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Abstract

Abstraction is one of the most promising approaches to improve the performance of problem
solvers. In several domains abstraction by dropping sentences of a domain description { as
used in most hierarchical planners { has proven useful. In this paper we present examples
which illustrate signi�cant drawbacks of abstraction by dropping sentences. To overcome
these drawbacks, we propose a more general view of abstraction involving the change of
representation language. We have developed a new abstraction methodology and a related
sound and complete learning algorithm that allows the complete change of representation
language of planning cases from concrete to abstract. However, to achieve a powerful
change of the representation language, the abstract language itself as well as rules which
describe admissible ways of abstracting states must be provided in the domain model.
This new abstraction approach is the core of Paris (Plan Abstraction and Re�nement
in an Integrated System), a system in which abstract planning cases are automatically
learned from given concrete cases. An empirical study in the domain of process planning
in mechanical engineering shows signi�cant advantages of the proposed reasoning from
abstract cases over classical hierarchical planning.

1. Introduction

Abstraction is one of the most challenging and also promising approaches to improve complex
problem solving and it is inspired by the way humans seem to solve problems. At �rst, less
relevant details of a given problem are ignored so that the abstracted problem can be
solved more easily. Then, step by step, more details are added to the solution by taking an
increasingly more detailed look at the problem. Thereby, the abstract solution constructed
�rst is re�ned towards a concrete solution. One typical characteristic of most work on
hierarchical problem solving is that abstraction is mostly performed by dropping sentences
of a domain description (Sacerdoti, 1974, 1977; Tenenberg, 1988; Unruh & Rosenbloom,
1989; Yang & Tenenberg, 1990; Knoblock, 1989, 1994; Bacchus & Yang, 1994). A second
common characteristic is that a hierarchical problem solver usually derives an abstract
solution from scratch, without using experience from previous problem solving episodes.

Giunchiglia and Walsh (1992) have presented a comprehensive formal framework for
abstraction and a comparison of the di�erent abstraction approaches from theorem proving
(Plaisted, 1981, 1986; Tenenberg, 1987), planning (Newell & Simon, 1972; Sacerdoti, 1974,
1977; Tenenberg, 1988; Unruh & Rosenbloom, 1989; Yang & Tenenberg, 1990; Knoblock,
1989, 1994), and model based diagnosis (Mozetic, 1990). For hierarchical planning, Korf's
model of abstraction in problem solving (Korf, 1987) allows the analysis of reductions in
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search caused by single and multiple levels of abstraction. He has shown that in the optimal
case, abstraction can reduce the expected search time from exponential to linear. Knoblock
has developed an approach to construct a hierarchy of abstraction spaces automatically
from a given concrete-level problem solving domain (Knoblock, 1990, 1993, 1994). These
so called ordered monotonic abstraction hierarchies (Knoblock, Tenenberg, & Yang, 1991b)
have proven useful in many domains. Recently, Bacchus and Yang (1994) presented an
improved method for automatically generating abstraction hierarchies based on a more
detailed model of search costs.

All these abstraction methods, however, rely on abstraction by dropping sentences of
the domain description which is a kind of homomorphic abstraction (Holte et al., 1994,
1995). It has been shown that these kinds of abstractions are highly representation de-
pendent (Holte et al., 1994, 1995). For two classical planning domains, di�erent \natural\
representations have been analyzed and it turns out that there are several representations
for which the classical abstraction techniques do not lead to signi�cantly improved problem
solvers (Knoblock, 1994; Holte et al., 1995). However, it is well known that normally many
di�erent representations of the same domain exist as already pointed out by Korf (1980),
but up to now no theory of representation has been developed. In particular, there is no
theory of representation for hierarchical problem solving with dropping sentences.

From a knowledge-engineering perspective, many di�erent aspects such as simplicity,
understandability, and maintainability must be considered when developing a domain rep-
resentation. Therefore, we assume that representations of domains are given by knowledge
engineers and rely on representations which we consider most \natural" for certain kinds of
problems. We will demonstrate two simple example problems and related representations,
in which the usual use of abstraction in problem solving does not lead to any improvement.
In the �rst example, no improvement can be achieved because abstraction is restricted to
dropping sentences of a domain. In the second example, the abstract solution computed
from scratch does not decompose the original problem and consequently does not cut down
the search space at the next detailed level. We do not want to argue that the examples
can never be represented in a way that standard hierarchical problem solving works well.
However, we think it would require a large e�ort from a knowledge engineer to develop an
appropriate representation and we believe that it is often impossible to develop a represen-
tation which is appropriate from a knowledge-engineering perspective and which also allows
e�cient hierarchical problem solving based on dropping sentences.

We take these observations as the motivation to develop a more general model of ab-
straction in problem solving. As already pointed out by Michalski (1994), abstraction, in
general, can be seen as switching to a completely new representation language in which the
level of detail is reduced. In problem solving, such a new abstract representation language
must consist of completely new sentences and operators and not only of a subset of the
sentences and operators of the concrete language. To our knowledge, Sipe (Wilkins, 1988)
is the only planning system which currently allows the change of representation language
across di�erent levels of abstraction. However, a general abstraction methodology which
allows e�cient algorithms for abstraction and re�nement has not yet been developed. We
want to propose a method of abstraction which allows the complete change of representa-
tion language of a problem and a solution from concrete to abstract and vice versa, if the
concrete and the abstract language are given. Additionally, we propose to use experience
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from previously solved problems, usually available as a set of cases, to come to abstract
solutions. The use of experience has already proven useful in various approaches to speed-
up learning such as explanation-based learning (Mitchell, Keller, & Kedar-Cabelli, 1986;
DeJong & Mooney, 1986; Rosenbloom & Laird, 1986; Minton, 1988; Minton, Carbonell,
Knoblock, Kuokka, Etzioni, & Gil, 1989; Shavlik & O'Rorke, 1993; Etzioni, 1993; Minton
& Zweben, 1993; Langley & Allen, 1993; Kambhampati & Kedar, 1994), and analogical or
case-based reasoning (Carbonell, 1986; Kambhampati & Hendler, 1992; Veloso & Carbonell,
1993; Veloso, 1994).

As the main contribution of this paper, we present an abstraction methodology and a
related learningmethod in which bene�cial abstract planning cases are automatically derived
from given concrete cases. Based on a given concrete and abstract language, this learning
approach allows the complete change of the representation of a case from the concrete to
the abstract level. However, to achieve such an unconstrained kind of abstraction, the
set of admissible abstractions must be implicitly prede�ned by a generic abstraction theory.
Compared to approaches in which abstraction hierarchies are generated automatically, more
e�ort is required to specify the abstract language, but we feel that this is a price we have
to pay to make planning more tractable in certain situations.

This approach is fully implemented in Paris (Plan Abstraction and Re�nement in an
Integrated System), a system in which abstract cases are learned and organized in a case
base. During novel problem solving, this case-base is searched for a suitable abstract case
which is further re�ned to a concrete solution to the current problem.

The presentation of this approach is organized as follows. The next section presents an
analysis of hierarchical problem solving in which the shortcomings of current approaches
are illustrated by simple examples. Section three argues that a powerful case abstraction
and re�nement method can overcome the identi�ed problems. Furthermore, we present the
Paris approach informally, using a simple example. The next three sections of the paper
formalize the general abstraction approach. After introducing the basic terminology, Sec-
tion 5 de�nes a new formal model of case abstraction. Section 6 contains a very detailed
description of a correct and complete learning algorithm for case abstraction. Section 7
explains the re�nement of cases for solving new problems. Section 8 gives a detailed de-
scription of the domain of process planning in mechanical engineering for the production
of rotary-symmetric workpieces on a lathe and demonstrates the proposed approach on ex-
amples from this domain. Section 9 reports on a detailed experimental evaluation of Paris
in the described domain. Finally, we discuss the presented approach in relation to similar
work in the �eld. The appendix of the article contains the formal proofs of the properties
of the abstraction approach and the related learning algorithm. Additionally, the detailed
representation of the mechanical engineering domain used for the experimental evaluation
is given in Online Appendix 1.

2. Analysis of Hierarchical Problem Solving

The basic intuition behind abstraction is as follows. By �rst ignoring less relevant features
of the problem description, abstraction allows problems to be solved in a coarse fashion with
less e�ort. Then, the derived abstract (skeletal) solution serves as a problem decomposition
for the original, more detailed problem. Korf (1987) has shown that hierarchical problem
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solving can reduce the required search space signi�cantly. Assume that a problem requires
a solution of length n and furthermore assume that the average branching factor is b,
i.e., the average number of states that can be reached from a given state by applying a
single operator. The worst-case time complexity for �nding the required solution by search
is O(bn). Now, suppose that the problem is decomposed by an abstract solution into
k subproblems, each of which require a solution of length n1; : : : ; nk, respectively, with
n1 + n2 + � � �+ nk = n. In this situation, the worst-case time complexity for �nding the
complete solution is O(bn1 + bn2 + � � �+ bnk) which is O(bmax(n1;n2 ;::: ;nk)). Please note that
this a signi�cant reduction in search time complexity. In particular, we can easily see that
the reduction is maximal if all subproblems are of similar size, i.e., n1 � n2 � � � � � nk .

However, to achieve a signi�cant search reduction, the computed abstract solution must
not only be a solution to the abstracted problem, it must additionally ful�ll a certain
requirement presupposed in the above analysis. The subproblems introduced by the abstract
solution must be independent, i.e., each of them must be solvable without interaction with
the other subproblems. This avoids backtracking between the solution of each subproblem
and consequently cuts down the necessary overall search space. Even if this restriction is not
completely ful�lled, i.e., backtracking is still required in a few cases, several empirical studies
(especially Knoblock, 1991, 1993, 1994) have shown that abstraction can nevertheless lead
to performance improvements.

Unfortunately, there are also domains and representations of domains (Holte et al., 1994,
1995) in which the way abstraction is used in hierarchical problem solving cannot improve
problem solving because the derived abstract solutions don't ful�ll the above mentioned
requirement at all. In the following, we will show two examples of such domains which
demonstrate two general drawbacks of hierarchical problem solving. Please note that in
these examples, a particular representation is assumed. We feel that these representations
are somehow \natural" and very likely to be used by a knowledge engineer developing a do-
main. However, there might be other representations of these domains for which traditional
hierarchical planning works. We assume that such representations are very di�cult to �nd,
especially if the domain representation should also ful�ll additional knowledge-engineering
requirements.

2.1 Abstraction by Dropping Sentences

In hierarchical problem solving, abstraction is mostly1 achieved by dropping sentences of
the problem description from preconditions and/or e�ects of operators (Sacerdoti, 1974,
1977; Tenenberg, 1988; Unruh & Rosenbloom, 1989; Yang & Tenenberg, 1990; Knoblock,
1989, 1994). The assumption which justi�es this kind of abstraction is that less relevant
details of the problem description are expressed as isolated sentences in the representation
which can be addressed after the more relevant sentences have been established. Ignoring
such sentences is assumed to lead to an abstract solution useful to reduce the search at the
more concrete planning levels.

However, this assumption does not hold in all domains. For example, in many real world
domains, certain events need to be counted, e.g., when transporting a certain number of

1. Only Tenenberg's (1988) abstraction by analogical mappings and the planning system Sipe (Wilkins,
1988) contains �rst approaches that allow a change of representation language.
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containers from one location to another. Imagine a domain in which, in addition to several
other operators, there is an increment operator described as follows:

Operator: inc
Precondition: value(X)

Delete: value(X)

Add: value(X + 1)

In this representation, the integer value which is increased is represented by a single sen-
tence. Each state consists only of a single sentence, and also the operator contains only
one single sentence.2 We think that this representation is very \natural" and very likely to
be chosen by a knowledge engineer. In this domain, incrementing value(0) to value(8)

requires a sequential plan composed of 8 inc-operators, leading to the state sequence:
value(0),value(1),: : : ,value(8). In this example, however, abstraction by dropping sen-
tences does not work because, if this single sentence would be dropped, nothing would re-
main in the operator description and the whole counting problem would have been dropped
completely. So there is only the empty problem at the abstract level, and the empty plan is
going to solve it. Unfortunately, the empty plan cannot cause any complexity reduction for
solving the problem at the concrete level. Consequently, abstraction by dropping sentences
completely fails to improve problem solving in this situation.

However, we can adequately cope with this counting problem by abstracting the
quantitative value expressed in the sentence towards a qualitative representation (e.g.,
low=f0; 1; 2; 3g, medium = f4; 5; 6; 7g, high = f8; 9; 10; 11g). Such a qualitative repre-
sentation would result in an abstract plan composed of two operators (subproblems) that
increase value from low to medium and further to high. This abstract plan de�nes two
independently re�nable subproblems. To solve the �rst subproblem at the concrete level,
the problem solver has to search for a sequence of inc-operators which increment the value
from 0 to any medium value (any value from the set f4; 5; 6; 7g). This subproblem can be
solved by a sequence of 4 inc-operators leading to the concrete state with a value of 4. Sim-
ilarly, the second subproblem at the concrete level is to �nd a sequence of operators which
change the value from 4 to the �nal value 8. Also this second subproblem can be solved by
a sequence of 4 inc-operators. So we can see that the complete problem which requires a
sequence of 8 concrete operators is divided into 2 subproblems where each subproblem can
be solved by a 4-step plan. Because of the exponential nature of the search space, the two
4-step problems together can be solved with much less search than the 8-step problem as a
whole. Following Korf's analysis sketched before, the time complexity is reduced fromO(b8)
to O(b4)3. Please note that the particular abstraction which leads to two subproblems is not
central for achieving the complexity reduction. The important point is that the problem is
decomposed into more than one subproblem. This kind of abstraction can be achieved by
introducing a new abstract representation language which consists of the qualitative values
and a corresponding abstract increment operator.

2. However, we might assume that the term X + 1 is modeled as a separate predicate in the precondition.
Unfortunately, this does not change the described situation at all.

3. Because we assume many other operators besides the inc-operator, b � 1 holds.

57



Bergmann & Wilke

We can even generalize from the speci�c example presented above. The problem with
the dropping condition approach is that it is not possible to abstract information (e.g.,
the value in our example) that is coded in a single sentence in the representation. This is
particularly a problem when the required solution contains a long sequence of states which
only di�er in a single sentence. Dropping this particular sentence leads to dropping the
whole problem, and not dropping the sentence does not lead to any abstraction. What is
really required is to abstract the information encoded in this single sentence which obviously
requires more than just dropping the complete information.

To summarize, we have seen that abstraction by dropping sentences does not work for
the particular kind of problems we have shown. In general, abstraction requires chang-
ing the complete representation language from concrete to abstract which usually involves
the introduction of completely new abstract terms (sentences or operators). Within this
general view, dropping sentences is just a special case of abstraction. The reason why drop-
ping sentences has been widely used in hierarchical planning is that due to its simplicity,
re�nement is very easy because abstract states can directly be used as goals at the more
detailed levels. Another very important property of abstraction by dropping sentences is
that useful hierarchies of abstraction spaces can be constructed automatically from domain
descriptions (Knoblock, 1990, 1993, 1994; Bacchus & Yang, 1994).

2.2 Generating of Abstract Solutions from Scratch

Another limiting factor of classical hierarchical problem solving can be the way abstract so-
lutions are computed. As pointed out by Korf, a good abstract solution must lead to mostly
independent subproblems of equal size. In classical problem solving, an abstract solution
is found by breadth-�rst or depth-�rst search using linear (e.g., Alpine, Knoblock, 1993)
or non-linear (e.g., Abtweak, Yang & Tenenberg, 1990) problem solvers. For these prob-
lem solvers, the upward-solution property (Tenenberg, 1988) usually holds, which means
that an abstract solution exists if a concrete-level solution exists. Usually, these problem
solvers �nd an arbitrary abstract solution (e.g., the shortest possible solution). Unfortu-
nately, there is no way to guarantee that the computed solutions are re�nable and lead to
mostly independent subproblems of su�ciently equal size, even if such a solution exists.
In general, there are not even heuristics which try to guide problem solving towards the
aspired kind of useful abstractions. This problem is illustrated by the following example,
which additionally shows the limitation of abstraction by dropping sentences.

Imagine a large (or even in�nite) state space which includes at least the 8 distinct states
shown on the left of Figure 1. Each of these 8 states is described by the presence or absence of
three sentences E1, E2, and E3 in the state description. In the 3-bit-vector shown in Figure
1, "0" indicates the absence of the sentence and "1" represents the presence of the sentence.
The 8 di�erent states described by these three sentences are arranged in a 3-dimensional
cube, using one dimension for each sentence. The arrows in this diagram show possible state
transitions by the available operators of the domain.4 Each operator manipulates (adds or
deletes) exactly one sentence of the state description, if certain conditions on the other
sentences are ful�lled. The representation of two of these operators is shown on the right

4. The dashed lines do not represent operators and are only introduced to make the shape of the cube more
easy to see.
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Two example operators:

O                    :100->101

Precondition:
              E1  and
     (not E2) and
     (not E3)

Add:    E3

O                    :101->100

Precondition:
                E1    and
       (not E2)  and
                E3

Delete: E3

Figure 1: State space of an example domain and representation of two operators

side of this �gure. The subscript of the operator name relates to the respective transition
in the state diagram. In general, we can see that

� E1 can be manipulated, if and only if E2�E3 holds,

� E2 can be manipulated, if and only if E1 � E3 holds, and

� E3 can be manipulated, if and only if E1 _E2 holds.

Furthermore, assume that there are many more operators which connect some other states
of the domain, not shown in the diagram, to the 8 depicted states. Consequently, we
must assume a branching factor of b � 1 at each state, which makes the search space for
problem solving quite large. Besides the description of the domain, Figure 1 also shows
three example problems: X ! X 0, Y ! Y 0 and Z ! Z0. For example, the solution to the
problem X ! X 0 is the 5-step path 000! 010! 110! 111! 101! 001.

