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Abstract

This paper presents an approach to learning from situated, interactive tutorial in-
struction within an ongoing agent. Tutorial instruction is a 
exible (and thus powerful)
paradigm for teaching tasks because it allows an instructor to communicate whatever types
of knowledge an agent might need in whatever situations might arise. To support this 
ex-
ibility, however, the agent must be able to learn multiple kinds of knowledge from a broad
range of instructional interactions. Our approach, called situated explanation, achieves
such learning through a combination of analytic and inductive techniques. It combines a
form of explanation-based learning that is situated for each instruction with a full suite of
contextually guided responses to incomplete explanations. The approach is implemented
in an agent called Instructo-Soar that learns hierarchies of new tasks and other do-
main knowledge from interactive natural language instructions. Instructo-Soar meets
three key requirements of 
exible instructability that distinguish it from previous systems:
(1) it can take known or unknown commands at any instruction point; (2) it can handle
instructions that apply to either its current situation or to a hypothetical situation spec-
i�ed in language (as in, for instance, conditional instructions); and (3) it can learn, from
instructions, each class of knowledge it uses to perform tasks.

1. Introduction

The intelligent, autonomous agents of the future will be called upon to perform a wide
and varying range of tasks, under a wide range of circumstances, over the course of their
lifetimes. Performing these tasks requires knowledge. If the number of possible tasks and
circumstances is large and variable over time (as it will be for a general agent), it becomes
nearly impossible to preprogram all of the knowledge required. Thus, knowledge must
be added during the agent's lifetime. Unfortunately, such knowledge cannot be added to
current intelligent systems while they perform; they must be shut down and programmed
for each new task.

This work examines an alternative: intelligent agents that can be taught to perform tasks
through tutorial instruction, as a part of their ongoing performance. Tutorial instruction
is a highly interactive dialogue that focuses on the speci�c task(s) being performed. While
working on tasks, a student may receive instruction as needed to complete tasks or to
understand aspects of the domain or of previous instructions. This situated, interactive
form of instruction produces very strong human learning (Bloom, 1984). Although it has
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received little attention in AI, it has the potential to be a powerful knowledge source for
arti�cial agents as well.

Much of tutorial instruction's power comes from its communicative 
exibility: The in-
structor can communicate whatever type of knowledge a student may need in whatever
situation it is needed. The challenge in designing a tutorable agent is to support the
breadth of interaction and learning abilities required by this 
exible communication.

In this paper, we present a theory of learning from tutorial instruction within an ongoing
agent. In developing the theory, we have given special attention to supporting communica-
tive 
exibility for the instructor (the human user). We began by identifying the properties
of tutorial instruction from the instructor's perspective. From these properties, we have
derived a set of requirements that an instructable agent must meet to support 
exible in-
structability. These requirements drove the development of the theory and its evaluation.
Finally, we have implemented the theory in an instructable agent called Instructo-Soar
(Hu�man, 1994; Hu�man & Laird, 1993, 1994), and evaluated its performance.1

Identifying requirements for 
exible instructability provides a target { a set of evaluation
criteria { for instructable agents. The requirements encompass the ways an agent interacts
with its instructor, comprehends instructions, and learns from them. The most general
requirements are common to all interactive learning systems; e.g., the agent is expected
to learn general knowledge from instructions, to learn quickly (with a minimal number of
examples), to integrate what is learned with its previous knowledge, etc. Other requirements
are speci�c to tutorial instruction.

Our theory of learning from tutorial instruction speci�es how analytic and inductive
learning techniques can be combined within an agent to meet the requirements, producing
general learning from a wide range of instructional interactions. We present a learning
framework called situated explanation that utilizes the situation an instruction applies to
and the larger instructional context (the instruction's type and place in the current dialogue)
to guide the learning process. Situated explanation combines a form of explanation-based
learning (DeJong & Mooney, 1986; Mitchell, Keller, & Kedar-Cabelli, 1986) that is situ-
ated for each individual instruction, with a full suite of contextually guided responses to
incomplete explanations. These responses include delaying explanation until more infor-
mation is available, inducing knowledge to complete explanations, completing explanations
through further instruction, or abandoning explanation in favor of weaker learning methods.
Previous explanation-based learning systems have employed one or in some cases a static
sequence of these options, but have not chosen dynamically among all the options based on
the context of each example. Such dynamic selection is required for 
exible instructabil-
ity. The learning framework is cast within a computational model for general intelligent
behavior called the problem space computational model.

Instructo-Soar is an implemented agent that embodies the theory. From interac-
tive natural language instructions, Instructo-Soar learns to perform new tasks, extends
known tasks to apply in new situations, and acquires a variety of other types of domain
knowledge. It allows more 
exible instruction than previous instructable systems (e.g.,
learning apprentice systems, Mitchell, Mahadevan, & Steinberg, 1990) by meeting three

1. Because our work is inspired by human students, we have also taken cues from psychological e�ects
where appropriate. The theory's potential as a cognitive model is discussed elsewhere (Hu�man, 1994;
Hu�man, Miller, & Laird, 1993).
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Does this mean pushing the button 
causes the light to come on?

Why not?

To turn on the light, push the button.

  Yes.
   ...

Never grasp red blocks.

  Red blocks are explosive.

If the light is off then turn it on.
...

Oh, I see!  What next?

Ok.  What next?

Ok.  What next?

How do I do that?

That’s a new one.  How do I do that?
Push the green button.

  Move to the grey table.

  Move above the green button.

     Move the arm up.

  Move down.

  The operator is finished.

Figure 1: An example of tutorial instruction.

key requirements of tutorial instruction: (1) it can take known or unknown commands at
any instruction point; (2) it can handle instructions that apply to either its current situ-
ation or to a hypothetical situation speci�ed in language (as in, for instance, conditional
instructions); and (3) it can learn, from instructions, each class of knowledge it uses to
perform tasks.

In what follows, we �rst discuss the properties and requirements of tutorial instruction.
Then, we present our approach and its implementation in Instructo-Soar, including a
series of examples illustrating the instructional capabilities that are supported. We conclude
with a discussion of limitations and areas for further research.

2. Properties of Tutorial Instruction

Tutorial instruction is situated, interactive instruction given to an agent as it attempts to
perform tasks. It is situated in that it applies to particular task situations that arise in the
domain. It is interactive in that the agent may request instruction as needed. This type of
instruction is common in task-oriented dialogues between experts and apprentices (Grosz,
1977). An example of tutorial instruction given to Instructo-Soar in a robotic domain
is shown in Figure 1.

Tutorial instruction has a number of properties that make it 
exible and easy for the
instructor to produce:

P1. Situation speci�city. Instructions are given for particular tasks in particular situ-
ations. To teach a task, the instructor need only provide suggestions for the speci�c
situation at hand, rather than producing a global procedure that includes general con-
ditions for applicability of each step, that handles all possible contingencies, etc. The
situation can also help to disambiguate an otherwise ambiguous instruction. A num-
ber of authors have discussed the advantages of situation-speci�c knowledge elicitation
(e.g., Davis, 1979; Gruber, 1989).

P2. Situation speci�cation as needed. Although instructions typically apply to the
situation at hand, the instructor is free to specify other situations as needed; for
instance, specifying contingencies using conditional instructions.

P3. Incremental as-needed elicitation. Knowledge is elicited incrementally as a part
of the agent's ongoing performance. Instructions are given when the agent is unable
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to perform a task; thus, they directly address points where the agent's knowledge is
lacking.

P4. Task structuring by instructor. The instructor can structure larger tasks into
smaller subtasks in any way desired. For instance, a task requiring ten primitive steps
may be taught as a simple sequence of the ten steps, or as two subtasks of �ve steps
each, etc. If the agent does not know what an instructed action or subtask is, or how
to perform it in the situation at hand, it will ask for further instruction.

P5. Knowledge-level interaction. The instructor provides knowledge to the agent at
the knowledge level (Newell, 1981). That is, the instructions refer to objects and
actions in the world, not to symbol-level structures (e.g., data structures) within the
agent. The interaction occurs in natural language, the language that the instructor
uses to talk about the task, rather than requiring arti�cial terminology and syntax to
specify the agent's internal data and processes.

Tutorial instructions provide knowledge applicable to the agent's current situation or
a closely related one. Thus, this type of instruction is most appropriate for tasks with
a local control structure, in which control decisions are made based on presently available
information. Local control structure is characteristic of constructive synthesis tasks, in
which primitive steps are composed one after another to form a complete solution. Our
work focuses on this type of task.2

3. Requirements on an Instructable Agent

Although easing the instructor's burden in providing knowledge, the properties of tutorial
instruction described above place severe requirements on an instructable agent. In general,
such an agent must solve three conceptually distinct problems: it must (1) comprehend in-
dividual instructions to produce behavior, (2) support a 
exible dialogue with its instructor,
and (3) produce general learning from the interaction. The properties of tutorial instruc-
tion described in the previous section place requirements on the solutions to each of these
problems. In what follows, we identify key requirements for each problem in turn.

3.1 Comprehending Instructions: The Mapping Problem

The mapping problem involves comprehending instructions that are given in natural lan-
guage and transforming the information they contain into the agent's internal representation

2. In contrast, problem solving methods like constraint satisfaction and heuristic classi�cation involve global
control strategies. These strategies either follow a �xed global regime or require an aggregation of
information from multiple problem solving states to make control decisions. It is possible to produce a
global control strategy using a combination of local decisions (Yost & Newell, 1989). However, teaching
a global method by casting it purely as a sequence of local decisions may be di�cult. Other types of
instruction, beyond the scope of this work, are required to teach global methods in a natural way. To
acquire knowledge for tasks that involve a known global control strategy, it may be most e�cient to use a
method-based knowledge acquisition tool (e.g., Birmingham & Klinker, 1993; Birmingham & Siewiorek,
1989; Eshelman, Ehret, McDermott, & Tan, 1987; Marcus & McDermott, 1989; Musen, 1989) with that
control strategy built in.
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language. This is required for the agent to apply information communicated by instructions
at the knowledge level (property P5, above) to its internal processing.

Solving the mapping problem in general involves all of the complexities of natural lan-
guage comprehension. As Just and Carpenter (1976) point out, instructions can be lin-
guistically complex and di�cult to interpret independent of the di�culty of the task being
instructed. Even in linguistically simple instructions, actions and objects are often incom-
pletely speci�ed, requiring the use of context and domain knowledge to produce a complete
interpretation (Chapman, 1990; DiEugenio & Webber, 1992; Frederking, 1988; Martin &
Firby, 1991).

The general requirement for the mapping problem on a tutorable agent is straightfor-
ward:

M1. A tutorable agent must be able to comprehend and map all aspects of each instruction
that fall within the scope of information it can possibly represent.

The agent cannot be expected to interpret aspects that fall outside its representation abil-
ities (these abilities may be augmented through instruction, but this occurs by building up
from existing abilities). A more detailed analysis could break this general requirement into
a set of more speci�c ones.

This work has not focused on the mapping problem. Rather, the agent we have imple-
mented uses fairly standard natural language processing techniques to handle instructions
that express a su�cient range of actions and situations to demonstrate its other capabilities.
We have concentrated our e�orts on the interaction and transfer problems.

3.2 Supporting Interactive Dialogue: The Interaction Problem

The interaction problem is the problem of supporting 
exible dialogue with an instructor.
The properties of tutorial instruction indicate that this dialogue occurs during the agent's
ongoing performance to address its lacks of knowledge (property P3); within the dialogue,
the agent must handle instructions that apply to di�erent kinds of situations (properties
P1 and P2) and that structure tasks in di�erent ways (property P4).

An instructable agent moves toward solving the interaction problem to the degree that
it supports these properties. In this work, we concentrate on the instructor's utterances
within the dialogue, since 
exibility for the instructor is the goal. We have not considered
the potential complexity of the agent's utterances (e.g., to give the instructor various kinds
of feedback) in much detail.

The properties of 
exible interaction can be speci�ed in terms of individual instruction
events, where an instruction event is the utterance of a single instruction at a particular
point in the discourse. To support truly 
exible dialogue, an instructable agent must be
able to handle any instruction event that is coherent at the current discourse point. Each
instruction event is initiated by either the student or the teacher, and carries knowledge
of some type to be applied to a particular task situation. Thus, a 
exible tutorable agent
should support instruction events with:

I1. Flexible initiation. Instruction events can be initiated by agent or instructor.
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I2. Flexibility of knowledge content. The knowledge carried by an instruction event
can be any piece of any of the types of knowledge the agent uses that is applicable in
some way within the ongoing task and discourse context.

I3. Situation 
exibility. An instruction event can apply either to the current task
situation or to some speci�ed hypothetical situation.

The following sections discuss each of these requirements in more detail.

3.2.1 Flexible Initiation

In human tutorial dialogues, initiation of instruction is mixed between student and teacher.
One study indicates that teacher initiation is more prevalent early in instruction; student
initiation increases as the student learns more, and then drops o� again as the student
masters the task (Emihovich & Miller, 1988).

Instructor-initiated instruction is di�cult to support because instruction events can
interrupt the agent's ongoing processing. Upon interrupting the agent, an instruction event
may alter the agent's knowledge in a way that could change or invalidate the reasoning in
which the agent was previously engaged. Because of these di�culties, instructable systems
to date have not fully supported instructor-initiated instruction.3 Likewise, Instructo-
Soar does not handle instructor-initiated instruction.

