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Abstract

In a companion paper it was shown that the class of constant-depth determinate k-ary
recursive clauses is e�ciently learnable. In this paper we present negative results showing
that any natural generalization of this class is hard to learn in Valiant's model of pac-
learnability. In particular, we show that the following program classes are cryptographically
hard to learn: programs with an unbounded number of constant-depth linear recursive
clauses; programs with one constant-depth determinate clause containing an unbounded
number of recursive calls; and programs with one linear recursive clause of constant locality.
These results immediately imply the non-learnability of any more general class of programs.
We also show that learning a constant-depth determinate program with either two linear
recursive clauses or one linear recursive clause and one non-recursive clause is as hard as
learning boolean DNF. Together with positive results from the companion paper, these
negative results establish a boundary of e�cient learnability for recursive function-free
clauses.

1. Introduction

Inductive logic programming (ILP) (Muggleton, 1992; Muggleton & De Raedt, 1994) is
an active area of machine learning research in which the hypotheses of a learning system
are expressed in a logic programming language. While many di�erent learning problems
have been considered in ILP, including some of great practical interest (Muggleton, King,
& Sternberg, 1992; King, Muggleton, Lewis, & Sternberg, 1992; Zelle & Mooney, 1994;
Cohen, 1994b), a class of problems that is frequently considered is to reconstruct simple
list-processing or arithmetic functions from examples. A prototypical problem of this sort
might be learning to append two lists. Often, this sort of task is attempted using only
randomly-selected positive and negative examples of the target concept.

Based on its similarity to the problems studied in the �eld of automatic programming
from examples (Summers, 1977; Biermann, 1978), we will (informally) call this class of
learning tasks automatic logic programming problems. While a number of experimental
systems have been built (Quinlan & Cameron-Jones, 1993; Aha, Lapointe, Ling, & Matwin,
1994), the experimental success in automatic logic programming systems has been limited.
One common property of automatic logic programming problems is the presence of recur-
sion. The goal of this paper is to explore by analytic methods the computational limitations
on learning recursive programs in Valiant's model of pac-learnability (1984). (In brief, this
model requires that an accurate approximation of the target concept be found in polyno-
mial time using a polynomial-sized set of labeled examples, which are chosen stochastically.)
While it will surprise nobody that such limitations exist, it is far from obvious from previous
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research where these limits lie: there are few provably fast methods for learning recursive
logic programs, and even fewer meaningful negative results.

The starting point for this investigation is a series of positive learnability results appear-
ing in a companion paper (Cohen, 1995). These results show that a single constant-depth
determinate clause with a constant number of \closed" recursive calls is pac-learnable. They
also show that a two-clause constant-depth determinate program consisting of one nonre-
cursive clause and one recursive clause of the type described above is pac-learnable, if some
additional \hints" about the target concept are provided.

In this paper, we analyze a number of generalizations of these learnable languages. We
show that that relaxing any of the restrictions leads to di�cult learning problems: in par-
ticular, learning problems that are either as hard as learning DNF (an open problem in
computational learning theory), or as hard as cracking certain presumably secure crypto-
graphic schemes. The main contribution of this paper, therefore, is a delineation of the
boundaries of learnability for recursive logic programs.

The paper is organized as follows. In Section 2 we de�ne the classes of logic programs and
the learnability models that are used in this paper. In Section 3 we present cryptographic
hardness results for two classes of constant-depth determinate recursive programs: programs
with n linear recursive clauses, and programs with one n-ary recursive clause. We also
analyze the learnability of clauses of constant locality, another class of clauses that is pac-
learnable in the nonrecursive case, and show that even a single linearly recursive local
clause is cryptographically hard to learn. We then turn, in Section 4, to the analysis of
even more restricted classes of recursive programs. We show that two di�erent classes of
constant-depth determinate programs are prediction-equivalent to boolean DNF: the class
of programs containing a single linear recursive clause and a single nonrecursive clause, and
the class of programs containing two linearly recursive clauses. Finally, we summarize the
results of this paper and its companion, discuss related work, and conclude.

Although this paper can be read independently of its companion paper we suggest that
readers planning to read both papers begin with the companion paper (Cohen, 1995).

2. Background

For completeness, we will now present the technical background needed to state our results;
however, aside from Sections 2.2 and 2.3, which introduce polynomial predictability and
prediction-preserving reducibilities, respectively, this background closely follows that pre-
sented in the companion paper (Cohen, 1995). Readers are encouraged to skip this section
if they are already familiar with the material.