Now, let's consider the abstract solutions which correspond to the concrete solutions for
each of the three problems. For each problem, we want to examine the three possible ways of
abstraction by dropping one of the sentences. For this purpose, the geometric arrangement
of the states turns out to be very useful because abstraction can be simply viewed as
projecting the 3-dimensional state space onto the plane de�ned by the sentences which are
not dropped by abstraction. The left part of Figure 2 shows the three possible abstract
state spaces which result from dropping one of the sentences. Here it is very important
to see that in each abstract state space, every sentence can be modi�ed unconditionally
and independent of the other sentences. However, only one sentence can be modi�ed by
each operator. Thereby, all the constraints that exist at the concrete level are relaxed.
The abstraction of the concrete solution to each of the three problems (X ! X 0, Y ! Y 0

and Z ! Z 0) with respect to the three possible ways of dropping conditions is shown on
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Figure 2: Abstract state spaces by dropping conditions

the right side of Figure 2. Each of the nine possible abstract solutions consists of three
or four abstract operators. The sequence in which they have to be applied is indicated
by the numbers which mark these operators. We can also see that whatever sentence we
drop for any of the problems, an appropriate abstract solution exists which decomposes
the original problem into independent re�nable subproblems of su�ciently equal size. The
main point about this example is that none of these abstract solutions will be found by a
hierarchical problem solver! The reason for this is that for each of the abstracted problems
there also exists a 0-step or a 1-step solution in addition to the nine 3-step or 4-step solutions
indicated by the depicted paths. However, such a short solution is completely useless for
reducing the search at the next more concrete level because the original problem is not
decomposed at all. The central problem with this is that most problem solvers will �nd
the shorter but useless solutions �rst, and try to re�ne them. Consequently, the search
space on the concrete level is not reduced so that no performance improvement is achieved
at all. However, there might be other representations of this example domain in which a
hierarchical problem solver comes to a useful abstract solution. We think, however, that
the representation shown is quite natural because it represents the 8 di�erent states with
the minimal number of binary sentences.

To summarize, we presented an example in which a useful abstract solution is not found
by hierarchical planning although it exists. The reason for this is that planners usually try
to �nd shortest solutions, which is a good strategy for the ground level, but which may
not be appropriate at the abstract level. Neither it is desirable to search for the longest
solutions because this might cause unnecessarily long concrete plans.

3. Case Abstraction and Re�nement

As a way out of this problem, we propose to use experience given in the form of concrete
planning cases and to abstract this experience for its reuse in new situations. Therefore,
we need a powerful abstraction methodology which allows the introduction of a completely
new abstract terminology at the abstract level. This makes it possible that useful abstract
solutions can be expressed for domains in which abstraction by dropping conditions is not
su�cient. In particular, this methodology must not only serve as a means to analyze
di�erent abstraction approaches, but it must allow e�cient algorithms for abstracting and
re�ning problems and solutions.
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3.1 The Basic Idea

We now introduce an approach which achieves case abstraction and re�nement by changing
the representation language. As a prerequisite, this approach requires that the abstract
language itself (state description and operators) is given by a domain expert in addition to
the concrete level description. We also require that a set of admissible ways of abstracting
states is implicitly prede�ned by a generic abstraction theory. This is of course an additional
knowledge engineering requirement, but we feel that this is a price we have to pay to
enhance the power of hierarchical problem solving. Recent research on knowledge acquisition
already describes approaches and tools for the acquisition of concrete level and abstract level
operators in real-world domains (Schmidt & Zickwol�, 1992; Schmidt, 1994). An abstract
language which is given by the user has the additional advantage that abstracted cases are
expressed in a language with which the user is familiar. Consequently, understandability and
explainability, which are always important issues when applying a system, can be achieved
more easily.

As a source for learning, we assume a set of concrete planning cases, each of which
consists of a problem statement together with a related solution. As is the case in Prodigy
(Minton et al., 1989), we only consider sequential plans, i.e., plans with totally ordered
operators. The planning cases we assume do not include a problem solving trace as for ex-
ample the problem solving cases in Prodigy/Analogy (Veloso, 1992; Veloso & Carbonell,
1993; Veloso, 1994). In real-world applications, a domain expert's solutions to previous
problems are usually recorded in a company's �ling cabinet or database. These cases can
be seen as a collection of the company's experience, from which we want to draw power.

During a learning phase, a set of abstract planning cases is generated from each available
concrete case. An abstract planning case consists of an abstracted problem description
together with an abstracted solution. The case abstraction procedure guarantees that the
abstract solution contained in an abstract case can always be re�ned to become a solution
of the concrete problem contained in the concrete case that became abstracted. Di�erent
abstract cases may be situated at di�erent levels of abstraction or may be abstractions
according to di�erent abstraction aspects. Di�erent abstract cases can be of di�erent utility
and can reduce the search space at the concrete level in di�erent ways. It can also happen
that several concrete cases share the same abstraction. The set of all abstract planning cases
that are learned is organized in a case-base for e�cient retrieval during problem solving.

During the problem solving phase, this case base is searched until an abstract case is
found which can be applied to the current problem in hand. An abstract case is applicable
to the current problem if the abstracted problem contained in the abstract planning case
is an abstraction of the current problem. However, we cannot guarantee that an abstract
solution contained in a selected abstract case can really be re�ned to become a solution to
the current problem. It is at least known that each abstract solution from the case base
was already useful for solving one or more previous problems, i.e., the problems contained
in those concrete cases from which the abstract case was learned. Since the new problem is
similar to these previous problems because both can be abstracted in the same way, there is
at least a high chance that the abstract solution is also useful for solving the new problem.
When the new problem is solved by re�nement a new concrete case arises which can be
used for further learning.
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Domain Description
Concrete Domain,
Abstract Domain,
Generic Abstraction Theory

Abstraction

Generalization

Evaluation/

Specialization

Refinement

RetrievalCase Base New Problem

Training Cases Solved Problem

The PARIS-SystemLearning Problem Solving

Indexing

Figure 3: The components of the Paris System

3.2 The PARIS Architecture

Paris (Plan Abstraction and Re�nement in an Integrated System) follows the basic ap-
proach just described. Figure 3 shows an overview of the whole system and its components.
Besides case abstraction and re�nement, Paris also includes an explanation-based approach
for generalizing cases during learning and for specializing them during problem solving. Fur-
thermore, the system also includes additional mechanisms for evaluating di�erent abstract
cases and generalizations derived by the explanation-based component. This evaluation
component measures the reduction in search time caused by each abstract plan when solv-
ing those concrete problems from the case base for which the abstract plan is applicable.
Based on this evaluation, several di�erent indexing and retrieval mechanisms have been de-
veloped. In these retrieval procedures those abstract cases are preferred which have caused
the most reduction in search during previous problem solving episodes. In particular, ab-
stract cases which turn out to be useless for many concrete problems may even become
completely removed from the case-base. The spectrum of developed retrieval approaches
ranges from simple sequential search, via hierarchical clustering up to a sophisticated ap-
proach for balancing a hierarchy of abstract cases according to the statistical distribution of
the cases within the problem space and their evaluated utility. More details on the gener-
alization procedure can be found in (Bergmann, 1992a), while the evaluation and retrieval
mechanisms are reported in (Bergmann & Wilke, 1994; Wilke, 1994). The whole multi-
strategy system including the various interactions of the described components will be the
topic of a forthcoming article, while �rst ideas can already be found in (Bergmann, 1992b,
1993). However, as the target of this paper we will concentrate on the core of Paris, namely
the approach to abstraction and re�nement.
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Figure 4: An example of case abstraction

3.3 Informal Description of the Abstraction Approach

We �rst give an informal description of the abstraction approach in Paris, based on our
small example shown in Figure 1 to enhance the understanding of the subsequent formal
sections. Suppose that the solution to the problem X ! X 0 is available as a concrete prob-
lem solving experience. The task is now to learn an abstract case which can be bene�cially
used to solve future problems such as Y ! Y 0 and Z ! Z0. This learning task must be
achieved within an abstraction approach which is stronger than dropping sentences. If we
look at Figure 4, it becomes obvious that by changing the representation a single abstract
case can be learned which is useful for all three concrete problems. The abstract plan shown
indicates which concrete states have to be abstracted towards a single abstract state, such
that a single abstract plan exists which is useful for all three problems.

3.3.1 Abstract Language and Generic Abstraction Theory

To achieve this kind of abstraction, our approach requires that the abstract language (states
and operators), as well as a generic abstraction theory is provided by the user. For the exam-
ple in Figure 4, the abstract language must contain the new abstract sentences A1; : : : ; A4

and the three abstract operators which allow the respective state transitions. These abstract
operators, called Oai (i 2 f1; : : : ; 3g), can be de�ned as follows:

Operator: Oai
Precondition: Ai

Delete: Ai

Add: Ai+1

For each new abstract sentence, the user must provide a set of generic abstraction rules
which describe how this sentence is de�ned in terms of the available sentences of the con-
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crete language. The generic abstraction theory de�ned by these rules speci�es a set of
admissible state abstractions. For our example, the generic abstraction theory must con-
tain the following two rules to de�ne the new abstract sentence A1: :E1 ^ E2 ! A1 and
:E1 ^ :E2 ^ :E3! A1. In general, the de�nition of the generic abstraction theory does
not require that all state abstractions are noted explicitly. Abstract states can be derived
implicitly by the application of a combination of several rules from the generic abstraction
theory.

Besides the kind of abstraction described above, the user may also want to specify
a di�erent type of abstraction which she/he also considers useful. For example, we can
assume that abstraction by dropping the sentence E1 should also be realized. In this case,
the abstract language must contain a copy of the two sentences which are not dropped, i.e.,
the sentences E2 and E3. Therefore, the user5 may de�ne two abstract sentences A5 and
A6 by the following rules of the generic abstraction theory: E2 ! A5 and E3 ! A6. Of
course, the respective abstract operators must also be speci�ed.

Since the domain expert or knowledge engineer must provide the abstract language and
the generic abstraction theory, she/he must already have one or more particular kinds of
abstraction in mind. She/he must know what kind of details can be omitted when solving
a problem in an abstract fashion. With our approach, the knowledge-engineer is given the
power to express the kind of abstraction she/he considers useful.

3.3.2 Model of Case Abstraction

Based on the given abstract language and the generic abstraction theory, the abstraction of
a planning case can be formally described by two abstraction mappings: a state abstraction
mapping and a sequence abstraction mapping. These two mappings describe two dimensions
for reducing the level of detail in a case. The state abstraction mapping reduces the level
of detail of a state description while changing the representation language. For the case
abstraction indicated in Figure 4, the state abstraction mapping must map the concrete
states 000, 011 and 010 onto an abstract state described by the new sentence A1, and
simultaneously it must map all other concrete states occurring in the plan onto the respective
abstract states described by the new sentences A2, A3, and A4. The sequence abstraction
mapping reduces the level of detail in the number of states which are considered at the
abstract level by relating some of the concrete states from the concrete case to abstract
states of the abstract case. While some of the concrete states can be skipped, each abstract
state must result from a particular concrete state. For example, in Figure 4, the abstraction
of the plan 000! 010! 110! 111! 101! 001 requires a sequence abstraction mapping
which relates the �rst abstract state described by A1 to the �rst concrete state 000, the
second abstract state described by A2 to the third concrete state 110, and so forth. In this
example, the second and the �fth concrete states are skipped.

3.3.3 Learning Abstract Planning Cases

The procedure for learning such abstract planning cases from a given concrete planning case
is decomposed into four separate phases. For our simple example, these phases are shown in

5. Please note that for abstraction by dropping sentences, we can also consider an ALPINE-like algorithm
which generates the required abstract language and the generic abstraction theory automatically.
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Figure 5: The four phases of case abstraction for the solution to the problem X ! X 0

Figure 5. In phase-I, the states which result from the execution of the plan contained in the
concrete case are determined. Therefore, each operator contained in the plan (starting from
the �rst operator) is applied and the successor state is computed. This process starts at the
initial state contained in the case and leads to a �nal state, which should be the goal state
contained in the case. In phase-II, we derive all admissible abstractions for each concrete
state computed in the �rst phase. For this purpose, the generic abstraction theory is used
to determine all abstract sentences that can be derived from a respective concrete state by
applying the rules of the generic abstraction theory. Figure 5 shows the abstract sentences
that can be derived by the generic abstraction theory sketched above. For example, we can
see that for the second concrete state an abstract description can be derived which contains
two abstract sentences: the abstract sentence A1 required to achieve the type of abstraction
shown in Figure 4 and additionally the abstract sentences A5 required for abstraction by
dropping sentences. Please note that by this process, the representation language of states
is changed from concrete to abstract. The next two phases deal with the abstract operators.
As already stated, abstract operators are given in the abstract language provided by the
user. However, we do not assume operator abstraction rules which associate an abstract
operator to a single concrete operator or a sequence of concrete operators. The reason for
this is that such operator abstraction rules are extremely hard to acquire and even harder
to keep complete. In the next two phases of case abstraction, we search for transitions of
abstract states based on the available abstract operators. In phase-III, an acyclic directed
graph is constructed. An edge leads from an abstract state i to a successor abstract state
j (not necessarily to the next abstract state), if the abstract operator is applicable in state
i and its application leads to the state j. The de�nition of the abstract operators are
used in this process. The available abstract operators determine which transitions can be
included in the graph. Figure 5 shows the resulting graph, provided that the abstract
operators sketched in Section 3.3.1 are contained in the abstract language. In this graph
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the transitions shown in plain line style result from the operators Oai, while the transitions
shown in dashed line style result from the operators required for abstraction by dropping
conditions.

In phase-IV the graph is searched for consistent paths from the initial abstract state to
the �nal abstract state. The paths must be consistent in the sense that in the resulting
path (i.e., an abstract plan) every abstract operator is correctly applicable in the state that
results from the previous operator. Moreover, the state abstraction which is required for
this abstract plan must not change within the plan. In Figure 5 two paths of this kind are
shown. The lower path represents the abstract planning case Ca1 (abstract initial and �nal
state together with the operator sequence) that results from the kind of abstraction shown
in Figure 4. The upper path represents the abstract planning case Ca2 that results from
abstraction by dropping the sentence E1. This is the same abstract plan as shown in Figure
2 for the problem X ! X 0. Together with the two plans, the abstract state descriptions that
result from the operator application are shown. Please note that these state descriptions
are always a subset of the description which are derived by the generic abstraction theory.
For example, the description of the fourth abstract state derived in phase-II, contains the
sentences A3; A5; A6. This abstract state occurs in both abstract cases which are computed
in phase-IV. In the case Ca2, the respective state is described by the sentences A5 and
A6 because these are the only sentences which result from the application of the operators
starting at the abstract initial state. In the case Ca1, the abstract state is described by
the sentence A3 because this sentence results from the application of the operator Oa2.
From this example we can see that the abstract operators have two functions. The �rst
function is to select some of the concrete states that become abstracted. For example, in
the abstract case Ca1, the second concrete state is skipped, even if the �rst and the second
concrete states can be abstracted to di�erent abstract descriptions in phase-II. The reason
for this is that there is no abstract operator that a) leads from the �rst abstracted state
to the second abstracted state and which b) is also consistent with the other operators in
the rest of the path. The second function of the abstract operators is to select some of the
abstract sentences that are considered in the abstract planning case. For example, in the
abstract case Ca1, the sentences A1; : : : ; A4 are considered while the sentences A5 and A6

are left out. The reason for this is that the abstract operators Oa1; Oa2; Oa3 which occur in
the plan don't use A5 and A6 in their precondition and don't manipulate these sentences.

After phase-IV is �nished, a set of abstract planning cases is available. These planning
cases can then be stored in the case-base and used for further problem solving.

3.3.4 Selecting and Refining Abstract Cases

During problem solving, an abstract case must be selected from a case-base, and the abstract
plan contained in this case must be re�ned to become a solution to the current problem.
During case retrieval we must search for an abstract case which is applicable, i.e., it contains
a problem description that is an abstraction of the current problem. For example, assume
that the problem Y ! Y 0 should be solved after the caseX ! X 0 was presented for learning.
In this situation the case-base contains the two abstract cases Ca1 and Ca2 shown in phase-
IV of Figure 5. The abstract case Ca1 can be used for solving the new problem, because
the initial state 000 of the new problem can be abstracted to A1 by applying the generic
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Figure 6: Re�nement of an abstract case for the solution of the problem Y ! Y 0

abstraction theory. Similarly, the �nal state 100 can be abstracted to A4. However, the
abstract case Ca2 is not applicable because the �nal abstract state cannot be abstracted to
A6. Consequently, the lower abstract case must be used. During plan re�nement we can
re�ne the abstract operators sequentially from left to right as shown in Figure 6. Thereby
each abstract operator de�nes an abstract goal state, i.e., the state that results after the
execution of the operator. For example, the abstract operator Oa1 de�nes the abstract goal
A2. To re�ne an abstract operator, we search for a concrete operator sequence, starting
from the current concrete state (i.e., the initial state for the �rst operator), until a concrete
state is reached that can be abstracted to the desired goal state. If such a state is found
it can be used as a starting state for the re�nement of the next abstract operator. For
the solution of the problem Y ! Y 0, the re�nement of the abstract operator Oa1 can be
achieved by a sequence of two concrete operators leading to the concrete state 110. This
concrete state is then used as a starting state to re�ne the next abstract operator Oa2.
This re�nement procedure �nishes if the last abstract operator is re�ned in a way that the
�nal concrete state is achieved. Please note that in this type of re�nement the operators
themselves are not used directly, instead the sequence of states which results from their
execution are used. Alternatively, we could have also stored an abstract case as a sequence
of abstracted states. From our experience, storing a sequence of operators requires less
space than storing a sequence of states. This will become obvious when looking at the
domain that will be introduced in Section 8. Besides this the abstract operators play an
important role in the learning phase.

3.4 Relations to Skeletal Plans

A similar experience-based or case-based variant for �nding an abstract solution can be
found in an early paper by Friedland and Iwasaki (1985) in which the concept of skeletal
plans is introduced. A skeletal plan is "[...] a sequence of generalized steps, which, when
instantiated by speci�c operations in a speci�c problem context will solve a given problem
[p.161]. [...] Skeletal plans exist at many levels of generality. At the most general level, they
are only a few basic plans, but these are used as `fall-backs', when more speci�c, easier to
re�ne plans cannot be found. [p. 164]." Skeletal plans are solutions to planning problems at
di�erent levels of detail and are consequently abstract plans. During problem solving they
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are recalled from a library and re�ned towards a concrete solution. So this approach can be
seen as an early idea for integrating abstraction and case-based reasoning. However, there
are several di�erences between the skeletal plan approach and the Paris approach. In the
skeletal plan approach no model of the operators (neither concrete nor abstract) is used to
describe the preconditions and e�ects of operators as is done in Paris. There is no explicit
notion of states and abstraction or re�nement of states. Instead, the plan re�nement is
achieved by stepping down a hierarchy of operators, guided by heuristic rules for operator
selection. In particular, no approach which supports the automatic acquisition of skeletal
plans was provided. Unfortunately, the skeletal plan approach has not yet been investigated
in as much detail as current work in the �eld of speedup-learning. There is neither a formal
model of skeletal planning nor empirical evaluations.