Agent-initiated instruction can be directed in (at least) two possible ways: by veri�cation
or by impasses. Some learning apprentice systems, such as LEAP (Mitchell et al., 1990) and
DISCIPLE (Kodrato� & Tecuci, 1987b) ask the instructor to verify or alter each reasoning
step. The advantage of this approach is that each step is examined by the instructor; the
disadvantage, of course, is that each step must be examined. An alternative approach is
to drive instruction requests by impasses in the agent's task performance (Golding, Rosen-
bloom, & Laird, 1987; Laird, Hucka, Yager, & Tuck, 1990). This is the approach used by
Instructo-Soar. An impasse indicates that the agent's knowledge is lacking and it needs
instruction. The advantage of this approach is that as the agent learns, it becomes more
autonomous; its need for instruction decreases over time. The disadvantage is that not all
lacks of knowledge can be recognized by reaching impasses; e.g., no impasse will occur when
performance is correct but ine�cient.

3.2.2 Flexibility of Knowledge Content

A 
exible tutorable agent must handle instruction events involving any knowledge that is
applicable in some way within the ongoing task and discourse context. This requirement is
di�cult to meet in general, because of the wide range of knowledge that may be relevant to
any particular situation. It requires a robust ability to relate each utterance to the ongoing
discourse and task situation. No instructable systems have met this requirement fully.

However, we can de�ne a more constrained form of this requirement, limited to in-
structions that command actions (i.e., imperatives). Imperative commands are especially
prevalent in tutorial instruction of procedures. Supporting 
exible knowledge content for

3. Some systems have learned purely by observing an expert (e.g., Dent, Boticario, McDermott, Mitchell &
Zabowski, 1992; Redmond, 1992). Observation is a type of instructor-initiatedness, but the instruction
is not an interactive dialogue.
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commands means allowing the instructor to give any relevant command at any point in the
dialogue for teaching a task. We call this ability command 
exibility.

For any command that is given, there are three possibilities: (1) the commanded action
is known, and the agent performs it; (2) the commanded action is known, but the agent
does not know how to perform it in the current situation (extra, unknown steps are needed);
or (3) the commanded action is unknown. Thus, command 
exibility allows the instructor
teaching a procedure to skip steps (2) or to command a subtask that is unknown (3) at
any point. In such cases, the agent asks for further instruction. The interaction pattern
that results, in which procedures are commanded and then taught as needed, has been
observed in human instruction. Wertsch (1979) notes that \...adults spontaneously follow a
communication strategy in which they use directives that children do not understand and
then guide the children through the behaviors necessary to carry out these directives."

Command 
exibility gives the instructor great 
exibility in teaching a set of tasks be-
cause the instructions can hierarchically structure the tasks in whatever way the instructor
wishes. A mathematical analysis (Hu�man, 1994) revealed that the number of possible
sequences of instructions that can be used to teach a given procedure grows exponentially
with the number of actions in the procedure. For a procedure with 6 primitive actions,
there are over 100 possible instruction sequences; for 7, there are over 400.

3.2.3 Situation Flexibility

A 
exible tutorable agent must handle instructions that apply to either the current task
situation or some hypothetical situation that the instructor speci�es. Instructors make
frequent use of both of these options. For instance, analysis of a protocol of a student being
taught to use a 
ight simulator revealed that 119 out of 508 instructions (23%) involved
hypothetical situations, with the remainder applying to the current situation at the time
they were given.

Instructions that apply to the current situation, such as imperative commands (e.g.,
\Move to the yellow table"), are called implicitly situated (Hu�man & Laird, 1992). Since
the instruction itself says nothing about the situation to which it should be applied, the
current situation (the task being performed and the current state) is implied.

In contrast, instructions that specify elements of the situation to which they are meant
to apply are explicitly situated (Hu�man & Laird, 1992). The agent is not meant to carry
out these instructions immediately (as an implicitly situated instruction), but rather when a
situation arises that is like the one speci�ed. Examples include conditionals and instructions
with purpose clauses (DiEugenio, 1993), such as the following:4

� When using chocolate chips, add them to coconut mixture just before pressing into
pie pan.

� To restart this, you can hit R or shift-R.

� When you get to the interval that you want, you just center up the joystick again.

4. These examples are taken from a protocol of tutorial instruction and a written source of instruction (a
cookbook).
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As a number of researchers have pointed out (Ford & Thompson, 1986; Haiman, 1978;
Johnson-Laird, 1986), conditional clauses introduce a shared reference between speaker and
hearer that forms an explicit background for interpreting or evaluating the consequent.5

Here, the clauses in italics indicate a hypothetical situation to which the command in the
remainder of the instruction is meant to apply. In most cases, the situation is only partially
speci�ed, with the remainder drawn from the current situation, as in \When using chocolate
chips [and cooking this recipe, and at the current point in the process]..."

In general, a hypothetical situation may be created and referred to across multiple
utterances. The agent presented here handles both implicitly and single explicitly situated
instructions, but does not deal with hypothetical situations that exist through multiple
instructions.

3.3 Producing General Learning: The Transfer Problem

The transfer problem is the problem of learning generally applicable knowledge from in-
structions, that will transfer to appropriate situations in the future. This general learning
is based on instructions that apply to speci�c situations (property P1, above). Many types
of knowledge may be learned, since instructions can provide any type of knowledge that the
agent is lacking (property P3).

Solving this problem involves more than simply memorizing instructions for future use;
rather, conditions for applying each instruction must be determined from the situation.
Consider, for example, the following exchange between instructor and agent:

Block open our o�ce door.
How do I do that?
Pick up a red block.
Now, drop it here, next to the door.

What are the proper conditions for performing the \pick up" action? Simple memoriza-
tion yields poor learning; e.g., whenever blocking open an office door, pick up a

red block. However, the block's color, and even the fact that it is a block, are irrele-
vant in this case. Rather, the fact that the block weighs (say) more than �ve pounds,
giving it enough friction with the 
oor to hold open the door, is crucial. Thus, the proper
learning might be:

If trying to block open a door, and
there is an object obj that is can be picked up, and
obj weighs more than 5 pounds

then propose picking up obj.

Here, the original instruction is both generalized (color red and isa block drop out) and
specialized (weight > 5 is added).

The transfer problem places a number of demands on a tutorable agent:

T1. General learning from speci�c cases. The agent is instructed in a particular
situation, but is expected to learn general knowledge that will apply in su�ciently
similar situations.

5. Some types of conditionals do not follow this pattern (Akatsuka, 1986), but they are not relevant to
tutorial instruction.
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T2. Fast learning. An instructable agent is expected to learn new procedures quickly.
Typically, a task should only have to be taught once.

T3. Maximal use of prior knowledge. An agent must apply its prior knowledge in
learning from instruction. This is a maxim for machine learning systems in general (if
you have knowledge, use it), and is particularly relevant for learning from instruction
because learning is expected to happen quickly.

T4. Incremental learning. The agent must be able to continually increase in knowledge
through instruction. New knowledge must be smoothly integrated with the agent's
existing knowledge as a part of its ongoing performance.

T5. Knowledge-type 
exibility. Since any type of knowledge (e.g., control knowledge,
causal knowledge, etc.) might be communicated by instructions, a 
exible tutorable
agent must be able to learn each type of knowledge it uses. We make this a testable
criterion below by laying out the types of knowledge in an agent based on a particular
computational model.

T6. Dealing with incorrect knowledge. The agent's knowledge is clearly incomplete
(otherwise, it would not need instruction); it may also be incorrect. A general tu-
torable agent must be able to perform and learn e�ectively despite incorrect knowl-
edge.

T7. Learning from instruction coexisting with learning from other sources.
In addition to instruction, a complete agent should be able to learn from other
sources of knowledge that are available. These might include learning from obser-
vation/demonstrations, experimentation in the environment, analogy, etc.

The theory of learning from tutorial instruction presented here focuses on extending
incomplete knowledge through instruction { requirements T1 through T5 of this list. Han-
dling incorrect knowledge (T6) and learning from other sources (T7) are planned extensions
in progress.

Table 1 summarizes the requirements that must be met by an instructable agent to sup-
port 
exible tutorial instruction, and indicates the requirements targeted by Instructo-
Soar. We have made two simpli�cations in using the requirements to evaluate Instructo-
Soar. First, we treat each requirement as binary; that is, as if either completely met or
unmet. In reality, some requirements could be broken into �ner-grained pieces to be eval-
uated separately. Second, we treat each requirement independently. The table indicates
Instructo-Soar's performance on each requirement alone, but does not account for po-
tential interactions between them. These interactions can be complex; for instance, in
pursuing fast learning (T2), an agent may sacri�ce good general learning (T1) because it
bases its generalizations on too few examples. We have not addressed such tradeo�s in our
evaluation of Instructo-Soar.

4. Related Work

Although there has not been extensive research on agents that learn from tutorial instruc-
tion per se, learning from instruction-like input has been a long-time goal in AI (Carbonell,
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Problem Requirement Instructo-Soar?

Mapping M1 Mapping of all representable
information

no (as needed to show
other capabilities)

Interaction I1 Flexible initiation of instruction no (only agent-initiated)
I2 Flexibility of instructional knowledge

content
partial (command 
exibility)

I3 Situation 
exibility partial
� implicitly situated yes
� explicitly situated single utterance yes
� explicitly situated multiple utterance no

Transfer T1 General learning from speci�c cases yes (via situated explana-
tion)

T2 Fast learning yes (new procedures only
taught once)

T3 Maximal use of prior knowledge yes
T4 Incremental learning yes
T5 Knowledge-type 
exibility yes (learns all PSCM

knowledge types)
T6 Ability to deal with incorrect knowledge no (only extending incom-

plete knowledge)
T7 Learning from instruction coexisting

with learning from other sources
no (not demonstrated)

Table 1: The requirements on a 
exible tutorable agent, and Instructo-Soar's perfor-
mance on them.

Michalski, & Mitchell, 1983; McCarthy, 1968; Rychener, 1983). Early non-interactive sys-
tems learned declarative, ontological knowledge from language (Haas & Hendrix, 1983; Lind-
say, 1963), simple tasks from unsituated descriptions (Lewis, Newell, & Polk, 1989; Simon,
1977; Simon & Hayes, 1976), and task heuristics from non-operational advice (Hayes-Roth,
Klahr, & Mostow, 1981; Mostow, 1983).

Other work has concentrated on behaving based on interactive natural language instruc-
tions. SHRDLU (Winograd, 1972) performed natural language commands and did a small
amount of rote learning { e.g., learning new goal speci�cations by directly transforming
sentences into state descriptions. More recent systems that act in response to language
(concentrating on the mapping problem) but do only minimal learning include SONJA
(Chapman, 1990), AnimNL (DiEugenio & Webber, 1992), and Homer (Vere & Bickmore,
1990).

Some recent work has focused more on learning from situated natural language instruc-
tions. Martin and Firby (1991) discuss an approach to interpreting and learning from
elliptical instructions (e.g., \Use the shovel") by matching the instruction to expectations
generated from a task execution failure. Alterman et al.'s FLOBN (Alterman, Zito-Wolf, &
Carpenter, 1991; Carpenter & Alterman, 1994) searches for instructions in its environment
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in order to operate devices. FLOBN learns by relating a device's instructions to known
procedures for operating similar devices. These systems do not target learning from 
exible
interactive instructions or types of instructions other than imperatives, however.

The bulk of work on learning from instruction-like input has been under the rubric
of learning apprentice systems (LASs), and closely related programming-by-demonstration
(PbD) systems (Cypher, 1993) { as employed, for instance, in recent work on learning
within software agents (Dent et al., 1992; Maes, 1994; Maes & Kozierok, 1993; Mitchell,
Caruana, Freitag, McDermott, & Zabowski, 1994). These systems learn by interacting with
an expert; either observing the expert solving problems (Cypher, 1993; Donoho & Wilkins,
1994; Mitchell et al., 1990; Redmond, 1992; Segre, 1987; VanLehn, 1987; Wilkins, 1990),
or attempting to solve problems and allowing the expert to guide and critique decisions
that are made (Golding et al., 1987; Gruber, 1989; Kodrato� & Tecuci, 1987b; Laird
et al., 1990; Porter, Bareiss, & Holte, 1990; Porter & Kibler, 1986). Each LAS has learned
particular types of knowledge: e.g., operator implementations (Mitchell et al., 1990), goal
decomposition rules (Kodrato� & Tecuci, 1987b), operational versions of functional goals
(Segre, 1987), control knowledge and control features (Gruber, 1989), procedure schemas (a
combination of goal decomposition and control knowledge) (VanLehn, 1987), useful macro-
operations (Cypher, 1993), heuristic classi�cation knowledge (Porter et al., 1990; Wilkins,
1990), etc.

Tutorial instruction is a more 
exible type of instruction than that supported by past
LASs, for three reasons. First, the instructor may command unknown tasks or tasks with
unachieved preconditions to the agent at any instruction point (command 
exibility). Past
LASs limit input to particular commands/observations at particular times (e.g., only com-
manding or observing directly executable actions) and typically do not allow unknown
commands at all. Second, tutorial instruction allows the use of explicitly situated instruc-
tions (situation 
exibility), to teach about contingencies that may not be present in the
current situation; past LASs do not. Third, tutorial instruction requires that all types of
task knowledge can be learned (knowledge-type 
exibility). Past LASs learn only a subset
of the types of knowledge they use to perform tasks.

5. A Theory of Learning from Tutorial Instruction

Our theory of learning from tutorial instruction consists of a learning framework, situated
explanation, placed within a computational model for general agenthood, the problem space
computational model. We �rst describe the computational model and then the learning
framework.

