction (Horswill, 1995). We therefore make no a priori commitments
about machinery. We do not favor any particular architecture until a particular activity has
been analyzed. Nor do we make any a priori commitments about matters such as analog
versus digital, \planning" versus \reaction," and so on. Our experience has been that real
lifeworlds and real activities incorporate a great deal of useful dynamic structure, and that
any e�ort we invest in studying that structure will be repaid in parsimonious theories about
machinery. But we intend our methods to be equally useful for investigating all types of
activity and designing all types of machinery that might be able to participate in them.

The concept of a lifeworld will not appear as a speci�c mathematical entity in our
formalism. The intuition, however, is this: while there is an objective material environment,
the agent does not directly deal with all of this environment's complexity. Instead it deals
with a functional environment that is projected from the material environment. That
projection is possible because of various conventions and invariants that are stably present
in the environment or actively maintained by the agent. The lifeworld should be understood
as this functional world together with the projection and the conventions that create it.
This section summarizes the formal model of environmental specialization given by Horswill
(1995); for proofs of the theorems, see the original paper. Subsequent sections will apply
and extend the model.

We will model environments as state machines and the behavior of agents as policies
mapping states to actions.

� An environment E is a pair (S;A) where S is its state-space and A its set of possible
actions.

� An action a:S ! S is a mapping from states to states.

� A policy p:S ! A is a mapping from states to actions to be taken. In this paper, the
states will only include facts about the physical environment, but it is a straightfor-
ward matter to include an agent's internal states as well (Horswill, 1995).

The combination of a policy with an environment creates a dynamic system: the environ-
ment's state is mapped by the policy to an action that maps the environment to a new state
and the whole process is repeated.

� A discrete control problem (DCP) is a pair (E;G) of an environment E and a goal G,
which is some subset of E's state space.

� A policy solves the problem if the dynamic system it generates with the environment
eventually reaches a goal state.

� It solves the problem and halts if it remains within G once entering it.

For example, consider a robot moving along a corridor with n equally spaced o�ces
labeled 1, 2, 3, and so on. We can formalize this as the environment Zn = (f0; 1; :::; n �
1g; fincn; dec; ig), where i is the identity function, and where incn and dec map an integer
i to i+ 1 and i� 1, respectively, with the proviso that dec(0) = 0 and incn(n� 1) = n� 1
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Figure 1: The environment Z5 (left) and and the serial product of Z2 with itself, expressed
as graphs. Function products have been written as pairs, i.e. inc�i is written as
(inc; i). Identity actions (i and i�i) have been left undrawn to reduce clutter.

(see Figure 1). Note that the e�ect of performing the identity action is to stay in the same
state.

We emphasize that a policy is a model of an agent's behavior, not of the causal/compu-
tational processes by which that behavior is exhibited. It speci�es what an agent does in each
state, not how it does it. It is thus a theoretical construct, not a data structure or algorithm
in the agent's head. We will examine the implementation issues that surround policies in
section 8.

5.1 Product Environments

The majority of the formal sections of this paper will explore the phenomenon of factoring.
In particular, we will explore how policies for factorable environments can be composed
from policies for the factors. In state-machine models of environments, factorization is
the factorization of the state-space; the environment's state-space is a Cartesian product
of other state-spaces. The environment, as a whole, is \factorable" into its component
sub-environments. For example, the position of the king on a chess board has row and
column components. It can be thought of as the \product" of those components, each if
which is isomorphic to Z8 (since there are eight rows and eight columns). If we consider
an environment in which a car drives through an 8�8 grid of city blocks, we see that it too
is a kind of product of Z8 with itself. Both environments have 8�8 grids as state spaces,
but the car environment only allows one component to change at a time, whereas the king
environment allows both to change.

We must therefore distinguish di�erent kinds of factorization. We will call the chessboard
case the parallel product of Z8 with itself, while the car case is its serial product. We will
focus on another kind of factorization later. Let the Cartesian product of two functions f
and g be f�g: (a; b) 7! (f(a); g(b)), and let i be the identity function. For two environments
E1 = (S1; A1) and E2 = (S2; A2), we will de�ne the parallel product to be

E1 kE2 = (S1�S2; fa1�a2 : a1 2 A1; a2 2 A2g)
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and the serial product to be

E1*)E2 = (S1�S2; fa1�i : a1 2 A1g [ fi�a2 : a2 2 A2g)

The products of DCPs are de�ned in the obvious way:

(E1; G1)k(E2; G2) = (E1 kE2; G1�G2)

(E1; G1)*) (E2; G2) = (E1*)E2; G1�G2)

The state diagram for Z2*)Z2 is shown in Figure 1.
We will say that an environment or DCP is parallel (or serial) separable if it is isomorphic

to a product of environments or DCPs.

5.1.1 Solvability of Separable DCPs

The important property of separable DCPs is that their solutions can be constructed from
solutions to their components:

Lemma 1 Let p1 be a policy which solves D1 and halts from all states in some set of initial
states I1, and let p2 be a policy which solves D2 and halts from all states in I2. Then the
policy

p(x; y) = p1(x)�p2(y)

solves D1 kD2 and halts from all states in I1�I2. (Note that here we are using the convention
of treating p, a function over pairs, as a function over two scalars.)

Lemma 2 Let p1 be a policy which solves D1 from all states in some set of initial states
I1, and let p2 be a policy which solves D2 from all states in I2. Then any policy for which

p(x; y) = p1(x)�i or i�p2(y)

and

y 2 G2; x 62 G1 ) p(x; y) = p1(x)�i

x 2 G1; y 62 G2 ) p(x; y) = i�p2(y)

will solve D1*)D2 and halt from all states in I1�I2.

Note that the parallel and serial cases are di�erent. One would expect the parallel case
to be easier to solve because the policy can perform actions on both state components
simultaneously. In fact it is more di�cult because one is required to perform actions on both
simultaneously and this leaves the agent no way of preserving one solved subproblem while
solving another. Consider a \
ip-
op" environment F = (f0; 1g; fflipg) where flip(x) =
1 � x. F has the property that every state is accessible from every other state. F *) F

also has this property. F k F , however, does not. F k F has only one action, which 
ips
both state components at once. Thus only two states are accessible from any given state
in F kF : the state itself and its 
ip. As with the king, the problem is �xed if we add the
identity action to F . Then it is possible to leave one component of the product intact, while
changing the other. The identity action, while su�cient, is not necessary. A weaker, but
still unnecessary, condition is that F have some action that always maps goal states to goal
states.
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s' s = π(s' ) 

a' (s' ) a(s) = π(a' (s' )) 
π

π

a' a

unreduced environment reduced environment

Figure 2: A simple reduction from an environment E0 to E. Here s and s0 are corresponding
states from the reduced and unreduced environments respectively and a and a0

are corresponding actions. A projection � is a simple reduction if it \commutes"
with actions, so that �(a0(s0)) = a(�(s0)), or alternatively, � � a0 = a � �. Thus
regardless of whether we take the projection before or after the action, we will
achieve the same result.