In the rest of this paper we will introduce and investigate the Paris approach more
formally.

4. Basic Terminology

In this section we want to introduce the basic formal terminology used throughout the rest
of this paper. Therefore we will de�ne a formal representation for problem solving domains.
We want to assume that problem solving in general can be viewed as transforming an initial
state into a �nal state by using a sequence of operators (Newell & Simon, 1972). Following
a Strips-oriented representation (Fikes & Nilsson, 1971), the domain of problem solving
D = hL; E ;O;Ri is described by a �rst-order language6 L, a set of essential atomic sentences
E of L (Lifschitz, 1987), a set of operators O with related descriptions, and additionally, a
set of rules (Horn clauses) R out of L. The essential sentences (which must be atomic) are
the only sentences that are used to describe a state. A state s 2 S describes the dynamic
part of a situation in a domain and consists of a �nite subset of ground instances of essential
sentences of E . With the symbol S, we denote the set of all possible states descriptions in a
domain, which is de�ned as S = 2E

�

, with E� = fe�je 2 E and � is a substitution such that
e� is groundg. In addition, the Horn clauses R allow the representation of static properties
which are true in all situations. These Horn clauses must not contain an essential sentence
in the head of a clause.

An operator o(x1; : : : ; xn) 2 O is described by a triple hPreo; Addo; Deloi, where the
precondition Preo is a conjunction of atoms of L, and the add-list Addo and the delete-
list Delo are �nite sets of (possibly instantiated) essential sentences of E . Furthermore,
the variables occuring in the operator descriptions must follow the following restrictions:
fx1; : : : ; xng � V ar(Preo) � V ar(Delo) and fx1; : : : ; xng � V ar(Addo).7

An instantiated operator is an expression of the form o(t1; : : : ; tn), with ti being ground
terms of L. A term ti describes the instantiation of the variable xi in the operator descrip-
tion. For notational convenience we de�ne the instantiated precondition as well as the instan-
tiated add-list and delete-list for an instantiated operator as follows: Preo(t1;::: ;tn) := Preo�,
Addo(t1;::: ;tn) := fa �ja 2 Addog, Delo(t1;::: ;tn) := fd �jd 2 Delog, with hPreo; Addo; Deloi is

6. The basic language is �rst order, but with the deductive rules given in Horn logic only a subset of the
full �rst-order language is used.

7. These restrictions can however be relaxed such that fx1; : : : ; xng � V ar(Preo) is not required. But the
introduced restriction simpli�es the subsequent presentation.
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the description of the (uninstantiated) operator o(x1; : : : ; xn), and � = fx1=t1; : : : ; xn=tng
is the corresponding instantiation.

An instantiated operator o is applicable in a state s, if and only if s [R ` Preo holds.
8

An instantiated operator o transforms a state s1 into a state s2 (we write: s1
o
�! s2) if and

only if o is applicable in s1 and s2 = (s1 nDelo)[Addo. A problem description p = hsI ; sGi
consists of an initial state sI together with a �nal state sG. The problem solving task
is to �nd a sequence of instantiated operators (a plan) �o = (o1; : : : ; ol) which transforms

the initial state into the �nal state (sI
o1�! � � �

ol�! sG). A case C = hp; �oi is a problem
description p together with a plan �o that solves p.

The introduced Strips-oriented formalism for de�ning a problem solving domain is
similar in form and expressiveness to the representations typically used in general problem
solving or planning. A state can be described by a �nite set of ground atoms in which
functions can also be used. Full Horn logic is available to describe static rules. The re-
striction to Horn clauses has the advantage of being powerful while allowing e�cient proof
construction by using the well known SLD-refutation procedures (Lloyd, 1984). Compared
to the Prodigy Description Language (PDL) (Minton, 1988; Blythe et al., 1992) our lan-
guage does not provide explicit quanti�cation by a speci�c syntactic construct, but a similar
expressiveness can be reached by the implicit quanti�cation in Horn clauses. Moreover, our
language does not provide any kind of type speci�cation for constants or variables as in
PDL but we think that this is not a major disadvantage. Besides these points our language
is quite similar to PDL.

5. A Formal Model of Case Abstraction

In this section we present a new formal model of case abstraction which provides a theory
for changing the representation language of a case from concrete to abstract. As already
stated we assume that in addition to the concrete language the abstract language is supplied
by a domain expert. Following the introduced formalism, we assume that the concrete level
of problem solving is de�ned by a concrete problem solving domain Dc = hLc; Ec;Oc;Rci
and the abstract level of (case-based) problem solving is represented by an abstract prob-
lem solving domain Da = hLa; Ea;Oa;Rai. For reasons of simplicity, we assume that both
domains do not share the same symbols9. This condition can always be achieved by re-
naming symbols. In the remainder of this paper states and operators from the concrete
domain are denoted by sc and oc respectively, while states and operators from the abstract
domain are denoted by sa and oa respectively. The problem of case abstraction can now be
described as transforming a case from the concrete domain Dc into a case in the abstract
domain Da (see Figure 7). This transformation will now be formally decomposed into two
independent mappings: a state abstraction mapping �, and a sequence abstraction mapping
� (Bergmann, 1992c). The state abstraction mapping transforms a selection of concrete
state descriptions that occur in the solution to a problem into abstract state descriptions,

8. In the following, we will simply omit the parameters of operators and instantiated operators in case they
are unambiguous or not relevant.

9. Otherwise, a symbol (or a sentence) could become ambiguous which would be a problem when applying
the generic abstraction theory. It would be unclear whether a generic abstraction rule refers to a concrete
or an abstract sentence
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Figure 7: General idea of abstraction

while the sequence abstraction mapping speci�es which of the concrete states are mapped
and which are skipped.

5.1 State Abstraction

A state abstraction mapping translates states of the concrete world into the abstract world.

De�nition 1 (State Abstraction Mapping) A state abstraction mapping � : Sc ! Sa is a
mapping from Sc, the set of all states in the concrete domain, to Sa, the set of all states in
the abstract domain. In particular, � must be an e�ective total function.

This general de�nition of a state abstraction mapping does not impose any restrictions
on the kind of abstraction besides the fact that the mapping must be a total many-to-
one function. However, to restrict the set of all possible state abstractions to a set of
abstractions which a user considers useful, we assume that additional domain knowledge
about how an abstract state relates to a concrete state can be provided. This knowledge
must be expressed in terms of a domain speci�c generic abstraction theory A (Giordana,
Roverso, & Saitta, 1991).

De�nition 2 (Generic Abstraction Theory) A generic abstraction theory is a set of Horn
clauses of the form ea  a1; : : : ; ak. In these rules ea is an abstract essential sentence,
i.e., ea = Ea� for Ea 2 Ea and a substitution �. The body of a generic abstraction rule
consists of a set of sentences from the concrete or abstract language, i.e., ai are atoms out
of Lc [ La.

Based on a generic abstraction theory, we can restrict the set of all possible state abstraction
mappings to those which are deductively justi�ed by the generic abstraction theory.

De�nition 3 (Deductively Justi�ed State Abstraction Mapping) A state abstraction map-
ping � is deductively justi�ed by a generic abstraction theory A, if the following conditions
hold for all sc 2 Sc:

� if � 2 �(sc) then sc [Rc [ A ` � and

� if � 2 �(sc) then for all ~sc such that ~sc [Rc [ A ` � holds, � 2 �(~sc) is also ful�lled.
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In this de�nition the �rst condition assures that every abstract sentence reached by
the mapping is justi�ed by the abstraction theory. Additionally, the second requirement
guarantees that if an abstract sentence is used to describe an abstraction of one state, it
must also be used to describe the abstraction of all other states, if the abstract sentence can
be derived by the generic abstraction theory. Please note that a deductively justi�ed state
abstraction mapping can be completely induced by a set �� � E�a with respect to a generic
abstraction theory as follows: �(sc) := f� 2 ��jsc [ Rc [ A ` �g. Unless otherwise stated
we always assume deductively justi�ed state abstraction mappings. To summarize, the
state abstraction mapping transforms a concrete state description into an abstract state
description and thereby changes the representation of a state from concrete to abstract.
Please note that deductively justi�ed state abstraction mappings need not to be de�ned
by the user. They will be determined automatically by the learning algorithm that will be
presented in Section 6.

5.2 Sequence Abstraction

The solution to a problem consists of a sequence of operators and a corresponding sequence
of states. To relate an abstract solution to a concrete solution, the relationship between
the abstract states (or operators) and the concrete states (or operators) must be captured.
Each abstract state must have a corresponding concrete state but not every concrete state
must have an associated abstract state. This is due to the fact that abstraction is always a
reduction in the level of detail (Michalski & Kodrato�, 1990), in this situation, a reduction
in the number of states. For the selection of those concrete states that have a corresponding
abstraction, the sequence abstraction mapping is de�ned as follows:

De�nition 4 (Sequence Abstraction Mapping) A sequence abstraction mapping � : N! N

relates an abstract state sequence (sa0; : : : ; s
a
m) to a concrete state sequence (sc0; : : : ; s

c
n) by

mapping the indices j 2 f1; : : : ; mg of the abstract states saj into the indices i 2 f1; : : : ; ng
of the concrete states sci , such that the following properties hold:

� �(0) = 0 and �(m) = n: The initial state and the goal state of the abstract sequence
must correspond to the initial and goal state of the respective concrete state sequence.

� �(u) < �(v) if and only if u < v: The order of the states de�ned through the concrete
state sequence must be maintained for the abstract state sequence.

Note that the de�ned sequence abstraction mapping formally maps indices from the abstract
domain into the concrete domain. As an abstraction mapping it should better map indices
from the concrete domain to indices in the abstract domain, such as the inverse mapping
��1 does. However, such a mapping is more inconvenient to handle formally since the
range of de�nition of ��1 must always be considered. Therefore we stick to the presented
de�nition.

5.3 Case Abstraction

Based on the two abstraction functions introduced, our intuition of case abstraction is
captured in the following de�nition.
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Figure 8: Di�erent kinds of abstractions (a) and abstraction hierarchies (b)

De�nition 5 (Case Abstraction) A case Ca = hhsa0; s
a
mi; (o

a
1; : : : ; o

a
m)i is an abstraction

of a case Cc = hhsc0; s
c
ni; (o

c
1; : : : ; o

c
n)i with respect to the domain descriptions (Dc;Da) if

sci�1
oci�! sci for all i 2 f1; : : : ; ng and saj�1

oaj
�! saj for all j 2 f1; : : : ; mg and if there

exists a state abstraction mapping � and a sequence abstraction mapping �, such that:
saj = �(sc

�(j)) holds for all j 2 f0; : : : ; mg.

This de�nition of case abstraction is demonstrated in Figure 7. The concrete space shows
the sequence of n operations together with the resulting state sequence. Selected states are
mapped by � into states of the abstract space. The mapping � maps the indices of the
abstract states back to the corresponding concrete states.

5.4 Generality of the Case Abstraction Methodology

In the following, we brie
y discuss the generality of the presented case abstraction method-
ology. We will see that hierarchies of abstraction spaces as well as di�erent kinds of ab-
stractions can be represented simultaneously using the presented methodology.

5.4.1 Different kinds of Abstractions

In general, there will be more than one possible abstraction of an object in the world.
Abstraction can be performed in many di�erent ways. An example of two di�erent abstrac-
tions of the same case has already been shown in the example in Figure 5. In this example,
two di�erent abstractions (see the abstract cases Ca1 and Ca2) have been derived from the
same concrete case. Our abstraction methodology is able cope with di�erent abstractions
in case they are speci�ed by the user. Assume we are given one concrete domain Dc and
two di�erent abstract domains Da1 and Da2, each of which represents two di�erent kinds
of abstraction. Furthermore, assume that both abstract domains do not share the same
symbols10. We can always de�ne a single abstract domain Da by joining the individual
abstract domains which then includes both kinds of abstractions (see Figure 8 (a)). This
property is formally captured in the following simple lemma.

10. If the abstract domains are not disjoint, symbols can be simply renamed to achieve this property.
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Lemma 6 (Joining di�erent abstractions) If a concrete domain Dc and two disjoint ab-
stract domains Da1 and Da2 are given, then a joint abstract domain Da = Da1[Da2 can be
de�ned as follows: Let Da1 = (La1; Ea1;Oa1;Ra1) and let Da2 = (La2; Ea2;Oa2;Ra2). Then
Da = Da1 [Da2 = (La1 [La2 ; Ea1[ Ea2 ;Oa1 [Oa2 ;Ra1[Ra2). The joint abstract domain
Da ful�lls the following property: if Ca is an abstraction of Cc with respect to (Dc, Da1) or
with respect to (Dc, Da2), then Ca is also an abstraction of Cc with respect to (Dc;Da).

5.4.2 Hierarchy of Abstraction Spaces

Most work on hierarchical problem solving assume a multi-level hierarchy of abstraction
spaces for problem solving (e.g., Sacerdoti, 1974; Knoblock, 1989). Even if the presented
approach contains only two domain descriptions, a hierarchy of abstract domains can simply
be mapped onto the presented two-level model as shown in Figure 8 (b). Assume that a
hierarchy of disjoint domain descriptions (D0; : : : ;Dl) is given. In particular, the domain
D�+1 is assumed to be more abstract than the domain D� . In such a multi-level hierarchy
of abstraction spaces, a case C� at the abstraction level D� is an abstraction of a case C0, if
there exists a sequence of cases (C1; : : : ; C��1) such that Ci is out of the domain Di and Ci+1
is an abstraction of Ci with respect to (Di;Di+1) for all i 2 f0; : : : ; � � 1g. Such a multi-
level hierarchy of domain descriptions can always be reduced to a two-level description. The
abstract domain of this two-level description contains the union of all the levels from the
multi-level hierarchy. This property is formally captured in the following lemma.

Lemma 7 (Multi-Level Hierarchy) Let (D0; : : : ;Dl) be an arbitrary multi-level hierarchy
of domain descriptions. For the two-level description (Dc, Da) with Da =

Sl
�=1D� and

Dc = D0 holds that: if Ca is an abstraction of Cc with respect to (D0; : : : ;Dl) then Ca is
also an abstraction of Cc with respect to (Dc, Da).

Since we have shown that di�erent kinds of abstractions as well as hierarchies of abstrac-
tion spaces can be directly represented within our two-level case abstraction methodology,
we can further restrict ourselves to exactly these two levels.

6. Computing Case Abstractions

We now present the Pabs algorithm (Bergmann, 1992c; Wilke, 1993) for automatically
learning a set of abstract cases from a given concrete case. Thereby, we assume that a
concrete domain Dc and an abstract domain Da are given together with a generic abstraction
theory A. We use the functional notation Ca 2 PABS(hDc;Da;Ai; Cc) to denote that Ca is
an element of the set of abstract cases returned by the Pabs algorithm.

The algorithm consists of the four separate phases introduced in Section 3. In the
following we will present these phases in more detail.

In the �rst three phases, we require a procedure for determining whether a conjunctive
formula is a consequence of a set of Horn clauses. For this purpose, we use a SLD-refutation
procedure (Lloyd, 1984) which is given a set of Horn clauses (a logic program) C together
with conjunctive formula G (a goal clause). The refutation procedure determines a set of
answer substitutions 
 such that C ` G� holds for all � 2 
. We write 
 = SLD(C;G).
This SLD-refutation procedure performs some kind of backward-chaining and works as
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follows. It selects a literal from the goal clause G (i.e., the left most literal) and searches
for a Horn clause in the logic program C that contains a literal in its head that uni�es with
the selected goal literal. The selected literal is removed from G and the body (if not empty)
of the applied clause is added at the beginning of the goal clause. Then the most general
uni�er of the goal literal and the head of the clause is applied to the whole new goal clause.
The resulting goal clause is called resolvent. This process continues until the goal clause
becomes empty or until no more resolvents can be built. In the former case, the goal has
been proven and an answer substitution is computed by composing the substitutions used
during resolution. Backtracking is used to look for possible other selections of applicable
Horn rules to determine alternative answer substitutions. The set of all answer substitutions
is returned as set 
. If the whole space of possible applications of the available Horn rules
has been searched unsuccessfully, the goal clause is not a consequence of the logic program
C and the SLD-refutation procedure terminates without an answer substitution (
 = ;).
This must not be confused with the situation in which an empty substitution is returned
(
 = f;g), if no variables occur in G. In phase-III of the Pabs algorithm, we will also require
the derivation trees in addition to the answer substitutions. Then we write � = SLD(C;G)
and assume that � is a set of pairs (�; �), where � is an answer substitution and � is a
derivation of C ` G�.

In order to assure the termination of the SLD-refutation procedure we have to require
that the abstract domain and the generic abstraction theory is designed according to the
following principles11 :

� For each concrete state sc 2 Sc and each concrete operator oc 2 Oc where oc is
described by hPreoc ; Addoc; Deloci, SLD(s

c [ Rc; Preoc) must lead to a �nite set of
ground substitutions of all variables which occur in Preoc .

� For each state abstract sa 2 Sa and each abstract operator oa 2 Oa where oa is
described by hPreoa ; Addoa; Deloai, SLD(sa [ Ra; Preoa) must lead to a �nite set of
ground substitutions of all variables which occur in Preoa .

� For each state sc 2 Sc and each abstract essential sentence E 2 Ea, SLD(sc[Rc[A; E)
must lead to a �nite set of ground substitutions of all variables which occur in E.

In the following the four phases of the Pabs algorithm are explained in detail.