5.1 The Problem Space Computational Model

A computational model (CM) is a \a set of operations on entities that can be interpreted
in computational terms" (Newell et al., 1990, p. 6). A computational model for a general
instructable agent must meet two requirements:

1. Support of general computation/agenthood.

2. Close correspondence to the knowledge level. Because tutorial instructions
provide knowledge at the knowledge level (Newell, 1981), the further the CM com-
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ponents are from the knowledge level, the more di�cult mapping and learning from
instructions will be. In addition, a close correspondence to the knowledge level will
allow us to use the CM to identify the types of knowledge the agent uses.

Many potential CMs are ruled out by these requirements. Standard programming lan-
guages (e.g., Lisp) and theoretical CMs like Turing machines and push-down automata
support general computation, but their operations and constructs are at the symbol level,
without direct correspondence to the knowledge level. Similarly, connectionist and neural
network models of computation (e.g., Rumelhart & McClelland, 1986) employ (by design)
computational operations and entities at a level far below the knowledge level. Thus, these
models are not appropriate as the top-level CM for an instructable agent. However, be-
cause higher levels of description of a computational system are implemented by lower levels
(Newell, 1990), these CMs might be used as the implementation substrate for the higher
level CM of an instructable agent.

Another alternative is logic, which has entities that are well matched to the knowledge
level (e.g., propositions, well-formed formulas). Logics specify the set of legal operations
(e.g., modus ponens), thus de�ning the space of what can possibly be computed. However,
logic provides no notion of what should be computed; that is, logics alone do not specify the
control of the logical operations' application. It is desirable that the CM of an instructable
agent include control knowledge, because control knowledge is a crucial type of knowledge
for general agenthood, that can be communicated by instructions.

Since one of our goals is to identify an agent's knowledge types, it might appear that
selecting a theory of knowledge representation would be more appropriate than selecting
a computational model. Such theories de�ne the functions and structures used to repre-
sent knowledge (e.g., KL-ONE, Brachman, 1980); some also de�ne the possible content of
those structures (e.g., conceptual dependency theory, Schank, 1975; CYC, Guha & Lenat,
1990). However, computational structure must be added to these theories to produce work-
ing agents. Thus, rather than an alternative to specifying a computational model, a theory
of knowledge representation is an addition. A content theory of knowledge representa-
tion would provide a more �ne-grained breakdown of the knowledge to be learned by an
instructable agent within each category of knowledge speci�ed by its CM. We have not
employed a particular content theory in this work thus far, however.

The computational model adopted here is called the problem space computational model
(PSCM) (Newell et al., 1990; Yost, 1993). The PSCM is a general formulation of compu-
tation in a knowledge-level agent, and many applications have been built within it (Rosen-
bloom, Laird, & Newell, 1993a). It speci�es an agent in terms of computation within
problem spaces, without reference to the symbol level structures used for implementation.
Because its components approximate the knowledge level (Newell et al., 1990), the PSCM
is an apt choice for identifying an agent's knowledge types. Soar (Laird, Newell, & Rosen-
bloom, 1987) is a symbol level implementation of the PSCM.

A schematic of a PSCM agent is shown in Figure 2. Perception and motor modules
connect the agent to the external environment. A PSCM agent reaches a goal by moving
through a sequence of states in a problem space. It progresses toward its goals by sequentially
applying operators to the current state. Operators transform the state, and may produce
motor commands. In PSCM, operators can be more powerful than simple STRIPS operators
(Fikes, Hart, & Nilsson, 1972), because they can perform arbitrary computation (e.g., they
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perceptual modules motor modules

external environment

Figure 2: The processing of a PSCM-based agent. Triangles represent problem spaces;
squares, states; arrows, operators; and ovals, impasses.

can include conditional e�ects, multiple substeps, reactivity to di�erent situations, etc.).
The PSCM agent reaches an impasse when its immediately available knowledge is not
su�cient either to select or fully apply an operator. When this occurs, another problem
space context { a subgoal { is created, with the goal of resolving the impasse. This second
context may impasse as well, causing a third context to arise, and so on.

The only computational entities in the PSCM mediated by the agent's knowledge are
states and operators. There are a small set of basic PSCM-level operations on these entities
that the agent performs:

1. State inference. Simple monotonic inferences that are always to be applied can be
made without using a PSCM operator. Such inferences augment the agent's represen-
tation of the state it is in by inferring state properties based on other state properties
(including those delivered by perception). For instance, an agent might know that a
block is held if its gripper is closed and positioned directly above the block.

2. Operator selection. The agent must select an operator to apply, given the current
state. This process involves two types of knowledge:

2.1. Proposal knowledge: Indicates operators deemed appropriate for the current situ-
ation. This knowledge is similar to \precondition" knowledge in simple STRIPS
operators.

2.2. Control knowledge: Orders proposed operators; e.g., \A is better than B"; \C is
best"; \D is rejected."
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3. Operator application. Once selected, an operator may be applied directly, or
indirectly via a subgoal:

3.1. Operator e�ects. The operator is applied directly in the current problem space.
The agent has knowledge of the e�ects of the operator on the state and motor
commands produced (if any).

3.2. Sub-operator selection. The operator is applied by reaching an impasse and se-
lecting operators in a subgoal. Here, knowledge to apply the operator is selection
knowledge (2, above) for the sub-operators.

4. Operator termination. An operator must be terminated when its application has
been completed. The termination conditions, or goal concept (Mitchell et al., 1986),
of an operator indicate the state conditions that the operator is meant to achieve. For
example, the termination conditions of pick-up(blk) might be that blk is held and
the arm is raised.6

Each of these functions is performed by the agent using knowledge; thus, they de�ne the set
of knowledge types present within a PSCM agent. The knowledge types (�ve types total)
are summarized in Table 2. Because Soar is an implementation of the PSCM, all knowledge
within Soar agents is of these types.

In Soar's implementation of the PSCM, learning occurs whenever results are returned
from a subgoal to resolve impasses. The learning process, called chunking, creates rules
(called chunks) that summarize the processing in the subgoal leading to the creation of the
result. Depending on the type of result, chunks may correspond to any of the �ve types of
PSCM knowledge. When similar situations arise in the future, chunks allow the impasse
that caused the original subgoal to be avoided by producing their results directly. Chunking
is a form of explanation-based learning (Rosenbloom & Laird, 1986). Although it is a
summarization mechanism, through taking both inductive and deductive steps in subgoals,
chunking can produce both inductive and deductive learning (Miller, 1993; Rosenbloom
& Aasman, 1990). Chunking occurs continuously, making learning a part of the ongoing
activity of a Soar/PSCM agent.

The PSCM clari�es the task of an instructable agent: it must be able to learn each of
the �ve types of PSCM knowledge from instruction. The next section discusses the learning
process itself.

5.2 Learning from Instructions through Situated Explanation

Learning from instruction involves both analytic learning (learning based on prior knowl-
edge) and inductive learning (going beyond prior knowledge). Analytic learning is needed
because the agent must learn from instructions that combine known elements { e.g., learn-
ing to pick up objects by combining known steps to pick up a particular object. The agent's
prior knowledge of these elements can be used to produce better and faster learning. Induc-
tive learning is needed because the agent must learn new task goals and domain knowledge

6. PSCM operators have explicit termination knowledge because they can have a string of conditional
e�ects that take place over time, they can respond to (or wait for) the external environment, etc.
STRIPS operators, in contrast, do not need explicit termination knowledge, because they are de�ned by
a single list of e�ects, and are \terminated" by de�nition after applying those e�ects.
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Entity Knowledge type Example

state inference If gripper is closed & directly above obj ! holding obj.

operator proposal If goal is to pick up obj on table-x, and not docked at table-
x, then propose moving to table-x.

operator control If goal is to pick up small metal obj on table-x, prefer mov-
ing to table-x over fetching magnet.

operator e�ects An e�ect of the operator move to table-x is that the robot
becomes docked at table-x.

operator termination Termination conditions of pick up obj are that the gripper
is raised & holding obj.

Table 2: The �ve types of knowledge of PSCM agents.

that are beyond the scope of its prior knowledge. The goal of this research is not to produce
more powerful analytic or inductive techniques, but rather to specify how these techniques
come together to produce a variety of learning in the variety of instructional situations faced
by an instructable agent. The resulting approach is called situated explanation.

Instruction requirements T1 through T3 specify that general learning (T1) must occur
from single, speci�c examples (T2), by making maximal use of prior knowledge (T3). These
requirements bode strongly for a learning approach based on explanation. The use of
explanation to produce general learning has been a common theme in machine learning (e.g.,
DeJong & Mooney, 1986; Fikes et al., 1972; Minton, Carbonell, Knoblock, Kuokka, Etzioni,
& Gil, 1989; Rosenbloom, Laird, & Newell, 1988; Schank & Leake, 1989; many others) and
cognitive science (Anderson, 1983; Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Lewis,
1988; Rosenbloom & Newell, 1986). Forming explanations enables general learning from
speci�c cases (requirement T1) because the explanation indicates which features of a case
are important and which can be generalized. Learning by explaining typically requires only
a single example (requirement T2) because the prior knowledge employed to construct the
explanation (requirement T3) provides a strong bias that allows this fast learning.

Thus, we use an explanation-based method as the core of our learning from instruc-
tion approach, and fall back on inductive methods when explanation fails. In standard
explanation-based learning, explaining a reasoning step involves forming a \proof" (using
prior knowledge) that the step leads from the current state of reasoning toward the current
goal. The proof is a path of reasoning from the current state to the goal, through the step
being explained, as diagrammed in Figure 3. General learning is produced by forming a
rule that includes only the causally required features of the state, goal, and step appearing
in the proof; features that do not appear are generalized away.

Figure 3 indicates the three key elements of an explanation: the step being explained,
the endpoints of the explanation (a state S and goal G to be reached), and the other steps
required to complete the explanation. What form do these elements of an explanation take
for situated explanation of an instruction?

� Step to be explained. In situated explanation, the step to be explained is an individual
instruction given to the agent.
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S G...
(M  )k

other steps, from agent’s knowledge
    reasoning step to be 
             explained
(indicated by instruction I)

Figure 3: Caricature of an explanation of how a reasoning step applies to a situation starting
in a state S, with a goal G to be achieved.

Alternatively, an entire instruction episode { e.g., the full sequence of instructions for
a new procedure { could be explained at once. Applying explanation to single steps
results in knowledge applicable at each step (as in Golding et al., 1987; Laird et al.,
1990); explaining full sequences of reasoning steps results in learning schemas that
encode the whole reasoning episode (as in Mooney, 1990; Schank & Leake, 1989; Van-
Lehn, 1987). Learning factored pieces of knowledge rather than monolithic schemas
allows more reactive behavior, since knowledge is accessed locally based on the cur-
rent situation (Drummond, 1989; Laird & Rosenbloom, 1990). This meshes with the
PSCM's local control structure. Explaining individual instructions is also supported
by psychological results on the self-explanation e�ect, which have shown that subjects
who self-explain instructional examples do so by re-deriving individual lines of the ex-
ample. \Students virtually never re
ect on the overall solution and try to recognize
a plan that spans all the lines" (VanLehn and Jones, 1991, p. 111).

� Endpoints of explanation. The endpoints of the explanation { a state S and a goal G
to be achieved { correspond to the situation that the instruction applies to. Situation

exibility (requirement I3) stipulates that this situation may be either the current
state of the world and goal being pursued or some hypothetical situation that is spec-
i�ed explicitly in the instruction. An instruction that does not specify any situational
features is implicitly situated, and applies to the agent's current situation. Alterna-
tively, an instruction can specify features of S or G, making for two kinds of explicitly
situated instructions. For example, \If the light is on, push the button" indicates a
hypothetical state with a light on; \To turn on the machine, 
ip the switch" indicates
a hypothetical goal of turning on the machine. A situation [S;G] is produced for
each instruction, based on the current task situation and any situation features the
instruction speci�es.

� Other required steps. To complete an explanation of an instruction, an agent must
bring its prior knowledge to bear to complete the path through the instruction to
achievement of the situation goal. A PSCM agent's knowledge applies to its current
situation to select and apply operators and to make inferences. When explaining an
instruction I , this knowledge is applied internally to the situation [S;G] associated
with I . That is, explanation takes the form of forward internal projection within
that situation. As depicted in Figure 3, the agent \imagines" itself in state S, and
then runs forward, applying the instructed step and any knowledge that it has about
subsequent states/operators. This knowledge includes both what is normally used
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in the external world and knowledge of operators' expected e�ects that is used to
produce those e�ects in the projected world. If G is reached within the projection,
then the projected path from S, through the step instructed by I , to G comprises
an explanation of I . By indicating the features of I , S, and G causally required for
success, the explanation allows the agent to learn general knowledge from I (as in
standard EBL, realized in our agent by Soar's chunking mechanism, Rosenbloom &
Laird, 1986). However, the agent's prior knowledge may be insu�cient, causing an
incomplete explanation, as described further below.

Combining these elements produces an approach to learning from tutorial instruction
that is conceptually quite simple. For each instruction I that is received, the agent �rst
determines what situation I is meant to apply to, and then attempts to explain why the
step indicated by I leads to goal achievement in that situation (or prohibits it, for negative
instructions). If an explanation can be made, it produces general learning of some knowledge
IK by indicating the key features of the situation and instruction that cause success.

If an explanation cannot be completed, it indicates that the agent is missing one or
more pieces of prior knowledge MK (of any PSCM type) needed to explain the instruction.
Missing knowledge (in Figure 3, missing arrows) causes an incomplete explanation by pre-
cluding achievement of G in the projection. For instance, the agent may not know a key
e�ect of an operator, or a crucial state inference, needed to reach G. More radically, the
action commanded by I may be completely unknown and thus inexplicable.

