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Abstract

This article describes an application of three well-known statistical methods in the field of
game—tree search: using a large number of classified Othello positions, feature weights for
evaluation functions with a game-phase-independent meaning are estimated by means of
logistic regression, Fisher’s linear discriminant, and the quadratic discriminant function for
normally distributed features. Thereafter, the playing strengths are compared by means
of tournaments between the resulting versions of a world—class Othello program. In this
application, logistic regression — which is used here for the first time in the context of game
playing — leads to better results than the other approaches.

1. Introduction

Programs playing games like chess, draughts, or Othello use evaluation functions to estimate
the players’ winning chances in positions at the leaves of game—trees. These values are
propagated to the root according to the NegaMax principle in order to choose a move in
the root position which leads to the highest score. Normally, evaluation functions combine
features that measure properties of the position correlated with the winning chance, such as
material in chess or mobility in Othello. Most popular are quickly computable linear feature
combinations. In the early days of game programming, the feature weights were chosen
intuitively and improved in a manual hill-climbing process until the programmer’s patience
gave out. This technique is laborious. Samuel (1959,1967) was the first to describe a method
for automatic improvement of evaluation function parameters. Since then many approaches
have been investigated. Two main strategies can be distinguished:

Move adaptation: Evaluation function parameters are tuned to maximize the frequency
with which searches yield moves that occur in the lists of moves belonging to training
positions. The idea is to get the program to mimic experts’ moves.

Value adaptation: Given a set of labelled example positions, parameters are determined
such that the evaluation function fits a specific model. For instance, evaluation functions
can be constructed in this way to predict the final game result.

In move adaptation, proposed for instance by Marsland (1985), v.d. Meulen (1989), and
Mysliwietz (1994), a linear feature combination has two degrees of freedom: it can be multi-
plied by a positive constant and any constant can be added to it without changing the move
decision. If the evaluation function depends on the game phase, and positions from different
phases are compared (for example within the framework of selective extensions or opening
book play), these constants must be chosen suitably. Because evaluation functions optimized
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by move adaptation for the moment have no global interpretation, a solution of this problem
is not obvious. Schaeffer et al. (1992) presented an ad hoc and game-specific approach.

In this respect, value adaptation is more promising. Here, evaluations from different
phases are comparable if the example position labels have a phase-independent meaning.
Mitchell (1984) labelled Othello positions occurring in a game with the final game result
in the form of the disc differential and tried to approximate these values using a linear
combination of features. Since a regression was used to determine the weights, it was also
possible to investigate the features’ statistical relevance. Another statistical approach for
value adaptation was used by Lee & Mahajan (1988): example positions were classified as a
win or loss for the side to move and — assuming the features to be multivariate normal — a
quadratic discriminant function was used to predict the winning probability. This technique
ensures the desired comparability and applies also to games without win degrees, i.e. that
only know wins, draws, and losses.

Besides these classical approaches which heavily rely on given feature sets, in recent
years artificial neural networks (ANNs) have been trained for evaluating game positions. For
instance, Moriarty & Miikkulainen (1993) used genetic algorithms to evolve both the topology
and weights of ANNs in order to learn Othello concepts by means of tournaments against
fixed programs. After discovering the concept of mobility, their best 1-ply ANN-player was
able to win 70% of the games against a 3—ply brute—force program that used an evaluation
function without mobility features. The most important contribution in this field is by
Tesauro (1992,1994,1995). Using temporal difference learning (Sutton, 1988) for updating
the weights, his ANNs learned to evaluate backgammon positions at master level by means
of self-play. Tesauro conjectured the stochastic nature of backgammon to be responsible for
the success of this approach. Though several researchers obtained encouraging preliminary
results applying Tesauro’s learning procedure to deterministic games, this work has not yet
led to strong tournament programs for tactical games such as Awari, draughts, Othello, or
chess, that allow deep searches and for which powerful and quickly computable evaluation
functions are known. It might be that due to tactics for these games more knowledgeable
but slower evaluation functions are not necessarily more accurate than relatively simple and
faster evaluation functions in conjunction with deeper searches.