5.2 Reduction

Another important kind of structure is when one environment can be considered an ab-
straction of another (Newell, Shaw, & Simon, 1960; Sacerdoti, 1974; Knoblock, 1989). The
abstract environment retains the fundamental structure of the concrete environment but
removes unimportant distinctions among states. An abstract state corresponds to a set
of concrete states and abstract actions correspond to complicated sequences of concrete
actions.

We will say that a projection � from an environment E0 to another environment E is a
mapping from the state space of E0 to that of E. We will say that � is a simple reduction
of E0 to E if for every action a of E, there is a corresponding action a0 of E0 such that for
any state s0

�(a0(s0)) = a(�(s0))

or equivalently, that
� � a0 = a � �

where � is the function composition operator. We will say that a0 is a �-implementation of
a and we will use A� to denote the function mapping E-actions to their implementations
in E0.

It is possible to de�ne a much more powerful notion of reduction in which implementa-
tions are allowed to be arbitrary policies. It requires a fair amount of additional machinery,
however, including the addition of state to the agent. Since simple reduction will su�ce for
our purposes, we will simply assert the following lemma, which is a direct consequence of
the more general reduction lemma (Horswill, 1995):

Lemma 3 Let � be a simple reduction from E0 to some environment E and let (E0; G0) be
a DCP. If a policy p solves (E; �(G0)), then

p� = A� � p � �
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solves (E0; G0).

5.3 Related Work

Most formal models of environments use state-space descriptions of the environment, usu-
ally �nite-state machines. Rosenschein and Kaelbling used �nite state machines to represent
both agent and environment (1987, 1989, 1986). Their formalization allowed specialized
mechanisms to be directly synthesized from descriptions of desired behavior and a formal-
ization of the behavior of the environment. The formalization was powerful enough to form
the basis of a programming language used to program a real robot. Later, Rosenschein de-
veloped a method for synthesizing automata whose internal states had provable correlations
to the state of the environment given a set of temporal logic assertions about the dynamics
of the environment. Donald and Jennings (1992) use a geometric, but similar, approach
for constructing virtual sensors. Lyons and Arbib (1989) model both organisms and robots
using process algebras, and Beer (1995) employs the formalisms of dynamic systems theory.

Wilson (1991) has speci�cally proposed the classi�cation of simulated environments
based on the types of mechanisms which can operate successfully within them. Wilson
also used a �nite state formalization of the environment. He divided environments into
three classes based on properties such as determinacy. Todd and Wilson (1993) and Todd
et al. (1994) taxonomized grid worlds in terms of the behaviors that were successful in
them. Littman (1993) used FSM models to classify environments for reinforcement learning
algorithms. Littman parameterized the complexity of RL agents in terms of the amount
of local storage they use and how far into the future the RL algorithm looks. He then
empirically classi�ed environments by the the minimal parameters that still allowed an
optimal control policy to be learned.

There is also an extensive literature on discrete-event dynamic systems (Ko�seck�a, 1992),
which also model the environment as a �nite state machine, but which assume that transition
information (rather than state information) is visible to the agents.

An alternative to the state-machine formalism can be found in the work of Dixon (1991).
Dixon derives his semantics from �rst order logic, in which the world comes individuated into
objects and relations, rather than on the state-space methods used here. Dixon's \open"
approach also avoids the need to de�ne the environment as a single mathematical structure.
Like this work, Dixon's work attempts to formally model the assumptions a system makes
about its environment. Dixon's interest, however, is on what an individual program means
rather than on comparing competing programs.

6. Toast

Toast (Agre & Horswill, 1992) is a program that simulates a short-order cook in a rea-
sonably detailed simulation of a kitchen (see Figure 3). In Toast, the world consists of a
set of objects such as ovens, pans, cutting boards, globs of pancake batter, individual eggs,
and customers of the restaurant. Each object has a type (e.g., EGG) and all objects of a
given type have a common set of possible states and a common set of possible operations
that can be performed on them. An action involves a set of objects of given types. The
action can require that the objects be in speci�ed states and it may change the states of
those objects, but no others. For example, the MIX operation would involve objects of type
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Time Event
0 (BREAK-EGG EGG-11 BOWL-4) [Making omelette]
1 (ADD-EGG EGG-10 OMELETTE-BATTER-0)
2 (ADD-EGG EGG-9 OMELETTE-BATTER-0)
3 (BEAT OMELETTE-BATTER-0 WHISK)
4 (MOVE PAN-4 BURNER-4)
5 (MOVE BUTTER-PAT-15 PAN-4)
6 (MELT BURNER-4 PAN-4 BUTTER-PAT-15)
7 (MOVE SLICE-23 TOASTER) [Waiting for butter so making toast]
8 (START TOASTER SLICE-23)
9 (MOVE KNIFE-4 PLATE-1) [Waiting for toast so setting table]
10 *** Done with goal (KNIFE CLEAN PLATE-1) ***

(MOVE PLATE-1 KITCHEN-TABLE)
11 (MOVE FORK-4 PLATE-1)
12 *** Done with goal (FORK CLEAN PLATE-1) ***

(MOVE SPOON-4 PLATE-1)
Toaster pops!

13 (MOVE BUTTER-PAT-14 KNIFE-3) [Back to toast]
14 (BUTTER SLICE-23 KNIFE-3 BUTTER-PAT-14)
15 (POUR-OMELETTE-BATTER OMELETTE-BATTER-0 ...) [Butter melted so back to omelette]
16 (MOVE SLICE-23 PLATE-1) [Setting table]
17 *** Done with goal (SLICE BUTTERED PLATE-1) ***

*** Done with goal (SPOON CLEAN PLATE-1) ***
(POUR-FLOUR FLOUR BOWL-3) [Making pancake]

18 (ADD-SUGAR SUGAR PANCAKE-BATTER-0)
19 (ADD-BAKING-POWDER BAKING-POWDER PANCAKE-BATTER-0)
20 (FOLD OMELETTE-0 SPATULA-2) [Tending omelette]
21 (ADD-MILK MILK-DISPENSER PANCAKE-BATTER-0) [Back to pancakes]
22 (ADD-EGG EGG-8 PANCAKE-BATTER-0)
23 (MIX PANCAKE-BATTER-0 SPOON-3)
24 (MOVE PAN-3 BURNER-3)
25 (FLIP OMELETTE-0 SPATULA-2) [Tending omelette]
26 (MOVE BUTTER-PAT-13 PAN-3) [Pancake]
27 (MELT BURNER-3 PAN-3 BUTTER-PAT-13)
30 (MOVE OMELETTE-0 PLATE-1) [Finishing omelette]
31 *** Done with goal (OMELETTE COOKED PLATE-1) ***
36 (SPOON-BATTER PANCAKE-BATTER-0 PAN-3 BUTTER-PAT-13) [Pancake]
46 (FLIP PANCAKE-0 SPATULA-2)
56 (MOVE PANCAKE-0 PLATE-3)
57 *** Done with goal (PANCAKE COOKED PLATE-3) ***

(MOVE PLATE-3 KITCHEN-TABLE)
58 (MOVE PAN-2 BURNER-2) [Pancake 2]
59 (MOVE BUTTER-PAT-12 PAN-2)
60 (MELT BURNER-2 PAN-2 BUTTER-PAT-12)
69 (SPOON-BATTER PANCAKE-BATTER-0 PAN-2 BUTTER-PAT-12)
79 (FLIP PANCAKE-1 SPATULA-2)
89 (MOVE PANCAKE-1 PLATE-2)
90 *** Done with goal (PANCAKE COOKED PLATE-2) ***

(MOVE PLATE-2 KITCHEN-TABLE)
91 (CLEAN PAN-2) [Cleanup]
92 (CLEAN PAN-3)
93 (CLEAN SPOON-3)
94 (CLEAN SPATULA-2)
95 (CLEAN BOWL-3)
96 (CLEAN KNIFE-3)
97 (CLEAN PAN-4)
98 (CLEAN WHISK)
99 (CLEAN BOWL-4)
100 (TURN-OFF BURNER-2)
101 (TURN-OFF BURNER-3)
102 (TURN-OFF BURNER-4)

Figure 3: Sample run of the breakfast program. The agent was given the goals of making
an omelette, two pancakes, a slice of toast, and setting the table, then cleaning
up. Our comments appear in square brackets.