As shown in Figure 4, there are four general options a learning agent might follow when
it cannot complete an explanation. (O1) It could delay the explanation until later, in the
hope that the missing knowledge (MK) will be learned in the meantime. Alternatively,
(O2-O3) it could try to complete the explanation now by somehow learning the missing
knowledge. The missing knowledge could be learned (O2) inductively (e.g., by inducing
over the \gap" in the explanation, as described by VanLehn, Jones & Chi, 1992, and many
others), or, (O3) in an instructable agent's case, through further instruction. Finally, (O4) it
could abandon the explanation altogether and try to learn the desired knowledge in another
way instead.

Given only an incomplete explanation, it would be di�cult to choose which option to
follow. Identifying the missing knowledge MK in the general case is a di�cult credit as-
signment problem (with no algorithmic solution), and there is nothing in the incomplete
explanation itself that predicts whether MK will be learned later if the explanation is de-
layed. Thus, past machine learning systems have responded to incomplete explanations
either in only a single way, or in multiple ways, but that are tried in a �xed sequence.
Many authors (Bergadano & Giordana, 1988; Hall, 1988; VanLehn, 1987; VanLehn, Jones,
& Chi, 1992; Widmer, 1989), for instance, describe systems that make inductions to com-
plete incomplete explanations (option O2). Because of the di�culty of determining missing
knowledge, these systems either base their induction on multiple examples, and/or bias the
induction with an underlying theory or a teacher's help. SIERRA (VanLehn, 1987), for
example, induces over multiple partially explained examples, and constrains the induction
by requiring that each of the examples is unexplainable because of the same piece of miss-
ing knowledge (the same disjunct, in SIERRA's terminology). SWALE (Schank & Leake,
1989) uses an underlying theory of \anomalies" in explanations to complete incomplete ex-
planations of events. OCCAM (Pazzani, 1991b) uses options O2 and O4 in a static order:
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Figure 4: Options when faced with an incomplete explanation because of missing knowledge
MK .

It �rst attempts to �ll in the gaps in an incomplete explanation inductively, biased by a
naive theory; if that fails, it abandons explanation and falls back on correlational learning
methods. PET (Porter & Kibler, 1986) is an example of a system that delays explanation
of a reasoning step until it learns further knowledge (option O1).

However, as indicated in Figure 4, an instructable agent has additional information
available to it besides the incomplete explanation itself. Namely, the instructional context
(that is, the type of instruction and its place within the dialogue) often indicates which
option is most appropriate for a given incomplete explanation. Thus, situated explana-
tion includes all four of the options and dynamically selects between them based on the
instructional context. For a situated explanation of an instruction I in a situation [S;G],
where missing knowledge MK precludes completing the explanation to learn knowledge IK ,
options O1-O4 take the following form:

O1. Delay the explanation until later. The instructional context can indicate a likeli-
hood that the missing knowledgeMK will be learned later. For instance, an instruction
I given in teaching a new procedure cannot be immediately explained because the re-
maining steps of the procedure are unknown, but they will be known later (assuming
the instructor completes teaching the procedure). In such cases, the agent discards its
current, incomplete explanation and simply memorizes I 's use in [S;G] (rote learn-
ing). Later, after MK is learned, I is recalled and explained in [S;G], causing IK to
be learned.
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Given instruction I from which knowledge IK can be learned:
� Determine the situation [S;G] (current or hypothetical) to which I applies

� Explain I in [S;G] by forward projecting from S
I!; � � �; G

! Success (G met): learn IK from the complete explanation (� EBL).
! Failure: missing knowledge MK . Options:

O1. Delay explanation until later.
O2. Induce MK , completing the explanation.
O3. Take instruction to learn MK , completing the explanation.
O4. Abandon explanation; instead, learn IK inductively.

Table 3: Situated explanation.

O2. InduceMK, completing the explanation. In some cases, the instructional context
localizes the missing knowledge MK to be part of a particular operator. For instance,
a purpose clause instruction (\To do X, do Y") suggests that the single operator Y
should cause X to occur. Because this localization tightly constrains the \gap" in
the incomplete explanation, the agent can use heuristics to induce a strong guess at
the MK needed to span the gap. Inducing MK allows the explanation of I to be
completed and IK to be learned.

O3. Take instruction to learn MK, completing the explanation. The default re-
sponse of the agent (when the other options are not deemed appropriate) is to ask
the instructor to explain I further. The further instruction can teach the agent MK .
Again, learning MK allows the explanation of I to be completed and IK to be learned.

O4. Abandon the explanation and learn IK in another way. The instructional
context can indicate that the missing knowledge MK would be very di�cult to learn.
This occurs when either the instructor refuses to give further information when asked
to, or when the agent has projected multiple operators that may be missing pieces
of knowledge (multiple potential MKs). Since it is unknown whether MK will ever
be acquired, the agent abandons its explanation of I altogether. Instead, it attempts
to learn IK directly (using inductive heuristics), without an explanation to base the
learning on.

These options will be made clearer through examples presented in the following sections.
Situated explanation is summarized in Table 3. Unlike some knowledge acquisition ap-

proaches, it does not include an explicit check for consistency when newly learned knowledge
is added to the agent's knowledge base. As Kodrato� and Tecuci (1987a) point out, tech-
niques like situated explanation are biased toward consistency because they only acquire
new knowledge when current knowledge is insu�cient, and they use current knowledge when
deriving new knowledge. However, in some domains, explicit consistency checks (such as
those used by Wilkins' (1990) ODYSSEUS) may be required.

Situated explanation meets the requirement that learning be incremental (T4) because
it occurs during the ongoing processing of the agent and adds new pieces of knowledge to

289



Huffman & Laird

T1 General learning from speci�c cases

T2 Fast learning (each task instructed only once)

T3 Maximal use of prior knowledge

T4 Incremental learning

T5 Knowledge-type 
exibility
a. state inference
b. operator proposal
c. operator control
d. operator e�ects
e. operator termination

I2 Command 
exibility
a. known command
b. skipped steps
c. unknown command

I3 Situation 
exibility
a. implicitly situated
b. explicitly situated: hypothetical state

hypothetical goal

Table 4: Expanded requirements of tutorial instruction met by Instructo-Soar.

the agent's memory in a modular way. The local control structure of the PSCM allows new
knowledge to be added independent of current knowledge. If there is a con
ict between
pieces of knowledge (for example, proposing two di�erent operators in the same situation),
an impasse will arise that can be reasoned about or resolved with further instruction.

6. Instructo-Soar

Instructo-Soar is an instructable agent built within Soar { and thus, the PSCM { that
uses situated explanation to learn from tutorial instruction.7 Instructo-Soar engages
in an interactive dialogue with its instructor, receiving natural language instructions and
learning to perform tasks and extend its knowledge of the domain. This section and the
next describe how Instructo-Soarmeets the targeted requirements of tutorial instruction,
which are shown in expanded form in Table 4. This section describes the system's basic
performance when learning new procedures, and extending procedures to new situations,
from imperative commands (implicitly situated instructions); the next describes learning
other types of knowledge and handling explicitly situated instructions.

7. For an overview of Soar, and other systems built within it, see (Rosenbloom, Laird, & Newell, 1993b).
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Figure 5: The robotic domain to which Instructo-Soar has been applied.

6.1 The Domain and the Agent's Initial Knowledge

The primary domain to which Instructo-Soar has been applied is the simulated robotic
world shown in Figure 5.8 The agent is a simulated Hero robot, in a room with tables,
buttons, blocks of di�erent sizes and materials, an electromagnet, and a light. The magnet
is toggled by closing the gripper around it. A red button toggles the light on or o�; a green
button toggles it dim or bright, when it is on.

Instructo-Soar consists of a set of problem spaces within Soar that contain three
main categories of knowledge: natural language processing knowledge, originally developed
for NL-Soar (Lewis, 1993); knowledge about obtaining and using instruction; and knowl-
edge of the task domain itself. This task knowledge is extended through learning from
instruction. Instructo-Soar does not expand its natural language capabilities per se as
it takes instruction, although it does learn how sentences map onto new operators that it
learns. It has complete, noiseless perception of its world, and can recognize a set of basic
object properties (e.g., type, color, size) and relationships (e.g., robot docked-at table,

8. The techniques have also been applied in a limited way to a 
ight domain (Pearson, Hu�man, Willis,
Laird, & Jones, 1993), in which Soar controls a 
ight simulator and instructions are given for taking o�.
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Pick up the red block.
  Move to the yellow table.
  Move the arm above the red block.
      Move up.
  Move down.
  Close the hand.
  Move up.
  The operator is finished.

Figure 6: Instructions given to Instructo-Soar to teach it to pick up a block.

gripper holding object, objects above, directly-above, left-of, right-of one another).
The set of properties and relations can be extended through instruction, as described below.

The agent begins with knowledge of a set of primitive operators to which it can map
natural language sentences, and can execute. These include moving to tables, opening and
closing the hand, and moving the arm up, down, and above, left of, or right of things.
The agent can also internally project these operators. However, some of their e�ects under
various conditions are unknown. For instance, the agent does not know which operators
a�ect the light or magnet, or that the magnet will attract metal objects. Also, the agent
begins with no knowledge of complex operators (that involve combinations of primitive
operators), such as picking up or arranging objects, pushing buttons, etc.

6.2 Learning New Procedures through Delayed Explanation

Instructo-Soar learns new procedures (PSCM operators) from instructions like those
shown in Figure 6, for picking up a block. Since \pick up" is not a known procedure
initially, when told to \Pick up the red block," the agent realizes that it must learn a new
operator.

To perform a PSCM operator, the operator must be selected, implemented, and termi-
nated. To select the operator in the future based on a command requires knowledge of
the operator's argument structure (a template), and how natural language maps to this
structure. Thus, to learn a new operator, the agent must learn four things:

1. Template: Knowledge of the operator's arguments and how they can be instantiated.
For picking up blocks, the agent acquires a new operator with a single argument, the
object to be picked up.

2. Mapping from natural language: A mapping from natural language semantic
structures to an instantiation of the new operator, so that the operator can be selected
when commanded in the future. For picking up blocks, the agent learns to map the
semantic object of \Pick up ..." to the single argument of its new operator template.

3. Implementation: How to perform the operator. New operators are performed by
executing a sequence of smaller operators. The implementation takes the form of
selection knowledge for these sub-operators (e.g., move to the proper table, move the
arm, etc.)
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4. Termination conditions: Knowledge to recognize when the new operator is achieved
{ the goal concept of the new operator. For \pick up," the termination conditions
include holding the desired block, with the arm raised.

Requirement T2 (\fast learning") stipulates that after the �rst execution of a new proce-
dure, the agent must be able to perform at least the same task without being re-instructed.
Thus, the agent must learn, in some form, each of the four parts of a new operator during
its �rst execution.

A general implementation of a new operator can be learned through situated explanation
of each of its steps. During the �rst execution of a new operator, though, the instructions
for performing it cannot be explained, because the agent does not yet know the goal of the
operator (e.g., the agent does not know the termination conditions of \pick up") or the
steps following the current one to reach that goal. However, in this instructional context
{ explaining instructed steps of a procedure being learned { it is clear that the missing
knowledge of the remaining steps and the procedure's goal will be acquired later, because
the instructor is expected to teach the procedure to completion. Thus, the agent delays
explanation (option O1) and for now memorizes each implementation instruction in a rote,
episodic form. At the end of the �rst execution of a new procedure, the agent induces the
procedure's goal { its termination conditions { using a set of simple inductive heuristics.
On later executions of the procedure, the original instructions are recalled and explained to
learn a general implementation.

We describe the details of this process using the \pick up" example.

6.2.1 First Execution

The example, shown in Figure 6, begins with the instruction \Pick up the red block." The
agent comprehends this instruction, producing a semantic structure and resolving \the red
block" to a block in its environment. However, the semantic structure does not correspond
to any known operator, indicating that the agent must learn a new operator (which it
calls, say, new-op14). To learn a template for the new operator, the agent simply assumes
that the argument structure of the command used to request the operator is the required
argument structure of the operator itself. In this case, a template for the new operator is
generated with an argument structure that directly corresponds to the semantic arguments
of the \pick up" command (here, one argument, object). The agent learns a mapping from
the semantic structure to the new operator's template, to be used when presented with
similar requests in the future. This simple approach to learning templates and mappings is
su�cient for imperative sentences with direct arguments, but will fail for commands with
complex arguments, such as path constraints (\Move the dynamite into the other room,
keeping it as far from the heater as possible").

Next, the new operator is selected for execution. Since its implementation is unknown,
the agent immediately reaches an impasse and asks for further instructions. Each instruction
in Figure 6 is given, comprehended and executed in turn. These instructions provide the
implementation for the new operator. They are implicitly situated { each applies to the
current situation in which the agent �nds itself.

At any point, the agent may be given another command that cannot be directly com-
pleted { one that requests either another unknown procedure or a known procedure that
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Figure 7: Instructions teaching a new operator cannot be explained before the termination
conditions of the new operator are learned.

the agent does not know how to perform in the current situation due to skipped steps. This
is command 
exibility (requirement I2). For example, within the instructions for \pick up,"
the command \Move above the red block" cannot be completed because of a skipped step
(the arm must be raised to move above something). An impasse arises where the instructor
indicates the needed step (\move up"), and then continues instructing \pick up."

Ultimately, the implementation of a new operator can be learned at the proper level of
generality by explaining each instructed step. However, as illustrated in Figure 7, during
its initial execution forming this explanation is impossible, because the goal of the new
operator and the other steps (further instructions) needed to reach it are not yet known.
Since these missing pieces of the explanation are expected to be available later, the agent
delays explanation and resorts to rote learning of each instructed step.

