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Abstract

The main operations in Inductive Logic Programming (ILP) are generalization and
specialization, which only make sense in a generality order. In ILP, the three most impor-
tant generality orders are subsumption, implication and implication relative to background
knowledge. The two languages used most often are languages of clauses and languages of
only Horn clauses. This gives a total of six different ordered languages. In this paper, we
give a systematic treatment of the existence or non-existence of least generalizations and
greatest specializations of finite sets of clauses in each of these six ordered sets. We survey
results already obtained by others and also contribute some answers of our own.

Our main new results are, firstly, the existence of a computable least generalization
under implication of every finite set of clauses containing at least one non-tautologous
function-free clause (among other, not necessarily function-free clauses). Secondly, we show
that such a least generalization need not exist under relative implication, not even if both
the set that is to be generalized and the background knowledge are function-free. Thirdly,
we give a complete discussion of existence and non-existence of greatest specializations in
each of the six ordered languages.

1. Introduction

Inductive Logic Programming (ILP) is a subfield of Logic Programming and Machine Learn-
ing that tries to induce clausal theories from given sets of positive and negative exam-
ples. An inductively inferred theory should imply all of the positive and none of the neg-
ative examples. For instance, suppose we are given P(0), P(s*(0)), P(s*(0)), P(s%(0))
as positive examples and P(s(0)), P(s*(0)), P(s*(0)) as negative examples.! Then the set
¥ = {P(0), (P(s*(z)) + P(z))} is a solution: it implies all positive and no negative ex-
amples. Note that this set can be seen as a description of the even integers, learned from
these examples. Thus induction of clausal theories is a form of learning from examples. For
a more extensive introduction to ILP, we refer to (Lavra¢ & Dzeroski, 1994; Muggleton &
De Raedt, 1994).

Learning from examples means modifying a theory to bring it more in accordance with
the examples. The two main operations in ILP for modification of a theory are generalization
and specialization. Generalization strengthens a theory that is too weak, while specialization
weakens a theory that is too strong. These operations only make sense within a generality
order. This is a relation stating when some clause is more general than some other clause.

1. Here 5%(0) abbreviates s(s(0)), s?(0) abbreviates s(s(s(0))), etc.
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The three most important generality orders used in ILP are subsumption (also called
f-subsumption), logical implication and implication relative to background knowledge.? In
the subsumption order, we say that clause C' is more general than D—or, equivalently, D
is more specific than C—in case C subsumes D. In the implication order C is more general
than D if C logically implies D. Finally, C' is more general than D relative to background
knowledge ¥ (X is a set of clauses), if {C'} U X logically implies D.

Of these three orders, subsumption is the most tractable. In particular, subsumption
is decidable, whereas logical implication is not decidable, not even for Horn clauses, as
established by Marcinkowski and Pacholski (1992). In turn, relative implication is harder
than implication: both are undecidable, but proof procedures for implication need to take

only derivations from {C'} into account, whereas a proof procedure for relative implication
should check all derivations from {C'} U X.

Within a generality order, there are two approaches to generalization or specialization.
The first approach generalizes or specializes individual clauses. We do not discuss this in
any detail in this paper, and merely mention it for completeness’ sake. This approach can
be traced back to Reynolds’ (1970) concept of a cover. It was implemented for example
by Shapiro (1981) in the subsumption order in the form of refinement operators. However,
a clause C' which implies another clause D need not subsume D. For instance, take C' =
P(f(z)) + P(z) and D = P(f?*(z)) + P(z). Then C does not subsume D, but C' = D.
Thus subsumption is weaker than implication. A further sign of this weakness is the fact
that tautologies need not be subsume-equivalent, even though they are logically equivalent.

The second approach generalizes or specializes sets of clauses. This is the approach
we will be concerned with in this paper. Here the concept of a least generalization® is
important. The use of such least generalizations allows us to generalize cautiously, avoiding
over-generalization. Least generalizations of sets of clauses were first discussed by Plotkin
(1970, 1971a, 1971b). He proved that any finite set S of clauses has a least generalization
under subsumption (LGS). This is a clause which subsumes all clauses in S and which is
subsumed by all other clauses that also subsume all clauses in S. Positive examples can
be generalized by taking their LGS.* Of course, we need not take the LGS of all positive
examples, which would yield a theory consisting of only one clause. Instead, we might
divide the positive examples into subsets, and take a separate LGS of each subset. That
way we obtain a theory containing more than one clause.

For this second approach, subsumption is again not fully satisfactory. For example, if .S
consists of the clauses Dy = P(f%(a)) + P(a) and Dy = P(f(b)) + P(b), then the LGS of
Sis P(f(y)) < P(z). The clause P(f(z)) « P(z), which seems more appropriate as a least
generalization of S, cannot be found by Plotkin’s approach, because it does not subsume
D;. As this example also shows, the subsumption order is particularly unsatisfactory when
we consider recursive clauses: clauses which can be resolved with themselves.

2. There is also relative subsumption (Plotkin, 1971b), which will be briefly touched in Section 4.

3. Least generalizations are also often called least general generalizations, for instance by Plotkin (1971b),
Muggleton and Page (1994), Idestam-Almquist (1993, 1995), Niblett (1988), though not by Plotkin
(1970), but we feel this ‘general’ is redundant.

4. There is also a relation between least generalization under subsumption and inverse resolution (Muggle-
ton, 1992).
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Because of the weakness of subsumption, it is desirable to make the step from the
subsumption order to the more powerful implication order. Accordingly, it is important to
find out whether Plotkin’s positive result on the existence of LGS’s holds for implication
as well. So far, the question whether any finite set of clauses has a least generalization
under implication (LGI) has only been partly answered. For instance, Idestam-Almquist
(1993, 1995) studies least generalizations under T-implication as an approximation to LGI’s.
Muggleton and Page (1994) investigate self-saturated clauses. A clause is self-saturated if it
is subsumed by any clause which implies it. A clause D is a self-saturation of C' if C' and D
are logically equivalent and D is self-saturated. As Muggleton and Page (1994) state, if two
clauses C'; and C'y have self-saturations D and Dy, then an LGS of Dy and D, is also an
LGI of 7 and (5. This positively answers our question concerning the existence of LGI’s
in the case of clauses which have a self-saturation. However, Muggleton and Page also show
that there exist clauses which have no self-saturation. Hence the concept of self-saturation
cannot solve our question in general.

Use of the third generality order, relative implication, is even more desirable than the
use of “plain” implication. Relative implication allows us to take background knowledge
into account, which can be used to formalize many useful properties and relations of the
domain of application. For this reason, least generalizations under implication relative to
background knowledge also deserve attention.

Apart from the least generalization, there is also its dual: the greatest specialization.
Greatest specializations have been accorded much less attention in ILP than least gener-
alizations, but the concept of a greatest specialization may nevertheless be useful (see the
beginning of Section 6).

In this paper, we give a systematic treatment of the existence and non-existence of
least generalizations and greatest specializations, applied to each of these three generality
orders. Apart from distinguishing between these three orders, we also distinguish between
languages of general clauses and more restricted languages of Horn clauses. Though most
researchers in ILP restrict attention to Horn clauses, general clauses are also sometimes used
(Plotkin, 1970, 1971b; Shapiro, 1981; De Raedt & Bruynooghe, 1993; Idestam-Almquist,
1993, 1995). Moreover, many researchers who do not use general clauses actually allow
negative literals to appear in the body of a clause. That is, they use clauses of the form
A« Ly,...,L,, where A is an atom and each L; is a literal. These are called program
clauses (Lloyd, 1987). Program clauses are in fact logically equivalent to general clauses.
For instance, the program clause P(z) « Q(z), ~R(z) is equivalent to the non-Horn clause
P(z)Vv-Q(z)V R(z). For these two reasons we consider not only languages of Horn clauses,
but also pay attention to languages of general clauses.