2.1 Logic Programs

We will assume that the reader has some familiarity in logic programming (such as can
be obtained by reading one of the standard texts (Lloyd, 1987).) Our treatment of logic
programs di�ers only in that we will usually consider the body of a clause to be an ordered
set of literals. We will also consider only logic programs without function symbols|i.e.,
programs written in Datalog.

The semantics of a Datalog program P will be de�ned relative to to a database, DB ,
which is a set of ground atomic facts. (When convenient, we will also think of DB as a
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conjunction of ground unit clauses). In particular, we will interpret P and DB as a subset
of the set of all extended instances . An extended instance is a pair (f;D) in which the
instance fact f is a ground fact, and the description D is a set of ground unit clauses. An
extended instance (f;D) is covered by (P;DB) i�

DB ^D ^ P ` f

If extended instances are allowed, then function-free programs can encode many com-
putations that are usually represented with function symbols. For example, a function-free
program that tests to see if a list is the append of two other lists can be written as follows:

Program P :

append(Xs,Ys,Ys)  
null(Xs).

append(Xs,Ys,Zs)  
components(Xs,X,Xs1) ^
components(Zs,X,Zs1) ^
append(Xs1,Ys,Zs1).

Database DB :
null(nil).

Here the predicate components(A,B,C) means that A is a list with head B and tail C; thus
an extended instance equivalent to append([1,2],[3],[1,2,3]) would have the instance fact
f = append(list12 ; list3 ; list123 ) and a description containing these atoms:

components(list12,1,list2), components(list2,2,nil),
components(list123,1,list23), components(list23,2,list3),
components(list3,3,nil)

The use of extended instances and function-free programs is closely related to \
attening"
(Rouveirol, 1994; De Raedt & D�zeroski, 1994); some experimental learning systems also
impose a similar restriction (Quinlan, 1990; Pazzani & Kibler, 1992). Another motivation
for using extended instances is technical. Under the (sometimes quite severe) syntactic
restrictions considered in this paper, there are often only a polynomial number of possible
ground facts|i.e., the Herbrand base is polynomial. Hence if programs were interpreted
in the usual model-theoretic way it would be possible to learn a program equivalent to any
given target by simply memorizing the appropriate subset of the Herbrand base. However,
if programs are interpreted as sets of extended instances, such trivial learning algorithms
become impossible; even for extremely restricted program classes there are still an expo-
nential number of extended instances of size n. Further discussion can be found in the
companion paper (Cohen, 1995).

Below we will de�ne some of the terminology for logic programs that will be used in this
paper.

2.1.1 Input/Output Variables

If A B1 ^ : : :^Br is an (ordered) de�nite clause, then the input variables of the literal Bi

are those variables which also appear in the clause A B1 ^ : : :^ Bi�1; all other variables
appearing in Bi are called output variables .
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2.1.2 Types of Recursion

A literal in the body of a clause is a recursive literal if it has the same predicate symbol
and arity as the head of the clause. If every clause in a program has at most one recursive
literal, the program is linear recursive. If every clause in a program has at most k recursive
literals, the program is k-ary recursive. If every recursive literal in a program contains no
output variables, the program is closed recursive.

2.1.3 Depth

The depth of a variable appearing in a (ordered) clause A B1^: : :^Br is de�ned as follows.
Variables appearing in the head of a clause have depth zero. Otherwise, let Bi be the �rst
literal containing the variable V , and let d be the maximal depth of the input variables of
Bi; then the depth of V is d+1. The depth of a clause is the maximal depth of any variable
in the clause.

2.1.4 Determinacy

The literal Bi in the clause A B1^ : : :^Br is determinate i� for every possible substitution
� that uni�es A with some fact e such that

DB ` B1� ^ : : :^Bi�1�

there is at most one maximal substitution � so that DB ` Bi��. A clause is determinate
if all of its literals are determinate. Informally, determinate clauses are those that can be
evaluated without backtracking by a Prolog interpreter.

The term ij-determinate (Muggleton & Feng, 1992) is sometimes used for programs that
are depth i, determinate, and contain literals of arity j or less. A number of experimen-
tal systems exploit restrictions associated with limited depth and determinacy (Muggleton
& Feng, 1992; Quinlan, 1991; Lavra�c & D�zeroski, 1992; Cohen, 1993c). The learnabil-
ity of constant-depth determinate clauses has also received some formal study (D�zeroski,
Muggleton, & Russell, 1992; Cohen, 1993a).

