
Journal of Arti�cial Intelligence Research 4 (1996) 1-18 Submitted 9/95; published 1/96

The Design and Experimental Analysis of Algorithms for

Temporal Reasoning

Peter van Beek vanbeek@cs.ualberta.ca

Dennis W. Manchak dmanchak@vnet.ibm.com

Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada T6G 2H1

Abstract

Many applications|from planning and scheduling to problems in molecular biology|
rely heavily on a temporal reasoning component. In this paper, we discuss the design and
empirical analysis of algorithms for a temporal reasoning system based on Allen's in
uential
interval-based framework for representing temporal information. At the core of the system
are algorithms for determining whether the temporal information is consistent, and, if so,
�nding one or more scenarios that are consistent with the temporal information. Two
important algorithms for these tasks are a path consistency algorithm and a backtracking
algorithm. For the path consistency algorithm, we develop techniques that can result
in up to a ten-fold speedup over an already highly optimized implementation. For the
backtracking algorithm, we develop variable and value ordering heuristics that are shown
empirically to dramatically improve the performance of the algorithm. As well, we show
that a previously suggested reformulation of the backtracking search problem can reduce
the time and space requirements of the backtracking search. Taken together, the techniques
we develop allow a temporal reasoning component to solve problems that are of practical
size.

1. Introduction

Temporal reasoning is an essential part of many arti�cial intelligence tasks. It is desirable,
therefore, to develop a temporal reasoning component that is useful across applications.
Some applications, such as planning and scheduling, can rely heavily on a temporal rea-
soning component and the success of the application can depend on the e�ciency of the
underlying temporal reasoning component. In this paper, we discuss the design and em-
pirical analysis of two algorithms for a temporal reasoning system based on Allen's (1983)
in
uential interval-based framework for representing temporal information. The two algo-
rithms, a path consistency algorithm and a backtracking algorithm, are important for two
fundamental tasks: determining whether the temporal information is consistent, and, if so,
�nding one or more scenarios that are consistent with the temporal information.

Our stress is on designing algorithms that are robust and e�cient in practice. For
the path consistency algorithm, we develop techniques that can result in up to a ten-fold
speedup over an already highly optimized implementation. For the backtracking algorithm,
we develop variable and value ordering heuristics that are shown empirically to dramatically
improve the performance of the algorithm. As well, we show that a previously suggested
reformulation of the backtracking search problem (van Beek, 1992) can reduce the time and
space requirements of the backtracking search. Taken together, the techniques we develop
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Figure 1: Basic relations between intervals

allow a temporal reasoning component to solve problems that are of realistic size. As part of
the evidence to support this claim, we evaluate the techniques for improving the algorithms
on a large problem that arises in molecular biology.

2. Representing Temporal Information

In this section, we review Allen's (1983) framework for representing relations between in-
tervals. We then discuss the set of problems that was chosen to test the algorithms.

2.1 Allen's framework

There are thirteen basic relations that can hold between two intervals (see Figure 1; Allen,
1983; Bruce, 1972). In order to represent inde�nite information, the relation between two
intervals is allowed to be a disjunction of the basic relations. Sets are used to list the
disjunctions. For example, the relation fm,o,sg between events A and B represents the
disjunction, (A meets B) _ (A overlaps B) _ (A starts B): Let I be the set of all basic
relations, fb,bi,m,mi,o,oi,s,si,d,di,f,�,eqg. Allen allows the relation between two events to
be any subset of I .

We use a graphical notation where vertices represent events and directed edges are
labeled with sets of basic relations. As a graphical convention, we never show the edges
(i; i), and if we show the edge (i; j), we do not show the edge (j; i). Any edge for which
we have no explicit knowledge of the relation is labeled with I ; by convention such edges
are also not shown. We call networks with labels that are arbitrary subsets of I , interval
algebra or IA networks.

Example 1. Allen and Koomen (1983) show how IA networks can be used in non-linear
planning with concurrent actions. As an example of representing temporal information using
IA networks, consider the following blocks-world planning problem. There are three blocks,
A, B, and C. In the initial state, the three blocks are all on the table. The goal state
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is simply a tower of the blocks with A on B and B on C. We associate states, actions,
and properties with the intervals they hold over, and we can immediately write down the
following temporal information.