In Instructo-Soar, rote learning occurs as a side e�ect of language comprehension.
While reading each sentence, the agent learns a set of rules that encode the sentence's
semantic features. The rules allow NL-Soar to resolve referents in later sentences, imple-
menting a simple version of Grosz's focus space mechanism (Grosz, 1977). The rules record
each instruction, indexed by the goal to which it applies and its place in the instruction
sequence. The result is essentially an episodic case that records the speci�c, lock-step se-
quence of the instructions given to perform the new operator. For instance, it is recorded
that \to pick-up (that is, new-op14) the red block, rb1, I was �rst told to move to the yel-
low table, yt1." Of course, the information contained within the case could be generalized,
but at this point any generalization would be purely heuristic, because the agent cannot
explain the steps of the episode. Thus, Instructo-Soar takes the conservative approach
of leaving the case in rote form.

Finally, the agent is told \The operator is �nished," indicating that the goal of the
new operator has been achieved. This instruction triggers the agent to learn termination
conditions for the new operator. Learning termination conditions is an inductive concept
formation problem: The agent must induce which features of those that hold in the current
state imply a positive instance of the new operator's goal being achieved. Standard concept
learning approaches may be used here, as long as they produce a strong hypothesis within a
small number of examples (due to the \fast learning" requirement, T2). Instructo-Soar
uses a simple heuristic to strongly bias its induction: It hypothesizes that everything that
has changed between the initial state when the new operator was requested and the current
state is part of the new operator's termination conditions. In this case, the changes are that
the robot is docked at a table, holding a block, and the block and gripper are both up in
the air.
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This heuristic gives a reasonable guess, but is clearly too simple. Conditions that
changed may not matter; e.g., perhaps it doesn't matter to picking up blocks that the
robot ends up at a table. Unchanged conditions may matter; e.g., if learning to build
a \stoplight," block colors are important although they do not change. Thus, the agent
presents the induced set of termination conditions to the instructor for possible alteration
and veri�cation. The instructor can add or remove conditions. For example, in the \pick
up" case the instructor might say \The robot need not be docked at the yellow table" to
remove a condition deemed unnecessary, before verifying the termination conditions.

Instructo-Soar performs induction by EBL (chunking) over an overgeneral theory
that can make inductive leaps (similar to, e.g., Miller, 1993; Rosenbloom & Aasman, 1990;
VanLehn, Ball, & Kowalski, 1990). This type of inductive learning has the advantage that
the agent can alter the bias to re
ect other available knowledge. In this case, the agent
uses further instruction (the instructor's indications of features to add or remove) to alter
the induction. Other knowledge sources that could be employed (but are not in the current
implementation) include analogy to other known operators (e.g., pick up actions in other
domains), domain-speci�c heuristics, etc.

Through the �rst execution of a new operator, then, the agent:

� Carries out a sequence of instructions achieving a new operator.

� Learns an operator template for the new operator.

� Learns the mapping from natural language to the new operator.

� Learns a rote execution sequence for the new operator.

� Learns the termination conditions of the new operator.

Since the agent has learned all of the necessary parts of an operator, it will be able to
perform the same task again without instruction. However, since the implementation of the
operator is rote, it can only perform the exact same task. It has not learned generally how
to pick up things yet.

6.2.2 Generalizing the New Operator's Implementation

The agent now knows the goal concept and full (though rote) implementation sequence for
the new operator. Thus, it has the information that it needs to explain how each instruction
in the implementation sequence leads to goal achievement, provided its underlying domain
knowledge is su�cient.

Each instruction is explained by recalling it from episodic memory and internally pro-
jecting its e�ects and the rest of the path to achievement of the termination conditions
of the new operator. The projection is a \proof" that the instructed operator will lead
to goal achievement in the situation. Soar's chunking mechanism essentially computes the
weakest preconditions of the situation and the instruction required for success (similar to
standard EBL) to form a general rule proposing the instructed operator. The rule learned
from the instruction \Move to the yellow table" is shown in Figure 8. The rule generalizes
the original instruction by dropping the table's color, and specializes it by adding the facts
that the table has the object sitting on it and that the object is small (only small objects
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If the goal is new-op-14(?obj), and
?obj is on table ?t, and small(?obj), and
the robot is not docked at ?t, and
the gripper has status(open),

then propose operator move-to-table(?t).

Figure 8: The general operator proposal rule learned from the instruction \Move to the
yellow table" (new-op-14 is the newly learned \pick up" operator).

can be grasped by the gripper). The rule also tests that the gripper is open, because this
condition was important for grasping the block in the instructed case.9

After learning general proposal rules for each step in the instruction sequence, the agent
can perform the task without reference to the rote case. For instance, if asked to \Pick
up the green block," the agent selects new-op14, instantiated with the green block. Then,
general sub-operator proposal rules like the one in Figure 8 �re one by one, as they match the
current situation, to implement the operator. After performing all of the implementation
steps, the agent recognizes that the termination conditions are met (the gripper is raised
and holding the green block), and new-op14 is terminated.

Since the general proposal rules for implementing the task are directly conditional on
the state, the agent can perform the task starting from any state along the implementation
path and can react to unexpected conditions (e.g., another robot stealing the block). In
contrast, the rote implementation that was initially learned applied only when starting from
the original starting state, and was not reactive because its steps were not conditional on
the current state.

6.3 Recall Strategies

We have described how our agent recalls and explains each step of a new operator's im-
plementation sequence, after the operator's termination conditions are induced. There are
still two open issues: (A) At what point after learning the termination conditions should
the agent perform the recall/projection?, and (B) How many steps should be recalled and
projected in sequence at a time?

To investigate these issues, we have implemented two di�erent recall/project strategies:

1. Immediate/complete recall. The agent recalls and attempts to explain the full
sequence of instructions for the new operator immediately after learning the new
operator's termination conditions.

2. Lazy/single-step recall. The agent recalls and attempts to explain single instruc-
tions in the sequence when asked to perform the operator again starting from the
same initial state. That is, at each point in the execution of the operator, the agent

9. More technical details of how Soar's chunking mechanism forms such rules can be found in (Hu�man,
1994; Laird, Congdon, Altmann, & Doorenbos, 1993).
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recalls the next instruction, and attempts to explain it by forward projecting it. How-
ever, if this projection does not result in a path to goal achievement without any
further instructions being recalled, then rather than recalling the next instruction in
the sequence to continue the forward projection, the agent gives up on explaining this
instruction and simply executes it in the external world.

These strategies represent the extremes of a continuum of strategies.10 The strategy to
use is a parameter of the agent; it does not dynamically select between strategies while it
is running. A possible extension would be to reason about the time pressure in di�erent
situations to select the appropriate strategy. Next, we brie
y describe the implications of
each recall strategy.

6.3.1 Immediate/Complete Recall Strategy

Immediate/complete recall and explanation involves internally projecting multiple operators
(the full instruction sequence) immediately after the �rst execution of the new operator. The
projection begins at the state the agent was in when the new operator was �rst suggested.
If the projection successfully achieves the termination conditions of the new operator, the
agent learns general implementation rules for every step. The advantage of this strategy is
that the agent learns a general implementation for the new operator immediately after its
�rst execution (e.g., the agent can pick up other objects right away).

The strategy has three important disadvantages. First, it requires that the agent re-
construct the initial state in which it was commanded to perform the new operator. This
reconstruction may be di�cult if the amount of information in the state is large (although
it is not in the small robotic domain being used here).

Second, recall and projection of the entire sequence of instructed steps is time-consuming,
requiring time proportional to the length of the instruction sequence. During the process,
the agent's performance of tasks at hand is suspended. This suspension could be awkward
if the agent is under pressure to act quickly.

Third, as illustrated in Figure 9, multiple step projections are susceptible to compound-
ing of errors in underlying domain knowledge. The projection of each successive operator
begins from a state that re
ects the agent's knowledge of the e�ects of prior operators in
the sequence. If this knowledge is incomplete or incorrect, the state will move further and
further from re
ecting the actual e�ects of prior operators. Minor domain knowledge prob-
lems in the knowledge of individual operators, that alone would not produce an error in
a single step explanation, may combine within the projection to cause an error. This can
lead to incomplete explanations or (more rarely) to spuriously successful explanations (e.g.,
reaching success too early in the instruction sequence).

6.3.2 Lazy/Single-Step Recall Strategy

In the lazy/single-step recall strategy, the agent waits to recall and explain instructions until
asked to perform the new operator a second time from the same initial state. In addition,
the agent only recalls a single instruction to internally project at a time. After the recalled

10. We also implemented a lazy/complete recall strategy, which will not be described here (see Hu�man,
1994, for details).
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Figure 9: Multiple step projections can result in incomplete explanations due to compound-
ing of errors in domain knowledge.

operator is projected, the agent applies whatever general knowledge it has about the rest
of the implementation of the new operator. This general knowledge, however, does not
include rote memories of other past instructions. That is, if the agent does not know the
rest of the path to complete the new operator using general knowledge, it does not recall any
further instructions in the sequence from its rote memories. Rather, the internal projection
is terminated and the single recalled operator is applied in the external world.

This strategy addresses the three disadvantages of the immediate/complete strategy.
First, it does not require reconstruction of the original instruction state; rather, it waits for
a similar state to occur again.

Second, recalling and projecting a single instruction at a time does not require a time-
consuming introspection that suspends the agent's ongoing activity. For \pick up," for
instance, Table 5 shows the longest time that the agent's external action (movements or
instruction requests) is suspended using each strategy (as measured in Soar decision cycles,
which last about 35 milliseconds each for Instructo-Soar on an SGI R4400 Indigo).
The immediate/complete strategy does no external actions for 304 decision cycles (about
11 seconds on our Indigo) immediately following the �rst execution, in order to recall
and explain the complete instruction sequence. Using the lazy/single-step strategy, only
one instruction is ever recalled/explained at a time before action is taken in the world;
thus, the longest time without action is only 75 decision cycles (about 2 seconds). The
total recall/explanation time is proportional to the length of the instruction sequence in
both cases (304 vs. 294 decision cycles), but in the lazy/single-step strategy, that time
is interleaved with the execution of the instructions rather than fully taken after the �rst
execution.

Third, the lazy/single-step strategy overcomes the problem of compounding of domain
theory errors by beginning the projection of each instruction from the current state of the
world after external execution of the previous instructions. Thus, the beginning state of
each projection correctly re
ects the e�ects of the previous operators in the implementation
sequence.

The major disadvantage of this strategy is that it requires a number of executions of
the new operator equal to the length of the instruction sequence in order to learn the whole
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Immediate/complete Lazy/single-step

Largest time without external action 304 75

Largest total recall/explanation time
during an execution

304 (end of 1st exec'n) 294 (during 2nd exec'n.)

Table 5: Timing comparison, in Soar decision cycles, for learning \pick up" using the im-
mediate/complete and lazy/single-step recall strategies.
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Figure 10: Decision cycles versus execution number to learn to (a) pick up and (b) move
objects left of one another, using the lazy/single-step strategy.

general implementation. This is because limiting recall to a single step allows only a single
sub-operator per execution to be generalized. This disadvantage, however, leads to two
interesting learning characteristics:

� Back-to-front generalization. Generalized learning starts at the end of the imple-
mentation sequence and moves towards the beginning. On the second execution of the
new operator, a path to the goal is known only for the last instruction in the sequence
(it leads directly to goal completion), so a general proposal for that instruction is
learned. On the third execution, after the second to last instruction is projected, the
proposal learned previously for the last operator applies, leading to goal achievement
and allowing a general proposal for the second to last instruction to be learned. This
pattern continues back through the entire sequence until the full implementation is
learned generally. As Figure 10 shows, the resulting learning curves closely approxi-
mate the power law of practice (Rosenbloom & Newell, 1986) (r = 0:98 for both (a)
and (b)).

� E�ectiveness of hierarchical instruction. Due to the back-to-front e�ect, the
agent learns a new procedure more quickly when its steps are taught using a hierar-
chical organization than when they are taught as a 
at sequence. Figure 11 depicts a

at, nine-step instruction sequence for teaching Instructo-Soar to move one block
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close gripper

move arm down open grippermove arm up

move arm downmove above (block) move to table (table)

move to table (table) move−left−of(arm,block2)

move left of(block, block2)
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Figure 11: A graphical view of a 
at instruction sequence for
move-left-of(block,block2).

pick up (block) put down (block)

grasp (block)

close grippermove arm down

open grippermove arm up move arm down

move above (block)

move to table (table)

move to table (table)

move−left−of(arm,block2)

move left of(block, block2)

1

2

3 4

5 6 7

8

9

10

11

12 13

Figure 12: A graphical view of a hierarchical instruction sequence for
move-left-of(block,block2). New operators are shown in bold.

left of another; Figure 12 depicts a hierarchical instruction sequence for the same pro-
cedure, that contains 13 instructed steps, but a maximum of 3 in any subsequence. By
breaking the instruction sequence into shorter subsequences, a hierarchical organiza-
tion allows multiple subtrees of the hierarchy to be generalized during each execution.
General learning for an N step operator takes N executions using a 
at instruction
sequence. Taught hierarchically as an H-level hierarchy with H

p
N subtasks in each

subsequence, only H � H
p
N executions are required for full generalization. The hier-

archy in Figure 12 has an irregular structure, but results in a speedup because the
length of every subsequence is small (in this case, smaller than

p
N). Empirically, the


at sequence of Figure 11 takes nine (N) executions to generalize, whereas the hierar-
chical sequence takes only six. Hierarchical organization has the additional advantage
that more operators are learned that can be used in future instructions.
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6.4 Supporting Command Flexibility

Command 
exibility (requirement I2) stipulates that the instructor may request either an
unknown procedure, or a known procedure that the agent does not know how to perform in
the current state (skipping steps), at any point. This can lead to multiple levels of embedded
instruction. As we have seen, Instructo-Soar learns completely new procedures from
instructions for unknown commands. In addition, when the agent is asked to perform a
known procedure in an unfamiliar situation { one from which the agent does not know what
step to take { it learns to extend its knowledge of the procedure to that situation.