6.1 Phase-I: Computing the Concrete State Sequence

As input to the case abstraction algorithm, we assume a concrete case Cc =
hhscI ; s

c
Gi; (o

c
1; : : : ; o

c
n)i. Note that (oc1; : : : ; o

c
n) is a totally ordered sequence of instanti-

ated operators similar to the plans in Prodigy (Minton, 1988; Minton et al., 1989; Veloso
& Carbonell, 1993). In the �rst phase, the state sequence which results from the simulation
of problem solution is computed as follows:

11. At �rst glance, this restrictions seem a bit hard to achieve but if we take a closer look at it we can see
that this is the standard requirement for a (terminating) logic program (i.e., a Prolog program).
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Algorithm 1 (Phase-I: Computing the concrete state sequence)

sc0 := scI
for i := 1 to n do

if SLD(sci�1 [Rc; Preoci ) = ; then STOP \Failure: Operator not applicable"

sci := (sci�1 nDeloci ) [Addoci
end

if scG 6� scn then STOP \Failure: Goal state not reached"

By this algorithm, the states sci are computed, such that sci�1
oci�! sci holds for all

i 2 f1; : : : ; ng. If a failure occurs the given plan is not valid, i.e., it does not solve the given
problem.

6.2 Phase-II: Deriving Abstract Essential Sentences

Using the derived concrete state sequence as input, the following algorithm computes a
sequence of abstract state descriptions (sai ) by applying the generic abstraction theory
separately to each concrete state.

Algorithm 2 (Phase-II: State abstraction)

for i := 0 to n do

sai := ;
for each E 2 Ea do

 := SLD(sci [Rc [ A; E)
for each � 2 
 do

sai := sai [ fE �g
end

end

end

Please note that we have claimed that the domain theories are designed in a way that

 is �nite and only contains ground substitution of all variables in E. Therefore, every
description sai consists only of ground atoms and is consequently a valid abstract state
description. Within the introduced model of case abstraction we have now computed a
superset for the outcome of possible state abstraction mappings. Each deductively justi�ed
state abstraction mapping � is restricted by �(sci ) � sai = fe 2 Sajs

c
i [ Rc [ A ` eg for all

i 2 f1; : : : ; ng. Consequently, we have determined all abstract sentences that an abstract
case might require.

6.3 Phase-III: Computing Possible Abstract State Transitions

In the next phase of the algorithm, we search for instantiated abstract operators which
can transform an abstract state ~sai � sai into a subsequent abstract state ~saj � saj (i < j).
Therefore, the preconditions of the instantiated operator must at least be ful�lled in the
state ~sai and consequently in also sai . Furthermore, all added e�ects of the operator must
be true in ~saj and consequently also in saj .
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Algorithm 3 (Phase-III: Abstract state transitions)

G := ;
for i := 0 to n � 1 do
for j := i+ 1 to n do

for each o(x1; : : : ; xu) 2 Oa do

let hPreo; Delo; Addoi be the description of o(x1; : : : ; xu)
� := SLD(sai [Ra; Preo)
for each h�; �i 2 � do

letAdd0o = fa�ja 2 Addog
(* Compute all possible instantiations *)
(* of added sentences which hold in saj *)

M := f;g
(* M is the set of possible substitutions *)
(* initially the empty substitution. *)
for each a 2 Add0o do
M 0 := ;
for each � 2M do

for each e 2 saj do

if there is a substitution � such that a�� = e then M 0 := M 0 [ f��g
end

end

M :=M 0

end

(* Now, M contains the set of all possible substitutions *)
(* such that all added sentences are contained in saj *)

for each � 2M do

G := G[ fhi; j; o(x1; : : : ; xu)��; �ig
end

end

end

end

end

The set of all possible operator transitions are collected as directed edges of a graph which
vertices represent the abstract states. In the algorithm, the set G of edges of the acyclic
directed graph is constructed. For each pair of states (sai ,s

a
j ) with i < j it is checked

whether there exists an operator o(x1; : : : ; xu)� which is applicable in sai . For this purpose,
the SLD-refutation procedure computes the set of all possible answer substitutions � such
that the precondition of the operator is ful�lled in sai . The derivation � which belongs
to each answer substitution is stored together with the operator in the graph since it is
required for the next phase of case abstraction. This derivation is an \and-tree" where
each inner-node re
ects the resolution of a goal literal with the head of a clause and each
leaf-node represents the resolution with a fact. Note that for proving the precondition of
an abstract operator the inner nodes of the tree always refer to clauses of the Horn rule set
Ra, while the leave-nodes represent facts stated in Ra or essential sentences contained in
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sai . Then each answer substitution � is applied to the add-list of the operator leading to a
partially instantiated add-list Add0o. Note that there can still be variables in Add0o because
the operator may contain variables which are not contained in its precondition but may
occur in the add-list. Therefore, the set M of all possible substitutions � is incrementally
constructed such that a� 2 saj holds for all a 2 Add0o. The completely instantiated operator
derived thereby is �nally included as a directed edge (from i to j) in the graph G.

By this algorithm it is guaranteed that each (instantiated) operator which leads from sai
to saj is applicable in s

a
i and that all essential sentences added by this operator are contained

in saj . Furthermore, if the applied SLD-refutation procedure is complete (it always �nds all
answer substitutions), then every instantiated operator which is applicable in sai such that
all essential sentences added by this operator are contained in saj is also contained in the

graph. From this follows immediately that if �(sc
�(i�1))

oai�! �(sc
�(i)) holds for an arbitrary

deductively justi�ed state abstraction mapping � and a sequence abstraction mapping �,
then h�(i� 1); �(i); oai ; �i 2 G also holds.

6.4 Phase-IV: Determining Sound Paths

Based on the state abstractions sai derived in phase-II and on the graph G computed in the
previous phase, phase-IV selects a set of sound paths from the initial abstract state to the
�nal abstract state. A set of signi�cant abstract sentences �� and a sequence abstraction
mapping � are also determined during the construction of each path.

Algorithm 4 (Phase-IV: Searching sound paths)12

Paths := fh(); ;; (�(0) = 0)ig
while there exists h(oa1; : : : ; o

a
k); �

�; �i 2 Paths with �(k) < n do

Paths := Paths n h(oa1; : : : ; o
a
k); �

�; �i
for each hi; j; oa; �i 2 G with i = �(k) do
let �E be the set of essential sentences contained in the derivation �
let �0 = �E [Addoa [ ��

if for all � 2 f1; : : : ; kg holds:

(sa
�(��1) \ �

0)
oa��! (sa

�(�) \ �
0) and

(sa
�(k) \ �

0)
oa

�! (saj \ �
0) then

Paths := Paths [ fh(oa1; : : : ; o
a
k; o

a); �0; � [ f�(k + 1) = jgi g
end

end

CasesAbs := ;
for each h(oa1; : : : ; o

a
k); �

�; �i 2 Paths with �(k) = n do

CasesAbs := CasesAbs [ fhhsa0 \ �
�; san \ �

�i; (oa1; : : : ; o
a
k)ig

end

return CasesAbs

While the construction of the sequence abstraction mapping is obvious, the set �� repre-
sents the image of a state abstraction mapping � and thereby determines the set of sentences

12. Please note that h(oa1; : : : ; o
a
k); �

�; �i matches fh(); ;; (�(0) = 0)ig with k = 0. The operator n denotes
set di�erence.
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that have to be reached in order to assure the applicability of the constructed operator se-
quence. Note that from �� the state abstraction mapping � can be directly determined as
follows: �(sci ) = fe 2 ��jsci [ Rc [ A ` eg. The idea of the algorithm is to start with an
empty path. A path is extended by an operator from G in each iteration of the algorithm
until the path leads to the �nal state with the index n. New essential sentences �0 may
occur in the proof of the precondition or as added e�ects of this new operator. The path
constructed so far must still be consistent according to the extension of the state description
and, in addition, the new operator must transform the sentences of �� correctly.

As a result, phase-IV returns all cases that are abstractions of the given concrete input
case with respect to concrete and abstract domain de�nitions and the generic abstraction
theory. Depending on the domain theory, more than a single abstract case can be learned
from a single concrete case as already shown in Figure 5.

6.5 Correctness and Completeness of the PABS Algorithm

Finally, we want to state again the strong connection between the formal model of case
abstraction and the presented algorithm. The algorithm terminates if the domain descrip-
tions and the generic abstraction theory are formulated as required in the beginning of this
section, so that the SLD-resolution procedure always terminates. The algorithm is correct,
that is every abstract case computed by the Pabs algorithm is a case abstraction according
to the introduced model. If the SLD-refutation procedure applied in Pabs is complete every
case which is an abstraction according to De�nition 5 is returned by Pabs. This property
is captured in the following theorem.

Theorem 8 (Correctness and completeness of the PABS algorithm) If a complete SLD-
refutation procedure is used in the Pabs algorithm, then Case Ca is an abstraction of case Cc

with respect to (Dc;Da) and the generic theory A, if and only if Ca 2 PABS(hDc;Da;Ai; Cc).

6.6 Complexity of the Algorithm

The complexity of the algorithm is mainly determined by the phases III and IV. The worst
case complexity of phase-III is O(n2 � C1 � C2) where n is the length of the concrete plan
and C1 and C2 are dependent on the domain theories as follows: C1 = jOaj � j
j and C2 =
jAddOaj � (jEaj � j
j)

jAddOaj. Thereby, jOaj represents the number of abstract operators, j
j is
the maximum number of substitutions found by the SLD-refutation procedure, jAddOaj is
the maximum number of added sentences in an abstract operator, and jEaj is the number of
abstract essential sentences. The complexity of phase-IV can be determined as O(n �2(n�1) �
C1). If we assume constant domain theories the overall complexity of the Pabs algorithm can
be summarized as O(n � 2(n�1)). The exponential factor comes from possibly exponential
number of paths in a directed acyclic graph with n nodes if every state is connected to
every successor state. Whether a graph of this kind appears is very much dependent on
the abstract domain theory, because it determines which transitions of abstract states are
possible. This exponential nature does not lead to a time complexity problem in the domains
we have used. Additionally, we want to make clear that this computational e�ort must be
spent during learning and not during problem solving. If the time required for learning is
very long, the learning phase can be executed o�-line.
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The space complexity of the algorithm is mainly determined by phase-III because all
derivations of the proofs of the abstract operators' preconditions must be stored. This can
sum up to n2 �C1 �C2 derivations in the worst case. This did not turn out to be a problem
in the domains we used because each derivation was very short (in most cases not more
3 inferences with static Horn rules). The reason for this is that the derivations relate to
abstract operators which very likely contain less preconditions than the concrete operators.

7. Re�nement of Abstract Cases

In the previous section we have described how abstract cases can be automatically learned
from concrete cases. Now we assume a case-base which contains a set of abstract cases. We
want to show how these abstract cases can be used to solve problems at the concrete level.
Furthermore, we discuss the impact of the speci�c form of the abstract problem solving
domain on the improvement in problem solving that can be achieved.

7.1 Applicability and Re�nability of Abstract Cases

For a given abstract case and a concrete problem description, the question arises in which
situations the abstract case can be re�ned to solve the concrete problem. For this kind of
re�nability an a-posterior de�nition can be easily given as follows.

De�nition 9 (Re�nability of an abstract case) An abstract case Ca can be re�ned to solve
a concrete problem p if there exists a solution �oc to p, such that Ca is an abstraction of
hp; �oci.

Obviously, the re�nability property is undecidable in general since otherwise planning itself
would be decidable. However, we can de�ne the applicability of an abstract case as a
decidable necessary property for re�nability as follows.

De�nition 10 (Applicability of an abstract case) An abstract case Ca = hhsa0; s
a
mi,

(oa1; : : : ; o
a
m)i can be applied to solve a concrete problem p = hscI ; s

c
Gi if there exists a state

abstraction mapping � such that sai 2 Im(�) for all i 2 f0; : : : ; mg and �(scI) = sa0 and
�(scG) = sam. Thereby, Im(�) denotes the image of the state abstraction mapping �, i.e., all
abstract states that can be reached.

For an applicable abstract case, it is at least guaranteed that the concrete initial and goal
states map to the abstract ones and that concrete intermediate states exists that can be
abstracted as required by the abstract case.

Even if applicability is a necessary precondition for re�nability it does not formally
guarantee re�nability, since the downward solution property (Tenenberg, 1988), which states
that every abstract solution can be re�ned, is a too strong requirement to hold in general
for our abstraction methodology. However, it is indeed guaranteed that each abstract case
contained in the case-base is already an abstraction of one or more previous concrete cases
due to the correctness of the Pabs algorithm used for learning. If one of the problems
contained in these concrete cases has to be solved again it is guaranteed that the learned
abstract case can be re�ned to solve the problem. Consequently, each abstract case in
the case-base can at least be re�ned to solve one problem that has occurred in the past.
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Abstract solutions which are useless because they can never be re�ned to solve any concrete
problem will never be in the case-base and are consequently never tried in solving a problem.
Therefore, we expect that each abstract case from the case-base has a high chance of being
also re�nable for new similar problems for which it can be applied.

7.2 Selecting an Applicable Abstract Case

To decide whether an abstract case can be applied to solve a concrete problem P , we
have to determine a suitable state abstraction mapping. Because we assume deductively
justi�ed state abstraction mappings, the required state abstraction mapping � can always
be induced by the set �� =

Sm
i=0 s

a
i as shown in Section 5.1. Consequently, Ca is applicable

to the problem p = hscI ; s
c
Gi if and only if sa0 = f� 2 �� j scI [ Rc [ A ` �g and sam = f� 2

�� j scG[Rc[A ` �g. Since every abstract case we use for solving a new problem has been
learned from another concrete case, it is known that for each abstract state sai there must
be at least one concrete state (from that previous concrete state) that can be abstracted via
� to sai . Consequently, s

a
i 2 Im(�) holds. Together with the introduced restrictions on the

de�nition of A and Rc with respect to a complete SLD-refutation procedure (see Section
6), the applicability of an abstract case is decidable. Algorithm 5 describes the selection of
an applicable abstract case for a problem p = hscI ; s

c
Gi in more detail.

Algorithm 5 (Selection of an applicable abstract case)

saI := saG := ;
for each E 2 Ea do

 := SLD(scI [Rc [ A; E)
saI := saI [

S
�2
E�

for each E 2 Ea do

 := SLD(scG [ Rc [ A; E)
saG := saG [

S
�2
E�

repeat

repeat

Select a new case Ca = hhs
a
0; s

a
mi; (o

a
1; : : : ; o

a
m)i from the case base

with sa0 � saI and sam � saG
if no more cases available then
refineDFID(scI ; (); ;; s

c
G)

return the result of refineDFID

for i := 1 to m� 1 do sai := (sai�1 nDeloai ) [Addoai
�� :=

Sm
i=0 s

a
i

until (saI \ �
�) = sa0 and (saG \ �

�) = sam
refineDFID(scI ; (s

a
1; : : : ; s

a
m�1); �

�; scG)
until refineDFID returns success(p)
return success(p)

At �rst, the initial and �nal concrete states of the problem are abstracted using the
generic abstraction theory. Thereby, an abstract problem description hsaI ; s

a
Gi is determined.

Then, in a pre-selection step, an abstract case is chosen form the case base. All of the
abstract sentences contained in the initial and �nal abstract state of this case must be
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contained in the abstracted problem description hsaI ; s
a
Gi. This condition, however, does not

guarantee that the selected case is applicable with respect to De�nition 10. The set ��

of abstract sentences inducing the respective state abstraction mapping is computed and
the applicability condition is checked to test whether the selected case is applicable. If
the selected case is not applicable, a new case must be retrieved. If an applicable abstract
case has been determined the re�nement algorithm refineDFID (see following section) is
executed. This algorithm uses the sequence of intermediate abstract states (sa1; : : : ; s

a
m�1),

previously determined from the abstract plan of the case, to guide the search at the concrete
level. The operators contained in the abstract plan are not used anymore. The re�nement
procedure returns success(p), if the re�nement succeeds with the solution plan p. If the
re�nement fails (the procedure returns failure), another case is selected. If no more cases
are available the problem is solved by pure search without any guidance by an abstract
plan.

7.3 Re�ning an Abstract Plan

The re�nement of a selected abstract case starts with the concrete initial state from the
problem statement. The search proceeds until a sequence of concrete operations is found
which leads to a concrete state sc, such that sa1 = f� 2 �� j sc [ Rc [ A ` �g holds. The
applicability condition of the abstract case guarantees that such a state exists (sai 2 Im(�))
but it is not guaranteed that the required concrete operator sequence exists too. Therefore,
this search task may fail which causes the whole re�nement process to fail also. If the �rst
abstract operator can be re�ned successfully a new concrete state is found. This state can
then be taken as a starting state to re�ne the next abstract operator in the same manner.
If this re�nement fails we can backtrack to the re�nement of the previous operator and try
to �nd an alternative re�nement. If the whole re�nement process reaches the �nal abstract
operator it must directly search for an operator sequence which leads to the concrete goal
state scG. If this concrete goal state has been reached the concatenation of concrete partial
solutions leads to a complete solution to original problem.

This re�nement demands for a search procedure which allows an abstract goal speci�-
cation. All kinds of forward-directed search such as depth-�rst iterative-deepening (Korf,
1985b) or best-�rst search (Korf, 1993) procedures can be used for this purpose because
states are explicitly constructed during search. These states can then be tested to see if they
can be abstracted towards the desired goal. In Paris we use depth-�rst iterative-deepening
search described by Algorithm 6. This algorithm consists of two recursive procedures. The
top-level procedure refineDFID receives the concrete initial state scI , the concrete �nal state
scG, the sequence of intermediate abstract states S

a = (sa1; : : : ; s
a
k) derived from the abstract

case, as well as the set �� which induces the state abstraction mapping. This procedure
increments the maximum depth for the depth-�rst search procedure searchbounded up to the
maximum DeepMax. The procedure searchbounded performs the actual search. The goal for
this search is either an abstract state, i.e., the �rst abstract state in Sa, or the concrete
goal state scG if all abstract state have already been visited. The procedure performs a
depth-�rst search by applying the available concrete operators and recursively calling the
search procedure with the concrete state scnew which results from the operator application.
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If an abstract goal state has been reached it is removed from the list Sa and the re�nement
continues with the next abstract state which is then again the �rst one in the list.