The combination of three generality orders and two different possible languages of clauses
gives a total of six different ordered languages. For each of these, we can ask whether least
generalizations (LG’s) and greatest specializations (GS’s) always exist. We survey results
already obtained by others and also contribute some answers of our own. For the sake of
clarity, we will summarize the results of our survey right at the outset. In the following
table ‘+’ signifies a positive answer, and ‘=’ means a negative answer.
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Horn clauses General clauses
Quasi-order LG GS LG GS
Subsumption (>) + + + +
Implication () — — + for function-free | +
Relative implication (x) || — - — +

Table 1: Existence of LG’s and GS’s

Our own contributions to this table are threefold. First and foremost, we prove that if S
is a finite set of clauses containing at least one non-tautologous function-free clause® (apart
from this non-tautologous function-free clause, S may contain an arbitrary finite number
of other clauses, including clauses which contain functions), then there exists a computable
LGI of S. This result is on the one hand based on the Subsumption Theorem for resolution
(Lee, 1967; Kowalski, 1970; Nienhuys-Cheng & de Wolf, 1996), which allows us to restrict
attention to finite sets of ground instances of clauses, and on the other hand on a modifi-
cation of some proofs concerning T-implication which can be found in (Idestam-Almquist,
1993, 1995). An immediate corollary of this result is the existence and computability of an
LGI of any finite set of function-free clauses. As far as we know, both our general LGI-result
and this particular corollary are new results.

Niblett (1988, p. 135) claims that “it is simple to show that there are Iggs if the language
is restricted to a fixed set of constant symbols since all Herbrand interpretations are finite.”
Yet even for this special case of our general result, it appears that no proof has been
published. Initially, we found a direct proof of this case, but this was not really any simpler
than the proof of the more general result that we give in this paper. Niblett’s idea that the
proof is simple may be due to some confusion about the relation between Herbrand models
and logical implication (which is defined in terms of all models, not just Herbrand models).
We will describe this at the end of Subsection 5.1. Or perhaps one might think that the
decidability of implication for function-free clauses immediately implies the existence of
an LGI. But in fact, decidability is not a sufficient condition for the existence of a least
generalization. For example, it is decidable whether one function-free clause C' implies
another function-free clause D relative to function-free background knowledge. Yet least
generalizations relative to function-free background knowledge do not always exist, as we
will show in Section 7.

Our LGI-result does not solve the general question of the existence of LGI’s, but it does
provide a positive answer for a large class of cases: the presence of one non-tautologous
function-free clause in a finite S already guarantees the existence and computability of an
LGI of S, no matter what other clauses S contains.® Because of the prominence of function-
free clauses in ILP, this case may be of great practical signifcance. Often, particularly in
implementations of ILP-systems, the language is required to be function-free, or function

5. A clause which only contains constants and variables as terms.

6. Note that even for function-free clauses, the subsumption order is still not enough. Consider Dy =
P(z,y,z) + P(y,z,z) and Dy = P(z,y,z) + P(z,z,y) (this example is adapted from Idestam-
Almquist:). D1 is a resolvent of Doy and Dy and Ds is a resolvent of D1 and D;. Hence D; and D->

are logically equivalent. This means that D; is an LGI of the set {D1, D>}. However, the LGS of these
two clauses is P(z,y, z) « P(u,v,w), which is clearly an over-generalization.
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symbols are removed from clauses and put in the background knowledge by techniques
such as flattening (Rouveirol, 1992). Well-known ILP-systems such as FoIiL (Quinlan &
Cameron-Jones, 1993), Linus (Lavra¢ & Dzeroski, 1994) and MoBaL (Morik, Wrobel,
Kietz, & Emde, 1993) all use only function-free clauses. More than one half of the ILP-
systems surveyed by Aha (1992) is restricted to function-free clauses. Function-free clauses
are also sufficient for most applications concerning databases.

Our second contribution shows that a set S need not have a least generalization relative
to some background knowledge ¥, not even when S and ¥ are both function-free.

Thirdly, we contribute a complete discussion of existence and non-existence of greatest
specializations in each of the six ordered languages. In particular, we show that any finite
set of clauses has a greatest specialization under implication. Combining this with the
corollary of our result on LGI’s, it follows that a function-free clausal language is a lattice.

2. Preliminaries

In this section we will define some of the concepts we need. For the definitions of ‘model’,
‘tautology’, ‘substitution’, etc., we refer to standard works such as (Chang & Lee, 1973;
Lloyd, 1987). A positive literal is an atom, a negative literal is the negation of an atom.
A clause is a finite set of literals, which is treated as the universally quantified disjunction
of those literals. A definite program clause is a clause with one positive and zero or more
negative literals and a definite goal is a clause without positive literals. A Horn clause is
either a definite program clause or a definite goal. If C is a clause, we use C'T to denote
the positive literals in C', and C'~ to denote the negative literals in C'. The empty clause,
which represents a contradiction, is denoted by O.

Definition 1 Let A be an alphabet of the first-order logic. Then the clausal language C
by A is the set of all clauses which can be constructed from the symbols in A. The Horn

language H by A is the set of all Horn clauses which can be constructed from the symbols
in A. O

In this paper, we just presuppose some arbitrary alphabet A, and consider the clausal
language C and Horn language #H based on this A. We will now define three increasingly
strong generality orders on clauses: subsumption, implication and relative implication.

Definition 2 Let C and D be clauses and ¥ be a set of clauses. We say that C' subsumes
D, denoted as C' > D, if there exists a substitution # such that C8 C D.” C and D are
subsume-equivalent if C' > D and D > C'.

Y (logically) implies C, denoted as ¥ = C, if every model of ¥ is also a model of C'. C
(logically) implies D, denoted as C' = D, if {C} E D. C and D are (logically) equivalent if
CEDand DEC.

C' implies D relative to 3, denoted as C' =y D, if XU{C'} = D. C and D are equivalent
relative to ¥ if C =x D and D =5 C. O

7. Right from the very first applications of subsumption in ILP, there has been some controversy about
the symbol used for subsumption: Plotkin (1970) used ‘<’, while Reynolds (1970) used ‘>’. We use ‘>’
here, similar to Reynolds’ ‘>’, because we feel it serves the intuition to view C as somehow “bigger” or
“stronger” than D, if C' > D holds.
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If C' does not subsume D, we write C' % D. Similarly, we use the notation C' = D and
C s D.

If C' = D, then C' |= D. The converse does not hold, as the examples in the introduction
showed. Similarly, if C'|= D, then C' |=x D, and again the converse need not hold. Consider
C=P(a)V-P(b), D= Pa), and ¥ ={P(b)}: then C =5 D, but C }= D.

We now proceed to define a proof procedure for logical implication between clauses,
using resolution and subsumption.

Definition 3 If two clauses have no variables in common, then they are said to be stan-
dardized apart.