MIXING-BOWL, BATTER, and SPOON. It would require that the spoon be in the CLEAN state
and its e�ects would be to put the batter in the MIXED state and the spoon in the DIRTY

state. Objects can perform actions, so the Toast agent, the oven, and the customers are
each modeled as objects that perform the actions of cooking, transferring heat, and making
orders, respectively.

Toast divides most of the objects in its world into two important classes (see Figure
4). Informally, tools are objects that (1) are not end products of cooking and (2) are easily
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Material. Eggs. Fresh ! broken ! beaten ! cooked.
Material. Butter pat. Fresh ! melted.
Material. Milk supply. Non-empty ! empty.
Material. Pancake batter. Has-
our ! has-sugar ! has-dry ! has-milk ! has-all ! mixed.
Material. Pancake. Cooking ! cooked-1-side ! 
ipped ! cooked ! burnt.
Material. Bread slice. Fresh ! toasted ! buttered.
Tools. Forks, spoons, knives, spatulas, whisks. Clean ! dirty, dirty ! clean.
Containers. Bowls, plates, pans, stove burners, countertop, toaster, bread bag.
Active objects. Agent, stove burners, toaster.

Figure 4: Some object types in the current system.

reset to their initial states. For example, knives and spoons are used and dirtied in the
process of cooking, but they are not end products of cooking and they are easily reset to
their clean state by washing. Materials are objects that are end products of cooking but
have state graphs that form linear chains. In other words, for any state of the material,
there is exactly one other state that it can be brought to and there is exactly one action that
can bring it there. For example, an egg being scrambled always goes through the series of
states UNBROKEN, BROKEN, BEATEN, COOKED. In the UNBROKEN state, the only action available
on an egg is BREAK, after which the only action available will be BEAT.

Toast is given a stock of each type of object. As it runs, the customers give it goals
(orders) to prepare speci�c dishes. The goal speci�es a type of material (e.g., \EGG"). It
is satis�ed by putting some object of that type into its �nished state. Which egg object is
cooked does not matter. Toast manages a dynamic set of these goals and opportunistically
overlaps their preparation as processes �nish and scarce resources, such as stove burners,
become free. Toast uses a surprisingly simple algorithm:

On each clock cycle of the simulator:

Choose a material already being cooked

Look up the action needed to advance it to the next state

If the action requires additional tools,

then choose objects of the proper types

If those objects are in their reset states

then perform the action

else choose one of the unreset tool objects

look up and perform its reset action

This algorithm is intentionally sketchy because we have implemented many versions of
it which we �nd intuitively similar, but which have very di�erent control structures and
require very di�erent correctness proofs. The task of the next section will be to draw out
their similarities and produce a coherent theory of them.

The Toast algorithm has two interesting features:

� Most of the algorithm proceeds by table-lookup.

� The algorithm is stateless: no internal plans or models are stored in the agent; all
information used to choose actions is stored in the world.
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Table lookup implies that the algorithm is fast and simple. Statelessness makes the algo-
rithm simple as well, and relatively robust in the face of unexpected perturbations.

7. Modeling the Toast World

Why does Toast work? More speci�cally, what properties of its environment does it rely
upon to work? In general, our strategy is to identify a series of structures in the environment
that permit Toast's tasks to be factored, and then to de�ne a series of reductions that
permit more complex versions of Toast's problem to be de�ned in terms of simpler ones.
We do not claim any vast generality for the Toast architecture; we simply observe that the
environmental regularities that Toast relies upon are common to many other environments,
and we suggest that our method in arguing for Toast's architecture seems likely to extend
to other types of structure in the environment. Although di�erent versions of Toast rely
on di�erent structures, we will show below that all the versions rely on:

1. The factorability of the environment into individual objects. Factoring allows us
to construct solutions to problems from solutions to subproblems for the individual
factors.

2. The special properties of the tool and material object classes.

3. The maintenance of invariants in the agent's own activity that introduce new structure
into the environment.

The formalization of the properties of tools and materials is simple. The precise formal-
ization of factorability into objects, however, is surprisingly di�cult because the environ-
ment is not directly factorable using the methods we have developed so far. We will solve
the problem by de�ning a new factoring technique called uniform reduction, in which the
environment is viewed as a collection of overlapping instances of schematic environments,
each containing the minimal set of objects necessary to perform the task. The agent solves
the task by choosing one of these instances and reducing the goal in the true environment
to the solution of that schematic instance. To do this, the agent must keep track of which
instance it is operating on as it goes along. This could be accomplished with internal mem-
ory, of course, but then the agent would need more and more memory as it performs more
and more tasks concurrently. We will show that by structuring its activity, the agent can
make this information manifest in the environment, thus \storing" the information in the
world.

7.1 Single-Material Worlds

We will start by de�ning the schematic environment for Toast. The environment has
exactly one material to be cooked and one of each tool needed to cook it. To simplify
further, we will start by ignoring even the tools. Then we will

1. Solve the no-tools case.

2. Reduce the self-resetting tools case to the no-tools case.

3. Reduce the general case to the self-resetting tools case.
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7.1.1 Single-Material Worlds with No Tools

Since materials have linear chains as their state spaces, action in them is restricted, to say
the least. In the case of an egg, we might have the chain:

fresh
break
! broken

beat
! beaten

heat
! cooked

heat
! burnt

(We will assume that the identity, or \nop," action is always available in every state. This
is not a trivial assumption.) In any given state, only one non-trivial action can be executed,
so action selection for an agent is trivial. When solving a DCP involving a single-material
world one of the following must always hold:

� The current state is a goal state, so we need only execute the identity action.

� The current state is a pregoal state: some goal state is later in the chain than the
current state, so we can reach it by executing the unique action that brings us to the
next state in the chain.

� The current state is a postgoal state: all goal states are earlier in the chain, so the
problem is unsolvable.

All that really matters in single-material worlds, therefore, is how many states there are
and in which direction the goal lies relative to the current state. In a sense, there is only
really one single-material world, or rather one class of them, namely the chains Cn of given
length:

Cn = (f1; :::; ng; fincn ; ig)

(Note this is just the same as the environment Zn, but without the actions that move
backward along the chain.)