Algorithm 6 (Re�nement by depth-�rst iterative-deepening (DFID) search)

procedure refineDFID(s
c
I ; S

a; ��; scG)
Deep := 0
repeat

searchbounded(scI ; S
a; ��; scG; Deep)

if searchbounded returns success(p) then return success(p)
Deep := Deep+ 1 (* Search unsuccessful: Increment search deepness *)

until Deep = DeepMax

return failure

procedure searchbounded(s
c
I ; S

a; ��; scG; Deep)
if Sa = () (* No more abstract goals: Test the concrete �nal goal *)
and scI = scG then return success(())

if Sa = (sa1; : : : ; s
a
k) (* At least one abstract goal *)

and for all e 2 sa1 holds: SLD(scI [Rc [ A; e) 6= ;
and for all e 2 �� n sa1 holds: SLD(scI [ Rc [ A; e) = ;
then (* Abstract state reached: Re�ne next abstract operator *)
refineDFID(scI ; (s

a
2; : : : ; s

a
k); �

�; scG)
if refineDFID returns success(p) then return success(p)

if Deep = 0 then return failure (* Maximum depth reached *)
(* Apply operators: Create successor states *)
for all oc 2 Oc do


 = SLD(scI [ Rc; Preoc) (* 
 is the set of all possible operator instantiations *)
for each � 2 
 do

scnew := (scI n (Deloc�))[ (Addoc�) (* Create successor state *)
searchbounded(s

c
new ; S

a; ��; scG; Deep� 1) (* Continue search with new state *)
if searchbounded returns success(p) then return success((oc�) � p))

return failure

Please note that this kind of re�nement is di�erent from the standard notion of re�ne-
ment in hierarchical problem solving (Knoblock et al., 1991b). This is because there is
no strong correspondence between an abstract operator and a possible concrete operator.
Moreover, the justi�cation structure of a re�ned abstract plan is completely di�erent from
the justi�cation structure of the abstract plan itself because of the completely independent
de�nition of abstract and concrete operators. Even if this is a disadvantage compared to the
usual re�nement procedure used in hierarchical problem solving, the main computational
advantage of abstraction caused by the decomposition of the original problem into smaller
subproblems is maintained.

7.4 Alternative Search Procedures for Re�nement

Besides the forward-directed search procedure currently used in Paris backward-directed
search as used in means-end analysis (Fikes & Nilsson, 1971) or in nonlinear partial-ordered
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planning (McAllester & Rosenblitt, 1991) can also be applied for re�nement under certain
circumstances. Therefore, we would either require a state concretion function or we have
to turn the rules of the generic abstraction theory A into virtual concrete operators.

A state concretion function must be able to determine a single state or a �nite set of
concrete states from a given abstract state together with the concrete problem description.
Thereby, the concrete problem description may help to reduce the number of possible con-
crete states. The derived state concretions can then be used as concrete goal states from
which a backward directed search may start.

Alternatively, we can turn the process of state concretion directly into the search pro-
cedure by representing each rule in the generic abstraction theory as a virtual abstract
operator. The precondition of a rule in the generic abstraction theory becomes the pre-
condition of the virtual operator and the conclusion of the rule becomes a positive e�ect
of this operator. When using the virtual concrete operators together with the operators of
the concrete domain, a backward-directed planner can use the abstract state directly as a
goal for search. The part of the plan in the resulting solution which only consists of con-
crete operators (and not of virtual operators) can be taken as a re�nement of the abstract
operator.

7.5 Criteria for Developing an Abstract Problem Solving Domain

The abstract problem solving domain and the generic abstraction theory used have an im-
portant impact on the improvement in problem solving that can be achieved. Therefore,
it is desirable to have a set of criteria which state how a \good\ abstract domain de�ni-
tion should look. Strong criteria allowing quantitative predictions of the resulting speedups
can hardly be developed. For other hierarchical planners such criteria don't exist either.
However, we can give a set of factors which determine the success of our approach. The
overall problem solving time is in
uenced mainly by the following four factors: indepen-
dent re�nability of abstract operators, goal distance of abstract operators, concrete scope of
applicability of abstract operators, and the complexity of the generic abstraction theory.

7.5.1 Independent Refinability of Abstract Operators

Following Korf's analysis of hierarchical problem solving (Korf, 1987) introduced in
Section 2, our plan re�nement approach reduces the overall search space from bn toPm

i=1 b
(�(i)��(i�1)). Thereby, b is the average branching factor, n is the length of the con-

crete solution, and � is the sequence abstraction mapping used in the abstraction of the
concrete case to the abstract case. As already mentioned, we cannot guarantee that an
abstract plan which is applicable to a problem can really be re�ned. Furthermore, Korf's
analysis assumes that no backtracking between the re�nement of the individual abstract
operators is required which cannot be guaranteed. Some of the computational advantage
of abstraction is lost in either of these two cases.

However, if the abstract operators occurring in the abstract problem solving domain
ful�ll the strong requirement of independent re�nability, then it is guaranteed that every
applicable abstract case can be re�ned without any backtracking. An abstract operator oa

is independently re�nable if for each sc, ~sc 2 Sc and every state abstraction mapping � if
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�(sc)
oa

�! �(~sc) holds, then there exists a sequence of concrete operators (oc1; : : : ; o
c
k) such

that sc
oc1�! : : :

ock�! ~sc holds.

The problem with this requirement is that it seems much to hard to develop an abstract
problem solving domain in which all operators ful�ll this requirement. Although we cannot
expect that all operators in the abstract problem solving domain are independently re�nable,
a knowledge engineer developing an abstract domain should still try to de�ne abstract
operators which can be independently re�ned in most situations, i.e., for most sc, ~sc 2 Sc
and most state abstraction mapping � an applicable abstract operator can be re�ned to a
concrete operator sequence. Although this notion of mostly independent re�nability is not
formal we feel that it is practically useful when developing an abstract domain de�nition.
The more abstract operators that can be re�ned independently in many situations, the
higher is the chance that an abstract plan composed of these operators is also re�nable.

7.5.2 Goal Distance of Abstract Operators

The goal distance (cf. subgoal distance, Korf, 1987) is the maximum length of the sequence
of concrete operators required to re�ne a particular abstract operator. The longer the goal
distance the larger is the search space required to re�ne the abstract operator. In particular,
the complexity of the search required to re�ne a complete abstract plan is determined
by the largest goal distance of the abstract operators that occur in the abstract plan.
Hence there is a good reason to keep the goal distance short. However, the goal distance
negatively interacts with the next factor, namely the concrete scope of applicability of
abstract operators.

7.5.3 Concrete Scope of Applicability of Abstract Operators

The concrete scope of applicability of an abstract operator speci�es how many concrete
states can be abstracted to an abstract state in which the abstract operator is applicable,
and how many concrete states can be abstracted to an abstract state that can be reached
by an abstract operator. This scope is determined by the de�nition of the abstract operator
and by the generic abstraction theory which is responsible for specifying admissible state
abstractions. The concrete scope of applicability of the abstract operators determines the
applicability of the abstract plans that can be learned. An abstract plan which is only ap-
plicable to a few concrete problems is only of limited use in domains in which the problems
to be solved vary very much. Hence, the concrete scope of applicability of abstract oper-
ators should be as large as possible. Unfortunately, according to our experience, abstract
operators which have a large scope usually also have a larger goal distance and operators
with a short goal distance don't have a large scope of applicability. Therefore, a compromise
between these two contradicting issues must be found.

7.5.4 Complexity of the Generic Abstraction Theory

The fourth factor which in
uences the problem solving time is the complexity of the generic
abstraction theory. This theory must be applied each time a new concrete state is created
during concrete level search. The more complex the generic abstraction theory, the more
time is required to compute state abstractions. Hence, the generic abstraction theory should

84



Building and Refining Abstract Planning Cases

not require complicated inferences and should avoid backtracking within the SLD-refutation
procedure.

Although these four factors don't allow a precise prediction of the expected problem
solving behavior of the resulting system, they provide a focus on what to consider when
designing an abstract problem solving domain and related generic abstraction theory.

8. An Example Domain: Process Planning in Mechanical Engineering

The Paris approach has been successfully tested with toy-domains such as the familiar
towers of Hanoi (Simon, 1975). For these domains, hierarchical problem solvers which use
a dropping sentence approach have also proven very useful (Knoblock, 1994).

This section presents a new example domain we have selected from the �eld of pro-
cess planning in mechanical engineering and which really requires a stronger abstraction
approach.13 We have selected the goal of generating a process plan for the production of
a rotary-symmetric workpiece on a lathe. The problem description, which may be derived
from a CAD-drawing, contains the complete speci�cation (especially the geometry) of the
desired workpiece (goal state) together with a speci�cation of the piece of raw material
(called mold) it has to be produced from (initial state).

The left side of Figure 9 shows an example of a rotary-symmetric workpiece which has to
be manufactured out of a cylindrical mold.14 Rotary parts are manufactured by putting the
mold into the �xture (chuck) of a lathe. The chucking �xture, together with the attached
mold, is then rotated with the longitudinal axis of the mold as rotation center. As the
mold is rotated a cutting tool moves along some contour and thereby removes certain parts
of the mold until the desired goal workpiece is produced. Within this process it is very
hard to determine the sequence in which the speci�c parts of the workpiece have to be
removed and the cutting tools to be used. When a workpiece is chucked a certain area of
the workpiece is covered by the chucking tool and cannot be processed by a cutting tool.
Moreover, a workpiece can only be chucked if the area which is used for chucking is plain.
Otherwise the �xation would not be su�ciently stable. Hence, many workpieces are usually
processed by �rst chucking the workpiece on one side and processing the accessible area.
Then the workpiece is chucked at the opposite side and the area that was previously covered
can be processed. Processing the example workpiece shown in Figure 9 requires that the
workpiece is �rst chucked at the left side while the right side is processed. Then the processed
right side can be used to chuck the workpiece because the area is plain and allows stable
�xing. Hence, the left side of the workpiece including the small groove can be processed.
Now we explain the representation of this domain in more detail. The complete de�nition
of the domain can be found in Online Appendix 1. Several simpli�cations of the real
domain were required in order to obtain a domain de�nition that could be e�ciently handled
in a large set of experiments. One restriction is that we can only represent workpieces
with right-angled contour elements. For example, a conical contour cannot be represented.
Many di�erent cutting and chucking tools are available in real-life process planning. We

13. This domain was adapted from the CaPlan-System (Paulokat & Wess, 1994), developed at the Univer-
sity of Kaiserslautern.

14. Note that this �gure shows a 2-dimensional drawing of the 3-dimensional workpiece. The measure 1 in.
equals 25.4 mm.
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An Example Workpiece
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Figure 9: An example workpieces with grid representation

have restricted ourselves to a single chucking tool and three di�erent cutting tools. The
speci�cation of the tools themselves have also been simpli�ed. For example, the rotation
speed of workpiece and the feed of the cutting tool are also parameters that can play a
role when processing a workpiece. The impact of these parameters has also been neglected.
Despite these simpli�cations the remaining part of this real-world domain is not trivial and
represents a substantial subset of the most critical problems in this domain.

8.1 Concrete Domain

We now explain the concrete problem solving domain by giving a detailed description of
the states and the operators.

8.1.1 State Description

For the representation of this domain at the concrete level, the exact geometry of the
workpiece must be represented as a state, including the speci�c measures of each detail
of the contour. However, the complete workpiece can always be divided into atomic areas
which are always processed as a whole. Therefore the state representation is organized by
using a grid which divides the entire workpiece into several disjoint rectangular areas of
di�erent sizes (see the right side of Figure 9). Together with a grid coordinate the speci�c
position and size of the corresponding rectangular area are represented. This grid is used
as a static part of the state description which does not change during planning. However
di�erent problems require di�erent grids. The speci�c shape of a workpiece during planning
is represented by specifying the status for each grid rectangle. In Table 1 the predicates
used to represent the workpiece are described in more detail.

Besides the description of the workpiece, the state representation also contains informa-
tion about how the workpiece is chucked and which kind of cutting tool is currently used.
Table 2 describes the predicates which are used for this purpose.
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Predicate Description

xpos max
ypos max

The predicates xpos max(xgrid) and ypos max(ygrid) specify the size of the
grid in the direction of the x-coordinate and the y-coordinate respectively.
A state consists of exactly one instance of each of these predicates, e.g.,
xpos max(4) and ypos max(5) in the example shown in Figure 9.

grid xpos
grid ypos

The predicates grid xpos(xgrid; xstart; xsize) and grid ypos(ygrid; ystart; ysize)
specify the geometrical position and size of grid areas in the direction of
the x-coordinate and y-coordinate respectively. The �rst argument of these
predicates speci�es the coordinate of the grid areas, the second argument
declares the geometrical starting position, and the third argument speci�es
the size of the grid areas. A state consists of exactly one instance of each of
these predicates for each di�erent x-coordinate and y-coordinate. For the
example above, grid xpos(1,0,18), grid xpos(2,18,2), grid xpos(3,20,165),
grid xpos(4,185,40) specify the grid in x-direction and grid ypos(1,0,8), : : : ,
grid ypos(5,26,8) specify the grid in y-direction.

mat The predicate mat(xgrid; ygrid; status) describes the status of a particular
grid area speci�ed by the coordinates (xgrid; ygrid). The argument status
can be instantiated with one of the three constants raw, workpiece, or none.
The constant raw indicates that the speci�ed area still consists of raw ma-
terial which must be removed by further cutting operators. The constant
workpiece speci�es that the area consists of material that belongs to the
goal workpiece. The constant none speci�es that the area does not contain
any material, i.e., there was no material present in the mold or the material
has already been removed by previous cutting operations. One instance of
a mat predicate is required for each grid area to specify its current state.
While the previously mentioned predicates does not change during the exe-
cution of a plan, the mat predicate is changed by each cutting operator. In
particular, the initial state and the goal state of a problem di�ers in the sta-
tus assigned to those grid areas that must become removed. For example,
in the initial state of the example shown above, the sentence mat(4,2,raw)
will be present while the �nal state contains the sentence mat(4,2,none).

Table 1: Essential sentences for the representation of the workpiece

8.1.2 Operators

A process plan to manufacture a certain workpiece consists of a sequence of operators. The
total order of the operators is not a problem for this domain because the manufacturing
steps are also executed sequentially on a lathe.15 We have chosen four di�erent operators

15. However, there are also a few new brands of lathe machine which also allow parallel processing.
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Predicate Description

chuck pos The predicate chuck pos(side) describes whether the workpiece is currently
chucked on either side. The parameter side can be instantiated with one
of the three constants none, right, or left. The constant none speci�es that
the workpiece is not chucked at all and the constants right and left specify
that the workpiece is chucked at the respective side. Each state contains
exactly one instance of this predicate.

covered The predicate covered(xmin; xmax) speci�es the areas of the workpiece which
are currently covered by the chucking tool. This predicate declares those
areas with an x-coordinate lying within the interval [xmin; xmax] as being
covered. Covered areas cannot be processed by a cutting tool. A state
consist of exactly one instance of this predicate if the workpiece is chucked.

cut tool
cut direction

The predicates cut tool(id) and cut direction(dir) specify a unique identi-
�cation (id) of the cutting tool which is currently used when an area is
processed and the direction (dir) in which the cutting tool moves. The pa-
rameter id can be any symbol that speci�es a legal cutting tool described
by predicates included in the static rules Rc of the concrete domain descrip-
tion. The parameter dir can be instantiated by one of the three constants
left, right and center. The value left speci�es that the cutting tool moves
from left to right, right speci�es that the cutting tool moves from right to
left, and center speci�es that the cutting tool move from outside towards
the center of the workpiece.

Table 2: Essential sentences for the representation of the chucking and cutting tools

to represent the chucking of a workpiece, the selection of a cutting tool, and the cutting
process itself. These operators are described in Table 3.

Manufacturing the workpiece shown in Figure 9 requires a 15-step plan as shown in
Figure 10. At �rst, the workpiece is chucked on the left side. Then a cutting tool is selected
which allows cutting from right to left. With this tool the indicated grid areas are removed.
Please note that the left side of the workpiece cannot be processed since it is covered by
the chucking tool. Then (see the right side of Figure 10), the workpiece is unchucked and
chucked on its right side. With a tool that allows processing from left to right, the upper
part of the mold is removed. Finally, a speci�c tool is used to manufacture the small groove.

8.2 Abstract Domain

In this example we can see that the small groove can be considered a detail which can be
processed after the basic contour of the workpiece has been established. The most important
characteristic of this example is that the right part of the workpiece is processed before the
left side of the workpiece. This sequence is crucial to the success of the plan. If the groove

88



Building and Refining Abstract Planning Cases

Operator Description

chuck The operator chuck(side) speci�es that the workpiece is chucked at the
speci�ed side. The side parameter can be instantiated with the constants
left and right. Chucking is only allowed if the workpiece is not chucked al-
ready and if the surface used for chucking is plain. As e�ect of the chucking
operation, respective instances of the predicate chuck pos and covered are
included in the state description.

unchuck The operator unchuck speci�es that the chucking of the workpiece is re-
moved. This operation can only be executed if the workpiece is chucked al-
ready. As e�ect of this operation, the parameter of the predicate chuck pos
is changed to none and the predicate covered is deleted.

use tool The operator use tool(dir; id) speci�es which tool is selected for the sub-
sequent cutting operators and in which direction the cutting tool moves.
The workpiece must be chucked before a tool can be chosen. The e�ect
of the operator is that respective instantiations of the predicates cut tool
and cut direction are added to the state. The parameters of the use tool
operator have the same de�nition as in the respective predicates.

cut The operator cut(xgrid; ygrid) speci�es that the raw material in the grid
area indicated by the coordinates (xgrid; ygrid) is removed. The e�ect of
this operator is that the predicate mat which speci�es the status of this
particular area is changed from status raw to the status none. However, to
apply this operator several preconditions must be ful�lled. The workpiece
must be chucked and the chucking tool must not cover the speci�ed area
and the area must be accessible by the cutting tool. Moreover, a cutting
tool which allows the processing of the selected area must already have been
selected. Each cutting tool imposes certain constraints on the geometrical
size of the area that can be processed with it. For details, see the full
description of the domain in Online Appendix 1.

Table 3: Concrete operators

would have been processed �rst the workpiece could never be chucked on the left side and
the processing of the right side would consequently be impossible. Domain experts told us
that this situation is not speci�c for the example shown. It is of general importance for
many cases. This fact allows us to select parts of the problem description and the solution
which can be considered as details from which we can abstract. Parts which are \essential"
must be maintained in an abstract case. We found out that we can abstract from the
detailed shape of the workpiece as long as we distinguish between the processing of the left
and right side of the workpiece. Furthermore, it is important to distinguish between the
rough contour of the workpiece and the small details such as grooves. We have developed
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9.-12.  use_tool(left,t1),cut(1,5),..,cut(3,5)

13.-15.  use_tool(center,t3), cut(2,4), unchuck

7.-8. unchuck, chuck(right)1. chuck(left)

2.-6. use_tool(right, t2), cut(4,5),...,cut(4,2)

Figure 10: A plan for manufacturing the workpiece

an abstract domain de�nition containing a new language for describing states and operators
based on this abstraction idea.