In what follows, three well-known statistical models — namely the quadratic discrim-
ination function for normally distributed features, Fisher’s linear discriminant, and logistic
regression — are described for the evaluation of game positions in the context of value
adaptation. Thereafter, it is shown how example positions for parameter estimation were
generated. Finally, the playing strengths of three versions of a world—class Othello program?
— LOGISTELLO — equipped with the resulting evaluation functions are compared in order
to determine the strongest tournament player. It turns out that quadratic feature combina-
tions do not necessarily lead to stronger programs than linear combinations, and that logistic
regression gives the best results in this application.

2. Statistical Feature Combination

The formal basis of statistical feature combination for position evaluation can be stated as
follows:

1. Since its appearance in October 1993 it won twelve of the 14 international tournaments it played.
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Q) is the set of positions to evaluate.

Y : Q — {L£, W} classifies positions as a loss or win for the player to move,
assuming optimal play by both sides. Draws can be handled in the manner
outlined in Section 4.

e Xi,....X,, : Q2 — IR are the features.

e The evaluation of a position w € Q with z = (Xj,..., X,,)(w) is the con-
ditional winning probability

Viw)=PY =W]|(Xy,....,.X,) =2) = POV | z).

e There are N classified example positions wy, ..., wy € £ available with
z, = (X1,..., Xo)(w;) and y; = Y (wy).

In the following subsections models which express P(W | ¢) as a function of linear or quad-
ratic feature combinations are briefly introduced in a way that is sufficient for practical
purposes. Good introductions and further theoretical details are given for instance by Duda
& Hart (1973), Hand (1981), Agresti (1990), and McCullagh & Nelder (1989). Both Fisher’s
classical method and logistic regression are used here to model P(W | ) for the first time; the
quadratic discriminant function has been used by Lee & Mahajan (1988), however, without
considering Fisher’s discriminant first.

2.1 Discriminant Functions for Normally Distributed Features

Bayes’ rule gives

e |WPOY) pla | W) POW)
POVI=) = ==y T 2@ W) POY) +p(= | £)PE)
B pa | £)P(L) \!
= (”p_<w|w>P<w>) ’

where p(x | C) is the features’ conditional density function and P(C') is the a priori probability
of class C' € {L£, W}. In the case that the a priori probablities are equal, and the features are
multivariate normally distributed within each class, i.e.

ple | C) = 2m) S| exp{ ~ (@ — po) S5 (@ - pe)'}

with mean vector p. and covariance matrix X for C' € {W, L}, it follows

1
L+ exp(—f(z))’

where f is the following quadratic discriminant function:

PW | z) =

flx) = —{%a}(E;\} — Ezl)a}' + (,U,EEZI — ,U,WE;VI):B’ +

%(qu;vlu’w — peS7 s+ log | Ty — log IE,cI)}-
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Figure 1: Conditional densities and winning probability

If the covariance matrices are equal (=X), the expression can be simplified to a linear function:

fle) = (mw— )= He — (pe + pw)/2).

Interestingly, this function is also a solution to the problem of finding a linear transformation
which maximizes the ratio of the squared sample mean distance to the sum of the within—class
sample variances after transformation. Therefore, it has good separator properties even if the
features are not normally distributed. This is called Fisher’s linear discriminant. Figure 1
illustrates the relation between the conditional densities and the winning probability.