Initial Conditions Goal Conditions

Initial fdg Clear(A) Goal fdg On(A,B)
Initial fdg Clear(B) Goal fdg On(B,C)
Initial fdg Clear(C)

There is an action called \Stack". The e�ect of the stack action is On(x; y): block x is
on top of block y. For the action to be successfully executed, the conditions Clear(x) and
Clear(y) must hold: neither block x or block y have a block on them. Planning introduces
two stacking actions and the following temporal constraints.

Stacking Action Stacking Action

Stack(A,B) fbi,mig Initial Stack(B,C) fbi,mig Initial
Stack(A,B) fdg Clear(A) Stack(B,C) fdg Clear(B)
Stack(A,B) ffg Clear(B) Stack(B,C) ffg Clear(C)
Stack(A,B) fmg On(A,B) Stack(B,C) fmg On(B,C)

A graphical representation of the IA network for this planning problem is shown in
Figure 2a. Two fundamental tasks are determining whether the temporal information is
consistent, and, if so, �nding one or more scenarios that are consistent with the temporal
information. An IA network is consistent if and only if there exists a mapping M of a
real interval M(u) for each event or vertex u in the network such that the relations be-
tween events are satis�ed (i.e., one of the disjuncts is satis�ed). For example, consider
the small subnetwork in Figure 2a consisting of the events On(A,B), On(B,C), and Goal.
This subnetwork is consistent as demonstrated by the assignment, M(On(A,B)) = [1; 5],
M(On(B,C)) = [2; 5], and M(Goal) = [3; 4]. If we were to change the subnetwork and insist
that On(A,B) must be before On(B,C), no such mapping would exist and the subnetwork
would be inconsistent. A consistent scenario of an IA network is a non-disjunctive sub-
network (i.e., every edge is labeled with a single basic relation) that is consistent. In our
planning example, �nding a consistent scenario of the network corresponds to �nding an
ordering of the actions that will accomplish the goal of stacking the three blocks. One such
consistent scenario can be reconstructed from the qualitative mapping shown in Figure 2b.

Example 2. Golumbic and Shamir (1993) discuss how IA networks can be used in a
problem in molecular biology: examining the structure of the DNA of an organism (Ben-
zer, 1959). The intervals in the IA network represent segments of DNA. Experiments
can be performed to determine whether a pair of segments is either disjoint or intersects.
Thus, the IA networks that result contain edges labeled with disjoint (fb,big), intersects
(fm,mi,o,oi,s,si,d,di,f,�,eqg), or I , the set of all basic relations|which indicates no exper-
iment was performed. If the IA network is consistent, this is evidence for the hypothesis
that DNA is linear in structure; if it is inconsistent, DNA is nonlinear (it forms loops,
for example). Golumbic and Shamir (1993) show that determining consistency in this re-
stricted version of IA networks is NP-complete. We will show that problems that arise in
this application can often be solved quickly in practice.
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(a) IA network for block-stacking example:

�
�

�
�Initial

1

�
�

�
�Clear(A)

2

�
�

�
�Clear(B)

3

�
�

�
�Clear(C)

4

�
�

�
�

Stack(A,B)
5
�
�

�
�

Stack(B,C)
6

�
�

�
�

On(A,B)
7
�
�

�
�

On(B,C)
8

�
�

�
�Goal

9PPPPPPPPq

fdg

-fdg��
��

��
��1

fdg

���������������

fbi,mig

HH
HH

HH
HH

HH
HH

HHY

fbi,mig

�
�

��=

fdg 









�

ffg

J
J
J
J
JJ]

fdg

Z
Z

ZZ}
ffg

@
@
@
@@R

fmg

�
�
�
���

fmg

PP
PPi fdg

����)
fdg

(b) Consistent scenario:

Initial
Stack(B,C)

Stack(A,B)
Goal

Clear(C) On(B,C)

Clear(B) On(A,B)

Clear(A)

Figure 2: Representing qualitative relations between intervals

2.2 Test problems

We tested how well the heuristics we developed for improving path consistency and back-
tracking algorithms perform on a test suite of problems.

The purpose of empirically testing the algorithms is to determine the performance of
the algorithms and the proposed improvements on \typical" problems. There are two
approaches: (i) collect a set of \benchmark" problems that are representative of problems
that arise in practice, and (ii) randomly generate problems and \investigate how algorithmic
performance depends on problem characteristics ... and learn to predict how an algorithm
will perform on a given problem class" (Hooker, 1994).