8.2.1 State Description

We introduce a new abstract grid which divides the workpiece into a left, a middle, and a
right area to abstract from the speci�c location of a concrete grid area. These areas are
called complex processing areas. Each area is assigned a particular status. Furthermore,
an abstract state contains the information whether a complex processing area contains
small contour elements (such as grooves), but not how these grooves exactly look like. To
abstract from the very detailed conditions for chucking a workpiece, an abstract state only
contains an approximation of these conditions, stating that a workpiece cannot be chucked
at a particular side, if this side contains small contour elements that have been already
processed. The predicates used to represent an abstract state are described in more detail
in Table 4.

8.2.2 Operators

We consider an abstract operator which completely processes one complex area of the
workpiece, an operator which only processes a complex area roughly, and an operator which
processes all the small grooves of a complex area. We also consider an abstract chucking
operator because the chucking has a strong impact on the overall plan. Table 5 shows the
available abstract operators.

8.3 Generic Abstraction Theory

The generic abstraction theory de�nes the sentences used to describe an abstract state (see
Table 4) in terms of the sentences of the concrete state (see Tables 1 and 2) by a set of
Horn rules. The de�nition of abstract sentence is explained in more detail in Table 6.
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Predicate Description

abs area state The predicate abs area state(area; status) describes the status of
each of the three complex processing areas. The argument area
speci�es one of the complex processing areas left, middle, and right.
The argument status describes the status of the respective area.
The status can be either todo, rough, and ready. The status todo
speci�es that the area needs some processing of large contour ele-
ments, while in a rough area only some small contour elements such
as grooves need to be processed. The status ready speci�es that
the area is completed. An abstract initial state usually contains
one or more complex processing areas of the status todo, while in
the abstract goal state all complex processing areas have the status
ready.

abs small parts The predicate abs small parts(area) speci�es that the complex pro-
cessing area (area) contains small contour elements that need to be
manufactured.

abs chuck pos The predicate abs chuck pos(side) describes whether the workpiece
is currently chucked on either side. The parameter side can be
instantiated with one of the three constants none, right, or left. This
predicate has exactly the same meaning as the chuck pos predicate
at the concrete level. This predicate is not abstracted at all but
only renamed.

abs chuckable wp The predicate abs chuckable wp(side) describes whether the work-
piece can be be chucked at the left or right side if this side has been
completely processed.

Table 4: Essential sentences for describing an abstract state

We have strongly considered the factors that in
uence the quality of a domain (see Sec-
tion 7.5) during the development of the abstract problem solving domain and the generic
abstraction theory. Although none of the de�ned abstract operators is independently re-
�nable, all of them are mostly independently re�nable. The preconditions of each abstract
operator still contains approximations of the conditions that must be ful�lled in order to as-
sure that a concrete operator sequence exist that re�nes the abstract operator. For example,
the predicate abs chuckable wp(side) is an approximation of the detailed condition (a plain
surface) required for chucking. The goal distance of each operator is quite di�erent and
strongly depends on the problem to be solved. While the goal distance of the set �xation
operators is no more than two (possibly one unchuck operator followed by a chuck operator)
the goal distances of the other abstract operators are di�erent. For example, the goal dis-
tance of the process ready operator depends on the number of concrete grid areas belonging
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Operator Description

set �xation The operator set �xation(side) speci�es that the workpiece is chucked
at the speci�ed side. The side parameter can be instantiated with the
constants left, right and none. The constant none speci�es that the
chucking is removed. Compared to the concrete operator chuck the
preconditions for chucking at a side have been simpli�ed. The e�ect of
this operator is that the predicate abs chuck pos is modi�ed.

process rough The operator process rough(area) speci�es that the complex processing
area (area) is being processed completely up to the small contour ele-
ments. The parameter area can be either left, middle, or right. The
precondition of this operator only requires that the workpiece is chucked
at a di�erent side than area. The e�ect of this operator is that the pred-
icate abs area state is modi�ed.

process �ne The operator process �ne(area) speci�es that all small contour elements
of the complex processing area (area) are being processed. The param-
eter area can be either left, middle, or right. The precondition of this
operator only requires that the large contour elements of this side of
the workpiece are already processed and that the workpiece is chucked
at a di�erent side. The e�ect of this operator is that the predicate
abs area state is modi�ed.

process ready The operator process ready(area) speci�es that the indicated complex
area of the workpiece is being completely processed, including large and
small contour elements. The e�ect of this operator is that the predicate
abs area state is modi�ed.

Table 5: Abstract operators

to the respective abstract area and containing material that needs to be removed. The
goal distance is the number of these gird areas, say c, plus the number of required use tool
operations (less than or equal to c). Hence, the goal distance is between c and 2c. Because
this goal distance can become very long for the more complex problems, the two operators
process rough and process �ne are introduced. They only cover the processing of the small
and the large grid areas respectively and consequently have a smaller goal distance than
the process ready operator. While the goal distance of these two operators is smaller they
have a smaller concrete scope of applicability than the process ready operator. For example
the process ready operator can be applied in any state in which some arbitrary areas need
to be processed, but process �ne can only be applied in states in which all large grid areas
are already processed.

Although we have only developed a simpli�ed version of the whole domain of produc-
tion planning in mechanical engineering for rotary symmetrical workpieces we feel that
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Abstract Predicate Description in terms of the predicates of the concrete domain

abs area state The predicate abs area state(area; status) describes the status of
each of the three complex processing areas. The left processing area
consists of the areas of the concrete grid which are covered, if the
workpiece is chucked at the left side. Similarly, the right processing
area consists of those concrete grid areas which are covered if the
workpiece is chucked at the right side. The middle processing area
consists of those areas which are never covered by any chucking
tool. The status of a complex processing area is todo, if there exists
a concrete large grid area which belongs to the complex processing
area and which needs to be processed. A grid area is considered
as large if its size in direction of the x-coordinate is larger than 3
mm. The status of a complex processing area is rough, if all large
grid areas of the complex processing area are already processed
and if there exists a concrete small grid area which belongs to the
complex processing area and which needs to be processed. A gird
area is considered as small if its size in direction of the x-coordinate
is smaller or equal than 3 mm. The status of a complex processing
area is ready if all concrete grid areas which belong to the complex
processing area have been processed.

abs small parts The sentence abs small parts(area) holds if there exists a small con-
crete grid area (size smaller or equal than 3 mm) which belongs to
the complex processing area and which needs to be processed.

abs chuck pos The sentence abs chuck pos(side) holds if and only if the concrete
sentence chuck pos(side) holds.

abs chuckable wp The predicate abs chuckable wp(side) describes whether the work-
piece can still be chucked at the left or right side if this side is
completely processed. This sentence holds if the part of the desired
workpiece which belongs to respective side is completely plain. That
is, all concrete grid areas with the status workpiece range up to the
same y-coordinate.

Table 6: Generic abstraction theory

a domain expert together with a knowledge engineer will be able to de�ne an abstract
domain representation and a generic abstraction theory for a complete domain. In partic-
ular, model-based interactive knowledge acquisition tools like MIKADO (Schmidt, 1994;
Schmidt & Zickwol�, 1992) can make such a complete modeling task much more feasible.
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      1. chuck(left)
      2. use_tool(right,t2)
3.-6. cut(4,5),..., cut(4,2)
      7. unchuck

8.            chuck(right)
9.            use_tool(left,t1)
10.-12. cut(1,5),..., cut(3,5)

13. use_tool(center, t3)
14. cut(2,4)
15. unchuck

Initial state Goal StateSolution

Abstract Solution

I.    set_fixation(left)
II.  process_ready(right)
III. set_fixation(right)

IV.  process_rough(left)
V.    process_fine(left)
VI.  set_fixation(none)

Abstraction
1.     2.- 6.     7.- 8.      9.- 12.     13.- 14.      15.

Initial state Goal StateSolution Solution

1. chuck(left)
2. use_tool(right,t2)
3. cut(7,3)
4. unchuck

5.          chuck(right),
6.          use_tool(left,t1),
7.-11. cut(1,3),...,cut(5,3),

12. use_tool(center, t3)
13. cut(2,2)
14. cut(4,2)
15. unchuck

Refinement

1.     2.- 3.     4.- 5.       6.- 11.      11.- 14.     15.

II. III. IV. V. VI.I.

II. III. IV. V. VI.I.

 Case C    1

  Abstract Case C      a

  New Case C      2

Problem
Abstraction

Problem
Abstraction

Problem
Abstraction

Problem
Abstraction

abs_area_state(left, ready)
abs_area_state(right,ready)
abs_chuckable_wp(right)

Abstract goal state
abs_area_state(left, todo)
abs_area_state(right,todo)
abs_small_parts(left)
abs_chuckable_wp(right)

Abstract initial state

Figure 11: Abstracting and Re�ning an Example Case

8.4 Abstracting and Re�ning a Process Planning Case

We now explain how the example case shown in Figure 9 can be abstracted and how
this abstract case can be reused to solve a di�erent planning problem. This process is
demonstrated in Figure 11. The top of this �gure shows the concrete planning case C1

already presented in Figure 9. This case is abstracted by the Pabs algorithm presented in
Section 6. The algorithm returns 6 di�erent abstract cases16. One of these abstract cases
is shown in the center of the �gure. The abstract solution plan consists of a sequence of 6
abstract operators. The sequence of the operators in the plan is indicated by the Roman
numerals. The particular abstraction is indicated between the concrete and the abstract case
and denotes which sequence of concrete operators is turned into which abstract operator.

16. The other 5 abstract cases di�er from the shown abstract case in two aspects: In the shown abstract
solution the additional abstract step set �xation(none) can be inserted between the steps II and III. The
abstract step V can also be replaced by the abstract step process ready, or the abstract steps IV and V
together can be replaced by the abstract step process ready.
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The learned abstract case can now be used to solve the new problem C2 whose initial and
�nal concrete states are shown in the bottom of the �gure. Even if the concrete workpiece
looks quite di�erent from the workpiece in case C1 the abstract case can be used to solve
the problem. The reason for this is that the new workpiece also requires that the left and
right side must be processed. In particular the right side must also be processed before
the left side is processed because the left side contains two small grooves which prevent the
workpiece from being be chucked at that side after it is processed. However, we can see that
most abstract operators (in particular the operators II, VI, and V) are re�ned to completely
di�erent sequences of concrete operators than those from which they were abstracted.

As already mentioned, the abstract operators used are not independently re�nable but
only mostly independently re�nable. Consequently, it can happen that an applicable ab-
stract case cannot be re�ned. Figure 12 shows an example of a concrete planning problem
for which the abstract case shown in Figure 11 is applicable but not re�nable. The reason
for this is the location of the small abstract part at the left side of the workpiece. This small
part consists of the concrete grid area (1,3) in which raw material must be removed. How-
ever, in this speci�c situation, this small part must be removed before the large parts, the
left side of the workpiece contains (the grid areas (2,3), (3,3), and (2,2)), can be removed.
The reason for this is that without removing this small part, the larger parts located right
of the small part cannot be accessed by any cutting tool that is able to cut the areas (2,3)
and (3,3). Consequently this problem can only be solved with the plan shown on the right
side of Figure 12. Unfortunately, this plan is not a re�nement of the abstract plan shown in
Figure 11, because this abstract plans requires that the large parts must be removed before
the small parts are removed. Hence, the re�nement of the operator process rough(left) fails.
In this situation the problem solver must select a di�erent abstract plan.

9. Empirical Evaluation and Results

This section presents the results of an empirical study of Paris in the mechanical engineer-
ing domain already introduced. This evaluation was performed with the fully implemented
Paris system using only the abstraction abilities of the system. The generalization com-
ponent was switched-o� for this purpose. We have designed experiments which allow us
to judge the performance improvements caused by various abstract cases derived by Pabs.
Furthermore, we have analyzed the average speed-up behavior of the system with respect
to a large set of randomly selected training and test cases.

9.1 Planning Cases

For this empirical evaluation 100 concrete cases have been randomly generated. Each case
requires about 100-300 sentences to describe the initial or �nal state, most of which are
instances of the mat predicate. The length of the solution plans ranges from 6 to 18
operators. Even if the generated cases only represent simple problems compared to the
problems a real domain expert needs to solve, the search space required to solve our sample
problems is already quite large. This is due to the fact that the branching factor b is between
1:7 and 6:6, depending on the complexity of the problem. Hence, for a 18-step solution the
complete search space consists of 3:7 � 1015 states.
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           6. chuck(right)
           7. use_tool(left,t1)
           8. cut(1,3)
           9. cut(2,3)
         10. cut(3,3)

11. use_tool(center, t3)
12. cut(2,2)
13. unchuck

Solution
      1. chuck(left)
      2. use_tool(right,t2)
      3. cut(4,3)
      4. cut(4,2)
      5. unchuck

abs_small_parts(left)

New Problem 
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Figure 12: An Example Case in which the re�nement of the abstract plan shown in Figure
11 fails.

The case generation procedure leads to solutions which are optimal or nearly optimal.
All solutions which require less than 10 steps are optimal solutions in the sense that they are
known to be the shortest solution to the problem they solve. All solutions which are longer
than 10 steps have been manually checked to see whether they contain steps which are
obviously redundant. Such redundant steps have been removed. Although these solutions
are not necessarily shortest solutions, they are nevertheless acceptably short.

9.2 Evaluating Abstraction by Dropping Sentences

At �rst we used the recent version of Alpine (Knoblock, 1993) together with Prodigy-

4 (Blythe et al., 1992) to check whether abstraction by dropping sentences can improve
problem solving in our domain represented as described in Section 8. Therefore, we used
only the concrete problem solving domain as domain theory for Prodigy. Unfortunately,
for this representation, Alpine was not able to generate an ordered monotonic abstraction
hierarchy. The reason for this is that Alpine can only distinguish a few di�erent groups of
literals because only a few di�erent literal names (and argument types) can be used in the
problem space. For example, Alpine cannot distinguish between the di�erent sentences
which are described by the mat or the grid xpos predicate. But this is very important for
abstraction. We would like to drop those parts of the grid which represent small rectangles
such as grooves. However, this would require the examination of the measures associated
with a grid area (as argument) and also the relation to other surrounding grid areas. There-
fore, which sentence to drop (or which criticalities to assign) cannot be decided statically by
the name of the predicate or the type of the arguments. All hierarchical planners including
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Prodigy andAlpine are highly dependent on the representation used, in particular if their
strategy is restricted to dropping sentences (Holte et al., 1994, 1995). However, there might
be another representation of our domain for which those hierarchical planners can improve
performance but we think that our representation is quite "natural" for our domain.

From this �rst trial we can conclude that the application domain and representation we
have chosen for the following experiments with Paris really require more than dropping
sentences to achieve an improvement by abstraction.

9.3 Evaluating the PARIS Approach

The �rst experiment with Paris was designed to evaluate the hypotheses that in our domain
there is a need (I) for changing the representation language during abstraction, and (II) for
reusing abstract cases instead of generating abstract solutions from scratch. To test these
hypotheses we rely on the time for solving the randomly generated problems using di�erent
modes of the Paris system.

9.3.1 Experimental Setting

In this experiment we used the Paris system to solve the 100 problems from the randomly
generated cases. Thereby the goal of abstraction is to improve the concrete-level problem
solver, which performs a brute-force search with a depth-�rst iterative-deepening search
strategy (Korf, 1985a) as introduced in Section 7.3. The improvement is determined in
terms of problem solving time required to solve a single problem. Paris is used to solve
the 100 problems in three di�erent modes:

� Pure search: The problem solver is used to solve each problem by pure search without
use of any abstraction.

� Hierarchical planning: In this mode Paris uses the introduced abstract domain. How-
ever, abstract cases are not recalled from a case library but they are computed auto-
matically by search as in standard hierarchical planning, but using the new abstrac-
tion language. So, the problem solver �rst tries to search for a solution to the original
problem at the abstract domain and then tries to re�ne this solution. During this
hierarchical problem solving, backtracking between the two levels of abstraction and
between each subproblem can occur. Thereby, we used hierarchical planning with the
new abstraction methodology instead of dropping sentences.

� Reasoning from abstract cases: In this mode we �rst used Paris to learn all abstract
cases which come out of the 100 concrete cases. For each problem, all abstract cases
that exists according to our abstraction methodology are available when one of the
problems is to be solved. During problem solving we measured the time required for
solving each problem using every applicable abstract cases. Then, for each problem,
three abstract cases are determined: a) the best abstract case, i.e., the case which leads
to the shortest solution time, b) the worst abstract case (longest solution time) which
is an abstraction of the aspired solution case, and c) the worst applicable abstract
case is determined. The di�erence between b) and c) relates to the di�erence between
applicable and re�nable abstract cases introduced in Section 7.1. An abstract case
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selected in c) is applicable to the current problem, but might not be an abstraction
of the case from which the problem is taken. In b) only abstract cases are selected
which are indeed abstractions of the current problem, i.e., abstract cases which have
been previously learned from the case from which the problem is taken. These three
di�erent cases are selected to �gure out the impact of case selection (which is not
addressed in this paper) on the proposed method.

Although every problem can theoretically be solved by our brute-force search procedure,
the exponential nature of the search space avoids the solution of complex problems within
reasonable time. Therefore, a time-bound of 200 CPU seconds on a Sun Sparc-ELC
computer was introduced in each of the three modes described above. If this limit-bound
is exceeded the problem remains unsolved. Increasing this time-bound would increase the
number of solvable problems in each of the three modes.