The maximum likelihood (ML) parameter estimates are

bo = = T,
2
N 1 R R
Yo = o (@i — i) (i — fag)
| O| 1€lc

with Ic = {¢| y; = C'}. If the covariance matrices are equal,

m Z Z (i — fe) (i — fag).

ce{LWhiels

3=

2.2 Logistic Regression

In logistic regression the conditional winning probability P(WW | «) depends on a linear
combination of the z;. Here, X; = 1 is assumed in order to be able to model constant offsets.
The simple approach P(W | ) = 23 using a parameter column vector 3 is unusable because
xB3 € [0,1] cannot be guaranteed generally. This requirement can be fulfilled by means of
a link—function ¢ : (0,1) — IR according to g(P(W | #)) = 3. Figure 2 shows a typical
nonlinear relation between the winning probability and one feature. Since the probability is
usually a monotone increasing function of the features, g should satisfy lim, 04+ g(z) = —c0
and lim, - g(z) = 4o00. The link-function ¢(t) = logit(t) := log(t/(1 — t)) has these
properties. Using ¢ = logit, since g1 (z) = {1 + exp(—a)}~!, it follows that

1

R =)
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Hence, the winning probability has the same shape as for discriminant analysis. But logistic
regression does not require the features to be multivariate normal; even the use of very
discrete features is possible.

Again the parameter vector 3 can be estimated using the ML approach. Unfortunately,
in this case it is necessary to solve a system of nonlinear equations. In what follows, a known
solving approach will be briefly described (cf. Agresti, 1990; McCullagh & Nelder, 1989).

In order to ensure convergence of the iterative algorithm given below, it is necessary
to slightly generalize our model: from now on y; is the observed value of random variable
Y = 3, Vi, where the Vi ; : Q — {0,1} have mean 7; = {1 + exp(—z;3)} ! and are
stochastlcally independent. This definition includes the old model (n; = 1 and y; € {0,1}).
The likelihood function L(83), which is a probability density, measures how likely it is to
see the realization y of the stochastically independent random variables Y;, if 3 is the true
parameter vector. In order to maximize L, it suffices to consider log(L):

log(L(B)) = log(Hﬂy’ L—m)™™ y’) Zyzlogﬂ-z n; — y;)log(1l — ;)
=1
n N
= Z (Zymj)ﬁj - Zm 108;{1 + GXP(Zwiyﬂj)}-
7=1 =1 =1 7=1

This function is twice differentiable, is strictly concave up to rare border cases, and has
a unique maximum location if 0 < y; < n; for all ¢ (cf. Wedderburn, 1976) that can be
iteratively found using the Newton—Raphson method as follows:

(t+1) — (X! ()X)_1X/A(t) S ()

B
with

e the (N x n)-matrix X built from the @;,

° Al = diag[n;7 ()(1 - T(t)) {1 —i—exp( Zn: ﬁ]( )} , and

(t) _ 7 Yi = nifi;
o =z =log +
(1 - fr}’f)) nit!

1.0

POW|xz) 0.5

0.0

X

Figure 2: Typical shape of the winning probability
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Starting with 7?2(0) = (y;+1/2)/(ni+1), the ML estimate 3 may usually be computed with high
accuracy within a few steps since the method is quadratically convergent and relatively robust
with respect to the choice of the starting vector. Unfortunately, if there is an ¢ with y; = 0
or y; = n; the estimates might not converge. But our original model can be approximated,
for instance, by setting n; = 100 and y; = 1 or 99, depending on whether the position in
question is lost or won.

3. Generation and Classification of Example Positions

Value adaptation requires labelled example positions. Here, some problems arise. First of
all, for most nontrivial games only endgame positions can be classified correctly as won,
drawn, or lost; for opening and midgame positions optimal play is out of reach due to the
lack of game knowledge and time constraints. Furthermore, the example positions should
contain significant feature variance since otherwise no discrimination is possible. Hence, it
is problematic to use only high level games — which might be the first idea — since good
players and programs know the relevant features and try to maximize them during a game.
Therefore, these features tend to be constant most of the time and statistical methods would
assign only small weights to them. As a final difficulty, estimating parameters accurately for
different game phases requires many positions.