2.1.5 Mode Constraints and Declarations

Mode declarations are commonly used in analyzing Prolog code or describing Prolog code;
for instance, the mode declaration \components(+;�;�)" indicates that the predicate com-
ponents can be used when its �rst argument is an input and its second and third arguments
are outputs. Formally, we de�ne the mode of a literal L appearing in a clause C to be a
string s such that the initial character of s is the predicate symbol of L, and for j > 1
the j-th character of s is a \+" if the (j � 1)-th argument of L is an input variable and a
\�" if the (j � 1)-th argument of L is an output variable. (This de�nition assumes that all
arguments to the head of a clause are inputs; this is justi�ed since we are considering only
how clauses behave in classifying extended instances, which are ground.) A mode constraint
is a set of mode strings R = fs1; : : : ; skg, and a clause C is said to satisfy a mode constraint
R for p if for every literal L in the body of C, the mode of L is in R.

We de�ne a declaration to be a tuple (p; a0; R) where p is a predicate symbol, a0 is an
integer, and R is a mode constraint. We will say that a clause C satis�es a declaration if
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the head of C has arity a0 and predicate symbol p, and if for every literal L in the body of
C the mode of L appears in R.

2.1.6 Determinate Modes

In a typical setting, that facts in the database DB and extended instances are not arbitrary:
instead, they are representative of some \real" predicate, which may obey certain restric-
tions. Let us assume that all database and extended-instance facts will be drawn from some
(possibly in�nite) set F . Informally, a mode is determinate if the input positions of the
facts in F functionally determine the output positions. Formally, if f = p(t1; : : : ; tk) is a
fact with predicate symbol p and p� is a mode, then de�ne inputs(f; p�) to be hti1 ; : : : ; tiki,
where i1, : : : , ik are the indices of � containing a \+", and de�ne outputs(f; p�) to be
htj1 ; : : : ; tjli, where j1, : : : , jl are the indices of � containing a \�". We de�ne a mode
string p� for a predicate p to be determinate for F i�

fhinputs(f; p�); outputs(f; p�)i : f 2 Fg

is a function. Any clause that satis�es a declaration Dec 2 DetDEC must be determinate.

The set of all declarations containing only modes determinate for F will be denoted
DetDECF . Since in this paper the set F will be assumed to be �xed, we will generally omit
the subscript.

2.1.7 Bounds on Predicate Arity

We will use the notation a-DB for the set of all databases that contain only facts of arity
a or less, and a-DEC for the set of all declarations (p; a0; R) such that every string s 2 R is
of length a+ 1 or less.

2.1.8 Size Measures

The learning models presented in the following section will require the learner to use re-
sources polynomial in the size of its inputs. Assuming that all predicates are arity a or
less for some constant a allows very simple size measures to be used. In this paper, we will
measure the size of a database DB by its cardinality; the size of an extended instance (f;D)
by the cardinality of D; the size of a declaration (p; a0; R) by the cardinality of R; and the
size of a clause A B1 ^ : : :^ Br by the number of literals in its body.

2.2 A Model of Learnability

2.2.1 Preliminaries

Let X be a set. We will call X the domain, and call the elements of X instances . De�ne a
concept C over X to be a representation of some subset of X , and de�ne a language Lang
to be a set of concepts. In this paper, we will be rather casual about the distinction between
a concept and the set it represents; when there is a risk of confusion we will refer to the
set represented by a concept C as the extension of C. Two sets C1 and C2 with the same
extension are said to be equivalent . De�ne an example of C to be a pair (e; b) where b = 1 if
e 2 C and b = 0 otherwise. If D is a probability distribution function, a sample of C from
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X drawn according to D is a pair of multisets S+; S� drawn from the domain X according
to D, S+ containing only positive examples of C, and S� containing only negative ones.

Associated with X and Lang are two size complexity measures , for which we will use
the following notation:

� The size complexity of a concept C 2 Lang is written jjCjj.

� The size complexity of an instance e 2 X is written jjejj.

� If S is a set, Sn stands for the set of all elements of S of size complexity no greater
than n. For instance, Xn = fe 2 X : jjejj � ng and Langn = fC 2 Lang : jjCjj � ng.

We will assume that all size measures are polynomially related to the number of bits needed
to represent C or e; this holds, for example, for the size measures for logic programs and
databases de�ned above.