9.3.2 Results

We have determined the solution time for each of the 100 problems in each of the described
modes. The average solution time as well as the number of problems that could be solved
within the time limit is shown in Table 7. We have determined these values for reasoning
from abstract cases separately for each of the three types of abstract cases. The signi�cance
of the speedup results has be investigated by using a maximally conservative sign test
(Etzioni & Etzioni, 1994). Unfortunately it turned out that the speedup of hierarchical
planning over pure search was not signi�cant. We also couldn't �nd a signi�cant speedup
of reasoning from abstract cases when using always the worst applicable abstract case (c)
over pure search. This was due to the large number of doubly censored data (both problem
solvers cannot solve the problem within the time limit), which were counted against the
speedup hypothesis. However, the improvements of pure search by reasoning from re�nable
abstract cases were signi�cant (p < 0:000001) when using the best re�nable case (a) and
when using the worst re�nable case (b). Furthermore, it turned out that the speedup of
reasoning from re�nable cases over hierarchical planning was also signi�cant for an upper
bound of the p-value of 0:001. The mentioned p-value is a standard value used in statistical
hypothesis tests. It is the probability, assuming that the hypothesis does not hold, of
encountering data that favors the hypothesis as much or more than the observed data in
the experiment (Etzioni & Etzioni, 1994). Therefore a result is more signi�cant if the
p-value is smaller. From this analysis, we can clearly see, that our two basic hypotheses
are supported by our experimental data. Even if not signi�cant we can see a moderate
improvement in the problem solving time and in the number of solved problems when using
hierarchical planning with changing the representation language. Please remember that
hierarchical planning by dropping conditions did not lead to any improvement at all (see
Section 9.2). Obviously, changing the representation language during abstraction is required
to improve problem solving in our domain as stated in the �rst hypothesis (I).

Very strong support for the second hypothesis (II) can also be found in the presented
data. We can see signi�cant speedups by reasoning from abstract cases over pure search and
even over hierarchical planning. Only if the worst abstract case is used for each problem
to be solved, the speedup is not signi�cant and the problem solving behavior is slightly
worse than in hierarchical planning. Please note that this situations is extremely unlikely

98



Building and Refining Abstract Planning Cases

Problem solving mode Average solution time (sec.) Solved problems

Pure search 156 29
Hierarchical planning 107 50
Reasoning from abstract cases
(a) Best re�nable case 35 94
(b) Worst re�nable case 63 79
(c) Worst applicable case 117 45

Table 7: Comparison of the average solution time per problem and the number of solved
problems within a time-bound of 200 seconds. The table compares pure search
(depth-�rst iterative deepening), hierarchical planning using the abstract prob-
lem solving domain, and reasoning from abstract cases with di�erently selected
abstract cases.

to happen at all. With a sophisticated indexing and retrieval of abstract cases this situation
can be avoided for the most part.

9.4 Evaluating the Impact of Di�erent Training Sets

In one respect the previous experiment is based on a very optimistic assumption. We always
assume that all abstract cases required for solving a problem have been learned in advance.
This situation is not a realistic scenario for an application. Usually, one set of cases is
available for training the system while a di�erent set of problems needs to be solved. So
we cannot assume that good applicable abstract cases are always available to solve a new
problem. Furthermore, the presented example also shows that the problem solving time can
vary a lot if di�erent abstract cases are selected during problem solving. Therefore, we have
designed a new experiment to evaluate the improvements caused by the Paris approach in
a more realistic scenario.

9.4.1 Experimental Setting

We have randomly chosen 10 training sets of 5 cases and 10 training sets of 10 cases from
the 100 available cases. These training sets are selected independently from each other.
Then, each of the 20 training sets is used for a separate experiment. In each of the 20
experiments, those of the 100 cases which are not used in the particular training set are
used to evaluate the performance of the resulting system. Training set and test set are
completely independent by this procedure. During this problem solving task, we did not
determine the problem solving behavior for all applicable abstract cases, but we used a
simple automatic mechanism to retrieve one (hopefully a good) applicable abstract case
for a problem. Therefore, the cases are organized linearly in the cases base, sorted by the
length of the abstract plan contained in the case. The case base is sequentially searched
from longer to shorter plans until an applicable case is found. This heuristic is based on the
assumption that a longer abstract plan is more speci�c than a shorter abstract plan and
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Size of training sets Number of abstract cases
(cases) minimum maximum average

5 7 15 9.1
10 8 25 14.2

Table 8: Comparison of the number of learned abstract cases for a) the 10 training sets
each of which consists of 5 concrete cases and b) the 10 training sets each of
which consists of 10 concrete cases. The table shows the minimum, the maximum,
and the average number of abstract cases learned from the 10 training sets of the
respective size.

Size of training sets Average problem solving time (sec.)
(cases) best set worst set average

5 43 89 59
10 35 76 56

Table 9: Comparison of the problem solving time required for reasoning from abstract cases
after separate training with a) the 10 training sets each of which consists of 5
concrete cases and b) the 10 training sets each of which consists of 10 concrete
cases. The table shows the average problem solving time per problem for the best,
the worst and the average training set out of the 10 training sets of each size.

divides the actual problem into more, but smaller subproblems. Consequently the longest
applicable plan should lead to the best improvement.

9.4.2 Results

We have statistically evaluated the second experiment. Table 8 shows the number of abstract
cases which could be learned from the di�erent training sets. The minimum, the maximum
and the average number of abstract cases that could be learned from the 10 training sets of
the same size is indicated. Note that altogether 42 abstract cases can be learned if all 100
cases would have been used for training as in the previous experiment. From the 10 training
sets which contained 5 cases each, between 7 and 15 abstract cases could be learned. As
expected, if the size of the training set is increased more abstract cases can be learned.
Table 9 shows the average problem solving time after learning from the di�erent sets. This
table also shows the minimum, the maximum and the average problem solving time for the
10 di�erent training sets of the two sizes. We can see that the best training sets leads to
a problem solving time which is similar or only slightly worse than the optimum shown in
Table 7. Even in the average case, considerable improvements over the pure search and
hierarchical problem solving (compare Table 7 and Table 9) can be discovered. The same
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Size of training sets Percentage of Solved Problems
(cases) best set worst set average

5 91 68 83
10 94 74 86

Table 10: Comparison of the percentage of solved problems after separate training with
a) the 10 training sets each of which consists of 5 concrete cases and b) the 10
training sets each of which consists of 10 concrete cases. The table shows the
percentage of solved problems for the best, the worst and the average training
set out of the 10 training sets of each size.

Size of training sets Number of training sets with signi�cant speedups over
(cases) pure search hierarchical planning

p < 0:0005 p < 0:0005 p < 0:05

5 9 4 8
10 10 5 7

Table 11: Comparison of the signi�cance (p-value) of the speedup results over pure search
and hierarchical planning after separate training with a) the 10 training sets each
of which consists of 5 concrete cases and b) the 10 training sets each of which
consists of 10 concrete cases. The table shows the number of training sets which
cause signi�cant speedups for di�erent p-values.

positive results can also be identi�ed when looking at the percentage of solved problems,
shown in Table 10. Here we can also see that for the best training sets the number of solved
problems is close to the maximum that can be achieved by this approach. Even in the worst
training set considerably more problems could be solved than by pure search or hierarchical
planning.

Additionally all of the above mentioned speedup results were analyzed with the maxi-
mally conservative sign test as described in (Etzioni & Etzioni, 1994). Table 11 summarizes
the signi�cance results for speeding up pure search and a hierarchical problem solver. It
turned out that 19 of the 20 training sets lead to highly signi�cant speedups (p < 0:0005)
over pure search. For this hard upper bound on p-values only about half of the training
sets lead to signi�cant di�erences between reasoning from abstract cases and hierarchical
planning. At a slightly higher upper bound of p < 0:05, about 3=4 of the training sets
caused a signi�cantly better performance than hierarchical planning.

Altogether, the reported experiment showed that even a small number of training cases
(i.e., 5% and 10%) can already lead to strong improvements on problem solving. We can
see that not all abstract cases must be present, as in the �rst experiment, to be successful.
Furthermore, this experiment has shown that even a simple retrieval mechanism (sequential
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Size of training sets Average percentage of solutions with
shorter/equal/longer solution length

(cases) shorter equal longer

5 20 54 26
10 22 50 28

Table 12: Comparison of the length of the solutions created through reasoning from learned
abstract cases and the solutions available in the concrete cases. The table shows
the average percentage of solutions with shorter/equal/longer solution length
after separate training with a) the 10 training sets each of which consists of 5
concrete cases and b) the 10 training sets each of which consists of 10 concrete
cases.

search) can select bene�cial abstract cases from the library. Neither of the training situations
in the second experiment lead to results which are as worse as the worst case shown in Table
7.

9.5 Quality of the Produced Solutions

Although the main purpose of this approach is to improve the performance of a problem
solver, the quality of the produced solutions is also very important for a practical system.
The solution length can be used as a very simple criterion to determine the quality of a
solution. However, in general the quality of a solution should re
ect the execution costs
of a plan, the plans robustness, or certain user preferences (Perez & Carbonell, 1993).
Because such quality measures are very di�cult to assess, in particular in our manufacturing
domain, we rely on this simple criterion also used for evaluating the quality of solutions in
Prodigy/Analogy (Veloso, 1992).

9.5.1 Experimental Setting

We have analyzed the solutions computed in the previous set of experiments to assess the
quality of the solutions produced by Paris. Therefore, the length of solutions derived
during problem solving, after learning from each of the 20 training sets, are compared to
the length of the nearly optimal solutions contained in the concrete cases.

9.5.2 Results

For each training set the length of each solution derived in the corresponding testing phase
is compared to the length of the solution noted in the concrete case. The percentage of
solutions with shorter, equal, or longer solution length is determined for each training set
separately, and the average over the 10 training sets with equal size is determined. Table
12 shows the result of this evaluation.

It turned out that there was no big di�erence in the quality results between the 20
training sets. In particular, the size of the training sets did not have a strong in
uence on
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the results. In Table 12 we can see that between 72% (22% + 50%) and 74% (20% + 54%)
of the solutions produced are of equal or better quality than the solutions contained in the
concrete cases. Please note that the concrete cases used for testing are always di�erent
from the cases used for training. Additionally, the solutions to which we compare the
results produced by Paris are already nearly optimal solutions due to the case generation
procedure.17 Taking this into account, these results are already fairly good.

9.6 Impact of the Abstract Problem Solving Domain

The experiments reported before were conducted with the concrete and abstract domain
representation presented in Section 8 and in Online Appendix 1. In this �nal experiment
the impact of the speci�c choice of an abstract problem solving domain is investigated.

9.6.1 Experimental Setting

We created a new abstract problem solving domain which is less constrained than the one
used before. For this purpose one operator was completely removed and certain conditions
of the remaining operators were removed also. In particular, the set �xation operator was
removed and the conditions abs chuck pos, abs chuckable wp, and chuck comp were removed
from the preconditions of the three remaining operators. Hence, the fact that the chucking
of a workpiece has an impact on the production plan is now neglected at the abstract level.
However, the concrete problem solving domain and the generic abstraction theory was not
modi�ed at all. Consequently, chucking still plays an important role at the concrete level.
The set of experiments described in Section 9.4 was repeated with the less constrained
abstract problem solving domain but using the same training and testing sets as before.

9.6.2 Results

Table 13 and 14 summarize the results of these experiments. Table 13 shows the average
problem solving time which occurs after learning from the di�erent training sets. It turns
out that for all training sets, learning improves the concrete level problem solver, but that
the speedup is much smaller than when using the original abstract problem solving domain
(cf. Table 7 and 9). In particular, none of the resulting speedups over concrete level problem
solving were signi�cant. A similar result can be observed when comparing the percentage
of solved problems (see Figure 14). There is still a slight improvement in the number of
problems that could be solved after learning but the improvement is much smaller than
when using the original abstract problem solving domain (cf. Table 7 and 10).

17. In all cases up to one, the shorter solutions produced by Paris are only one step shorter than the solution
contained in the concrete case.
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Size of training sets Average problem solving time (sec.)
(cases) best set worst set average

5 114 118 117
10 107 112 110

Table 13: Using a less constrained abstract problem solving domain: Comparison of the
problem solving time required for reasoning from abstract cases after separate
training with a) the 10 training sets each of which consists of 5 concrete cases
and b) the 10 training sets each of which consists of 10 concrete cases. The table
shows the average problem solving time per problem for the best, the worst and
the average training set out of the 10 training sets of each size.

Size of training sets Percentage of Solved Problems
(cases) best set worst set average

5 55 52 53
10 58 54 56

Table 14: Using a less constrained abstract problem solving domain: Comparison of the
percentage of solved problems after separate training with a) the 10 training sets
each of which consists of 5 concrete cases and b) the 10 training sets each of which
consists of 10 concrete cases. The table shows the percentage of solved problems
for the best, the worst and the average training set out of the 10 training sets of
each size.

This experiment supported the general intuition that the abstract problem solving do-
main has a signi�cant impact on the improvement in problem solving that can be achieved
through reasoning from abstract cases. The reason why the less constrained domain leads
to worse results than the original abstract domain can be explained with respect to the
criteria explained in Section 7.5. Since important preconditions of the abstract operators
were removed there are many situations in which the new operators cannot be re�ned. This
holds particularly for those situations in which a workpiece cannot be chucked to perform
the required cutting operations. The new abstract operators are not mostly independently
re�nable. Moreover, since the abstract operator set �xation is removed the concrete chuck
and unchuck operator must be introduced during the re�nement of the remaining abstract
operators. Consequently, the goal distance of these abstract operators is increased. These
two factors are the reason for worse results when using the less constrained abstract domain
theory.
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10. Discussion

In this paper we have shown in detail that in hierarchical problem solving (Sacerdoti, 1974;
Tenenberg, 1988; Unruh & Rosenbloom, 1989; Yang & Tenenberg, 1990; Knoblock, 1990)
the limited view of abstraction by dropping sentences as well as the strategy by which
abstract solutions are computed lead to poor behavior in various relevant situations. This
observation is supported by comprehensive arti�cial examples (see Section 2.1 and 2.2) and
a real-world example from the domain of mechanical engineering (see Section 8), further
supported by an experiment (see Section 9.2). The recent results reported in (Holte et al.,
1995) support these observations very well.

In general, abstraction is the task of transforming a problem or a solution from a con-
crete representation into a di�erent abstract representation, while reducing the level of
detail (Michalski & Kodrato�, 1990; Giunchiglia & Walsh, 1992; Michalski, 1994). How-
ever, in most hierarchical problem solvers, the much more limited view of abstraction by
dropping sentences is shown to be the reason why e�cient ways of abstracting a problem
and a solution are impossible (e.g., see Section 2.1 and Figure 4). The second weakness
of most hierarchical problem solvers is that they usually compute arbitrary abstract solu-
tions and not solutions which have a high chance of being re�nable at the next concrete
level. Although the upward solution property (Tenenberg, 1988) guarantees that a re�n-
able abstract solution exists, it is not guaranteed that the problem solver �nds this abstract
solution (e.g., see Section 2.2). Problem solvers are not even heuristically guided towards
re�nable abstract solutions.

With the Paris approach we present a new formal abstraction methodology for problem
solving (see Section 5) which allows abstraction by changing the whole representation lan-
guage from concrete to abstract. Together with this formal model, a correct and complete
learning algorithm for abstracting concrete problem solving cases (see Section 6) is given.
The abstract solutions determined by this procedure are useful for solving new concrete
problems, because they have a high chance of being re�nable.

The detailed experimental evaluation with the fully implemented Paris system in the
domain of mechanical engineering strongly demonstrates that Paris can signi�cantly im-
prove problem solving in situations in which a hierarchical problem solver using dropping
sentences fails to show an advantage (see Table 7 to 11).

10.1 Related Work

We now discuss the Paris approach in relation to other relevant work in the �eld.

10.1.1 Theory of Abstraction

Within Giunchiglia and Walsh's (1992) theory of abstraction, the Paris approach can be
classi�ed as follows: The formal system of the ground space �1 is given by the concrete
problem solving domain Dc using the situation calculus (Green, 1969) for representation.
The language of the abstract formal system �2 is given by the language of the abstract
problem solving domain Da. However, the operators of Da are not turned into axioms of
�2. Instead, the abstract cases build the axioms of �2. Moreover, the generic abstraction
theory A de�nes the abstraction mapping f : �1 ) �2. Within this framework, we can view
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Paris as a system which learns useful axioms of the abstract system, by composing several
smaller elementary axioms (the operators). However, to prove a formula (the existence of
a solution) in the abstract system, exactly one axiom (case) is selected. So the deductive
machinery of the abstract system is restricted with respect to the ground space. Depending
on the learned abstract cases the abstractions of Paris are either theory decreasing (TD)
or theory increasing (TI). If the case-base of abstract cases is completely empty then no
domain axiom is available and the resulting abstractions are consequently TD. If the case-
base contains the maximally abstract case hhtrue; truei(nop)i18 (and the generic abstraction
theory contains the clause ! true), then this case can be applied to every concrete problem
and the resulting abstraction is consequently TI. Even if this maximally abstract case does
not improve the ground level problem solving, it should be always included into the case-base
to ensure the TI property, that is not loosing completeness. The case retrieval mechanism
must however guarantee, that this maximally abstract case is only chosen for re�nement if
no other applicable case is available. Note, that this is ful�lled for the retrieval mechanism
(sequential search from longer to shorter plans) we used in our experiments.

10.1.2 Skeletal Plans

As already mentioned in Section 3.4 the Paris approach is inspired by the idea of skeletal
plans (Friedland & Iwasaki, 1985). A abstract cases can be seen as a skeletal plan, and
our learning algorithm is a means to learn skeletal plans automatically out of concrete
plans. Even if the idea of skeletal plans is intuitively very appealing, to our knowledge, this
paper contains the �rst comprehensive experimental support of usefulness of planning with
skeletal plans. Since we have shown that skeletal plans can be acquired automatically, this
planning method can be applied more easily.

For the same purpose, Anderson and Farley (1988) and Kramer and Unger (1992) pro-
posed approaches for plan abstraction which go in the same direction as the Paris algorithm.
However, this approach automatically forms abstract operators by generalization, mostly
based on dropping sentences. Moreover, in the abstracted plan, every concrete operator is
abstracted, so that the number of operators is not reduced during abstraction. Thereby
this abstraction approach is less powerful than Paris style abstractions.

10.1.3 Alpine's Ordered Monotonic Abstraction Hierarchies

Alpine (Knoblock, 1989, 1990, 1993, 1994) automatically learns hierarchies of abstraction
spaces from a given domain description or from a domain description together with a plan-
ning problem. As mentioned several times before, Alpine relies on abstraction by dropping
sentences. However, this enables Alpine to generate abstraction hierarchies automatically.
For a stronger abstraction framework such as the one we follow in Paris, the automatic
generation of abstraction hierarchies (or abstract domain descriptions) does not seem to
be realistic due to the large (in�nite) space of possible abstract spaces. To use our power-
ful abstraction methodology, we feel that we have to pay the price of losing the ability to
automatically construct an abstraction hierarchy.