A pragmatic “solution” to these problems is indicated in Figure 3: over a period of
two years, about 60,000 Othello games? were played by early versions of LOGISTELLO and
Igor Durdanovié’s program REV.? Feature variance was ensured by examining all openings
of length seven which led mostly to unbalanced starting positions. Since early program
versions were used which had only 5-10 minutes thinking time, the games, though well
played most of the time, are not error free. In some cases even big mistakes occurred in
which, for example, one side fell into a corner losing trap? caused by a lack of look—ahead.
But without these errors, no reasonable weight estimation of principal features (such as corner
possession in Othello) is possible as explained above. Following Lee & Mahajan (1988), all
positions were then classified by the final game results. This approach is problematic because
the classification reliability decreases from the endgame to the opening phase due to player
mistakes. To reduce this effect, early outcome searches were performed for solving Othello
positions 20 moves before game end. Furthermore, from time to time the game database
was searched for “obvious” errors using new program versions and longer searches to correct
these games. Since in this process many lines of play were repeated, the misclassification
rate was further reduced by propagating the game results from the leaves to the root of the
game—tree, which had been built from all games according to the NegaMax principle. In
this way the classification of a position depends on that of all examined successors and is
therefore more reliable.

The proposed classification method is relatively fast and allows us to label many positions
in a reasonable time (on average about 42 new positions in 10-20 minutes). In addition to

2. The game file can be obtained via anonymous ftp.
(ftp.uni-paderborn.de/unix/othello/misc/database.zip)

3. A brief description of both programs is given in the help pages of the Internet Othello Server.
(telnet faust.uni-paderborn.de 5000)

4. In its implications this can be compared with losing material for nothing in chess.
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Figure 3: The classification process

ensuring an accurate parameter estimation even for different game phases (which is indicated
by small parameter confidence intervals), this method enabled us to develop new pattern
features for Othello based on estimating the winning probability conditioned upon occurrence
of sub—configurations, like edge or diagonal instances, of the board.’

4. Parameter Estimation and Playing Strength Comparison

Although only about 5% of the example positions were labelled as drawn, it was decided
to use them for parameter estimation since these positions give exact information about
feature balancing. A natural way to handle drawn positions within the statistical evaluation
framework considered here is to define the winning probability to be 1/2 in this case. For
this extension the logistic regression parameters can easily determined by setting y; = n;/2
in case of a draw. Alternatively, doubling won or lost positions and incorporating drawn
positions once as won and once as lost leads to the same estimate because both log likelihood
functions are equal up to a constant factor. The latter technique was used for fitting the
other models.

Previous experiments showed that the parameters depend on the game phase, for which
disc count is an adequate measure in Othello. So the example positions were grouped ac-
cording to the number of discs on the board, and adjacent groups were used for parameter
estimation in order to smooth the data and to ensure almost equal numbers of won and lost
positions.

The success of the Othello program BILL described by Lee & Mahajan (1990) shows
that in Othello table—based features can be quite effective. For instance, the important edge
structure can be quickly evaluated by adding four pre-computed edge evaluations which are
stored in a table. All 13 features used by LOGISTELLO are table—based. They fall into
two groups: in the first group pattern instances including the horizontal, vertical, and most
diagonal lines of the board are evaluated while in the second group two mobility measures
are computed.®

After parameter estimation for the three described models, tournaments between the play-
ers QUAD (which uses the quadratic discriminant function for normally distributed features),

5. Details are given by Buro (1994). The postscript file of this thesis can be obtained via anonymous ftp.
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Pairing Time per game Result Winning
(Minutes) (Win—Draw—Loss)  Percentage

LOG - QUAD 30 — 30 116 — 15— 69 61.8%
FISHER — QUAD 30-30 112 -15-173 59.8%
LOG — FISHER 30 — 30 93 —35—172 55.3%
LOG — FISHER 30— 36 86 — 24— 90 49.0%
LOG - QUAD 30 — 38 93 -33-74 54.8%
FISHER — QUAD 30 — 38 84 — 30 — 86 49.5%
LOG - QUAD 30 — 45 88 — 26 — 86 50.5%

Table 1: Tournament results

FISHER, and LOG were played in order to determine the best tournament player. Starting
with 100 nearly even opening positions with 14 discs (i.e. before move 11) from LOGIS-
TELLO’s opening book, each game and its return game with colours reversed was played.® In
the opening and midgame phase all program versions performed their usual iterative deepen-
ing NegaScout searches (Reinefeld, 1983) with a selective corner quiescence search extension.
Endgame positions with about 22 empty squares were solved by win—draw-loss searches.
There was no pattern learning during the tournaments, and the facility to think on oppon-
ent’s time was turned off in order to speed up the tournaments which were run in parallel on
seven SUN SPARC-10 workstations.