Let Cy = LiVv...VL;V...VL,and Cy =M V...VM;V...VM, be two clauses
which are standardized apart. If the substitution # is a most general unifier (mgu) of the
set {L;,~M;}, then the clause ((Cy — L;) U (Cy — M;))8 is called a binary resolvent of C
and (. The literals L; and M; are said to be the literals resolved upon. a

If Cy and Cy are not standardized apart, we can take a variant C?, of Cy, such that C; and
(' are standardized apart. For simplicity, a binary resolvent of C'; and % is also called a
binary resolvent of C'; and C itself.

Definition 4 Let C be a clause and # an mgu of {Ly,...,L,} C C (n > 1). Then the
clause C8 is called a factor of C'. a

Note that any non-empty clause C' is a factor of itself, using the empty substitution ¢ as an
mgu of a single literal in C'.

Definition 5 A resolvent C' of clauses C7 and C5 is a binary resolvent of a factor of C}
and a factor of Cy, where the literals resolved upon are the literals unified in the respective
factors. C'1 and C'y are the parent clauses of C. a

Definition 6 Let X be a set of clauses and C' a clause. A derivation of C from X is a finite
sequence of clauses Ry, ..., Ry = C, such that each R; is either in X, or a resolvent of two
clauses in {Ry,..., R;_1}. If such a derivation exists, we write ¥, C'. a

Definition 7 Let X be a set of clauses and €' a clause. We say there exists a deduction of
C from X, written as X 4 C, if C' is a tautology, or if there exists a clause D such that
Yk, Dand D> C. |

The next result, proved by Nienhuys-Cheng and de Wolf (1996), generalizes Herbrand’s
Theorem:

Theorem 1 Let ¥ be a set of clauses and C' be a ground clause. If ¥ = C', then there
exists a finite set ¥, of ground instances of clauses in ¥, such that ¥, = C.

The following Subsumption Theorem gives a precise characterization of implication between

clauses in terms of resolution and subsumption. It was proved by Lee (1967), Kowalski
(1970) and reproved by Nienhuys-Cheng and de Wolf (1996).
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Theorem 2 (Subsumption theorem) Let Y be a set of clauses and C' be a clause. Then

SECIfSh,C.

The next lemma was first proved by Gottlob (1987). Actually, it is an immediate corollary
of the subsumption theorem:

Lemma 1 (Gottlob) Let C and D be non-tautologous clauses. If C' |= D, then CT = Dt
and C~ = D~.

Proof Since Ct = C|if C | D, then we have C* |= D. Since C* cannot be resolved with
itself, it follows from the subsumption theorem that C'* > D. But then C* must subsume
the positive literals in D, hence C* > DT, Similarly C~ > D~. a

An important consequence of this lemma concerns the depth of clauses, defined as follows:

Definition 8 Let ¢ be a term. If ¢ is a variable or constant, then the depth of ¢ is 1. If
t = f(t1,...,tn), n > 1, then the depth of # is 1 plus the depth of the #; with largest depth.
The depth of a clause C' is the depth of the term with largest depth in C. a

For example, the term ¢ = f(a, z) has depth 2. C' = P(f(z)) + P(¢(f(z),a)) has depth 3,
since ¢(f(z), a) has depth 3. It follows from Gottlob’s lemma that if C' = D, then the depth
of C is smaller than or equal to the depth of D, for otherwise C'* cannot subsume D¥ or
C'~ cannot subsume D~. For instance, take D = P(z, f(z,¢(y))) « P(g(a),b), which has
depth 3. Then a clause C' containing a term f(z,g*(y)) (depth 4) cannot imply D.

Definition 9 Let S and S’ be finite sets of clauses, z1,...,z, all distinct variables ap-
pearing in S, and aq,...,a, distinct constants not appearing in S or S’. Then o =
{z1/a1,...,z,/a,} is called a Skolem substitution for S w.r.t. S’. If S’ is empty, we just
say that o is a Skolem substitution for S. a

Lemma 2 Let 3 be a set of clauses, C' be a clause, and o be a Skolem substitution for C

wort X. Then X EC iff ¥ = Co.

Proof

=: Obvious.

<: Suppose C'is not a tautology and let o = {z{/ay,...,z,/a,}. If ¥ = Co, it follows
from the subsumption theorem that there is a D such that ¥+, D and D = Co. Thus there
is a 6, such that D8 C C'o. Note that since ¥ -, D and none of the constants ay,...,a,
appears in X, none of these constants appears in D. Now let # be obtained by replacing in
6 all occurrences of a; by z;, for every 1 < i < n. Then D8’ C C, hence D > C. Therefore
Y k4 C and hence ¥ = C. O
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3. Least Generalizations and Greatest Specializations

In this section, we will define the concepts we need concerning least generalizations and
greatest specializations.

Definition 10 Let I' be a set and R be a binary relation on I'.

1. R is reflexive on I, if z Rz for every z € .

2. R is transitive on I, if for every z,y,z € I', 2 Ry and yRz implies z Rz.

3. R is symmetric on I, if for every z,y € ', xRy implies yRz.

4. R is anti-symmetric on I, if for every z,y,z € I'; xRy and yRxz implies z = y.

If R is both reflexive and transitive on I', we say R is a quasi-order on I'. If R is both
reflexive, transitive and anti-symmetric on [', we say R is a partial order on I'. If R is
reflexive, transitive and symmetric on I', R is an equivalence relation on I'. a

A quasi-order R on I' induces an equivalence-relation ~ on I, as follows: we say z,y € '
are equivalent induced by R (denoted z ~ y) if both 2 Ry and yRz. Using this equivalence
relation, a quasi-order R on I' induces a partial order R’ on the set of equivalence classes in
I', defined as follows: if [z] denotes the equivalence class of z (i.e., [zr] ={y | z ~ y}), then
[z]R'[y] iff z Ry.

We first give a general definition of least generalizations and greatest specializations for
sets of clauses ordered by some quasi-order, which we then instantiate in different ways.

Definition 11 Let I' be a set of clauses, > be a quasi-order on I'; S C I' be a finite set of
clauses and C' € I'. If C' > D for every D € S, then we say C' is a generalization of S under
>. Such a C'is called a least generalization (LG) of S under > in T, if we have C" > C for
every generalization C’ € T" of S under >.

Dually, C'is a specialization of S under >, if D > C for every D € 5. Such a C' is called
a greatest specialization (GS) of S under > in I', if we have C' > C' for every specialization
C"eT of S under >. O

It is easy to see that if some set S has an LG or GS under > in I', then this LG or GS will
be unique up to the equivalence induced by > in I'. That is, if C' and D are both LG’s or
GS’s of some set S, then we have C' ~ D.

The concepts defined above are instances of the mathematical concepts of (least) upper
bounds and (greatest) lower bounds. Thus we can speak of lattice-properties of a quasi- or
partially ordered set of clauses:

Definition 12 Let I’ be a set of clauses and > be a quasi-order on I'. If for every finite
subset S of I, there exist both a least generalization and a greatest specialization of S under
> in I', then the set I ordered by > is called a lattice. a

It should be noted that usually in mathematics, a lattice is defined for a partial order
instead of a quasi-order. However, since in ILP we usually have to deal with individual
clauses rather than with equivalence classes of clauses, it is convenient for us to define
‘lattice’ for a quasi-order here. Anyhow, if a quasi-order > is a lattice on I', then the partial
order induced by > is a lattice on the set of equivalence classes in I'.
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In ILP, there are two main instantiations for the set of clauses I': either we take a clausal
language C, or we take a Horn language H. Similarly, there are three interesting choices
for the quasi-order >: we can use either > (subsumption), = (implication), or 5 (relative
implication) for some background knowledge ¥. In the >-order, we will sometimes abbrevi-
ate the terms ‘least generalization of S under subsumption’ and ‘greatest specialization of
S under subsumption’ to ‘LGS of S” and ‘GSS of S’ respectively. Similarly, in the =-order
we will sometimes speak of an LGI (least generalization under implication) and a GSI. In
the |=x-order, we will use LGR (least generalization under relative implication) and GSR.