For IA networks, there is no existing collection of large benchmark problems that actually
arise in practice|as opposed to, for example, planning in a toy domain such as the blocks
world. As a start to a collection, we propose an IA network with 145 intervals that arose
from a problem in molecular biology (Benzer, 1959, pp. 1614-15; see Example 2, above).
The proposed benchmark problem is not strictly speaking a temporal reasoning problem
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as the intervals represent segments of DNA, not intervals of time. Nevertheless, it can be
formulated as a temporal reasoning problem. The value is that the benchmark problem
arose in a real application. We will refer to this problem as Benzer's matrix.

In addition to the benchmark problem, in this paper we use two models of a random IA
network, denoted B(n) and S(n; p), to evaluate the performance of the algorithms, where n
is the number of intervals, and p is the probability of a (non-trivial) constraint between two
intervals. Model B(n) is intended to model the problems that arise in molecular biology (as
estimated from the problem discussed in Benzer, 1959). Model S(n; p) allows us to study
how algorithm performance depends on the important problem characteristic of sparseness
of the underlying constraint graph. Both models, of course, allow us to study how algorithm
performance depends on the size of the problem.

For B(n), the random instances are generated as follows.

Step 1. Generate a \solution" of size n as follows. Generate n real intervals by randomly
generating values for the end points of the intervals. Determine the IA network by deter-
mining, for each pair of intervals, whether the two intervals either intersect or are disjoint.

Step 2. Change some of the constraints on edges to be the trivial constraint by setting the
label to be I , the set of all 13 basic relations. This represents the case where no experiment
was performed to determine whether a pair of DNA segments intersect or are disjoint.
Constraints are changed so that the percentage of non-trivial constraints (approximately
6% are intersects and 17% are disjoint) and their distribution in the graph are similar to
those in Benzer's matrix.

For S(n; p), the random instances are generated as follows.

Step 1. Generate the underlying constraint graph by indicating which of the possible (
n

2)
edges is present. Let each edge be present with probability p, independently of the presence
or absence of other edges.

Step 2. If an edge occurs in the underlying constraint graph, randomly chose a label for
the edge from the set of all possible labels (excluding the empty label) where each label is
chosen with equal probability. If an edge does not occur, label the edge with I , the set of
all 13 basic relations.

Step 3. Generate a \solution" of size n as follows. Generate n real intervals by randomly
generating values for the end points of the intervals. Determine the consistent scenario by
determining the basic relations which are satis�ed by the intervals. Finally, add the solution
to the IA network generated in Steps 1{2.

Hence, only consistent IA networks are generated from S(n; p). If we omit Step 3, it
can be shown both analytically and empirically that almost all of the di�erent possible
IA networks generated by this distribution are inconsistent and that the inconsistency is
easily detected by a path consistency algorithm. To avoid this potential pitfall, we test
our algorithms on consistent instances of the problem. This method appears to generate a
reasonable test set for temporal reasoning algorithms with problems that range from easy
to hard. It was found, for example, that instances drawn from S(n; 1=4) were hard problems
for the backtracking algorithms to solve, whereas for values of p on either side (S(n; 1=2)
and S(n; 1=8)) the problems were easier.
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3. Path Consistency Algorithm

Path consistency or transitive closure algorithms (Aho, Hopcroft, & Ullman, 1974; Mack-
worth, 1977; Montanari, 1974) are important for temporal reasoning. Allen (1983) shows
that a path consistency algorithm can be used as a heuristic test for whether an IA network
is consistent (sometimes the algorithm will report that the information is consistent when
really it is not). A path consistency algorithm is useful also in a backtracking search for a
consistent scenario where it can be used as a preprocessing algorithm (Mackworth, 1977;
Ladkin & Reinefeld, 1992) and as an algorithm that can be interleaved with the backtrack-
ing search (see the next section; Nadel, 1989; Ladkin & Reinefeld, 1992). In this section,
we examine methods for speeding up a path consistency algorithm.

The idea behind the path consistency algorithm is the following. Choose any three
vertices i, j, and k in the network. The labels on the edges (i; j) and (j; k) potentially
constrain the label on the edge (i; k) that completes the triangle. For example, consider
the three vertices Stack(A,B), On(A,B), and Goal in Figure 2a. From Stack(A,B) fmg
On(A,B) and On(A,B) fdig Goal we can deduce that Stack(A,B) fbg Goal and therefore
can change the label on that edge from I , the set of all basic relations, to the singleton
set fbg. To perform this deduction, the algorithm uses the operations of set intersection
(\) and composition (�) of labels and checks whether Cik = Cik \ Cij � Cjk, where Cik is
the label on edge (i; k). If Cik is updated, it may further constrain other labels, so (i; k) is
added to a list to be processed in turn, provided that the edge is not already on the list.
The algorithm iterates until no more such changes are possible. A unary operation, inverse,
is also used in the algorithm. The inverse of a label is the inverse of each of its elements
(see Figure 1 for the inverses of the basic relations).