Proposition 1 All single-material worlds of n states are reducible to Cn

Proof: Let E = (S;A) be the single-material environment. De�ne �:S ! f1; :::; ng by
letting �(s) be s's position in E's state chain, i.e. the �rst state maps to 1, the second to
2, etc. Let action(s) denote the unique action that can be performed in state s. Then

pincn(s) = (action(s))(s)

is a �-implementation of incn and so E is reduced. 2

Just as there is only one real class of single-material worlds, there is only one real class
of policies for single-material DCPs:

pCn;G(s) =

(
i; ifs 2 G

incn; otherwise

which clearly solves the DCP (Cn; G) for any n and valid G.

Corollary 1 If a goal G is solvable in a single-material environment E with no tools, then
it is solved by the policy

pE;G(s) =

(
i; ifs 2 G

(action(s))(s); otherwise
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7.1.2 Single-Material Worlds with Single-State Tools

Now suppose the world contains a material and a set of tools, but those tools always clean
or otherwise reset themselves after use. Self-resetting tools have only one state, and so they
are a trivial kind of environment. We de�ne the \singleton" environment as the environment
with exactly one state:

S = (freadyg; fig)

All single-state environments are isomorphic to S, so we model an environment consisting
of a material M = (S;A) and a self-resetting tool as M k S. Its state space is simply
S � freadyg and its actions are just the set

fa0: (sM ; ready) 7! (a(sM ); ready)ja 2 Ag

Each such action performs some action from M on the M -component of the product's state
and leaves the S component unchanged. By induction, we have that:

Proposition 2 Any environment M is isomorphic to M kSn.

And so single-state-tool worlds are trivially reducible to tool-free worlds.

7.1.3 Single-Material Worlds with General Tools

The general tool environment is identical to the single-state tool environment, except that
actions can change the states of tools in addition to the states of materials. We can solve the
general tool case using a solution to the single-state tool case by resetting tools whenever
they are dirtied.

The proof is simple, but requires that we formalize the notion of being a tool. Let E be
an environment with a state space of the form S1 � S2 � :::� Sn. Let a be an action of E
and Si be a component of its state space. We will say

� a is independent of Si if a never changes Si and it has the same result regardless of
the value of Si.

� a is focused on a component Si if it is independent of all other components.

� Si is a tool if it has some privileged value readyi 2 Si such that:

{ From any state (s1; :::; si; :::; sn) of E, we can reach the state (s1; :::; readyi; :::; sn)
using only actions focused on Si.

{ For any action a, a is either independent of the Si, focused on Si, or else only
de�ned on states whose Si component is readyi.

Now we can prove the general tool case is reducible to the single-state tool case:

Lemma 4 Any environment with tool components can be reduced to one in which the tools
have been replaced by singletons. Speci�cally, let D = ((S;A); G) be a DCP and let readyT 2
T , and A0 = fa0: (s; readyT ) 7! (a(s); t)ja 2 A; s 2 S; and t 2 Tg. Then D0 = ((S � T;A0 [
At); G� freadyT g) is reducible to D when T is a tool in D0.

128



Lifeworld Analysis

Proof: Let pD be a solution (policy) for D. By the de�nition of a tool, there must be a
policy pT that will bring D0 from any state (s; t) to (s; readyt) without changing the S

component. Let � be the projection from D0 to D given by

�(s; t) =

(
s; if t = readyT
?; otherwise

For each a 2 A, we de�ne the �-implementation of a, pa by

pa(s; t) =

(
a0; if t = readyT
pT ; otherwise

and so D0 is reducible to D. The general case of multiple tools follows from induction. 2

7.2 Multiple-Material Worlds with Single-Material Goals

To reprise: we want to factor the environment into its individual objects and then describe
Toast as a composite of techniques for operating on the individual factors. We cannot
properly de�ne environments as Cartesian products of individual objects de�ned in isolation
because we have no way of expressing actions involving multiple objects. We can, however,
de�ne a set of objects in the context of a minimal, schematic environment containing one
copy of each object. Having done so, we now want to recapture the notion of an environment
being some kind of product of objects of di�erent types. We will do this by showing that an
environment with two eggs can be thought of as two overlapping copies of an environment
with one egg; the copies di�er only in the choice of the egg.

We will treat environments as having state spaces formed as products of the state spaces
of their objects. A state of the environment is a tuple of the states of its objects. A binding
of the schematic environment to the real environment is a particular kind of projection from
the complex environment to the schematic, one which is also a reduction. If all reasonable
projections are valid bindings, then we will say the environment is uniformly reducible to
the schematic environment.

7.2.1 Bindings and Uniform Reducibility

Let E0 and E be environments with state spaces built as Cartesian products of a family of
disjoint sets fSig. The Si might represent the state spaces of object types like egg and fork.
E0 and E would then each have state spaces make of up some number of copies of egg and
fork.

We will say that a projection � from E0 to E is simple if every component of its result
is a component of its argument. That is

�(s1; s2; s3; :::; sn) = (si1 ; si2 ; :::; sim)

for some i1; :::; im in [1; n]. Thus � takes a E0-state, s0, probably throws away some of its
components, and possibly rearranges the rest to form a new tuple. For example, � might
single out a particular egg's state and/or a particular fork's state and throw the other state
components away. When a projection is simple, we can de�ne a kind of inverse for it,
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the-egg

the-f ork

the-spat ula

the-pan

egg0

egg1

egg2

egg3

egg4

fork0

fork1

spat ula0

spat ula1

pan0

pan1

fork2

schematic world multiple-object world

Figure 5: A binding (solid vectors) and an alternate binding (dashed).

which we will call its back-projection. We will de�ne the back-projection, ��(s; s0), of � to
be the function whose result is s0 with those components that � keeps replaced by their
corresponding components from s. For example, if � is de�ned by

�(s01; s
0
2; s

0
3) = (s03; s

0
2)

then its back-projection would be given by:

��((sa; sb); (s
0
1; s

0
2; s

0
3)) = (s01; sb; sa)

We will say that a simple projection is a binding of E to E0 if it is also a simple reduction
of E0 to E (see Figure 5).

Lemma 5 Let � be a binding of E to E0. Then A� is given by

A�(a) = a�; where a�(s
0) = ��(a(�(s0)); s0)

That is, the implementation of an E-action is simply �'s back-projection composed with that
action and �.

The proof follows from the de�nitions of simple projection and back-projection. We will
say that E0 is uniformly reducible to E if every simple projection from E0 to E is a binding.

7.2.2 Existential Goals

Toast is given the goal of putting some instance of a given material in its �nished state.
We will call this an existential goal because it is satis�ed by exactly those environment
states in which there exists an object of a speci�ed type in a speci�ed state. Let (E;G) be
a DCP and let E0 be uniformly reducible to E. We de�ne the existential goal 9E;E0G of G
in E0 to be the set of states in E0 that project under some binding to a goal state in (E;G):

9E;E0G =
[

� a binding of E to E0

��1(G)
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where ��1(G) = fs0:�(s0) 2 Gg is the set of states that map to goal states under �. Given
a solution to a schematic goal in a schematic environment, we can easily construct any
number of solutions to the existential goal:

Lemma 6 If policy p is a solution for the problem (E;G) from initial states I, and � is a
binding from E0 to E, then

p� = A� � p � �

is a solution for (E0;9E;E0G) from initial states ��1(I), where A� is the function mapping
actions in E to their corresponding actions under � in E0.