Another point is that the speci�c property of ordered monotonic abstraction hierarchies
generated by Alpine, allows an e�cient plan re�nement. During this re�nement, an ab-

18. nop is the 'no operation' operator which is always applicable and does not change the abstract state.
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stract plan can be expanded at successively lower levels by inserting operators. Furthermore,
already established conditions of the plan are guaranteed not to be violated anymore dur-
ing re�nement. Unfortunately, this kind of re�nement cannot be performed for Paris-style
abstractions. Especially, there is no direct correspondence between the abstract operators
and concrete operators. Consequently, an abstract plan cannot be extended to become a
concrete plan. However, the main function of the abstract plan is maintained, namely that
the original problem is decomposed into several smaller subproblems which causes the main
reduction in search.

10.1.4 Explanation-based Learning, Case-based Reasoning and Analogy

The presentedParis approach uses experience to improve problem solving, similar to several
approaches from machine learning, mostly from explanation-based learning (Mitchell et al.,
1986; DeJong & Mooney, 1986), case-based reasoning (Kolodner, 1980; Schank, 1982; Al-
tho� & Wess, 1992; Kolodner, 1993) or analogical problem solving (Carbonell, 1986; Veloso
& Carbonell, 1988). The basic ideas behind explanation-based learning and case-based or
analogical reasoning are very much related. The common goal of these approaches is to
avoid problem solving from scratch in situations which have already occurred in the past.
Explanations (i.e., proofs or justi�cations) are constructed for successful solutions already
known by the system. In explanation-based approaches, these explanations mostly cover the
whole problem solving process (Fikes, Hart, & Nilsson, 1972; Mooney, 1988; Kambhampati
& Kedar, 1994), but can also relate to to problem solving chunks (Rosenbloom & Laird,
1986; Laird, Rosenbloom, & Newell, 1986) of some smaller size or even to single decisions
within the problem solving process (Minton, 1988; Minton et al., 1989). Explanation-based
approaches generalize the constructed explanations during learning by extensive use of the
available domain knowledge and store the result in a control rule (Minton, 1988) or schema
(Mooney & DeJong, 1985). In case-based reasoning systems like Priar (Kambhampati
& Hendler, 1992) or Prodigy/Analogy (Veloso & Carbonell, 1993; Veloso, 1994) cases
are usually not explicitly generalized in advance. They are kept fully instantiated in a
case library, annotated with the created explanations. Unlike cases in Paris which are
problem-solution-pairs, such cases are complete problem solving episodes containing de-
tailed information of each decision that was taken during problem solving. During problem
solving, those cases are retrieved which contain explanations applicable to the current prob-
lem (Kambhampati & Hendler, 1992; Veloso & Carbonell, 1993; Veloso, 1994). The detailed
decisions recorded in these cases are then replayed or modi�ed to become a solution to the
current problem. All these approaches use some kind of generalization of experience, but
none of these approaches use the idea of abstraction to speedup problem solving based on
experience. As already noted in (Michalski & Kodrato�, 1990; Michalski, 1994), abstrac-
tion and generalization must not be confused. While generalization transforms a description
along a set-superset dimension, abstraction transforms a description along a level-of-detail
dimension.

The only exception is given in (Knoblock, Minton, & Etzioni, 1991a) where Alpine's
abstractions are combined with EBL component of Prodigy. Thereby, control rules are
learned which do not refer to the ground space of problem solving but also to the abstract
spaces. These control rules speedup problem solving at the abstract level. However, the
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control rules guide the problem solver at the abstract level so that it �nds solutions faster
and not in a manner that it �nds re�nable abstract solutions. Although we did not have any
experience with this kind of integration of abstraction and explanation-based learning, we
assume that the control rules generated by the EBL component will also guide the problem
solver towards short abstract solutions which do not cause much reduction in search in
several circumstances.

10.2 Requirements and Limitations of PARIS

In the following, we will summarize again the requirements and limitations of the Paris
approach. The main requirements are the availability of a good abstract domain description
and in the availability of concrete cases.

10.2.1 Abstract Domain

The most important prerequisite of this method is the availability of the required back-
ground knowledge, namely the concrete world description, the abstract world description,
and the generic abstraction theory. For the construction of a planning system, the concrete
world descriptions must be acquired anyway, since they specify the \language\ of the prob-
lem description (essential sentences) and the problem solution (operators). The abstract
world and the generic abstraction theory must also be acquired. We feel that this is indeed
the price we have to pay to make planning more tractable in certain practical situations.

Nevertheless, the formulation of an adequate abstract domain theory is crucial to the
success of the approach. If those abstract operators are missing which are required to express
a useful abstract plan, no speedup can be achieved. What we need are mostly independently
re�nable abstract operators. If such operators exist, they can be simply represented in the
abstract domain using the whole representational power. For hierarchical planning with
dropping conditions, such an abstract domain must also be implicitly contained in a concrete
domain in a way that the abstract domain remains, if certain literals of the concrete domain
are removed (see Section 2.1). We feel that this kind of modeling is very much harder to
achieve than modeling the abstract view of a domain explicitly in a distinct planning space
as in Paris. Additionally, the requirement that the abstract domain is given by the user
has also the advantage that the learned abstract cases are expressed in terms the user is
familiar with. Thereby, the user can understand an abstract case very easily. This can open
up the additional opportunity to involve the user in the planning process, for example in
the selection of an abstract cases she/he favors.

Research on knowledge acquisition has shown that human experts employ a lot of
abstract knowledge to cope with the complexity of real-world planning problems. Spe-
ci�c knowledge acquisition tools have been developed to comfortably acquire such abstract
knowledge from di�erent sources. Especially, the acquisition of planning operators is ad-
dressed in much detail in (Schmidt & Zickwol�, 1992; Schmidt, 1994).

10.2.2 Availability of Cases

As a second prerequisite, the Paris approach needs concrete planning cases (problem-
solution pairs). In a real-world scenario such cases are usually available in a company's
�ling cabinet or database. According to this requirement we share the general view from
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machine learning that the use of this kind of experience is the most promising way to cope
with highly intractable problems. For the Paris approach the available cases must be
somehow representative for future problem solving tasks. The known cases must be similar
enough to the new problems that abstract cases can really be reused. Our experiments
give strong indications that even a small set of concrete cases for training leads to high
improvements in problem solving (see Table 9 to 11).

10.3 Generality of the Achieved Results

The reported experiments were performed with a speci�c base-level problem solver which
performs a depth-�rst iterative-deepening search strategy (Korf, 1985a). However, we
strongly believe that the Paris abstractions are also bene�cial for other problem solvers
using backward-chaining, means-end analysis or nonlinear partial-order planning. As shown
in (Veloso & Blythe, 1994), there is not one optimal planning strategy. Di�erent planning
strategies usually rely on di�erent commitments during search. Each strategy can be useful
in one domain but may be worse in others. However, for most search strategies, the length
of the shortest possible solution usually determines the amount of search which is required.
In Paris, the whole search problem is decomposed into several subproblems which allow
short solutions. Consequently, this kind of problem decomposition should be of use for most
search strategies.

Moreover, we think that the idea of reasoning from abstract cases, formulated in a
completely new terminology than the ground space will also be useful for other kinds of
problem solving such as design or model-based diagnosis. For model-based diagnosis, we
have developed an approach (Pews & Wess, 1993; Bergmann, Pews, & Wilke, 1994) similar
to Paris. The domain descriptions consist of a model of a technical system for which a
diagnosis has to be found. It describes the behavior of each elementary and composed
component of the system at di�erent levels of abstraction. During model-based diagnosis,
the behavior of the technical system is simulated and a possible faulty component is searched
which can cause the observed symptoms. Using abstract cases, this search can be reduced
and focused onto components which have been already defective (in other similar machines)
and which are consequently more likely to be defective in new situations.

10.4 Future Work

Future research will investigate goal-directed procedures for re�nement such as backward-
directed search or non-linear partial order planners (see Section 7.4). Additionally, more
experience must be gained with additional domains and di�erent representations of them.
Furthermore, we will address the development of highly e�cient retrieval algorithms for
abstract cases. As Table 7 shows, the retrieval mechanism has a strong in
uence on the
achieved speedup. Even if the linear retrieval we have presented turned out to be pretty
good, we expect a utility problem (Minton, 1990) to occur when the size of the case-
base grows. Furthermore, a good selection procedure for abstract cases should also use
some feedback from the problem solver to evaluate the learned abstract cases based on the
speedup they cause. This would eliminate unbene�cial cases or abstract operators from the
case-base or the abstract problem solving domain. Experiments with di�erent indexing and
retrieval mechanisms have recently indicated that this is possible.
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Furthermore, the speedup caused by a combination of di�erent approaches such as
abstraction and explanation-based learning should be addressed. Within the Paris system
an explanation-based component for case generalization is still present (see Figure 3), but
was not used for the experiments because the plain abstraction itself had to be evaluated.
In further experiments, abstraction, explanation-based learning and the integration of both
has to be addressed comprehensively. This will hopefully lead to a better understanding of
the di�erent strengths these methods have.

As a more long-term research goal, Paris-like approaches should be developed and
evaluated for other kinds of problem solving tasks such as con�guration and design or, as
already started, for model-based diagnosis.

Appendix A. Proofs

This section contains the proofs of the various lemma and theorems.

Lemma 6 (Joining di�erent abstractions) If a concrete domain Dc and two disjoint ab-
stract domains Da1 and Da2 are given, then a joint abstract domain Da = Da1[Da2 can be
de�ned as follows: Let Da1 = (La1; Ea1;Oa1;Ra1) and let Da2 = (La2; Ea2;Oa2;Ra2). Then
Da = Da1 [Da2 = (La1 [La2 ; Ea1[ Ea2 ;Oa1 [Oa2 ;Ra1[Ra2). The joint abstract domain
Da ful�lls the following property: if Ca is an abstraction of Cc with respect to (Dc, Da1) or
with respect to (Dc, Da2), then Ca is also an abstraction of Cc with respect to (Dc;Da).

Proof: The proof of this lemma is quite simple. If Ca is an abstraction of Cc with respect
to (Dc, Dai), then there exists a sequence abstraction mapping � and a sequence abstraction
mapping � as required in De�nition 5. As it is easy to see, the same abstraction mappings
will also lead to the respective case abstraction in (Dc;Da). 2

Lemma 7 (Multi-Level Hierarchy) Let (D0; : : : ;Dl) be an arbitrary multi-level hierarchy
of domain descriptions. For the two-level description (Dc, Da) with Da =

Sl
�=1D� and

Dc = D0 holds that: if Ca is an abstraction of Cc with respect to (D0; : : : ;Dl) then Ca is
also an abstraction of Cc with respect to (Dc, Da).

Proof: Let C� = hhs
�
0; s

�
mi; �o

�i be a case in domain D� (intermediate state are denoted by
s�j ), let C0 = hhs00; s

0
ni; �o

0i be a case in domain D0 (intermediate state are denoted by s0i ),
and let C� be an abstraction of case C0 with respect to (D0; : : : ;D�). Then a sequence of
cases (C1; : : : ; C��1) exists such that Ci is from the domain Di and Ci+1 is an abstraction of
the case Ci with respect to (Di;Di+1) for all i 2 f0; : : : ; � � 1g. Now we proof by induction
over � that C� is also an abstraction of C0 with respect to (Dc, Da) (see �gure 13). The basis
(� = 1) is obvious: C1 is abstraction of C0 with respect to (D0;D1) and is consequently also
an abstraction with respect to (Dc, Da). Now, assume that the lemma holds for any cases up
to the domain D��1. It follows immediately that C��1 is an abstraction of C0 with respect
to (Dc, Da). Let C��1 = hhs

0
0; s

0
ki; �o

0i and let the intermediate states be denoted by s0r. From
De�nition 5 follows, that a state abstraction mapping � and a sequence abstraction mapping
� exists, such that �(sc

�(r)) = s0r for all r 2 f0; : : : ; kg. Because C� is an abstraction of C��1
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α α α α
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D 0

Figure 13: Abstraction mappings for hierarchies of abstraction spaces

with respect to (D��1;D�), it also exists a state abstraction mapping �0 and a sequence
abstraction mapping �0 such that �0(s0

�0(j)) = s�j for all j 2 f0; : : : ; mg. Now, we can

de�ne a state abstraction mapping �00(s) = �0(�(s)) and a sequence abstraction mapping
�00(j) = �(�0(j)). It is easy to see, that �00 is a well de�ned state abstraction mapping
(s � s0 ) �(s) � �(s0) ) �0(�(s)) � �0(�(s0))) and that �00 is a well de�ned sequence
abstraction mapping (�(�0(0)) = 0 ; �(�0(m)) = �(k) = n ; u < v , �0(u) < �0(v) ,
�(�0(u)) < �(�0(v))). Furthermore it follows �00(sc

�00(j)) = �0(�(sc
�(�0(j)))) = �0(s0

�0(j)) = saj ,

leading to the conclusion that C� is an abstraction of C0 with respect to (Dc, Da). 2

Theorem 8 (Correctness and completeness of the Pabs algorithm) If a complete SLD-
refutation procedure is used in the Pabs algorithm, then Case Ca is an abstraction of case Cc

with respect to (Dc;Da) and the generic theory A, if and only if Ca 2 PABS(hDc;Da;Ai; Cc).

Proof:

Correctness (\�"): If Ca is returned by Pabs, then h(oa1; : : : ; o
a
k); �

��; �i 2 Paths holds 19

in phase-IV. We can de�ne a state abstraction mapping �(s) := fe 2 ���jRc [ A [ s ` eg,
which, together with the sequence abstraction mapping � will lead to the desired conclusion.
For every operator oai , we know by construction of phase-IV, that h�(i� 1); �(i); oai ; �i 2 G
holds. By construction of phase-III, we can conclude that sa

�(i�1) [ Ra ` Preoai holds and
that consequently �E [Ra ` Preoai also holds for the respective execution of the body of the
while-loop in phase-IV. Since �E � �0 � ��� holds and ` is a monotonic derivation operator,
it is obvious that �(sc

�(i))[Ra ` Preoai . Furthermore, the `if for all'-test, which is executed

before the extension of the path, ensures that (sa
�(i�1)\�

��)
oai�! (sa

�(i)\�
��) holds. Together

with the ful�llment of the precondition of the operator we have �(sc
�(i�1))

oai�! �(sc
�(i)).

Thus, we have shown, Ca is correct abstraction with respect to De�nition 5.

Completeness (\�"): Assume, case Ca = hhsa0; s
a
mi; (o

a
1; : : : ; o

a
m)i is an abstraction of Cc

based on a deductively justi�ed state abstraction mapping. Then there exists a state ab-

19. Note that ��� refers to the set �nally constructed after termination of the while-loop. We use �� to
denote the respective set during the construction in this loop.
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straction mapping � and a sequence abstraction mapping � such that �(sc
�(i�1))

oai�! �(sc
�(i))

holds for all i 2 f1; : : : ; mg. Since � is deductively justi�ed by A, it follows by construction
of phase-II, that �(sci�1) � sai�1. Since ` is a monotonic derivation operator, the precondi-
ton of oai is also ful�lled in sa

�(i�1). Furthermore, the addlist of the operator is ful�lled in

�(sc
�(i)) and is consequently also ful�lled in sai . By the construction of phase-III, it is now

guaranteed, that h�(i� 1); �(i); oai ; �i 2 G. Now, we would like to show, that in phase-IV:

� there exists a sequence of assignments to the variable Paths, such that h(); �0; �
�
0i 2

Paths, h(oa1); �1; �
�
1i 2 Paths, : : : , h(o

a
1; : : : ; o

a
m); �m; �

�
mi 2 Paths ,

� �k(�) = �(�) for � 2 f0; : : : ; kg

� (��k \ s
a
l ) � �(scl ) for l 2 f1; : : : ; ng and

� ��k �
Sk

l=1Addoal .

The proof is by induction on i. The induction basis is obvious due to the initialization
of the Paths variable. Now, assume that h(oa1; : : : ; o

a
k); �k; �

�
ki 2 Paths (with k < m)

at some state of the execution of phase-IV. Since, h�(k); �(k + 1); oak+1; �i 2 G holds as
argued before, and �(k) = �k(k) by induction hypothesis, the selected operator sequence
is tried to be extended by oa = oak+1 in the body of the while-loop. Additionally, we
know, that �E contains exactly those sentences which are required to proof the precondition
of oak+1. Note, that since the SLD-resolution procedure is assumed to be complete and
oak+1 is applicable in �(sck), �E is required to proof the preconditition of oa if and only if
�E � �(sc

�(k)). Since � is deductively justi�ed, 8e 2 �E ; 8l 2 f1; : : : ; mg holds: e 2 �(sc
�(l))

if sc
�(l) [Rc [A ` e. By construction of the sal , 8e 2 �E ; 8l 2 f1; : : : ; mg holds: e 2 �(s

c
�(l))

if e 2 sal . Consequently, �E \ sal � �(scl ) for all l 2 f1; : : : ; mg. On the other hand, we
also know that oak+1 leads to �(sc

�(k+1)). Consequently, Addoa
k+1
� �(sc

�(k+1)). Following

the same argumentation as above, we can conclude that (Addoa
k+1
\ sal ) � �(scl ) for all

l 2 f1; : : : ; mg. Consequently, for �0 = ��k [ �E [Addoak+1 holds that �
0 \ sal � �(scl ). Now,

we can conclude that Paths is extended by oak+1 as follows. Since �(s
c
�(��1))

oa��! �(sc
�(�))

holds and that Addoa� 2 �0 and (�0 \ sa
�(�)) � �(sc

�(�)), we can immediately follow that

(�0 \ sa
�(��1))

oa��! (�0 \ sa
�(�)). Consequently, h(o

a
1; : : : ; o

a
k; o

a
k+1); �

�
k+1; �k+1i 2 Paths with

��k+1 = �0 and �k+1(�) = �k(�) = �(�) for � 2 f1; : : : ; kg and �k+1(k + 1) = �(k). So,
the induction hypothesis is ful�lled for k + 1. Thereby, it is shown that Ca is returned by
Pabs. 2
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