We designed and experimentally evaluated techniques for improving the e�ciency of a
path consistency algorithm. Our starting point was the variation on Allen's (1983) algorithm
shown in Figure 3. For an implementation of the algorithm to be e�cient, the intersection
and composition operations on labels must be e�cient (Steps 5 & 10). Intersection was
made e�cient by implementing the labels as bit vectors. The intersection of two labels
is then simply the logical AND of two integers. Composition is harder to make e�cient.
Unfortunately, it is impractical to implement the composition of two labels using table
lookup as the table would need to be of size 213 � 213, there being 213 possible labels.

We experimentally compared two practical methods for composition that have been
proposed in the literature. Allen (1983) gives a method for composition which uses a table
of size 13 � 13. The table gives the composition of the basic relations (see Allen, 1983,
for the table). The composition of two labels is computed by a nested loop that forms the
union of the pairwise composition of the basic relations in the labels. Hogge (1987) gives a
method for composition which uses four tables of size 27� 27, 27� 26, 26� 27, and 26� 26.
The composition of two labels is computed by taking the union of the results of four array
references (H. Kautz independently devised a similar scheme). In our experiments, the
implementations of the two methods di�ered only in how composition was computed. In
both, the list, L, of edges to be processed was implemented using a �rst-in, �rst-out policy
(i.e., a stack).

We also experimentally evaluated methods for reducing the number of composition op-
erations that need to be performed. One idea we examined for improving the e�ciency is
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Path-Consistency(C;n)

1. L f(i; j) j 1 � i < j � ng
2. while (L is not empty)
3. do select and delete an (i; j) from L
4. for k 1 to n, k 6= i and k 6= j

5. do t Cik \ Cij � Cjk

6. if (t 6= Cik)
7. then Cik  t
8. Cki  Inverse(t)
9. L L [ f(i; k)g
10. t Ckj \ Cki � Cij

11. if (t 6= Ckj)
12. then Ckj  t
13. Cjk  Inverse(t)
14. L L [ f(k; j)g

Figure 3: Path consistency algorithm for IA networks

to avoid the computation when it can be predicted that the result will not constrain the
label on the edge that completes the triangle. Three such cases we identi�ed are shown in
Figure 4. Another idea we examined, as �rst suggested by Mackworth (1977, p. 113), is
that the order that the edges are processed can a�ect the e�ciency of the algorithm. The
reason is the following. The same edge can appear on the list, L, of edges to be processed
many times as it progressively gets constrained. The number of times a particular edge
appears on the list can be reduced by a good ordering. For example, consider the edges
(3; 1) and (3; 5) in Figure 2a. If we process edge (3; 1) �rst, edge (3; 2) will be updated to
fo,oi,s,si,d,di,f,�,eqg and will be added to L (k = 2 in Steps 5{9). Now if we process edge
(3; 5), edge (3; 2) will be updated to fo,s,dg and will be added to L a second time. However,
if we process edge (3; 5) �rst, (3; 2) will be immediately updated to fo,s,dg and will only be
added to L once.

Three heuristics we devised for ordering the edges are shown in Figure 9. The edges
are assigned a heuristic value and are processed in ascending order. When a new edge is
added to the list (Steps 9 & 14), the edge is inserted at the appropriate spot according to its
new heuristic value. There has been little work on ordering heuristics for path consistency
algorithms. Wallace and Freuder (1992) discuss ordering heuristics for arc consistency
algorithms, which are closely related to path consistency algorithms. Two of their heuristics
cannot be applied in our context as the heuristics assume a constraint satisfaction problem
with �nite domains, whereas IA networks are examples of constraint satisfaction problems
with in�nite domains. A third heuristic (due to B. Nudel, 1983) closely corresponds to our
cardinality heuristic.