An example is contained in the instructions for \Pick up the red block," when the agent
is asked to \Move above the red block." The agent knows how to perform the operator
when its arm is raised. However, in this case the arm is lowered, and so the agent reaches an
impasse and asks for further instruction.11 When told to \Move up," the agent internally
projects raising its arm, which allows it to achieve moving above the red block. From this
projection it learns the general rule: move the arm up when trying to move above an object
that is on the table the agent is docked at. This rule extends the \move above" procedure
to cover this situation.

Any operator { even one previously learned from instruction { may require extension to
apply to a new situation. This is because when the agent learns the general implementation
for a new operator, it does not reason about all possible situations in which the operator
might be performed, but limits its explanations to the series of situations that arises during
the actual execution of the new operator while it is being learned.

Newly learned operators may be included in the instructions for later operators, leading
to learning of operator hierarchies. One hierarchy of operators learned by Instructo-Soar
is shown in Figure 13. Learning procedural hierarchies has been identi�ed as a fundamental
component of children's skill acquisition from tutorial instruction (Wood, Bruner, & Ross,
1976). In learning the hierarchy of Figure 13, Instructo-Soar learned four new opera-
tors, an extension of a known operator (move above), and an extension of a new operator
(extending \pick up" to work if the robot already is holding a block). Because of command

exibility, this same hierarchy can be taught in exponentially many di�erent ways (Hu�-
man, 1994). For instance, new operators that appear as sub-operators (e.g., grasp) can be
taught either before or during teaching of higher operators (e.g., pick up).

6.5 Abandoning Explanation when Domain Knowledge is Incomplete

All of the general operator implementation learning described thus far depends on explaining
instructions using prior domain knowledge (as opposed to the learning of operator termina-
tion conditions, which is inductive). What if the domain knowledge is incomplete, making
explanation impossible? For sequences of multiple operators, pinpointing what knowledge
is missing is an extremely di�cult credit assignment problem (sequences known to contain
only one operator, however, are a more constrained case, as described in the next section).

11. Another option would be to search; i.e., to apply a weak method such as means-ends analysis. In this
example, the search would be easy; in other cases, it could be costly. In any event, since the goal of
Instructo-Soar is to investigate the use of instruction, our agent always asks for instructions when
it reaches an impasse in task performance. Nothing in Instructo-Soar precludes the use of search or
knowledge from other sources, however.
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pick up (block) put down (block)

grasp (block)

close grippermove arm down

open gripper

move to table (table)

move arm up

move arm down

move arm up

(small)

grasp (magnet) move arm downmove above (block)

line−up(block1,block2,block3)

move left of(block3,block2)move left of(block2,block1)

move to table (table) move−left−of(arm,block1)

put down (blockX)

(lg. metal)

move above (blk/mag)

Figure 13: A hierarchy of operators learned by Instructo-Soar. Primitive operators are
in light print; learned operators are in bold.

In general, an explanation failure that is detected at the end of the projection of an instruc-
tion sequence could be caused by missing knowledge about any operator in the sequence.
Thus, when faced with an incomplete explanation of a sequence of multiple instructions,
Instructo-Soar abandons the explanation and instead tries to induce knowledge directly
from the instructions (option O4).

As an example, consider a case in which all of Instructo-Soar's knowledge of sec-
ondary operator e�ects (frame axiom type knowledge) is removed before teaching it a pro-
cedure. For example, although the agent knows that closing the hand causes it to have
status closed, it no longer knows that closing the hand around a block causes the block
to be held. Now, the agent is taught a new procedure, such as to pick up the red block.
After the �rst execution, the agent attempts to recall and explain the instructions as usual,
but fails because of the missing knowledge. That is, the block is not picked up during the
projection of the instructions, since the agent's knowledge does not indicate that it is held.
The agent records the fact that this procedure's instructions cannot be explained.

Later, the agent is again asked to perform the procedure, and again recalls the instruc-
tions. However, it also recalls that explaining the instructions failed in the past. Thus, it
abandons explanation and instead attempts to induce a general proposal rule directly from
each instruction.12

12. Since an incomplete explanation for a procedure may indicate that some e�ect(s) of an operator in the
instruction sequence is unknown, another alternative (not yet implemented in Instructo-Soar) would
be for the agent to observe the e�ects of each operator in the sequence as it is performed, comparing
the observations to the e�ects predicted by domain knowledge. Any di�erences would allow the agent
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G: new−op−14 ("pick up")
          object: <red−block>

OP: move−to−table
           destination: <yellow−table>

<red−block> ON <yellow−table>

Figure 14: The use of the OP-to-G-path heuristic, with OP \move to the yellow table,"
and G \pick up the red block."

In the \pick up" example, the agent �rst recalls the command to move to the yellow
table. To learn a proposal rule for this operator (call it OP ), the agent must induce a set of
conditions of the state under which performing OP will contribute to achieving the \pick
up" goal (call it G). Instructo-Soar uses two simple heuristics to induce these state
conditions:

� OP-to-G-path. For each object Obj1 �lling a slot of OP , and each object Obj2
attached to G, include the shortest existing path (heuristically of length less than
three) of relationships between Obj1 and Obj2 in the set of induced conditions.

This heuristic captures the intuition that if an operator involves some object, its
relationship to the objects relevant to the goal is probably important. Figure 14
shows its operation for \move to the yellow table." As the �gure indicates, there is a
path between G's object, the red block, and the destination of OP , the yellow table,
through the relationship that the block is on the table.

� OP-features-unachieved. Each termination condition (essentially, each primary
e�ect) of OP that is not achieved in the state before OP is performed is considered
an important condition.

This heuristic captures the intuition that all of the primary e�ects of OP are probably
important; therefore, it matters that they are not achieved when OP is selected. In
our example, OP 's primary e�ect is that the robot ends up docked at the table; thus,
the fact that the robot is not initially docked at the table is added to the inferred set
of conditions for proposing OP .

These heuristics are implemented as Soar operators that compute the appropriate con-
ditions. Once a set of conditions is induced, it is presented to the instructor, who can add or
remove conditions before verifying them. Upon veri�cation, a rule is learned proposing OP
(e.g., move-to-table(?t)) when the induced conditions hold (e.g., goal is pick-up(?b),

?b isa block, on(?b,?t)). This rule is similar to the rule learned from explanation (Fig-
ure 8), but only applies to picking up a block (overspeci�c), and does not stipulate that the

to learn new operator e�ects that could complete the explanation of the procedure. Learning e�ects
of operators from observation has been explored by a number of researchers (Carbonell & Gil, 1987;
Pazzani, 1991b; Shen, 1993; Sutton & Pinette, 1985; Thrun & Mitchell, 1993).
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object must be small (overgeneral). A similar induction occurs for each step of \pick up,"
so that the agent learns a general implementation for the full \pick up" operator. However,
unless corrections are made by the instructor, this induced implementation is not as correct
as one learned from explanation; for instance, it applies (wrongly) to any block instead of
to any small object. In a more complex domain, inferring implementation rules would be
even less successful. Not surprisingly, psychological research shows that human subjects'
learning from procedural instructions also degrades if they lack domain knowledge (Kieras
& Bovair, 1984).

Returning to the targeted instruction requirements in Table 4, Instructo-Soar's learn-
ing of procedures illustrates (T1) general learning from speci�c instructions, (T2) fast learn-
ing (because each procedure need only be instructed once) by (T3) using prior domain
knowledge to construct explanations, and (T4) incremental learning during the agent's on-
going performance. Two types of PSCM knowledge are learned: (T5(b)) operator proposals
for sub-operators of the procedure, and (T5(e)) the procedure's termination conditions.
The learning involves either delayed explanation, or when domain knowledge is inadequate,
abandoning explanation in favor of simple induction. The instructions are each (I3(a)) im-
plicitly situated imperative commands, for either (I2(a)) known procedures, (I2(b)) known
procedures where steps have been skipped, or (I2(c)) unknown procedures.

7. Beyond Imperative Commands

Next, we turn to learning the remaining types of PSCM knowledge (T5(a,c,d)) from various
kinds of explicitly situated instructions (I3(b)). From an explicitly situated instruction,
Instructo-Soar constructs a hypothetical situation (goal and state) that includes the
objects, properties, and relationships mentioned explicitly in the instruction as well as
any features of the current situation that are needed to carry out the instruction.13 This
hypothetical situation is used as the context for a situated explanation of the instruction.

7.1 Hypothetical Goals and Learning E�ects of Operators

A goal is explicitly speci�ed in an instruction by a purpose clause (DiEugenio, 1993): \To
do X, do Y." The basic knowledge to be learned from such an instruction is an operator
proposal rule for doing Y when the goal is to achieve X.

Consider this example from Instructo-Soar's domain:

> To turn on the light, push the red button.

The agent has been taught how to push buttons, but does not know the red button's
e�ect on the light. From a purpose clause instruction like this example, the agent creates a
hypothetical situation with the goal stated in the purpose clause (here, \turn on the light"),
and a state like the current state, but with that goal not achieved (here, with the light o�).
Within this situation, the agent attempts to explain the instruction by forward projecting
the action of pushing the red button.

If the agent knew that pushing the red button toggles the light, then in the projection,
the light would come on. Thus, the explanation would succeed, and a general operator

13. See (Hu�man, 1994) for details of how these features are determined.
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proposal rule would be learned, that proposed pushing the red button when the light is o�
and the goal is to turn it on.

However, since in actuality the agent is missing the knowledge (MK) that pushing the
button a�ects the light, the light does not come on within the projection. The explanation
is incomplete.

When Instructo-Soar's explanation of a sequence of operators fails, the agent does
not try to induce the missing knowledge needed to complete the explanation, because it
could be associated with any of the multiple operators. Rather, the explanation is simply
abandoned, as described in Section 6.5. However, in this case, the unexplainable sequence
contains only one operator. In addition, the form of the instruction gives the agent a
strong expectation about that operator's intended e�ect. Based on the purpose clause, the
agent expects that the speci�ed action (pushing the button) will cause achievement of the
speci�ed goal (turning on the light). DiEugenio (1993) found empirically that this type of
expectation holds for 95% of naturally occurring purpose clauses.

The expectation constrains the \gap" in the incomplete explanation: the state after
pushing the button should be a state with the light on, and only one action was performed to
produce this e�ect. Based on this constrained gap, the agent attempts to induce the missing
knowledgeMK in order to complete the explanation (option O2). The most straightforward
inference of MK is simply that an unknown e�ect of the single action is to produce the
expected goal conditions { e.g., pushing the button should cause the light to come on. The
instructor is asked to verify this inference.14

Once it is veri�ed, Instructo-Soar heuristically guesses at the state conditions under
which the e�ect will occur. It uses the OP-to-G-path heuristic as a very naive causality
theory (Pazzani, 1991a) to guess at the causes of the inferred operator e�ect. Here, OP-to-
G-path notices that the light and the red button are both on the same table. In addition,
the agent includes the fact that the inferred e�ect did not hold (the light was o�) before
the operator caused it. The result is presented to the instructor:

I think that doing push the button causes:
the light to be on

under the following conditions:
the light is not currently on, the light is on the table, the button is on the table

Are those the right conditions?

Here, the heuristics have not recognized that it matters which button is pushed (the red
one). The instructor can add this condition by saying ``The button must be red.''

Once the instructor veri�es the conditions, the agent adds the new piece of operator e�ect
knowledge to its memory:

if projecting push-button(?b), and

?l isa light with status off, on table ?t, and

?b isa button with color red, on table ?t,

then light ?l now has status on.

14. If the inference is rejected, the agent abandons the explanation and directly induces a proposal rule for
pushing the button from the instruction, as described in Section 6.5.
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Immediately after being learned, this rule applies to the light in the forward projection for
the current instruction. The light comes on, completing the instruction's explanation by
achieving its goal. From this explanation, the agent learns the proposal rule that proposes
pushing the red button when the goal is to turn on the light. Thus, the agent has acquired
new knowledge at multiple levels; inferring an unknown e�ect of an operator supported
learning a proposal for that operator.

This example illustrates (I3(b)) the use of hypothetical goal instructions and the use
of option O2 for dealing with incomplete explanations { inferring missing knowledge { to
learn new operator e�ects (T5(d)), thus extending domain knowledge.

7.2 Hypothetical States to Learn About Contingencies

Instructors use instructions with hypothetical states (e.g., conditionals: \If [state condi-
tions], do ...") either to teach general policies (\If the lights are on when you leave the
room, turn them o�.") or to teach contingencies when performing a task. Instructo-

Soar handles both of these; here, we will describe the latter.

A contingency instruction indicates a course of action to be followed when the current
task is performed in a future situation di�erent from the current situation. Instructors
often use contingency instructions to teach about situations that di�er from the current
one in some crucial way that should alter the agent's behavior. Contingency instructions
are very common in human instruction; Ford and Thompson (1986) found that 79% of the
conditional statements in an instruction manual communicated contingency options to the
student.

Consider this interaction:

> Grasp the blue block.

That's a new one for me. How do I do that?
> If the blue block is metal, then pick up the magnet.