TheToast algorithm implements a policy which is a composition of a schematic solution
and a binding that maps it onto the real world. Consider the problem of cooking an egg.
The schematic solution might be:

break the-egg into the-pan
beat the-egg in the-pan using the-whisk
heat the-egg in the-pan

here the boldface verbs break, beat, and heat name actions. The italicized expressions the-
egg and the-pan name the objects (state components) that they a�ect in the simpli�ed world.
The binding then determines objects in the real world to which those state components
correspond. Given a binding, the main control structure need only remember the sequence
break, beat, heat. Each of these may have preconditions on the states of the tools (i.e. the
whisk needs to be clean), but they can be handled by reduction given policies for resetting
the tools.

7.2.3 Binding Maps

Given the basic policy for cooking a single egg with a single pan and whisk, we can construct
a policy to achieve the goal by composing the basic policy with a binding. This policy will
solve the goal from any state in which the bound material is in a non-postgoal state. For a
policy to solve the goal from any solvable state, it must be able to change bindings at run
time. We will call a function from states to bindings a binding map.

One simple policy for choosing bindings is to impose some a priori ordering on the
objects and always use the �rst acceptable object in the ordering. The ordering might be
random, or it might correspond to order imposed by a visual search mechanism. From a
formal standpoint, the ordering does not matter, so we can, without loss of generality, use
the left-to-right order of state components in the environment's state tuple. Let M0 be
some binding map that always chooses the leftmost pregoal material and uses some �xed
mapping for the tools (we do not care what). This mapping allows us to construct a true
solution, and one that requires no internal state in the agent:

Proposition 3 The policy

pM0(s) = (AM0(s) � p � (M0(s)))(s)

is a solution from any state for which M0 is de�ned.
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Proof: By assumption, M0 is de�ned in the initial state. The environment must then map
to a solvable state under M0 in the initial state. Since p is, by assumption, a solution for
the problem in E, pM0 must solve the problem in E0 unless M0 changes value before the
pM0 can solve the problem. Suppose it does. Then the environment must go from a state
s00, in which some state component of E0 is the leftmost pregoal material, to a state s01, in
which some other component is the leftmost pregoal material. This can only happen if (a)
the leftmost pregoal material in s00 is changed to be in a goal state in s01 or (b) some other
component that was not pregoal in s00 becomes pregoal in s00. Case (b) is impossible and
case (a) implies that s01 is itself a goal state. Thus pM0 must be a solution. 2

7.3 Multiple Goals: Metabolism

Thus far, we have not considered what happens once a policy achieves its goal. Since agents
rarely set out to achieve a goal and die, we now want to consider how to account for extended
activity involving many goals.

One important class of extended activities is when an agent transforms a whole class of
identical objects. We will call this metabolizing the class. Metabolism can be useful or it
can make extra work: cooking 100 eggs is useful, at least if you are feeding a lot of people;
dirtying 100 forks, however, probably means you have to wash them all.

Whether a policy metabolizes an object class depends in large part on the binding map
it uses. The policy pM0 metabolizes its materials because the material being worked on
ceases to be the leftmost pregoal material as soon as it arrives in a goal state. When this
happens, M0 changes bindings and the agent starts to work on a di�erent object. Policy p

never actually sees a material in a goal state. Of course, the property of being \leftmost"
is an artifact of our formalism. What matters to the property of metabolism is simply
that the binding map implement some ordering on the instances of the material and always
choose the minimum under that ordering of the objects that are in pre-goal states. Such
an ordering might be implemented by the agent visually scanning its work surface for an
uncooked egg, but always scanning left-to-right and top-to-bottom. We will return to these
issues in section 8.

Other binding maps lead to other kinds of behavior, some of which are pathological. If
the binding map always chooses the same binding, then metabolism ceases. If the binding
map always chooses uncooked eggs but doesn't impose any ordering on them, it might start
cooking an in�nite number of eggs without ever actually �nishing any one of them.

Metabolism is also an issue for tool use. To metabolize its materials, pM0 must repeatedly
reset its tools. An alternate policy is to metabolize the tools too. Let us de�ne M1 to be
the binding map that uses not only the leftmost pregoal material but also the leftmost reset
tools. Then clearly,

pM1(s) = (AM1(s) � p � (M1(s)))(s)

is a solution from any state for which M1 is de�ned. This policy treats tools as disposable.
So long as there is an in�nite supply of fresh tools, p will see a succession of states in which
tools are in their reset states. It will never need to execute a resetting action and so the
environment is e�ectively a single-state-tool environment. Thus the reduction of section
7.1.3 is unnecessary.

132



Lifeworld Analysis

7.4 Multiple Goals: Interleaved Execution

Metabolism involves performing the same transformation uniformly to instances of the
same type of object: cooking all the eggs, or cleaning/dirtying all the forks. Often times,
however, an agent will work toward di�erent kinds of goals at once. This can often be
done by interleaving the actions from solutions to the individual goals. We will say that
an interleaving I is a function that returns one or the other of its �rst two arguments,
depending on a third state argument:

I(s; p1; p2) 2 fp1; p2g; for all s

When the last two arguments of I are policies, the result is itself a policy, so we will de�ne
the notation:

Ip1;p2(s) = (I(s; p1; p2))(s)

If we wanted to simultaneously make toast and cook an egg, then a good interleaving of
a toast-making policy and an egg-cooking policy would be one that chose the egg-making
policy whenever the egg had �nished its current cooking step (and so was ready to be

ipped or removed from the pan) and chose the toast-making policy when the egg was busy
cooking. A bad interleaving would be one that always chose the toast-making policy.

An interleaving I is fair for p1 and p2 if starting from any state, Ip1;p2 will after some
�nite number of steps have executed both p1 and p2 at least once. Finally, we will say
that two bindings are independent if they map disjoint sets of components to their images.
Binding independence is a special case of subgoal independence: two policies can't possibly
interfere if they alter distinct state components. Fairness and binding independence are
su�cient conditions for an interleaving to solve a conjunctive goal:

Lemma 7 Let p1 = A�1 � p
0
1 � �1 and p2 = A�2 � p

0
2 � �2 be policies that solve the goals G1

and G2, respectively, and halt. If �1 and �2 are independent and I is a fair interleaving for
p1 and p2 then Ip1;p2 solves G1 \G2 and halts.

Proof: Since I is a fair interleaving, each of the two policies will be executed in �nite time,
regardless of starting state. By induction, for any n, there is a number of steps after which
I is guaranteed to have executed at least n steps of each policy.