All experiments were performed on a Sun 4/25 with 12 megabytes of memory. We
report timings rather than some other measure such as number of iterations as we believe
this gives a more accurate picture of whether the results are of practical interest. Care was
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The computation, Cik \ Cij � Cjk, can be skipped when it is known that the result of the
composition will not constrain the label on the edge (i; k):

a. If either Cij or Cjk is equal to I , the result of the composition will be I and therefore
will not constrain the label on the edge (i; k). Thus, in Step 1 of Figure 3, edges that
are labeled with I are not added to the list of edges to process.

b. If the condition,

(b 2 Cij ^ bi 2 Cjk) _ (bi 2 Cij ^ b 2 Cjk) _ (d 2 Cij ^ di 2 Cjk);

is true, the result of composing Cij and Cjk will be I . The condition is quickly tested
using bit operations. Thus, if the above condition is true just before Step 5, Steps 5{9
can be skipped. A similar condition can be formulated and tested before Step 10.

c. If at some point in the computation of Cij � Cjk it is determined that the result
accumulated so far would not constrain the label Cik, the rest of the computation can
be skipped.

Figure 4: Skipping techniques

taken to always start with the same base implementation of the algorithm and only add
enough code to implement the composition method, new technique, or heuristic that we
were evaluating. As well, every attempt was made to implement each method or heuristic
as e�ciently as we could.

Given our implementations, Hogge's method for composition was found to be more
e�cient than Allen's method for both the benchmark problem and the random instances
(see Figures 5{8). This much was not surprising. However, with the addition of the skipping
techniques, the two methods became close in e�ciency. The skipping techniques sometimes
dramatically improved the e�ciency of both methods. The ordering heuristics can improve
the e�ciency, although here the results were less dramatic. The cardinality heuristic and
the constraintedness heuristic were also tried for ordering the edges. It was found that the
cardinality heuristic was just as costly to compute as the weight heuristic but did not out
perform it. The constraintedness heuristic reduced the number of iterations but proved too
costly to compute. This illustrates the balance that must be struck between the e�ectiveness
of a heuristic and the additional overhead the heuristic introduces.

For S(n; p), the skipping techniques and the weight ordering heuristic together can result
in up to a ten-fold speedup over an already highly optimized implementation using Hogge's
method for composition. The largest improvements in e�ciency occur when the IA networks
are sparse (p is smaller). This is encouraging for it appears that the problems that arise in
planning and molecular biology are also sparse. For B(n) and Benzer's matrix, the speedup
is approximately four-fold. Perhaps most importantly, the execution times reported indicate
that the path consistency algorithm, even though it is an O(n3) algorithm, can be used on
practical-sized problems. In Figure 8, we show how well the algorithms scale up. It can be
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data point is the average of 100 tests on random instances of IA networks drawn
from B(n); the coe�cient of variation (standard deviation / average) for each set
of 100 tests is bounded by 0.20

seen that the algorithm that includes the weight ordering heuristic out performs all others.
However, this algorithm requires much space and the largest problem we were able to solve
was with 500 intervals. The algorithms that included only the skipping techniques were
able to solve much larger problems before running out of space (up to 1500 intervals) and
here the constraint was the time it took to solve the problems.
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4. Backtracking Algorithm

Allen (1983) was the �rst to propose that a backtracking algorithm (Golomb & Baumert,
1965) could be used to �nd a consistent scenario of an IA network. In the worst case, a
backtracking algorithm can take an exponential amount of time to complete. This worst
case also applies here as Vilain and Kautz (1986, 1989) show that �nding a consistent
scenario is NP-complete for IA networks. In spite of the worst case estimate, backtracking
algorithms can work well in practice. In this section, we examine methods for speeding up a
backtracking algorithm for �nding a consistent scenario and present results on how well the
algorithm performs on di�erent classes of problems. In particular, we compare the e�ciency
of the algorithm on two alternative formulations of the problem: one that has previously
been proposed by others and one that we have proposed (van Beek, 1992). We also improve
the e�ciency of the algorithm by designing heuristics for ordering the instantiation of the
variables and for ordering the values in the domains of the variables.

As our starting point, we modeled our backtracking algorithm after that of Ladkin and
Reinefeld (1992) as the results of their experimentation suggests that it is very successful at
�nding consistent scenarios quickly. Following Ladkin and Reinefeld our algorithm has the
following characteristics: preprocessing using a path consistency algorithm, static order of
instantiation of the variables, chronological backtracking, and forward checking or pruning
using a path consistency algorithm. In chronological backtracking, when the search reaches
a dead end, the search simply backs up to the next most recently instantiated variable and
tries a di�erent instantiation. Forward checking (Haralick & Elliott, 1980) is a technique
where it is determined and recorded how the instantiation of the current variable restricts
the possible instantiations of future variables. This technique can be viewed as a hybrid of
tree search and consistency algorithms (see Nadel, 1989; Nudel, 1983). (See Dechter, 1992,
for a general survey on backtracking.)