The blue block is not made of metal, but the instructor is communicating that if it were, a
di�erent course of action would be required.

From the conditional instruction \If the blue block is metal, then pick up the magnet,"
the agent needs to learn an operator proposal rule for picking up the magnet under appro-
priate conditions. The agent begins by constructing the hypothetical situation to which
\pick up the magnet" applies. \If the blue block is metal" indicates a hypothetical state
that is a variant of the current state with the blue block having material metal. The
current goal (\Grasp the blue block") is also the goal in the hypothetical situation.

Within this situation, the agent projects picking up the magnet to explain how it will
allow the block to be grasped. However, the agent is missing much of the knowledge needed
to complete this explanation. It does not know the goal concept of \Grasp" yet, or the rest
of the instructions to reach that goal.

Since the instruction being explained is for a contingency, the rest of the instructions
that the agent is given to \Grasp the blue block" may not (and in this case, do not) apply
to the contingent situation, where the block is metal. In the normal grasp sequence, for
instance, the agent learns to close its hand around the grasped object, but when grasping
a metal object, the hand is closed around the magnet. Since knowledge of how to complete
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grasping a metal object is needed to explain the contingency instruction, and the agent
does not know when it might learn this missing knowledge, it abandons the explanation
(option O4). Instead, it uses the heuristics described in Section 6.5 to directly induce an
operator proposal rule for \Grasp the magnet." In addition to the conditions generated by
the heuristics, the conditions indicated in the antecedent of the instruction are included.
The result is presented to the instructor for alteration and veri�cation:

So I'm guessing the conditions for doing \pick up the magnet"
when your goal is \grasp the block" are:

the block is metal
Is that right?
> Right.

From this interaction the agent learns a rule that proposes picking up the magnet when the
goal is to grasp a metal block. After this learning is completed, since the agent has not yet
�nished grasping the blue block, it continues to receive instruction for that task. Further
contingencies can be indicated at any point. Learning contingencies illustrates (I3(b)) the
handling of hypothetical state instructions.

7.3 Learning to Reject Operators

Our �nal examples illustrate learning to reject an operator { a type of operator control
knowledge in the PSCM. The examples also detail the remaining option for dealing with
incomplete explanations: (O3) completing an explanation through further instruction.

Consider these instructions:

> Never grasp green blocks.

Why?
(a) > Trust me.

(b) > Green blocks are explosive.

A negative imperative prohibits a step from applying to a hypothetical situation in which
it might apply. Thus, Instructo-Soar creates a hypothetical situation in which the
prohibited action might be executed; in this case, a state with a graspable green block.
Since no goal is speci�ed by the instruction, and there is no other current goal, a default
goal of \maintaining happiness" (which is always considered one of the agent's current goals)
is used. From this hypothetical situation, the agent internally projects the \grasp" action,
expecting an \unhappy" result. However, the resulting state, in which the agent is grasping
a green block, is acceptable according to the agent's knowledge. Thus, the projection does
not explain why the action is prohibited.

The agent deals with the incomplete explanation by asking for further instruction, in an
attempt to learn MK and complete the explanation. However, the instructor can decline
to give further information by saying (a) Trust me. Although the instructor will not pro-
vide MK , because the prohibition of a single operator (grasping the green block) is being
explained, the agent can induce a plausible MK that will complete the explanation (option
O2). Since the agent knows that the �nal state after the prohibited operator is meant to be
\unhappy", it simply induces that this state is to be avoided. This is the converse of learn-
ing to recognize when a desired goal has been reached (learning an operator's termination
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conditions). The agent conservatively guesses that all of the features of the hypothetical
state (here, that there is a green block that is held), taken together, make it a state to
be avoided. Because this inference is so conservative, in the current implementation the
instructor is not even asked to verify it. The state inference rule that results is as follows:

if goal is ``happiness'', and

?b isa block with color green, and

holding(gripper,?b),

then this state fails to achieve ``happiness''.

This rule applies to the �nal state in the projection of \Never grasp..." The state's failure
to achieve happiness completes the agent's explanation of why it should \Never grasp...,"
and it learns a rule that rejects any proposed operator for grasping a green block.

Alternatively, the instructor could provide further instruction, as in (b) Green blocks

are explosive. Such instruction can provide the missing knowledge MK needed to com-
plete an incomplete explanation (option O3). From (b), the agent learns a state inference
rule: blocks with color green have explosiveness high. Instructo-Soar learns state
inferences from simple statements like (b), and from conditionals (e.g., \If the magnet is
powered and directly above a metal block, then the magnet is stuck to the block") by es-
sentially translating the utterance directly into a rule.15 Such state inference instructions
can be used to introduce new features that extend the agent's representation vocabulary
(e.g, stuck-to).

The rule learned from \Green blocks are explosive" adds explosiveness high to the
block that the agent had simulated grasping in the hypothetical situation. The agent knows
that touching an explosive object may cause an explosion { a negative result. This negative
result completes the explanation of \Never grasp...," and from it the agent learns to avoid
grasping objects with explosiveness high.

Completing an explanation through further instruction (as in (b)) can produce more
general learning than heuristically inferring missing knowledge (as in (a)). In (b), if the
agent is later told Blue blocks are explosive, it will avoid grasping them as well. In
general, multiple levels of instruction can lead to higher quality learning than a single level
because learning is based on an explanation composed from strong lower-level knowledge
(MK) rather than inductive heuristics alone. MK (here, the state inference rule) is also
available for future use.

Because the agent has learned not only to reject the \grasp" operator but to recognize
the bad state that performing it would lead to, the agent can recognize the bad state if it
is reached from another path. For instance, the agent can be led through the individual
steps of grasping an explosive block without the instructor ever mentioning \grasp." When
the agent is �nally asked to \Close the gripper" around the explosive object, it does so,
but then immediately recognizes the undesirable state it has arrived in and reverses the
close-gripper action. In the process, it learns to reject close-gripper if the hand is
around an explosive object, so that in the future it will not reach the undesirable state
through this path.

15. This translation occurs by chunking, but in an uninteresting way. Instructo-Soar does not use expla-
nation to learn state inferences. An extension would be to try to explain why an inference holds using
a deeper causal theory.
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Notice here the e�ect of the situated nature of Instructo-Soar's learning. The agent
learns to avoid operators that lead to a bad state only when they arise in the agent's
performance. Its initial learning about the bad state is recognitional rather than predictive.
Alternatively, when the agent �rst learns about a bad state, it could do extensive reasoning
to determine every possible operator that could lead to that state, from every possible
previous state, to learn to reject those operators at the appropriate times. This unsituated
reasoning would be very expensive; the agent would have to reason through a huge number
of possible situations. In addition, whenever new operators were learned, the agent would
have to reason about all the possible situations in which they could arise, to learn if they
could ever led to a bad state. Rather than this costly reasoning, Instructo-Soar simply
learns what it can from its situations as they arise.

Another alternative for completely avoiding bad states would be to think through the
e�ects of every action before taking it, to see if a bad state will result. This highly cautious
execution strategy would be appropriate in dangerous situations, but is not appropriate
in safer situations where the agent is under time pressure. (Moving between more or less
cautious execution strategies is not currently implemented in Instructo-Soar.)

The \Never grasp..." examples have illustrated the agent's learning of one type of
operator control knowledge, namely operator rejection (T5(c)), learning of state inferences
(T5(a)), and the use of further instruction to complete incomplete explanations (option O3).
The �nal category of learning we will discuss is a second type of operator control knowledge.

7.4 Learning Operator Comparison Knowledge

Another type of control knowledge besides operator rejection rules is operator comparison
rules, which compare two operators and express a preference for one over the other in a given
situation. Instructo-Soar learns operator comparison rules by asking for the instructor's
feedback when multiple operators are proposed at the same point to achieve a particular
goal. Multiple operators can be proposed, for instance, when the agent has been taught two
di�erent methods for achieving the same goal (e.g., to pick up a metal block either using
the magnet or directly with the gripper). The instructor is asked to either select one of
the proposed operators or to indicate that some other action is appropriate. Selecting one
of the proposed choices causes the agent to learn a rule that prefers the selected operator
over the other proposed operators in situations like the current situation. Alternatively,
if the instructor indicates some other operator outside of the set of proposed operators,
Instructo-Soar attempts to explain that operator in the usual way, to learn a general
rule proposing it. In addition, the agent learns rules preferring the instructed operator to
each of the other currently proposed operators.

There are two weaknesses to Instructo-Soar's learning of operator comparison rules.
First, the instructor can be required to indicate a preference for each step needed to com-
plete a procedure, rather than simply choosing between overall methods. That is, the
instructor cannot say \Use the method where you grab the block with your gripper, instead
of using the magnet," but must indicate a preference for each individual step of the method
employing the gripper. This is because in the PSCM, knowledge about steps in a procedure
is accessed independently, as separate proposal rules, rather than as an aggregate method.
Independent access improves 
exibility and reactivity { the agent can combine steps from
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di�erent methods as needed based on the current situation { but a higher level grouping of
steps would simplify instruction for selecting between complete methods.

The second weakness is that although the agent uses situated explanation to explain the
selection the instructor makes, it does not explain why that selection is better than the other
possibilities. Preferences between viable operators are often based on global considerations;
e.g., \Prefer actions that lead to overall faster/cheaper goal achievement." Learning based
on this type of global preference (which in turn may be learned through instruction) is a
point for further research.

8. Discussion of Results

We have shown how Instructo-Soar learns from various kinds of instructions. Although
the domain used to demonstrate this behavior is simple, it has enough complexity to exhibit
a variety of the di�erent types of instructional interactions that occur in tutorial instruction.

Of the 11 requirements that tutorial instruction places on an instructable agent (listed in
Table 1), Instructo-Soar meets 7 (listed in expanded form in Table 4) either fully or par-
tially. Three of these in particular distinguish Instructo-Soar from previous instructable
systems:

� Command 
exibility: The instructor can give a command for any task at each
instruction point, whether or not the agent knows the task or how to perform it in
the current situation.

� Situation 
exibility: The agent can learn from both implicitly situated instructions
and explicitly situated instructions specifying either hypothetical goals or states.

� Knowledge-type 
exibility: The agent is able to learn each of the types of knowl-
edge it uses in task performance (the �ve PSCM types) from instruction.

Earlier, we claimed that handling tutorial instruction's 
exibility requires a breadth of
learning and interaction capabilities. Combining command, situation, and knowledge-type

exibility, Instructo-Soar displays 18 distinct instructional capabilities, as listed in Ta-
ble 6. This variety of instructional behavior does not require 18 di�erent learning techniques,
but arises as one general technique, situated explanation in a PSCM-based agent, is applied
in a range of instructional situations.

Our series of examples has illustrated how situated explanation uses an instruction's
situation and context during the learning process. First, the situation to which an instruc-
tion applies provides the endpoints for attempting to explain the instruction. Second, the
instructional context can indicate which option to follow when an explanation cannot be
completed. The context of learning a new procedure indicates that delaying explanation
(option O1) is best, since the full procedure will eventually be taught. If a step cannot be
explained in a previously taught procedure, missing knowledge could be anywhere in the
procedure, so it is best to abandon explanation (option O4) and learn another way. Instruc-
tions that provide an explicit context, such as through a purpose clause, localize missing
knowledge by giving strong expectations about a single operator that should achieve a single
goal. This localization makes it plausible to induce missing knowledge and complete the
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Instructional capability Example

1. Learning completely new procedures pick up

2. Extending a procedure to apply in a new situation move up to move above

3. Hierarchical instruction: handling instructions for a
procedure embedded in instruction for others

teaching pick up within line up

4. Altering induced knowledge based on further
instruction

removing docked-at from pick

up's termination conditions

5. Learning procedures inductively when domain
knowledge is incomplete

learning with secondary operator
e�ects knowledge removed

6. Learning to avoid prohibited actions \Never grasp red blocks."

7. More general learning due to further instruction Avoid grasping because \Red
blocks are explosive."

8. Learning to avoid indirect achievement of a bad
state

closing hand around explosive
block

9. Inferences from simple speci�c statements \The grey block is metal."

10. Inferences from simple generic statements \White magnets are powered."

11. Inferences from conditionals \if condition [and condition]*
then concluded state feature"

12. Learning an operator to perform for a hypothetical
goal

\To turn on the light, push the
red button."

13. Learning an operator to perform in a hypothetical
state: general policy (active at all times)

\If the light is bright, then dim
the light."

14. Learning an operator to perform in a hypothetical
state: contingency within a particular procedure

\If the block is metal, then grasp
the magnet" to pick up

15. Learning operator e�ects pushing the red button turns on
the light

16. Learning non-perceivable operator e�ects and asso-
ciated inferences to recognize them

the magnet becomes stuck-to a
metal block when moved above it

17. Learning control knowledge: learning which of a set
of operators to prefer

two ways to grasp a small metal
block

18. Learning control knowledge: learning operators are
indi�erent

two ways to grasp a small metal
block

Table 6: Instructional capabilities demonstrated by Instructo-Soar.
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explanation (option O2). In other cases, the default is to ask for instruction about missing
knowledge to complete the explanation (option O3).

8.1 Empirical Evaluation

Most empirical evaluations of machine learning systems take one of four forms, each appro-
priate for addressing di�erent evaluation questions:

A. Comparison to other systems. This technique is useful for evaluating how overall
performance compares to the state of the art. It can be used when there are other
systems available that do the same learning task.

B. Comparison to an altered version of the same system. This technique evaluates the
impact of some component of the system on its overall performance. Typically, the
system is compared to a version of itself without the key component (sometimes called
a \lesion study").