These two different languages and three different quasi-orders give a total of six com-
binations. For each combination, we can ask whether an LG or GS of every finite set S
exists. In the next section, we will review the answers for subsumption given by others or
by ourselves. Then we devote two sections to least generalizations and greatest specializa-
tions under implication, respectively. Finally, we discuss least generalizations and greatest
specializations under relative implication. The results of this survey have already been
summarized in Table 1 in the introduction.

4. Subsumption

First we devote some attention to subsumption. Least generalizations under subsumption
have been discussed extensively by Plotkin (1970). The main result in Plotkin’s framework
is the following:

Theorem 3 (Existence of LGS in C) Let C be a clausal language. Then for every finite
S CC, there exists an LGS of S in C.

If S only contains Horn clauses, then it can be shown that the LGS of S is itself also a
Horn clause. Thus the question for the existence of an LGS of every finite set S of clauses
is answered positively for both clausal languages and for Horn languages.

Plotkin established the existence of an LGS, but he seems to have ignored the GSS in
(1970, 1971b), possibly because it is a very straightforward result. It is in fact fairly easy
to show that the GSS of some finite set S of clauses is simply the union of all clauses in S
after they are standardized apart.® We include the proof here.

Theorem 4 (Existence of GSS in C) Let C be a clausal language. Then for every finite
S CC, there exists a GSS of S in C.

Proof Suppose S ={Dy,...,D,} CC. Without loss of generality, we assume the clauses
in S are standardized apart. Let D = Dy U...U D,, then D; = D, for every 1 <1 < n.
Now let C € C be such that D; = C, for every 1 <1 < m. Then for every 1 < ¢ < n, there
is a #; such that D;8; C C and #; only acts on variables in D;. If welet § =6, U...U8,,
then D8 = D16, U...uD,0, CC. Hence D > C',s0 D is a GSS of S in C. a

8. Note that this has nothing to do with unification. For instance, if S = {P(a, z), P(y,b)}, then the GSS
of S in C would be P(a,z)V P(y,b). However, if we would instantiate I" in Definition 11 to the set of
atoms, then the greatest specialization of two atoms in the set of atoms should itself also be an atom.
The GSS of two atoms is then their most general unification (Reynolds, 1970). For instance, the GSS of
S would in this case be P(a,b).
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This establishes that a clausal language C ordered by > is a lattice.

Proving the existence of a GSS of every finite set of Horn clauses in H requires a little
more work, but here also the result is positive. For example, D = P(a) < P(f(a)),Q(y)
is a GSS of Dy = P(z) « P(f(z)) and Dy = P(a) + Q(y). Note that D can be obtained
by applying 0 = {z/a} (the mgu of the heads of D; and D3) to Dy U Dy, the GSS of Dy
and D, in C. This idea will be used in the following proof. Here we assume H contains an
artificial bottom element (True) L, such that C' > L for every C' € H, and L ¥ C for every
C' # 1. Note that L is not subsume-equivalent with other tautologies.

Theorem 5 (Existence of GSS in #) Let H be a Horn language, with L € H. Then
for every finite S C H, there exists a GSS of S in H.

Proof Suppose S = {Di,...,D,} C H. Without loss of generality we assume the
clauses in S are standardized apart, Dq,..., D} are the definite program clauses in 5,
and Dg4q,..., D, are the definite goals in S. If £ =0 (i.e., if S only contains goals), then
it is easy to show that Dy U...UD, is a GSS of S'in H. If £ > 1 and the set {Df,..., D{}
is not unifiable, then L is a GSS of S in H. Otherwise, let o be an mgu of {D,..., DI},
and let D = DyoU...U D,o (note that actually D;c = D; for k 4+ 1 < ¢ < n, since the
clauses in S are standardized apart). Since D has exactly one literal in its head, it is a
definite program clause. Furthermore, we have D; > D for every 1 < ¢ < n, since D;o C D.

To show that D is a GSS of S in H, suppose C' € H is some clause such that D; = C
for every 1 < i < n. For every 1 < i < n, let §; be such that D;8; C C and 8; only acts
on variables in D;. Let 8 = 6, U...U#,. For every 1 <1 <k, DjH = D;"HZ' =C7,s08is
a unifier of {D],.. .,D,‘:}. But o is an mgu of this set, so there is a v such that 8 = o~.
Now Dy = DyoyU...UDyoy=D10U...UD,0 =Dy U...uUD,8, CC. Hence D > C,
so D is a GSS of S in H. See figure 1 for illustration of the case where n = 2.

D1 D2
g a
D
(21 Y (23
C

Figure 1: D is a GSS of Dy and Dy

Thus a Horn language H ordered by > is also a lattice.

We end this section by briefly discussing Plotkin’s (1971b) relative subsumption. This is
an extension of subsumption which takes background knowledge into account. This back-
ground knowledge is rather restricted: it must be a finite set X of ground literals. Because
of its restrictiveness, we have not included relative subsumption in Table 1. Nevertheless,
we mention it here, because least generalization under relative subsumption forms the basis
of the well-known ILP system GoLEM (Muggleton & Feng, 1992).

Definition 13 Let C, D be clauses, ¥ = {Ly,...,L,,} be a finite set of ground literals.
Then C' subsumes D relative to 3, denoted by C' =x D, if C = (DU{=L4,...,7L,}). O
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It is easy to see that >y is reflexive and transitive, so it imposes a quasi-order on a set of
clauses.

Suppose S = {Dy,...,D,} and ¥ = {Ly,...,L,,}. It is easy to see that an LGS of
{(DyU{=L1,...,7Lp})...,(DoU{=Lq,...,7L,})} is a least generalization of S under
=y, so every finite set of clauses has a least generalization under >y in C. Moreover, if
each D; is a Horn clause and each L; is a positive ground literal (i.e., a ground atom), then
this least generalization will itself also be a Horn clause. Accordingly, if 3 is a finite set
of positive ground literals, then every finite set of Horn clauses has a least generalization
under >y in H.

5. Least Generalizations under Implication

Now we turn from subsumption to the implication order. In this section we will discuss
LGT’s, in the next section we handle GSS’s. For Horn clauses, the LGI-question has already
been answered negatively by Muggleton and De Raedt (1994).

Let Dy = P(f*(x)) + P(z), Dy = P(f*(z)) + P(z), C1 = P(f(z)) + P(z) and
Cy = P(f*(y)) + P(z). Then we have both C;  {Dy, D3} and Cy | {Ds, Dy}. It is not
very difficult to see that there are no more specific Horn clauses than C'; and €5 that imply
both Dy and Ds. For C: no resolvent of 'y with itself implies Dy and no clause that is
properly subsumed by C' still implies Dy and Dj. For C5: every resolvent of C'y with itself
is a variant of C5, and no clause that is properly subsumed by Cj5 still implies Dy and Ds.
Thus €' and Cy are both “minimal” generalizations under implication of { Dy, Ds}. Since
C'1 and (5 are not logically equivalent under implication, there is no LGI of {Dy, Dy} in H.