The policy p1 is the composition of a policy p01 for a state space S1 with a binding. If
p1 solves G1 and halts, then it must do so by having p01 solve �(G1) and halt in some �nite
number of steps n. During execution, the environment goes through a series of states

s0; s1; :::; sn

which project under �1 to a series of states

s00; s
0
1; :::; s

0
n

we claim that any execution of the interleaving Ip1;p2 must bring the environment through
a sequence of states that project under �1 to

(s00)
+; (s01)

+; :::; (s0n)
+; :::

133



Agre & Horswill

that is, a string of states in which s00 appears at least once, then s01, appears at least once,
and so on. The only state transitions that appear are from some s0i to itself or to s0i+1.
Suppose it were otherwise. Then there must be a point at which this series is broken:

(s00)
+; (s01)

+; :::; (s0i)
+; s

where s is neither s0i nor s
0
i+1. We have two cases. Case 1: p1 executed the transition.

Then we have that p01(s
0
i) = s 6= s0i+1, a contradiction. Case 2: p2 executed the transition.

Then p2 has changed one of the state components mapped by �1 and so �2 and �1 are not
independent, a contradiction. Thus the interleaving solves G1. By the same reasoning, it
must halt in G1, since p1 halts in G1. Also by the same reasoning, it must solve G2 and
halt, and hence, must solve the intersection and halt. 2

A useful corollary to this is that when the same policy is applied under two independent
bindings, the bindings can be safely interleaved, that is, interleaving commutes with binding:

Corollary 2 If p1 = A�1 �p��1 and p2 = A�2 �p��2 be policies that solve the goals G1 and
G2, respectively, and halt, and I is a fair interleaving for p1 and p2, then AI�1;�2

� p � I�1;�2
solves G1 \G2 and halts.

8. Implementing Policies and Bindings

We have modeled Toast's behavior as a composition of various bindings and interleavings
with a basic policy for a schematic environment. In the case of Toast, the basic policy
is simple enough to be implemented by table-lookup. The hard part is implementing the
bindings and interleavings given realistic limitations on short-term memory and perceptual
bandwidth.

One approach would be to assume a relatively complete representation of the world.
Each egg would be represented by a logical constant and its state would be represented
by a set of propositions involving that constant. A binding would be implemented as a
frame structure or a set of variables that point at the logical constants. The problem is
that this approach presupposes the underlying perceptual and motor systems maintain a
correspondence between logical constants and eggs in the world. When one of the eggs
changes, the visual system has to know to be looking at it and to update the assertions
about the egg in the model.

This is not an assumption to be taken lightly. The capacity of the human perceptual
system to keep track of objects in the world is extremely limited. Ballard et al. (1995)found
that their experimental subjects adopt strategies that minimized the amount of world state
they needed to track internally, preferring to rescan the environment when information is
needed rather than memorize it in advance. The environment could even be modi�ed during
saccadic eye movements without the subjects noticing.

An alternative is to treat the limitations of the body, its locality in space, and its limited
attentional and motor resources as a resource for implementing bindings directly. A person
can visually focus on one object, stand in one place, and grasp at most a few objects at
any one time. The orientation of the body's parts relative to the environment can be used
to encode the selection of objects being operated on at the moment. In other words, it can
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implement a binding. Actions of the body, gaze shifts, and movements to new places can
be used to shift that binding.

Another alternative is to use the states and relationships of objects in the world to keep
track of bindings. An egg is being cooked if it is in the frying pan. A fork is available for
use if it is in the drawer, but not if it is in the sink waiting to be washed.

In this section, we will model the use of the body and conventions to implement bind-
ings and interleavings. To simplify the presentation and to be concrete, we will focus on
materials, particularly eggs.

8.1 Binding, Deixis, and Gaze

To a �rst approximation, people can only visually recognize objects at which they are
directly looking. People achieve the illusion of direct access to arbitrary objects by rapidly
changing their gaze direction. Thus in addition to the normal state of the environment,
our lived world contains an additional state component, our gaze direction. Since we can
normally change our gaze direction without changing the world, and vice versa, our lived
world E0 can be separated into a parallel product of the objective environment and our gaze
direction:

E0 = E kD

Our access to this world is through our gaze, which allows us to focus in on one particular
object at a time. Our gaze implements a binding, or more precisely, a binding map, since it
depends on the direction of gaze. If we model gaze direction as a number indicating which
object is presently foveated, we have that:

�gaze(s1; s2; :::; sn; d) = sd

A person could implement a single-object binding just by �xating the object they wish to
bind. First they would set the D component to some egg, and then use �D as their binding.
Since �D is really a binding map, however, rather than a true binding, the agent must
pervasively structure its activity so as to ensure that its gaze need never be redirected.

8.2 Binding and Convention

In general, agents must maintain bindings through some sort of convention, whether it is the
structuring of their internal memory, as in the case of a problem solver, or the structuring
of their activity. In the case of gaze above, the agent maintains the binding through a
convention about the spatial relation between its eye and the object it is binding. All
versions of Toast to date have maintained bindings using conventions about (simulated)
spatial arrangement or the states of objects.

One reason Toast cannot rely solely on gaze binding is that the technique breaks down
when binding multiple objects. The agent must continually move its gaze among the objects
of interest and so some additional convention must be introduced to ensure that when its
gaze leaves the egg and later returns, it always returns to the same egg. (This assumes, of
course, that Toast must return to the same egg. In some tasks it may su�ce for Toast
to return to some functionally equivalent egg. If it is preparing three fried eggs and its
attention is distracted while preparing to break the second one, it is alright if its attention
returns to the third egg, so long as it gets back to the second egg eventually.)
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State conventions

The original version of Toast used the convention eggs were bound to a cooking task
i� they were not in their starting (unbroken) state. Eggs were therefore bound using the
binding map

�Toast(s) = the state of the unique egg in s that is in an unbroken state

which the agent can implement by �rst visually searching for an unbroken egg, and then
using �gaze. By corollary 2, the interleaving of the cooking of multiple eggs can be accom-
plished by interleaving the bindings of the eggs. For example, we might assume that the
visual system searched non-deterministically or in a round-robin fashion for eggs. Any fair
interleaving will su�ce.

Spatial conventions

Later on in our development of Toast, we found it useful to adopt the convention that
eggs were bound to a cooking task i� they were located in a designated workspace. Cooking
eggs are on the counter or in the frying pan, while idle eggs are in the refrigerator. This
convention lets the agent use space as an external memory for binding information. To bind
the egg, the agent faces the workspace and performs visual search for an egg. Any egg it
�nds will be an egg being cooked, since idle eggs will be out of view.

This still leaves open the issue of fairness. An extreme but elegant solution to the fairness
problem is to use multiple workspaces and employ the convention that each workspace
de�nes a unique binding. To cook two eggs, the agent just works on cooking whatever egg
is in front of it, but it spins in place so that it alternates between workspaces.

Formally, the environment then consists of two copies of the workspace and the objects
therein plus an extra state component that determines which workspace the agent faces.
The agent's perceptual system implements a binding map in which one or the other of
the two workspaces is bound depending on the agent's orientation. Given a policy for
cooking one egg in one workspace, we can construct a policy for cooking two eggs in two by
interleaving the policy with a \
ipping" operation that switches the workspaces:

Proposition 4 Let E = (S;A) be an environment, p be a policy that solves some goal G
in E and halts, and let D be an environment with two states, 0 and 1, and two actions, i
(the identity) and flip which moves the environment into the opposite state from its present
state. Consider the product environment:

E0 = E*)E*)D

and the binding map from E0 to E:

MD(s0; s1; d) = sd

Any fair interleaving of the policies:

pMD
= AMD

� p �MD
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the real world

functionally equivalent objects

general tools

self-cleaning tools

single object

canonical chain

idealization

binding maps
and interleavings

least reset
binding map

resetting policies

isomorphism  

isomorphism  

Figure 6: Various alternative reductions used in Toast.

and

pflip(s0; s1; d) = i� flip

is a solution to the problem (E0; (G�G� f0; 1g)).