2.2.2 Polynomial Predictability

We now de�ne polynomial predictability as follows. A language Lang is polynomially
predictable i� there is an algorithm PacPredict and a polynomial function m(1

�
; 1
�
; ne; nt)

so that for every nt > 0, every ne > 0, every C 2 Langnt , every � : 0 < � < 1, every
� : 0 < � < 1, and every probability distribution function D, PacPredict has the following
behavior:

1. given a sample S+; S� of C from Xne drawn according to D and containing at least
m(1

�
; 1
�
; ne; nt) examples, PacPredict outputs a hypothesis H such that

Prob(D(H � C) +D(C �H) > �) < �

where the probability is taken over the possible samples S+ and S� and (ifPacPredict
is a randomized algorithm) over any coin 
ips made by PacPredict;

2. PacPredict runs in time polynomial in 1
�
, 1
�
, ne, nt, and the number of examples;

and

3. The hypothesis H can be evaluated in polynomial time.

The algorithm PacPredict is called a prediction algorithm for Lang, and the func-
tion m(1

�
; 1
�
; ne; nt) is called the sample complexity of PacPredict. We will sometimes

abbreviate \polynomial predictability" as \predictability".

The �rst condition in the de�nition merely states that the error rate of the hypothesis
must (usually) be low, as measured against the probability distribution D from which the
training examples were drawn. The second condition, together with the stipulation that the
sample size is polynomial, ensures that the total running time of the learner is polynomial.
The �nal condition simply requires that the hypothesis be usable in the very weak sense
that it can be used to make predictions in polynomial time. Notice that this is a worst case
learning model, as the de�nition allows an adversarial choice of all the inputs of the learner.
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2.2.3 Relation to Other Models

The model of polynomial predictability has been well-studied (Pitt & Warmuth, 1990), and
is a weaker version of Valiant's (1984) criterion of pac-learnability . A language Lang is
pac-learnable i� there is an algorithm PacLearn so that

1. PacLearn satis�es all the requirements in the de�nition of polynomial predictability,
and

2. on inputs S+ and S�, PacLearn always outputs a hypothesis H 2 Lang.

Thus if a language is pac-learnable it is predictable.
In the companion paper (Cohen, 1995), our positive results are all expressed in the model

of identi�ability from equivalence queries, which is strictly stronger than pac-learnability;
that is, anything that is learnable from equivalence queries is also necessarily pac-learnable.1

Since this paper contains only negative results, we will use the the relatively weak model
of predictability. Negative results in this model immediately translate to negative results
in the stronger models; if a language is not predictable, it cannot be pac-learnable, nor
identi�able from equivalence queries.

2.2.4 Background Knowledge in Learning

In a typical ILP system, the setting is slightly di�erent, as the user usually provides clues
about the target concept in addition to the examples, in the form of a database DB of
\background knowledge" and a set of declarations. To account for these additional inputs it
is necessary to extend the framework described above to a setting where the learner accepts
inputs other than training examples. Following the formalization used in the companion
paper (Cohen, 1995), we will adopt the notion of a \language family".

If Lang is a set of clauses, DB is a database and Dec is a declaration, we will de�ne
Lang[DB ;Dec] to be the set of all pairs (C;DB) such that C 2 Lang and C satis�es Dec.
Semantically, such a pair will denote the set of all extended instances (f;D) covered by
(C;DB). Next, if DB is a set of databases and DEC is a set of declarations, then de�ne

Lang[DB;DEC] = fLang[DB ;Dec] : DB 2 DB and Dec 2 DECg

This set of languages is called a language family .
We will now extend the de�nition of predictability queries to language families as follows.

A language family Lang[DB;DEC] is polynomially predictable i� every language in the set
is predictable. A language family Lang[DB;DEC] is polynomially predictable i� there is
a single algorithm Identify(DB ;Dec) that predicts every Lang[DB ;Dec] in the family
given DB and Dec.

The usual model of polynomial predictability is worst-case over all choices of the target
concept and the distribution of examples. The notion of polynomial predictability of a
language family extends this model in the natural way; the extended model is also worst-
case over all possible choices for database DB 2 DB and Dec 2 DEC. This worst-case

1. An equivalence query is a question of the form \is H equivalent to the target concept?" which is answered
with either \yes" or a counterexample. Identi�cation by equivalence queries essentially means that the
target concept can be exactly identi�ed in polynomial time using a polynomial of such queries.
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model may seem unintuitive, since one typically assumes that the database DB is provided
by a helpful user, rather than an adversary. However, the worst-case model is reasonable
because learning is allowed to take time polynomial in the size of smallest target concept
in the set Lang[DB ;Dec]; this means that if the database given by the user is such that
the target concept cannot be encoded succinctly (or at all) learning is allowed to take more
time.