However, the fact that there is no LGI of { Dy, D3} in ‘H does not mean that Dy and Dy
have no LGI in C, since a Horn language is a more restricted space than a clausal language.
In fact, it is shown by Muggleton and Page (1994) that C = P(f(z))V P(f*(y)) + P(z) is
an LGI of Dy and Dy in C. For this reason, it may be worthwhile for the LGI to consider
a clausal language instead of only Horn clauses.

In the next subsection, we show that any finite set of clauses which contains at least
one non-tautologous function-free clause, has an LGI in C. An immediate corollary of this
result is the existence of an LGI of any finite set of function-free clauses. In our usage of the
word, a ‘function-free’ clause may contain constants, even though constants are sometimes
seen as functions of arity 0.

Definition 14 A clause is function-free if it does not contain function symbols of arity 1
or more. O

Note that a clause is function-free iff it has depth 1. In case of sets of clauses which all
contain function symbols, the LGI-question remains open.

5.1 A Sufficient Condition for the Existence of an LGI

In this subsection, we will show that any finite set S of clauses containing at least one
non-tautologous function-free clause, has an LGI in C.

Definition 15 Let C be a clause, zq,...,z, all distinct variables in ', and K a set of
terms. Then the instance set of C' w.rt. K is Z(C,K) = {C0 | 6 = {z1/t1,...,z,/tn},
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where t; € K, for every 1 < i < n}. If ¥ = {Cy,...,C;} is a set of clauses, then the
instance setof ¥ w.rt. Kis Z(X, K) =Z(Cy, K)U ... UZ(Cy, K). o

For example, if C' = P(z)vQ(y) and T' = {a, f(2)}, then Z(C,T) = {(P(a) VQ(a)), (P(a)V
Q(f(2))), (P(f(2)) vV Q(a)), (P(f(2)) VQ(f(2)))}-

Definition 16 Let S be a finite set of clauses, and ¢ be a Skolem substitution for S. Then
the term set of S by o is the set of all terms (including subterms) occurring in So. O

A term set of S by some ¢ is a finite set of ground terms. For instance, the term set of
D = P(f3(2),5,2) — P(y,2 f3(x)) by 0 = {a/a,y/b, 2/c} s T = {a, f(a), [(a), b, c}.

Our definition of a term set corresponds to what Idestam-Almquist (1993, 1995) calls
a ‘minimal term set’. In his definition, if ¢ is a Skolem substitution for a set of clauses
S ={Dy,...,D,} w.r.t. some other set of clauses S’, then a term set of S is a finite set of
terms which contains the minimal term set of S by ¢ as a subset.

Using his notion of term set, he defines T-implication as follows: if C' and D are clauses
and 7" is a term set of {D} by some Skolem substitution o w.r.t. {C'}, then C' T-implies D
w.r.t. T if Z(C,T) = Do. T-implication is decidable, weaker than logical implication and
stronger than subsumption. Idestam-Almquist (1993, 1995) gives the result that any finite
set of clauses has a least generalization under T-implication w.r.t. any term set T. However,
as he also notes, T-implication is not transitive and hence not a quasi-order. Therefore it
does not fit into our general framework here. For this reason, we will not discuss it fully
here, and for the same reason we have not included a row for T-implication in Table 1.

Let us now begin with the proof of our result concerning the existence of LGI’s. Consider
C = P(z,y,z) « P(z,z,y) and D, o and T as above. Then C'|= D and also Z(C, T) = Do,
since Do is a resolvent of P(f?(a),b,c) < P(c, f*(a),b) and P(c, f*(a),b) < P(b,c, f*(a)),
which arein Z(C,T). As we will show in the next lemma, this holds in general: if C' = D and
C is function-free, then we can restrict attention to the ground instances of €' instantiated
to terms in the term set of D by some o.

The proof of Lemma 3 uses the following idea. Consider a derivation of a clause F from
a set X of ground clauses. Suppose some of the clauses in X contain terms not appearing in
FE. Then any literals containing these terms in 3 must be resolved away in the derivation.
This means that if we replace all the terms in the derivation that are not in F, by some
other term ¢, then the result will be another derivation of F. For example, the left of figure 2
shows a derivation of length 1 of E. The term f2(b) in the parent clauses does not appear
in F. If we replace this term by the constant a, the result is another derivation of E (right

of the figure).
P(b) « P(£2(b))  P(f2(5) « Q(a,f(a))  P(®) « P(a)  P(a) « Q(b, f(a))

N

E = P(b) « Q(a, f(a)) E = P(b) + Q(a, f(a))

Figure 2: Transforming the left derivation yields the right derivation

Lemma 3 Let C' be a function-free clause, D be a clause, o be a Skolem substitution for

D w.r.t. {C} and T be the term set of D by o. Then C = D iff Z(C,T) = Do.
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Proof

<: Since C' =Z(C,T) and Z(C,T) |= Do, we have C' |= Do. Now C' |= D by Lemma 2.

=: If D is a tautology, then Dg is a tautology, so this case is obvious. Suppose D is not
a tautology, then Do is not a tautology. Since C' |= Do, it follows from Theorem 1 that
there exists a finite set X of ground instances of (', such that ¥ = Do. By the Subsumption
Theorem, there exists a derivation from 3 of a clause F, such that E¥ > Dg. Since ¥ is
ground, F must also be ground, so we have ¥ C Dg. This implies that E only contains
terms from 7.

Let t be an arbitrary term in T and let ¥’ be obtained from ¥ by replacing every term
in clauses in X which is not in T, by t. Note that since each clause in X is a ground instance
of the function-free clause C', every clause in ¥ is also a ground instance of C. Now it is
easy to see that the same replacement of terms in the derivation of F from ¥ results in
a derivation of F from Y¥': (1) each resolution step in the derivation from ¥ can also be
carried out in the derivation from ¥’, since the same terms in X are replaced by the same
terms in X', and (2) the terms in 3 that are not in 7' (and hence are replaced by t) do not
appear in the conclusion F of the derivation.

Since there is a derivation of F from ¥ we have ¥/ = F, and hence ¥/ = Do. ¥/ is a
set of ground instances of C' and all terms in X’ are terms in 7', so ¥/ C Z(C,T). Hence

7(C,T) E Do. 0

Lemma 3 cannot be generalized to the case where C contains function symbols of arity
> 1, take C' = P(f(z),y) < P(z,2) and D = P(f(a),a) < P(a, f(a)) (from the example
given on p. 25 of Idestam-Almquist, 1993). Then T" = {a, f(a)} is the term set of D and
we have C' = D, yet it can be seen that Z(C,T) = D. The argument used in the previous
lemma does not work here, because different terms in some ground instance need not relate
to different variables. For example, in the ground instance P(f?(a),a) + P(a, f(a)) of C,
we cannot just replace f2(a) by some other term, for then the resulting clause would not
be an instance of C.

On the other hand, Lemma 3 can be generalized to a set of clauses instead of a single
clause. If X is a set of function-free clauses, C is an arbitrary clause, and o is a Skolem
substitution for C' w.r.t. ¥, then we have that ¥ = C' iff Z(3,T") = Co. The proof is almost
literally the same as above.

This result implies that ¥ = C' is reducible to an implication Z(3,T) | Co between
ground clauses. Since, by the next lemma, implication between ground clauses is decidable,
it follows that ¥ = C' is decidable in case ¥ is function-free.

Lemma 4 The problem whether ¥ |= C, where ¥ is a finite set of ground clauses and C' is
a ground clause, is decidable.

Proof Let C=1L;V...V L, and A be the set of all ground atoms occurring in ¥ and C'.
Now consider the following statements, which can be shown equivalent.