C. Measuring performance on a systematically generated series of problems. This tech-
nique evaluates how the method is a�ected by di�erent dimensions of the input (e.g.,
noise in training data).

D. Measuring performance on known hard problems. Known hard problems provide an
evaluation of overall performance under extreme conditions. For instance, concept
learners' performance is often measured on standard, di�cult datasets.

These evaluation techniques have been applied in limited ways to Instructo-Soar.
They are di�cult to apply in great depth for two reasons. First, whereas most machine
learning e�orts concentrate on depth of a single type of learning from a single type of input,
tutorial instruction requires a breadth of learning from a range of instructional interac-
tions. Whereas depth can be measured by quantitative performance, breadth is measured
by (possibly qualitative) coverage { here, our coverage of 7 out of 11 instructability require-
ments. Second, tutorial instruction has not been extensively studied in machine learning, so
there is not a battery of standard systems and problems available. Nonetheless, evaluation
techniques (B), (C), and (D) have been applied to Instructo-Soar to address speci�c
evaluation questions:

B. Comparison to altered version: We removed frame-axiom knowledge to illustrate the
e�ect of prior knowledge on the agent's performance, as described in Section 6.5.
Without prior knowledge, the agent is unable to explain instructions and must resort
to inductive methods. Thus, removing frame-axiom knowledge increased the amount
of instruction required and reduced learning quality. We also compared versions of
the agent that use di�erent instruction recall strategies (Section 6.3).

C. Performance on systematically varied input: We examined the e�ects of varying three
dimensions of the instructions given to the agent. First, we compared learning curves
for instruction sequences of di�erent lengths (Section 6.2). As the graphs in Figure 10
show, Instructo-Soar's execution time for an instructed procedure varies with the
number of instructions in sequence used to teach it. Total execution time drops each
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time the procedure is executed, according to a power law function, until the proce-
dure has been learned in general form. Second, we compared teaching a procedure
through hierarchical subtasks versus using a 
at instruction sequence. Based on the
power law result, we predicted that hierarchical instruction would allow faster general
learning than 
at instruction. This prediction was con�rmed empirically. Third, we
examined the number of instruction orderings that can be used to teach a given pro-
cedure to Instructo-Soar in order to measure the value of supporting command

exibility. Rather than an experimental measurement, we performed a mathematical
analysis. The analysis showed that due to command 
exibility, the number of in-
struction sequences that can be used to teach a given procedure is very large, growing
exponentially with the number of primitive steps in the procedure (Hu�man, 1994).

D. Performance on a known hard problem: Since learning from tutorial instruction has
not been extensively studied in machine learning, there are no standard, di�cult
problems. We created a comprehensive instruction scenario by crossing the command

exibility, situation 
exibility, and knowledge-type 
exibility requirements. The sce-
nario, described in detail in (Hu�man, 1994), contains 100 instructions and demon-
strates 17 of Instructo-Soar's 18 instructional capabilities from Table 6 (it does
not include learning indi�erence in selecting between two operators). The agent learns
about 4,700 chunks during the scenario, including examples of each type of PSCM
knowledge, that extend the agent's domain knowledge signi�cantly.

9. Limitations and Further Research

This work's limitations fall into three major categories: limitations to tutorial instruction as
a teaching technique, limitations of the agent's general capabilities, and limitations because
of incomplete solutions to the mapping, interaction, and transfer problems. We discuss each
of these in turn.

9.1 Limitations of Tutorial Instruction

Tutorial instruction is both highly interactive and situated. However, much of human
instruction is either non-interactive or unsituated (or both), and these have not been con-
sidered in this work. In non-interactive instruction, the content and 
ow of information to
the student is controlled primarily by the information source. Examples include classroom
lectures, instruction manuals, and textbooks. One issue in using this type of instruction is
locating and extracting the information that is needed for particular problems (Carpenter
& Alterman, 1994). Non-interactive instruction can contain both situated information (e.g.,
worked-out example problems, Chi et al., 1989; VanLehn, 1987) and unsituated information
(e.g., general expository text).

Unsituated instruction conveys general or abstract knowledge that can be applied in
a large number of di�erent situations. Such general-purpose knowledge is often described
as \declarative" (Singley & Anderson, 1989). For example, in physics class, students are
taught that F = m � a; this general equation applies in speci�c ways to a great variety of
situations. The advantage of unsituated instruction is precisely this ability to compactly
communicate abstract knowledge that is broadly applicable (Sandberg & Wielinga, 1991).
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However, to use such abstract knowledge, students must learn how it applies to speci�c
situations (Singley & Anderson, 1989).

9.2 Limitations of the Agent

An agent's inherent limitations constrain what it can be taught. We have developed our
theory of learning from tutorial instruction within a particular computational model of
agents (the PSCM), and within this computational model, we implemented an agent with
a particular set of capabilities to demonstrate the theory. Thus, both the weaknesses of the
computational model and the speci�c implemented agent must be examined.

9.2.1 Computational Model

The problem space computational model is well suited for situated instruction because
of its elements' close correspondence to the knowledge level (facilitating mapping from
instructions to those elements), and its inherently local control structure. However, the
PSCM's local application of knowledge makes it di�cult to learn global control regimes
through instruction, because they must be translated into a series of local decisions that
will each result in local learning.

A second weakness of the PSCM is that it provides a theory of the functional types of
knowledge used by an intelligent agent, but gives no indication of the possible content of
that knowledge. A content theory of knowledge would allow a �ner grained analysis of an
agent's instructability, within the larger-grained knowledge types analysis provided by the
PSCM.

9.2.2 Implemented Agent's Capabilities

Producing a de�nitive agent has not been the goal of this work. Rather, the Instructo-
Soar agent's capabilities have been developed only as needed to demonstrate its instruc-
tional learning capabilities. Thus, it is limited in a number of ways.16 For instance, it
performs simple actions serially in a static world. This would not be su�cient for a dynamic
domain such as 
ying an airplane, where multiple goals at multiple levels of granularity,
involving both achievement and/or maintenance of conditions in the environment, may be
active at once (Pearson et al., 1993). Instructo-Soar's procedures are implemented by a
series of locally decided steps, precluding instruction containing procedure-wide (i.e., non-
local) path constraints (e.g., \Go to the other room, but don't walk on the carpeting!").
There is only a single agent in the world, precluding instructions that involve cooperation
with other agents (e.g., two robots carrying a couch) and instructions that require reasoning
about other agents' potential actions (e.g., \Don't go down the alley, because your enemy
may block you in.")

The agent has complete perception (clearly unrealistic in real physical domains), so it
never has to be told where to look, or asked to notice a feature that it overlooked. In con-
trast, our instruction protocols show that human students are often told where to attend or
what features to notice. Instructo-Soar's world is noise-free, so the agent does not need

16. These limitations are of the particular agent implemented here, not of Soar, which has been used to
build more powerful agents (e.g., Jones et al., 1993; Pearson et al., 1993).
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to reason or receive instruction about failed actions. Because it has complete perception
and a noise-free environment, the agent does not explicitly reason about uncertainty in its
perceptions or actions, and we have not demonstrated handling instructions that explicitly
describe uncertain or probabalistic outcomes.17 The agent also does not reason about time
(as, e.g., Vere and Bickmore's (1990) Homer does), so it cannot be taught to perform tasks
in a time-dependent way. It does not keep track of states it has seen or actions it performs
(other than its episodic instruction memory), so it cannot be asked to \do what you did
before." Similarly, it cannot learn procedures that are de�ned by a particular sequence of
actions, rather than a set of state conditions to achieve. For example, it cannot be taught
how to dance, because dancing does not result in a net change to the external world. Fi-
nally, whenever the agent does not know what to do next, it asks for more instruction. It
never tries to determine a solution through search and weak methods such as means-ends
analysis. Adding this capability would decrease its need for instruction.

In addition to the agent's capabilities, Instructo-Soar is limited because its solutions
to the mapping, interaction, and transfer problems are incomplete in various ways. These
limitations are discussed next.

9.3 Mapping Problem

Instructo-Soar employs a straightforward approach to mapping instructions into the
agent's internal language, and leaves all of the problems of mapping di�cult natural lan-
guage constructions unaddressed. Some of the relevant problems include reference resolu-
tion, incompleteness, and the use of domain knowledge in comprehension. Mapping can
even require further instruction, as in this interaction to resolve a referent:

> Grab the explosive block.

Which one is that?
> The red one.

This type of interaction is not supported by Instructo-Soar.

In addition to these general linguistic problems, Instructo-Soar makes only limited
use of semantic information when learning new operators. For example, when it �rst reads
\Move the red block left of the yellow block," it creates a new operator, but does not make
use of the semantic information communicated by \Move...to the left of." A more complete
agent would try to glean any information it could from the semantics of an unfamiliar
command.

9.4 Interaction Problem

The agent's shortcomings on the interaction problem center around its three requirements:
(I1) 
exible initiation of instruction, (I2) full 
exibility of knowledge content, and (I3)
situation 
exibility. (I1): In Instructo-Soar, instruction is initiated only by the agent.

17. In the instruction protocols we analyzed, most instructions were incomplete (missing conditions like those
Instructo-Soar learns), but rarely described uncertainty explicitly.
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This limits the instructor's ability to drive the interaction or to interrupt the agent's actions
with instruction: \No! Don't push that button!"18

(I2): Instructo-Soar provides 
exibility for commands, but not for instructions that
communicate other kinds of information. Similar to the notion of discourse coherence (Mann
& Thompson, 1988), a fully 
exible tutorable agent needs to support any instruction event
with knowledge coherence; that is, any instruction event delivering knowledge that makes
sense in the current context. The great variety of knowledge that could be relevant at any
point makes this requirement di�cult.

(I3): Instructo-Soar provides situation 
exibility by handling both implicitly and
explicitly situated instructions, but hypothetical situations can only be referred to within a
single instruction. Human tutors often refer to one hypothetical situation over the course
of multiple instructions.

9.5 Transfer Problem

This work has focused primarily on the transfer problem { producing general learning from
tutorial instruction { and most of its requirements have been met. However, the inductive
heuristics that Instructo-Soar uses are not very powerful.

In addition, two transfer problem requirements have not been achieved. First, (T7)
Instructo-Soar has not yet demonstrated instructional learning in coexistence with learn-
ing from other knowledge sources. Nothing in Instructo-Soar's theory precludes this co-
existence, however. Learning from other knowledge sources could be invoked and possibly
enhanced through instruction. For instance, an instructor might invoke learning from obser-
vation by pointing to a set of objects and saying \This is a tower"; similarly, an instruction
containing a metaphor could invoke analogical learning. One application where instruction
could potentially enhance other learning mechanisms is within \personal assistant" software
agents that learn by observing their users (e.g., Maes, 1994; Mitchell et al., 1994). Adding
the ability to learn from verbal instructions in addition to observations would allow users
to explicitly train these agents in situations where learning from observation alone may be
di�cult or slow.

Second, (T6) Instructo-Soar cannot recover from incorrect knowledge that leads to
either invalid explanations or incorrect external performance. Such incorrect knowledge
may be a part of the agent's initial domain theory, or may be learned through faulty
instruction. Inability to recover from incorrect knowledge precludes instruction by general
case and exceptions; for instance, \Never grasp red blocks," and then later, \It's ok to
grasp the ones with safety signs on them." In order to avoid learning anything incorrect,
whenever Instructo-Soar attempts to induce new knowledge, it asks for the instructor's
veri�cation before adding the knowledge to its long-term memory. Human students do not
ask for so much veri�cation; they appear to jump to conclusions, and alter them later if
they prove to be incorrect based on further information.

Rather than always verifying knowledge being learned, our next generation of instructable
agents will learn from reasonable inferences without veri�cation (although they may ask
for veri�cations in extreme cases). We have recently produced such an agent (Pearson &

18. We have recently added a simple interruptability capability to a new version of Instructo-Soar that
incorporates recovery from incorrect knowledge (Pearson & Hu�man, 1995).
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Hu�man, 1995) that incorporates current research on incremental recovery from incorrect
knowledge (Pearson & Laird, 1995). This agent learns to correct overgeneral knowledge that
it infers when completing explanations of instructions. The correction process is triggered
when using the overgeneral knowledge results in incorrect performance (e.g., an action that
the agent expects to succeed does not). In the long run, we believe this work could push
research on incremental theory revision and error recovery, because instructable agents can
be taught many types of knowledge that may need revision.

10. Conclusion

Although much work in machine learning aims for depth at a particular kind of learning,
Instructo-Soar demonstrates breadth { of interaction with an instructor to learn a variety
of types of knowledge { but all arising from one underlying technique. This kind of breadth is
crucial in building an instructable agent because of the great variety of instructions and the
variety of knowledge that they can communicate. Because instructable agents begin with
some basic knowledge of their domain, Instructo-Soar uses an analytic, explanation-
based approach to learn from instructions, which makes use of that knowledge. Because
instructions may be either implicitly or explicitly situated, Instructo-Soar situates its
explanations of each instruction within the situation indicated by the instruction. Finally,
because the agent's knowledge is often de�cient for explaining instructions, Instructo-
Soar employs four di�erent options for dealing with incomplete explanations, and selects
between these options dynamically depending on the instructional context.

Because of its availability and e�ectiveness, tutorial instruction is potentially a power-
ful knowledge source for intelligent agents. Instructo-Soar illustrates this in a simple
domain. Realizing instruction's potential in �elded applications will require more linguisti-
cally able agents that incorporate robust techniques for not only acquiring knowledge from
instruction, but also re�ning that knowledge as needed based on performance and further
instruction.
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