4.1 Alternative formulations

Let C be the matrix representation of an IA network, where Cij is the label on edge (i; j).
The traditional method for �nding a consistent scenario of an IA network is to search for a
subnetwork S of a network C such that,

(a) Sij � Cij ,

(b) jSijj = 1, for all i; j, and

(c) S is consistent.

To �nd a consistent scenario we simply search through the di�erent possible S's that satisfy
conditions (a) and (b)|it is a simple matter to enumerate them|until we �nd one that
also satis�es condition (c). Allen (1983) was the �rst to propose using backtracking search
to search through the potential S's.

Our alternative formulation is based on results for two restricted classes of IA networks,
denoted here as SA networks and NB networks. In IA networks, the relation between two
intervals can be any subset of I , the set of all thirteen basic relations. In SA networks
(Vilain & Kautz, 1986), the allowed relations between two intervals are only those subsets
of I that can be translated, using the relations f<, �, =, >, �, 6=g, into conjunctions of
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relations between the endpoints of the intervals. For example, the IA network in Figure 2a
is also an SA network. As a speci�c example, the interval relation \A fbi,mig B" can be
expressed as the conjunction of point relations, (B� < B+) ^ (A� < A+) ^ (A� � B+);
where A� and A+ represent the start and end points of interval A, respectively. (See Ladkin
& Maddux, 1988; van Beek & Cohen, 1990, for an enumeration of the allowed relations for
SA networks.) In NB networks (Nebel & B�urckert, 1995), the allowed relations between
two intervals are only those subsets of I that can be translated, using the relations f<,
�, =, >, �, 6=g, into conjunctions of Horn clauses that express the relations between the
endpoints of the intervals. The set of NB relations is a strict superset of the SA relations.

Our alternative formulation is as follows. We describe the method in terms of SA
networks, but the same method applies to NB networks. The idea is that, rather than
search directly for a consistent scenario of an IA network as in previous work, we �rst
search for something more general: a consistent SA subnetwork of the IA network. That
is, we use backtrack search to �nd a subnetwork S of a network C such that,

(a) Sij � Cij ,

(b) Sij is an allowed relation for SA networks, for all i; j, and

(c) S is consistent.

In previous work, the search is through the alternative singleton labelings of an edge, i.e.,
jSij j = 1. The key idea in our proposal is that we decompose the labels into the largest
possible sets of basic relations that are allowed for SA networks and search through these
decompositions. This can considerably reduce the size of the search space. For example,
suppose the label on an edge is fb,bi,m,o,oi,sig. There are six possible ways to label the
edge with a singleton label: fbg, fbig, fmg, fog, foig, fsig, but only two possible ways to
label the edge if we decompose the labels into the largest possible sets of basic relations
that are allowed for SA networks: fb,m,og and fbi,oi,sig. As another example, consider the
network shown in Figure 2a. When searching through alternative singleton labelings, the
worst case size of the search space is C12 � C13 � � � � � C89 = 314 (the edges labeled with
I must be included in the calculation). But when decomposing the labels into the largest
possible sets of basic relations that are allowed for SA networks and searching through the
decompositions, the size of the search space is 1, so no backtracking is necessary (in general,
the search is, of course, not always backtrack free).

To test whether an instantiation of a variable is consistent with instantiations of past
variables and with possible instantiations of future variables, we use an incremental path
consistency algorithm (in Step 1 of Figure 3 instead of initializing L to be all edges, it is
initialized to the single edge that has changed). The result of the backtracking algorithm is a
consistent SA subnetwork of the IA network, or a report that the IA network is inconsistent.
After backtracking completes, a solution of the SA network can be found using a fast
algorithm given by van Beek (1992).

4.2 Ordering heuristics

Backtracking proceeds by progressively instantiating variables. If no consistent instantiation
exists for the current variable, the search backs up. The order in which the variables
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Weight. The weight heuristic is an estimate of how much the label on an edge will restrict
the labels on other edges. Restrictiveness was measured for each basic relation by succes-
sively composing the basic relation with every possible label and summing the cardinalities
of the results. The results were then suitably scaled to give the table shown below.

relation b bi m mi o oi s si d di f � eq

weight 3 3 2 2 4 4 2 2 4 3 2 2 1

The weight of a label is then the sum of the weights of its elements. For example, the weight
of the relation fm,o,sg is 2 + 4 + 2 = 8.