(1) ¥ EC.

(2) ¥UA{=Ly,...,~L,} is unsatisfiable.

(3) ¥XU{=Ly,...,~L,} has no Herbrand model.

(4) No subset of A is an Herbrand model of ¥ U {—=Ly,...,—L,}.
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Then (1)<(2). (2)<(3) by Theorem 4.2 of (Chang & Lee, 1973). Since also (3)<(4), we
have (1)< (4). (4) is decidable because A is finite, so (1) is decidable as well. o

Corollary 1 The problem whether ¥ |= C, where ¥ is a finite set of function-free clauses
and C' is a clause, is decidable.

The following sequence of lemmas more or less follows the pattern of Idestam-Almquist’s
(1995) Lemma 10 to Lemma 12 (similar to Lemma 3.10 to Lemma 3.12 of Idestam-Almquist,
1993). There he gives a proof of the existence of a least generalization under T-implication
of any finite set of (not necessarily function-free) clauses. We can adjust the proof in such
a way that we can use it to establish the existence of an LGI of any finite set of clauses
containing at least one non-tautologous function-free clause.

Lemma 5 Let S be a finite set of non-tautologous clauses, V.= {zy,...,2,,} be a set of
variables and let G = {C1,C4, ...} be a (possibly infinite) set of generalizations of S under
implication. Then the set G' = Z(C,V)UZ(Cy, V) U... is a finite set of clauses.

Proof Let d be the maximal depth of the terms in clauses in S. It follows from Lemma 1
that G (and hence also ') cannot contain terms of depth greater than d, nor predicates,
functions or constants other than those in 5. The set of literals which can be constructed
from predicates in .S and from terms of depth at most d consisting of functions and constants
in S and variables in V, is finite. Hence the set of clauses which can be constructed from
those literals is finite as well. G’ is a subset of this set, so G’ is a finite set of clauses. O

Lemma 6 Let D be a clause, C' be a function-free clause such that C' = D, T = {ty,...,t,}
be the term set of D by o, V = {x,...,2,} be a set of variables and m > n. If E is an
LGS of Z(C,V), then E' = D.

Proof Let v ={z1/t1,...,20/tn, Tns1/tn, .., Tm/tn} (it does not matter to which terms
the variables z,41,...,%,, are mapped by v, as long as they are mapped to terms in 7).
Suppose Z(C, V) = {Cp1,...,Cpr}. Then Z(C,T)={Cp17,...,Cprv}. Let F be an LGS
of Z(C,V) (note that F must be function-free). Then for every 1 < i < k, there are 6;
such that E8; C Cp;. This means that E6;v C Cp;v and hence Ef;y = Cp;v, for every
1< i< k. Therefore I/ =Z(C,T).

Since C' = D, we know from Lemma 1 that constants appearing in C' must also appear
in D. This means that o is a Skolem substitution for D w.r.t. {C'}. Then from Lemma 3
we know Z(C,T) = Do, hence F = Do. Furthermore, since £ is an LGS of Z(C, V), all
constants in F also appear in C', hence all constants in £ must appear in D. Thus o is also
a Skolem substitution for D w.r.t. {F'}. Therefore E' = D by Lemma 2. O

Consider C = P(z,y,2) «+ P(y,z,z) and D =« Q(w). Both C and D imply the clause
E = P(z,y,z) « P(z,z,y),Q(b). Now note that CUD = P(z,y,z2) + P(y,z,z),Q(w) also
implies F. This holds for clauses in general, even in the presence of background knowledge
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3.. The next lemma is very general, but in this section we only need the special case where
C' and D are function-free and > is empty. We need the general case to prove the existence

of a GSR in Section 8.

Lemma 7 Let C, D and F be clauses such that C' and D are standardized apart and let 3.
be a set of clauses. If C' =g F and D =x FE, then CUD [y E.

Proof Suppose C' 5 F and D |y E, and let M be a model of ¥ U {C'U D}. Since C
and D are standardized apart, the clause C'U D is equivalent to the formula V(C') V V(D)
(where V(C') denotes the universally quantified clause C'). This means that M is a model of
C' or a model of D. Furthermore, M is also a model of ¥, so it follows from X U {C'} E F
or XU{D} | F that M is a model of . Thus X U{CUD} = F, hence CUD Ex FE. O

Now we can prove the existence of an LGI of any finite set S of clauses which contains at
least one non-tautologous and function-free clause. In fact we can prove something stronger,
namely that this LGI is a special LGI. This is an LGI that is not only implied, but actually
subsumed by any other generalization of S

Definition 17 Let C be a clausal language and S be a finite subset of C. An LGI C of S
in C is called a special LGI of S in C, if C' = C for every generalization C’ € C of S under
implication. O

Note that if D is an LGI of a set containing at least one non-tautologous function-free
clause, then by Lemma 1 D is itself function-free, because it should imply the function-
free clause(s) in S. For instance, C' = P(z,y,2) « P(y,z,z),Q(w) is an LGI of Dy =
P(z,y,z) < Py, z,2),Q(f(a)) and Dy = P(z,y, z) « P(z,z,y),Q(b). Note that this LGI
is properly subsumed by the LGS of {Dy, Dy}, which is P(z,y, z) « P(2',y,2'),Q(w). An
LGI may sometimes be the empty clause O, for example if S = {P(a),Q(a)}.

Theorem 6 (Existence of special LGI in C) Let C be a clausal language. If S is a
finite set of clauses from C and S contains at least one non-tautologous function-free clause,
then there exists a special LGI of S in C.

Proof Let S ={Dy,...,D,} be a finite set of clauses from C, such that S contains at least
one non-tautologous function-free clause. We can assume without loss of generality that S
contains no tautologies. Let o be a Skolem substitution for S, T = {t,...,t,,} be the term
set of S by o, V = {zy,...,2,,} be a set of variables and G = {C},C5,...} be the set of
all generalizations of S under implication in C. Note that O € (G, so G is not empty. Since
each clause in G must imply the function-free clause(s) in S, it follows from Lemma 1 that
all members of GG are function-free. By Lemma 5, the set G' = Z(Cy,V)UZ(C,,V)U...1is
a finite set of clauses. Since G’ is finite, the set of Z(C;, V)s is also finite. For simplicity, let
{Z(C1,V),...,Z(Ck, V) } be the set of all distinct Z(C;, V)s.

Let E; be an LGS of Z(C}, V), for every 1 < 7 < k, such that Fy,..., K} are standardized
apart. For every 1 < j < n, the term set of D; by ¢ is some set {t;,,...,¢;.} C T, such
that m > j,;. From Lemma 6, we have that I; = D;, for every 1 <i <k and 1 < j < n,
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hence E; = S. Now let F' = FyU...U Ej, then we have F' =S from Lemma 7 (applying
the case of Lemma 7 where ¥ is empty).

To prove that I’ is a special LGI of S, it remains to show that C; > F’, for every 7 > 1.
For every j > 1, there is an ¢ (1 < ¢ < k), such that Z(C;,V) = Z(C;, V). So for this 1,
FE;is an LGS of Z(C}, V). C} is itself also a generalization of Z(C;, V') under subsumption,
hence C; > F;. Then finally C; > I, since F; C F. a

As a consequence, we also immediately have the following:

Corollary 2 (Existence of LGI for function-free clauses) LetC be a clausal language.
Then for every finite set of function-free clauses S C C, there exists an LGI of S in C.