Proof: Consider the bindings �0: (s0; s1; d) ! s0 and �1: (s0; s1; d) ! s1, and let p�0 =
A�0 � p � �0 and p�1 = A�1 � p � �1. Since the binding map MD alternates between the
bindings �0 and �1, any fair interleaving of pMD

with pflip is equivalent to some interleaving
of p�0 , p�1 and pflip. We would like to show that this interleaving is also fair, that is, that
each of p�0 and p�1 will get run in �nite time. We can see this from the fact that with
each execution of pflip switches MD from one binding to another. An objection is that this
leaves open the possibility that that pflip will always get run twice in a row, thus returning
the environment to its original state and so preventing MD from switching bindings. This
cannot occur, however, since it would introduce a loop, causing the interleaving to run pflip
forever, never running pMD

, and so violating the assumption of fairness of the interleaving
of pMD

and pflip. Thus the interleaving of p�0 , p�1 and pflip must be fair. Now note that
p�0 solves the goal G � S � f0; 1g and halts, p�1 solves the goal S �G� f0; 1g and halts,
and pflip solves the goal G�G�f0; 1g and halts. Thus by lemma 7, the interleaving solves
the intersection of these goals, which is G�G� f0; 1g. 2
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9. Reductions and the Structure of Toast

We have shown how the cooking problem can be solved by a series of reductions and
conventions. Binding allows the reduction of the problem to a schematic world in which
action is greatly restricted and so action selection is greatly simpli�ed. This world can be
further reduced, given algorithms for resetting tools, to a world in which tools are always
reset. This world, in turn, is equivalent to a world in which there is only one object, the
material being cooked, and only one action can be taken at any given time. Such actions
can be found by table lookup.

Multiple materials can be cooked by interleaving the execution of processes for cooking
the individual materials. Interleaving the processes is equivalent, however, to interleaving
the bindings, so the schematic-world algorithm need not even be aware that it is pursuing
multiple goals. If tool bindings are continuously changed as tools are dirtied then tools are
e�ectively disposable, tools e�ectively have only a single state, and the separate reduction
from general tools to single-state tools is unnecessary. Material bindings can be maintained
by any number of conventions involving the states and/or positions of objects.

In short, we can describe a Toast algorithm as a path through a network of possible
simpli�cations of the problem (see Figure 6) in which every path from the actual world
to the idealized single-object world de�nes a possible (and correct) version of the Toast
algorithm.

10. Cognitive Autopoiesis

In formalizing our ideas about binding and gaze, we have been moving toward a theory of
intentionality that depends on the agent's embedding in its world, rather than solely upon
its internal models of that world. An agent can keep track of particular objects in terms
of their functional signi�cance { the roles that they play in the ongoing activity. And it
can keep track of the tools and materials associated with di�erent tasks by keeping them
in di�erent locations, for example di�erent regions of a countertop. So far, however, our
ideas on the subject have been limited to very simple cases, for example an agent switching
its visual focus back and forth between two objects. To model the more complex patterns
that are found in everyday life, we need a much better theory of the world in which we
are embedded. This theory is partially a matter of biology and physics, of course, but it
is also a matter of cultural practices for organizing activities in space. In this section, we
would like to sketch a more general theory of these matters using the concept of \cognitive
autopoiesis."

For Maturana and Varela (1988), autopoiesis refers to the processes by which organisms
act on their environments in order to provide the conditions for their own continued func-
tioning. Cognitive autopoiesis refers to the active means by which agents structure their
environments in order to provide the conditions for the own cognitive activities. These
include most basically the means by which agents provide for the factorability of environ-
ments: engaging in customary activities, using the customary tools and materials for them,
partitioning the activities in the customary ways, and so on. But it also includes a range
of more subtle phenomena. Kirsh (1995), for example, has drawn the useful distinction
between actions that aim at achieving functional goals (beating eggs, sweeping 
oors) and
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actions that aim at facilitating cognition (setting out the right number of eggs at the be-
ginning, opening the curtains so that dust will be more visible). Actions can, of course,
serve both purposes, for example when one chooses to boil water in a kettle rather than a
saucepan: each strategy achieves the result, but the latter will also provide a sign that it
is possible to take the next action, for example preparing tea. Stabilization actions (Ham-
mond et al., 1995) also provide the cognitive conditions for other actions. One might, for
example, develop the habit of leaving items by the door the moment one realizes that they
need to be taken in to work.

These phenomena help in understanding what is inadequate about the concept of \the
environment." If one conceptualizes \the environment" as a monolithic whole, perhaps the
way it looks when viewed from an airplane, or else the way it looks when understood through
the peephole of a momentary vector of sense-perceptions, it begins to seem arbitrary, chaotic,
or hostile. In a certain sense it seems static, as if it has an anatomy but no physiology.
But in fact the phenomena of cognitive autopoiesis reveal that the lifeworld has a great
deal of living structure, and that this structure is actively maintained by agents while also
providing crucial preconditions for their own cognition. Indeed it is hard to draw a clear line
around an agent's cognition; if we trace the sequence of causal events that led a given agent
to pour a pitcher of milk on a particular moment, this sequence will lead back and forth
between the agent and its customary surroundings. It is almost as if these surroundings
were an extension of one's mind.

Cognitive autopoiesis is a complex and multifaceted phenomenon and no single theory
will su�ce to explain it. One useful way to think about cognitive autopoiesis is spatially,
in terms of a series of bu�er zones between the embodied agent and the putative dangers
and complexities of \the environment." For people whose lives are similar to our own, these
bu�er zones can be conveniently sorted under six headings:

� The body itself: its posture, its markings, things that might be attached to it or hung
from it, prostheses, arti�cial markings, the things one is holding in one's hands, and
so on. All of these things can serve as forms of memory, for example as a way to
remember what activity one was in the middle of before some momentary distraction.
The body's motility also makes possible a wide range of voluntary recon�gurations
of one's physical relationship to things, for example to get a better view or better
leverage.

� Clothing, including pockets, purses, money belts, hats, and so on. Everyone carries
around various objects in ways that draw on customary practices and artifacts (cash
in wallets, keys in pockets, watch on wrist, etc) while con�guring these things in an
evolving personal way (keys in left pocket and money in right, tissues in the hip pocket
of one's coat, spare change in the outer 
ap of the backpack, and so on).

� Temporary workspaces that one occupies to perform a particular activity over a bound-
ed period. In repairing a bicycle, for example, one might spread tools and bicycle
parts about on the 
oor in patterns that have a cognitive signi�cance in relationship
to one's own body and cognitive and other states (Chapman & Agre, 1986). One is
not claiming this space as a permanent colony (it might be located on a patio in a
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public park, for example), but one does lay claim to the space long enough to perform
a customarily bounded task.