Cardinality. The cardinality heuristic is a variation on the weight heuristic. Here, the
weight of every basic relation is set to one.

Constraint. The constraintedness heuristic is an estimate of how much a change in a label
on an edge will restrict the labels on other edges. It is determined as follows. Suppose
the edge we are interested in is (i; j). The constraintedness of the label on edge (i; j) is
the sum of the weights of the labels on the edges (k; i) and (j; k), k = 1; :::; n; k 6= i; k 6= j.
The intuition comes from examining the path consistency algorithm (Figure 3) which would
propagate a change in the label Cij. We see that Cij will be composed with Cki (Step 5)
and Cjk (Step 10), k = 1; :::; n; k 6= i; k 6= j.

Figure 9: Ordering heuristics

are instantiated and the order in which the values in the domains are tried as possible
instantiations can greatly a�ect the performance of a backtracking algorithm and various
methods for ordering the variables (e.g. Bitner & Reingold, 1975; Freuder, 1982; Nudel,
1983) and ordering the values (e.g. Dechter & Pearl, 1988; Ginsberg et al., 1990; Haralick
& Elliott, 1980) have been proposed.

The idea behind variable ordering heuristics is to instantiate variables �rst that will
constrain the instantiation of the other variables the most. That is, the backtracking search
attempts to solve the most highly constrained part of the network �rst. Three heuristics
we devised for ordering the variables (edges in the IA network) are shown in Figure 9.
For our alternative formulation, cardinality is rede�ned to count the decompositions rather
than the elements of a label. The variables are put in ascending order. In our experiments
the ordering is static|it is determined before the backtracking search starts and does not
change as the search progresses. In this context, the cardinality heuristic is similar to a
heuristic proposed by Bitner and Reingold (1975) and further studied by Purdom (1983).

The idea behind value ordering heuristics is to order the values in the domains of the
variables so that the values most likely to lead to a solution are tried �rst. Generally, this
is done by putting values �rst that constrain the choices for other variables the least. Here
we propose a novel technique for value ordering that is based on knowledge of the structure
of solutions. The idea is to �rst choose a small set of problems from a class of problems,
and then �nd a consistent scenario for each instance without using value ordering. Once we
have a set of solutions, we examine the solutions and determine which values in the domains
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Figure 10: E�ect of decomposition method on average time (sec.) of backtracking algo-
rithm. Each data point is the average of 100 tests on random instances of IA
networks drawn from B(n); the coe�cient of variation (standard deviation /
average) for each set of 100 tests is bounded by 0.15

are most likely to appear in a solution and which values are least likely. This information
is then used to order the values in subsequent searches for solutions to problems from this
class of problems. For example, �ve problems were generated using the model S(100; 1=4)
and consistent scenarios were found using backtracking search and the variable ordering
heuristic constraintedness/weight/cardinality. After rounding to two signi�cant digits, the
relations occurred in the solutions with the following frequency,

relation b, bi d, di o, oi eq m, mi f, � s, si

value (�10) 1900 240 220 53 20 15 14

As an example of using this information to order the values in a domain, suppose that the
label on an edge is fb,bi,m,o,oi,sig. If we are decomposing the labels into singleton labels,
we would order the values in the domain as follows (most preferred �rst): fbg, fbig, fog,
foig, fmg, fsig. If we are decomposing the labels into the largest possible sets of basic
relations that are allowed for SA networks, we would order the values in the domain as
follows: fb,m,og, fbi,oi,sig, since 1900+20+ 220 > 1900+ 220+14. This technique can be
used whenever something is known about the structure of solutions.

4.3 Experiments

All experiments were performed on a Sun 4/20 with 8 megabytes of memory.

The �rst set of experiments, summarized in Figure 10, examined the e�ect of problem
formulation on the execution time of the backtracking algorithm. We implemented three
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Figure 11: E�ect of variable and value ordering heuristics on time (sec.) of backtracking
algorithm. Each curve represents 100 tests on random instances of IA networks
drawn from S(100; 1=4) where the tests are ordered by time taken to solve the
instance. The backtracking algorithm used the SA decomposition method.