Proof Let S be a finite set of function-free clauses in C. If S only contains tautologies,
any tautology will be an LGI of S. Otherwise, let S’ be obtained by deleting all tautologies
from S. By the previous theorem, there is a special LGI of S’. Clearly, this is also a special

LGI of S itself in C. O

This corollary is not trivial, since even though the number of Herbrand interpretations
of a language without function symbols is finite (due to the fact that the number of all
possible ground atoms is finite in this case), S may nevertheless be implied by an infinite
number of non-equivalent clauses. This may seem like a paradox, since there are only
finitely many categories of clauses that can “behave differently” in a finite number of finite
Herbrand interpretations. Thus it would seem that the number of non-equivalent function-
free clauses should also be finite. This is a misunderstanding, since logical implication (and
hence also logical equivalence) is defined in terms of all interpretations, not just Herbrand
interpretations. For instance, define Dy = P(a,a) and P(b,b), C), = {P(z;,2;) | i # j,1 <
i,7 < n}. Then we have C,, = {Dy, Dy}, C,, |E Cry1 and Cpqq [ O, for every n > 1, see
(van der Laag & Nienhuys-Cheng, 1994).

Another interesting consequence of Theorem 6 concerns self-saturation (see the intro-
duction to this paper for the definition of self-saturation). If C'is a special LGI of some set
S, then it is clear that C' is self-saturated: any clause which implies C' also implies S and
hence must subsume C, since C' is a special LGI of S. Now consider S = {D}, where D
is some non-tautologous function-free clause. Then a special LGI C' of S will be logically
equivalent to D. Moreover, since this C' will be self-saturated, it is a self-saturation of D.

Corollary 3 If D is a non-tautologous function-free clause, then there exists a self-satura-
tion of D.

5.2 The LGI is Computable

In the previous subsection we proved the ezxistence of an LGI in C of every finite set .S of
clauses containing at least one non-tautologous function-free clause. In this subsection we
will establish the computability of such an LGI. The next algorithm, extracted from the
proof of the previous section, computes this LGI of S.
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LGI-Algorithm

Input: A finite set S of clauses, containing at least one non-tautologous function-

free clause.
Output: An LGI of S'in C.

1. Remove all tautologies from S (a clause is a tautology iff it contains literals
A and —A), call the remaining set S’

2. Let m be the number of distinct terms (including subterms) in S’, let
V =A{z1,...,2,}. (Notice that this m is the same number as the number
of terms in the term set 7" used in the proof of Theorem 6.)

3. Let G be the (finite) set of all clauses which can be constructed from
predicates and constants in S’ and variables in V.

4. Let {Uy,...,U,} be the set of all subsets of G.

5. Let H; be an LGS of U;, for every 1 < ¢ < n. These H; can be computed
by Plotkin’s (1970) algorithm.

6. Remove from {Hy,..., H,} all clauses which do not imply S’ (since each
H; is function-free, by Corollary 1 this implication is decidable), and stan-
dardize the remaining clauses {Hy,..., H,} apart.

7. Return the clause H = H, U ... U H,.

The correctness of this algorithm follows from the proof of Theorem 6. First notice that
H E S by Lemma 7. Furthermore, note that all Z(C;, V)’s mentioned in the proof of
Theorem 6, are elements of the set {Uy,...,U,}. This means that for every F; in the set
{E1,..., E}x} mentioned in that proof, there is a clause H; in {H,..., H,} such that E;
and H; are subsume-equivalent. Then it follows that the LGI F' = E; U...U E} of that
proof subsumes the clause H = H; U ...U H, that our algorithm returns. On the other
hand, F' is a special LGI, so I/ and H must be subsume-equivalent.

Suppose the number of distinct constants in S’ is ¢ and the number of distinct variables in
step 2 of the algorithm is m. Furthermore, suppose there are p distinct predicate symbols in
S’, with respective arities a4, ..., a,. Then the number of distinct atoms that can be formed
from these constants, variables and predicates, is { = >°7_ (¢ + m)®, and the number of
distinct literals that can be formed is 2 - [. The set GG of distinct clauses which can be
formed from these literals is the power set of this set of literals, so |G| = 2%!. Then the set
{Uh,...,U,} of all subsets of G contains 2/ = 22" members.

Thus the algorithm outlined above is not very efficient (to say the least). A more efficient
algorithm may exist, but since implication is harder than subsumption and the computation
of an LGS is already quite expensive, we should not put our hopes too high. Nevertheless,
the existence of the LGl-algorithm does establish the theoretical point that the LGI of any
finite set of clauses containing at least one non-tautologous function-free clause is effectively
computable.

Theorem 7 (Computability of LGI) Let C be a clausal language. If S is a finite set of
clauses from C, and S contains at least one non-tautologous function-free clause, then the
LGI of S in C is computable.
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6. Greatest Specializations under Implication

Now we turn from least generalizations under implication to greatest specializations. Find-
ing least generalizations of sets of clauses is common practice in ILP. On the other hand,
the greatest specialization, which is the dual of the least generalization, is used hardly ever.
Nevertheless, the GSI of two clauses Dy and Dy might be useful. Suppose that we have one
positive example et and two negative examples e; and e, and suppose that D; implies e
and e], while Dy implies et and e;. Then it might very well be that the GSI of D; and
D, still implies et but does not imply either e] or e;. Thus we could obtain a correct
specialization by taking the GSI of Dy and Ds.

It is obvious from the previous sections that the existence of an LGI of S is quite hard
to establish. For clauses which all contain functions, the existence of an LGI is still an open
question, and even for the case where S contains at least one non-tautologous function-free
clause, the proof was far from trivial. However, the existence of a GSI in C is much easier
to prove. In fact, a GSI of a finite set S is the same as the GSS of .S, namely the union of
the clauses in S after these are standardized apart.

To see the reason for this dissymmetry, let us take a step back from the clausal framework
and consider full first-order logic for a moment. If ¢; and ¢, are two arbitrary first-order
formulas, then it can be easily shown that their least generalization is just ¢; A ¢o: this
conjunction implies ¢ and ¢, and must be implied by any other formula which implies
both ¢1 and ¢5. Dually, the greatest specialization is just ¢V ¢9: this is implied by both ¢4
and ¢9, and must imply any other formula that is implied by both ¢; and ¢5. See figure 3.

1 A 2

<\
N

é1V 2

Figure 3: Least generalization and greatest specialization in first-order logic

Now suppose ¢, and ¢, are clauses. Then why do we have a problem in finding the LGI
of ¢1 and ¢37 The reason for this is that ¢y A ¢y is not a clause. Instead of using ¢1 A ps, we
have to find some least clause which implies both clauses ¢ and ¢,. Such a clause appears
quite hard to find sometimes.

On the other hand, in case of specialization there is no problem. Here we can take
¢1V ¢2 as GSI, since ¢ V ¢ is equivalent to a clause, if we handle the universal quantifiers
in front of a clause properly. If ¢; and ¢, are standardized apart, then the formula ¢ V ¢
is equivalent to the clause which is the union of ¢y and ¢,. This fact was used in the proof
of Lemma 7.

Suppose S = {Dy,...,D,}, and Dj,..., D! are variants of these clauses which are
standardized apart. Then clearly D = Dj U ...U D!, is a GSI of S, since it follows from
Lemma 7 that any specialization of S under implication is implied by D. Thus we have the
following result:
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Theorem 8 (Existence of GSI in C) Let C be a clausal language. Then for every finite
S CC, there exists a GSI of S in C.