� One's own private spaces: home, desk, o�ce, car, trunks of stu� kept in someone else's
attic, and so forth. These spaces serve numerous functions, of course, but among these
are the cognitive functions of providing stable locations over long periods of time for
tools and materials, storage places for stu� that needs to be kept in adequate supply,
practices for regulating other people's access to the stu�, and so on. These stable
conditions are actively maintained and provide the background for a wide variety of
more transient activities.

� Spaces that are shared with other people within stable, time-extended relationships.
These spaces include living rooms, kitchens, shared o�ce spaces, and so forth. The
line between the private and shared spaces clearly depends on the particular culture
and set of relationships, and the distinction might not be clear. The point is that
the cognitive functions of the spaces are maintained through shared practices such as
letting someone know when you borrow their stu�.

� Public spaces and the whole range of customary artifacts and practices that regu-
late activities in them. Public spaces o�er fewer guarantees than private and shared
spaces, but they do include a wide variety of supports to cognition, including signs
and architectural conventions. It is also possible to use one's body and clothing to
carry artifacts that provide cognitive support for dealing with public spaces.

These bu�er zones do not always o�er perfect protection from harm or complete support
for the pursuit of goals. Shared and public spaces can be sites of con
ict, for example,
and these con
icts can include involuntary disruption or destruction of one's body and the
other bu�er zones that are customarily under one's own private control. A serious theory
of activity must include an account of these phenomena as well, which are usually just as
orderly in their own way as anything else.

In any event, the nested bu�er zones of ordinary life participate in a large metabolism
that continually interweaves cognitive and functional purposes. Among these purposes is
learning. Just as the adaptation of body parts and tools to customary activities helps chan-
nel action in customary directions, so does the existing background of objects, spaces, and
practices help channel the actions of children and other newcomers in customary directions
on a larger scale. Caretakers regularly construct customized types of bu�er zones around
the young, for example, so that it is di�cult or impossible for them to get into anything
that could cause harm. The lifeworld of a child, for example, di�ers from that of an adult
who can reach up to the cookie jar and into the locked cupboard where the roach spray is
kept. A growing literature has investigated the processes of cognitive apprenticeship (Ro-
go�, 1990), situated learning (Lave & Wenger, 1991), distributed cognition (Hutchins, 1995;
Salomon, 1993), and shared construction of activities (Gri�n & Cole, 1989) that go on in
these systematically restrictive and supportive lifeworlds.
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11. Conclusion

In this paper we have explored some of the ways in which the structure of the lifeworld
supports agents' cognition, and we have suggested how this analysis might be expanded to
cover a wider range of phenomena. Much work obviously remains to be done. Perhaps the
most signi�cant part of this work concerns a fundamental assumption of lifeworld analysis:
that people use objects in customary ways. This is a plausible enough �rst approximation,
but it is not always true. Faced with a di�culty that goes beyond the capacities of the
usual practices and the artifacts that are readily available, people frequently improvise.
The handle of a spoon might be used to pry open a lid, a pen might be used to �sh acorns
out of an exhaust duct, a book might be used to provide backing for a sheet of paper one is
writing on, or a protruding section of a car's bumper might be bent straight by deliberately
driving the car into a concrete wall. In these cases the underlying physical a�ordances of
an object \show through" beyond their ready-to-hand appropriation in routine patterns
of interaction. These underlying a�ordances can also show through in situations of break-
down, for example when a tool breaks or proves inadequate to a job. In such cases, people
confer improvised meanings upon artifacts. Such phenomena are particularly important
in conversation, in which each utterance is interpreted in the context created by previous
utterances, while simultaneously helping to create the context for interpretation of succes-
sive utterances as well (Edwards & Mercer, 1987; Atkinson & Heritage, 1984). The point
is not that the lifeworld does not exist, but rather that it is something actively created as
well as something adapted to through socialization. One challenge for future research is to
learn how computational methods might help in modeling such phenomena|and how such
phenomena might help us to rethink basic ideas about computation.

Acknowledgements

We appreciate the detailed comments of the referees. This work was funded in part by
the National Science Foundation under grant number IRI{9625041. The Institute for the
Learning Sciences was established in 1989 with the support of Anderson Consulting, part
of the Arthur Anderson Worldwide Organization.

Glossary of Terms

Binding. A simple projection (mapping between state-space components of two environ-
ments) that acts as a reduction from one environment to another (see section 7.2.1).

Binding map. A mapping from environment states to bindings (see section 7.2.3).

Cartesian product. For sets: A � B is the set of all pairs (a; b) for a 2 A, b 2 B.
For environments: an environment is the Cartesian product of two other environments i�
its state space is the Cartesian product of their state spaces. Since the set of actions is
left open in this de�nition, there are many possible ways of forming products, e.g. serial
product, parallel product, uniform extension, etc.(see section 5.1).

Discrete control problem (DCP). An environment and a set of goal states within it
(see section 5).

Environment. A state machine, i.e. , a set of possible states and a set of possible actions
mapping states to states. The sets of states and actions need not be �nite (see section 5).
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Focus. An action is focused on a state component if it only alters that component (see
section 7.1.3).

Material. An object (environment) whose state space is a chain (see section 7.1).

Policy. A mapping from states to actions; the formalization of an agent's control structure
(see section 5).

Projection. A mapping from the state space of one environment to the state space of
another (see section 5.2).

Simple projection. A mapping between state spaces that maps state space components
of one environment to state space components of another (see section 5.2).

State component. (For environments whose state spaces are Cartesian products) An
element of an environment's state-tuple (see section 5.1).

Solution. A policy solves a DCP from an initial state if, when run from that state, it
eventually reaches a goal state (see section 5).

Tool. (Roughly) A state component that can be brought to ready state without altering
any other state components (see section 7.1.3).

Uniform reducibility. (Roughly) E0 is uniformly reducible to E if it consists of multiple
copies of E's objects (see section 7.2.1).

Glossary of Notation

�. Function composition operator: f � g(x) = f(g(x)).

�. A projection (p. 122).

��1. The inverse of �, i.e. the set of states that map to a given state under � (p. 131).

��. (For a simple projection �:S0 ! S). A generalized inverse. Since � only maps certain
components of S0 to S, ��(s; s0) is s0 with those components replaced by their corresponding
components in s (p. 130).

A�. For a simple reduction � from an environment E0 to E, the function mapping an action
a from E to the action that implements it in E0 (p. 122).

Cn. The chain-environment of n states (p. 127).

E. An environment.

9E;E0G. G a goal of E and E0 uniformly reducible to E. The existential goal of G in E0:
the set of all E0-states that map to a goal state under some binding (p. 130).

E1*)E2. The serial product. The Cartesian product of E1 and E2 in which actions from
the two environments must be taken separately (p. 120).

E1 kE2. The parallel product. The Cartesian product of E1 and E2 in which actions from
the two environments must be taken simultaneously (p. 120).

LE;E0. (E0 an environment uniformly reducible to E) The leftmost-ready binding map from
E0 to E (p. 131).

p. A policy.

pE;G. The standard policy for single-material environment E and goal G (p. 127).

S. The singleton environment (the environment with exactly one state). Used to represent
a self-resetting tool (p. 128).
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