versions of the algorithm that were identical except that one searched through singleton
labelings (denoted hereafter and in Figure 10 as the SI method) and the other two searched
through decompositions of the labels into the largest possible allowed relations for SA net-
works and NB networks, respectively. All of the methods solved the same set of random
problems drawn from B(n) and were also applied to Benzer's matrix (denoted + and �
in Figure 10). For each problem, the amount of time required to solve the given IA net-
work was recorded. As mentioned earlier, each IA network was preprocessed with a path
consistency algorithm before backtracking search. The timings include this preprocessing
time. The experiments indicate that the speedup by using the SA decomposition method
can be up to three-fold over the SI method. As well, the SA decomposition method was
able to solve larger problems before running out of space (n = 250 versus n = 175). The
NB decomposition method gives exactly the same result as for the SA method on these
problems because of the structure of the constraints. We also tested all three methods on
a set of random problems drawn from S(100; p), where p = 1; 3=4; 1=2, and 1=8. In these
experiments, the SA and NB methods were consistently twice as fast as the SI method. As
well, the NB method showed no advantage over the SA method on these problems. This is
surprising as the branching factor, and hence the size of the search space, is smaller for the
NB method than for the SA method.

The second set of experiments, summarized in Figure 11, examined the e�ect on the
execution time of the backtracking algorithm of heuristically ordering the variables and
the values in the domains of the variables before backtracking search begins. For variable
ordering, all six permutations of the cardinality, constraint, and weight heuristics were tried
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as the primary, secondary, and tertiary sorting keys, respectively. As a basis of comparison,
the experiments included the case of no heuristics. Figure 11 shows approximate cumulative
frequency curves for some of the experimental results. Thus, for example, we can read from
the curve representing heuristic value ordering and best heuristic variable ordering that
approximately 75% of the tests completed within 20 seconds, whereas with random value
and variable ordering only approximately 5% of the tests completed within 20 seconds. We
can also read from the curves the 0, 10, : : : , 100 percentiles of the data sets (where the
value of the median is the 50th percentile or the value of the 50th test). The curves are
truncated at time = 1800 (1/2 hour), as the backtracking search was aborted when this
time limit was exceeded.

In our experiments we found that S(100; 1=4) represents a particularly di�cult class
of problems and it was here that the di�erent heuristics resulted in dramatically di�er-
ent performance, both over the no heuristic case and also between the di�erent heuristics.
With no value ordering, the best heuristic for variable ordering was the combination con-
straintedness/weight/cardinality where constraintedness is the primary sorting key and the
remaining keys are used to break subsequent ties. Somewhat surprisingly, the best heuristic
for variable ordering changes when heuristic value ordering is incorporated. Here the com-
bination weight/constraintedness/cardinality works much better. This heuristic together
with value ordering is particularly e�ective at \
attening out" the distribution and so al-
lowing a much greater number of problems to be solved in a reasonable amount of time. For
S(100; p), where p = 1; 3=4; 1=2, and 1=8, the problems were much easier and all but three
of the hundreds of tests completed within 20 seconds. In these problems, the heuristic used
did not result in signi�cantly di�erent performance.

In summary, the experiments indicate that by changing the decomposition method we
are able to solve larger problems before running out of space (n = 250 vs n = 175 on a
machine with 8 megabytes; see Figure 10). The experiments also indicate that good heuristic
orderings can be essential to being able to �nd a consistent scenario of an IA network in
reasonable time. With a good heuristic ordering we were able to solve much larger problems
before running out of time (see Figure 11). The experiments also provide additional evidence
for the e�cacy of Ladkin and Reinefeld's (1992, 1993) algorithm. Nevertheless, even with
all of our improvements, some problems still took a considerable amount of time to solve.
On consideration, this is not surprising. After all, the problem is known to be NP-complete.

5. Conclusions

Temporal reasoning is an essential part of tasks such as planning and scheduling. In this pa-
per, we discussed the design and an empirical analysis of two key algorithms for a temporal
reasoning system. The algorithms are a path consistency algorithm and a backtracking algo-
rithm. The temporal reasoning system is based on Allen's (1983) interval-based framework
for representing temporal information. Our emphasis was on how to make the algorithms
robust and e�cient in practice on problems that vary from easy to hard. For the path consis-
tency algorithm, the bottleneck is in performing the composition operation. We developed
methods for reducing the number of composition operations that need to be performed.
These methods can result in almost an order of magnitude speedup over an already highly
optimized implementation of the algorithm. For the backtracking algorithm, we developed
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variable and value ordering heuristics and showed that an alternative formulation of the
problem can considerably reduce the time taken to �nd a solution. The techniques allow an
interval-based temporal reasoning system to be applied to larger problems and to perform
more e�ciently in existing applications.
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