Applying a conservative statistical test® it can be seen that all results listed in Table 1
stating a winning percentage greater than 59% are statistically significant at the 5% level. The
first two results show a clear advantage for the linear combinations under normal tournament
conditions (30 minutes per player per game). Furthermore, since LOG outperforms FISHER
the features would not seem to be even approximately normally distributed. Here lies the
advantage of logistic regression: even very discrete features like castling status in chess or
parity in Othello can be used.

Further tournaments were played with more time for the weaker players FISHER and
QUAD in order to determine the time factors which lead to an equal playing strength. As
shown in Table 1 FISHER reaches LOG’s strength if it is given about 20% more time, and
QUAD needs about 50% more time to compete with LOG. With LOGISTELLO’s optimized
implementation, the search speed when using the quadratic combination is still about 20%
slower than that with the linear combination. Thus, giving QUAD 25% more time (1/(1 —
0.2) = 1.25) balances the total number of nodes searched during a game. But even with
this timing, LOG is stronger than QUAD, and FISHER can still compete with it. All in all,
the quadratic combination is not only slower than the linear combination, but it also has no
better discrimination properties. Indeed, a look at the estimated covariance matrices of each

6. LOG’s 11-ply evaluation of these positions lies in the range [—0.4, +0.4] which corresponds to winning
probabilities in the range [0.4,0.6]. Only nearly even starting positions should be used to compare
programs of similar playing strength since in clear positions the colour determines the winner and the
winning percentage would be 50% even if one player is stronger. Of the 100 starting positions only six
always led to game pairs with a balanced score.
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class revealed that they are almost equal, and therefore a better evaluation quality than that
of Fisher’s linear discriminant could not be expected.

5. Discussion

In this paper three statistical approaches for modelling evaluation functions with a game-
phase—independent meaning have been presented and compared empirically using a world—
class Othello program. Quadratic feature combinations do not necessarily lead to stronger
programs than linear combinations since the evaluation speed can drop significantly. Of
course, this effect depends on the number of features used and their evaluation speed: if only
a few features are used or if it takes a long time to evaluate them, then the playing strength
differences cannot be explained by different speeds because in this case the evaluation times
are almost equal. In any case, before using quadratic combinations the covariance matrices
should be compared; if they are (almost) equal, the quadratic terms can be omitted and
Fisher’s linear discriminant can be used. Therefore, the motivations of Lee & Mahajan (1988)
need refinement, since an existing feature correlation does not necessarily justify the use of
nonlinear combinations. Generally, possibly more accurate nonlinear feature combinations
(such as ANNs) should be compared to simpler but faster approaches in practice, since their
use does not always guarantee a greater playing strength.

Besides linear regression and discriminant analysis, logistic regression has proven to be
a suitable tool for the construction of evaluation functions with a global interpretation. The
drawback, that for parameter estimation a system of nonlinear equations has to be solved,
is more than compensated for by the higher quality of the evaluation function in comparison
to the other approaches, since in this application the parameters have to be determined only
once. The current tournament version of LOGISTELLO uses feature weights estimated by
means of logistic regression and profits from the comparability of evaluations from different
game phases which is ensured by the use of value adaptation. As a result it is possible
to perform selective searches in which values from different game phases are compared;
moreover, values from the opening can be compared even with late midgame values in order
to find promising move alternatives in the program’s opening book (Buro 1994,1995). In this
sense, value comparability is a cornerstone of LOGISTELLO’s strength.
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