Notice that for a language family Lang[DB ;Dec] to be polynomially predictable, every
language in the family must be polynomially predictable. Thus to show that a family is not
polynomially predictable it is su�cient to construct one language in the family for which
learning is hard. The proofs of this paper will all have this form.

2.3 Prediction-Preserving Reducibilities

The principle technical tool used in our negative results in the notion of prediction-preserving
reducibility , as introduced by Pitt and Warmuth (1990). Prediction-preserving reducibilities
are a method of showing that one language is no harder to predict than another. Formally,
let Lang1 be a language over domain X1 and Lang2 be a language over domain X2.
We say that predicting Lang1 reduces to predicting Lang2, denoted Lang1 � Lang2, if
there is a function fi : X1 ! X2, henceforth called the instance mapping , and a function
fc : Lang1 ! Lang2, henceforth called the concept mapping , so that the following all hold:

1. x 2 C if and only if fi(x) 2 fc(C) | i.e., concept membership is preserved by the
mappings;

2. the size complexity of fc(C) is polynomial in the size complexity of C|i.e., the size
of concept representations is preserved within a polynomial factor;

3. fi(x) can be computed in polynomial time.

Note that fc need not be computable; also, since fi can be computed in polynomial time,
fi(x) must also preserve size within a polynomial factor.

Intuitively, fc(C1) returns a concept C2 2 Lang2 that will \emulate" C1|i.e., make
the same decisions about concept membership|on examples that have been \preprocessed"
with the function fi. If predicting Lang1 reduces to predicting Lang2 and a learning
algorithm for Lang2 exists, then one possible scheme for learning concepts from Lang1
would be the following. First, convert any examples of the unknown concept C1 from
the domain X1 to examples over the domain X2 using the instance mapping fi. If the
conditions of the de�nition hold, then since C1 is consistent with the original examples,
the concept fc(C1) will be consistent with their image under fi; thus running the learning
algorithm for Lang2 should produce some hypothesis H that is a good approximation of
fc(C1). Of course, it may not be possible to map H back into the original language Lang1,
as computing fc

�1 may be di�cult or impossible. However, H can still be used to predict
membership in C1: given an example x from the original domain X1, one can simply predict
x 2 C1 to be true whenever fi(x) 2 H .

Pitt and Warmuth (1988) give a more rigorous argument that this approach leads to a
prediction algorithm for Lang1, leading to the following theorem.
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Theorem 1 (Pitt and Warmuth) Assume Lang1 � Lang2. Then if Lang1 is not poly-
nomially predictable, Lang2 is not polynomially predictable.

3. Cryptographic Limitations on Learning Recursive Programs

Theorem 1 allows one to transfer hardness results from one language to another. This is
useful because for a number of languages, it is known that prediction is as hard as breaking
cryptographic schemes that are widely assumed to be secure. For example, it is known
that predicting the class of languages accepted by deterministic �nite state automata is
\cryptographically hard", as is the class of languages accepted by log-space bounded Turing
machines.

In this section we will make use of Theorem 1 and previous cryptographic hardness
results to show that certain restricted classes of recursive logic programs are hard to learn.

3.1 Programs With n Linear Recursive Clauses

In a companion paper (Cohen, 1995) we showed that a single linear closed recursive clause
was identi�able from equivalence queries. In this section we will show that a program with
a polynomial number of such clauses is not identi�able from equivalence queries, nor even
polynomially predictable.

Speci�cally, let us extend our notion of a \family of languages" slightly, and let
DLog[n; s] represent the language of log-space bounded deterministic Turing machines with
up to s states accepting inputs of size n or less, with the usual semantics and complexity
measure.2 Also let d-DepthLinRecProg denote the family of logic programs containing
only depth-d linear closed recursive clauses, but containing any number of such clauses. We
have the following result:

Theorem 2 For every n and s, there exists a database DBn;s 2 1-DB and declaration
Decn;s 2 1-DetDEC of sizes polynomial in n and s such that

DLog[n; s] � 1-DepthLinRecProg[DBn;s;Decn;s]

Hence for d � 1 and a � 1, d-DepthLinRecProg[DB; a-DetDEC] is not uniformly poly-
nomially predictable under cryptographic assumptions.3

Proof: Recall that a log-space bounded Turing machine (TM) has an input tape of length
n, a work tape of length log2 n which initially contains all zeros, and a �nite state control
with state set Q. To simplify the proof, we assume without loss of generality that the tape
and input alphabets are binary, that there is a single accepting state qf 2 Q, and that the
machine will always erase its work tape and position the work tape head at the far left after
it decides to accept its input.