The previous theorem holds for clauses in general, so in particular also for function-free
clauses. Furthermore, Corollary 2 guarantees us that in a function-free clausal language an
LGI of every finite S exists. This means that the set of function-free clauses quasi-ordered
by logical implication is in fact a lattice.

Corollary 4 (Lattice-structure of function-free clauses under =) A function-free
clausal language ordered by implication is a lattice.

In case of a Horn language H, we cannot apply the same proof method as in the case of a
clausal language, since the union of two Horn clauses need not be a Horn clause itself. In
fact, we can show that not every finite set of Horn clauses has a GSI in H. Here we can use
the same clauses that we used to show that sets of Horn clauses need not have an LGI in
‘H, this time from the perspective of specialization instead of generalization.

Again, let Dy = P(f%*(z)) «+ P(z), Dy = P(f3(z)) + P(z), C1 = P(f(z)) + P(z) and
Cy = P(f*(y)) + P(z). Then Cy &= {Dy, Dy} and Cy = {Dy, Dy}, and there is no Horn
clause D such that D = Dy, D |E Dy, Cy = D and Cy = D. Hence there is no GSI of
{Cl, CQ} in H.

7. Least Generalizations under Relative Implication

Implication is stronger than subsumption, but relative implication is even more powerful,
because background knowledge can be used to model all sorts of useful properties and
relations. In this section, we will discuss least generalizations under implication relative
to some given background knowledge 3 (LGR’s). In the next section we treat greatest
specializations under relative implication.

First, we will prove the equivalence between our definition of relative implication and a
definition given by Niblett (1988, p. 133). He gives the following definition of subsumption
relative to a background knowledge ¥ (to distinguish it from our notion of subsumption,
we will call this ‘N-subsumption”):®

Definition 18 Clause C' N-subsumes clause D with respect to background knowledge ¥ if
there is a substitution 6 such that ¥ F (C# — D) (here ‘=’ is the implication-connective,
and ‘" is an arbitrary complete proof procedure). a

Proposition 1 Let C and D be clauses and X be a set of clauses. Then C' N-subsumes D
with respect to X iff C' =y D.

Proof Consider the following six statements, which can be shown equivalent.
(1) C' N-subsumes D with respect to X.

(2) There is a substitution # such that ¥+ (C8 — D).

(3) There is a substitution # such that ¥ |= (C§ — D).

9. Niblett attributes this definition to Plotkin, though Plotkin gives a rather different definition of relative
subsumption in (Plotkin, 1971b), as we have seen in Section 4.
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4) There is a substitution 8 such that X U {C8} = D.

5)XU{C} E D.

6) C' =x D.

1)<(2) by definition. (2)<(3) by the completeness of . (3)<(4) by the Deduction
Theorem. (4)=(5) is obvious and (5)=(4) follows from letting # be the empty substitution,
hence (4)<(5). Finally, (5)<(6) by definition. Thus these six statements are equivalent. O

(
(
(
(

Since = is the special case of =5 where ¥ is empty, our counterexamples to the existence
of LGI’s or GSI’s in H are also counterexamples to the existence of LGR’s or GSR’s in .
In other words, the ‘—’-entries in the second row of Table 1 carry over to the third row.

For general clauses, the LGR-question also has a negative answer. We will show here
that even if S and X are both finite sets of function-free clauses, an LGR of S relative to X
need not exist. Let Dy = P(a), Dy = P(b), S = {D1, D3}, and X = {(P(a)V-Q(z)), (P(b)V
—Q(z))}. We will show that this S has no LGR relative to ¥ in C.

Suppose C' is an LGR of S relative to ¥. Note that if C' contains the literal P(a),
then the Herbrand interpretation which makes P(a) true and which makes all other ground
literals false, would be a model of ¥ U {C'} but not of D3, so then we would have C' f£x Ds.
Similarly, if C' contains P(b) then C' [~y D;. Hence C' cannot contain P(a) or P(b).

Now let d be a constant not appearing in C. Let D = P(z) V Q(d), then D =y
S. By the definition of an LGR, we should have D |y C. Then by the subsumption
theorem, there must be a derivation from ¥ U {D} of a clause F, which subsumes C. The
set of all clauses which can be derived (in 0 or more resolution-steps) from ¥ U {D} is
SU{D}U{(P(a)V P(z)), (P(b)V P(z))}. But none of these clauses subsumes ', because C
does not contain the constant d, nor the literals P(a) or P(b). Hence D {5 €', contradicting
the assumption that C' is an LGR of S relative to X in C.

Thus in general the LGR of S relative to X need not exist. However, we can identify a
special case in which the LGR does exist. This case might be of practical interest. Suppose
¥ ={Ly,...,L,} is a finite set of function-free ground literals. We can assume X does
not contain complementary literals (i.e., A and = A), for otherwise ¥ would be inconsistent.
Also, suppose S = {Dy, ..., D,} is a set of clauses, at least one of which is non-tautologous
and function-free. Then C [y D; iff {CUX E D, if C E D; V(L1 A...A L)
iff C = D;Vv-LV...V~-L,. This means that an LGI of the set of clauses {(D; V
—LiyV...VaLly),...,(DyV =L V...V~aL,)}is also an LGR of S relative to . If some
Dyv—LyV... V=L, is non-tautologous and function-free, this LGI exists and is computable.
Hence in this special case, the LGR of S relative to X exists and is computable.

8. Greatest Specializations under Relative Implication

Since the counterexample to the existence of GSI’s in H is also a counterexample to the
existence of GSR’s in #, the only remaining question in the =yx-order is the existence of
GSR’s in C. The answer to this question is positive. In fact, like the GSS and the GSI, the
GSR of some finite set S in C is just the union of the (standardized apart) clauses in S.

Theorem 9 (Existence of GSR in C) Let C be a clausal language and X C C. Then for
every finite S C C, there exists a GSR of S relative to X2 in C.
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Proof Suppose S ={Dy,...,D,} CC. Without loss of generality, we assume the clauses
in S are standardized apart. Let D = Dy U ...U D, then D; =5 D, for every 1 < i < n.
Now let C' € C be such that D; |y C, for every 1 < i < n. Then from Lemma 7, we have
D Ex C. Hence D is a GSR of S relative to ¥ in C. O

9. Conclusion

In ILP, the three main generality orders are subsumption, implication, and relative impli-
cation. The two main languages are clausal languages and Horn languages. This gives a
total of six different ordered sets. In this paper, we have given a systematic treatment of
the existence or non-existence of least generalizations and greatest specializations in each of
these six ordered sets. The outcome of this investigation is summarized in Table 1. The only
remaining open question is the existence or non-existence of a least generalization under
implication in C for sets of clauses which all contain function symbols.

Table 1 makes explicit the trade-off between different generality orders. On the one
hand, implication is better suited as a generality order than subsumption, particularly in
case of recursive clauses. Relative implication is still better, because it allows us to take
background knowledge into account. On the other hand, we can see from the table that as
far as the existence of least generalizations goes, subsumption is more attractive than logical
implication, and logical implication is in turn more attractive than relative implication. For
subsumption, least generalizations always exist. For logical implication, we can only prove
the existence of least generalizations in the presence of a function-free clause. And finally,
for relative implication, least generalizations need not even exist in a function-free language.
In practice this means that we cannot have it all. If we choose to use a very strong generality
order such as relative implication, least generalizations only exist in very limited cases. On
the other hand, if we want to guarantee that least generalizations always exist, we are
committed to the weakest generality order: subsumption.
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