At each time step, the machine will read the tape squares under its input tape head and
work tape head, and based on these values and its current state q, it will

2. I.e., a machine represents the set of all inputs that it accepts, and its complexity is the number of states.
3. Speci�cally, this language is not uniformly polynomially predictable unless all of the following crypto-

graphic problems can be solved in polynomial time: solving the quadratic residue problem, inverting the
RSA encryption function, and factoring Blum integers. This result holds because all of these crypto-
graphic problems can be reduced to learning DLOG Turing machines (Kearns & Valiant, 1989).
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� write either a 1 or a 0 on the work tape,

� shift the input tape head left or right,

� shift the work tape head left or right, and

� transition to a new internal state q0

A deterministic machine can thus be speci�ed by a transition function

� : f0; 1g� f0; 1g� Q �! f0; 1g� fL;Rg � fL;Rg �Q

Let us de�ne the internal con�guration of a TM to consist of the string of symbols
written on the worktape, the position of the tape heads, and the internal state q of the
machine: thus a con�guration is an element of the set

CON � f0; 1glog2 n � f1; : : : ; log2 ng � f1; : : : ; ng �Q

A simpli�ed speci�cation for the machine is the transition function

�0 : f0; 1g � CON ! CON

where the component f0; 1g represents the contents of the input tape at the square below
the input tape head.

Notice that for a machine whose worktape size is bounded by log n, the cardinality of
CON is only p = jQjn2 log2 n, a polynomial in n and s = jQj. We will use this fact in our
constructions.

The background database DBn;s is as follows. First, for i = 0; : : : ; p, an atom of the
form coni(ci) is present. Each constant ci will represent a di�erent internal con�guration of
the Turing machine. We will also arbitrarily select c1 to represent the (unique) accepting
con�guration, and add to DBn;s the atom accepting(c1). Thus

DBn;s � fconi(ci)g
p
i=1 [ faccepting(c1)g

Next, we de�ne the instance mapping. An instance in the Turing machine's domain is
a binary string X = b1 : : : bn; this is mapped by fi to the extended instance (f;D) where

f � accepting(c0)

D � ftrueigbi2X:bi=1 [ ffalseigbi2X:bi=0

The description atoms have the e�ect of de�ning the predicate truei to be true i� the i-th
bit of X is a \1", and the de�ning the predicate falsei to be true i� the i-th bit of X is
\0". The constant c0 will represent the start con�guration of the Turing machine, and the
predicate accepting(C) will be de�ned so that it is true i� the Turing machine accepts input
X starting from state C.

We will let Decn;s = (accepting; 1; R) where R contains the modes coni(+) and coni(�),
for i = 1; : : : ; p; and truej and falsej for j = 1; : : : ; n.

Finally, for the concept mapping fc, let us assume some arbitrary one-to-one mapping
� between the internal con�gurations of a Turing machine M and the predicate names
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con0,: : : ,conp�1 such that the start con�guration (0log2 n; 1; q0) maps to con0 and the ac-
cepting con�guration (0log2 n; 1; qf) maps to con1. We will construct the program fc(M)
as follows. For each transition �0(1; c) ! c0 in �0, where c and c0 are in CON , construct a
clause of the form

accepting(C)  conj(C) ^ truei ^ conj0(C1) ^ accepting(C1).

where i is the position of the input tape head which is encoded in c, conj = �(c), and
conj0 = �(c0). For each transition �0(0; c) ! (c0) in �0 construct an analogous clause, in
which truei is replaced with falsei.

Now, we claim that for this program P , the machine M will accept when started in
con�guration ci i�

DBn;s ^D ^ P ` accepting(ci)

and hence that this construction preserves concept membership. This is perhaps easi-
est to see by considering the action of a top-down theorem prover when given the goal
accepting(C ): the sequence of subgoals accepting(ci), accepting(ci+1 ), : : :generated by the
theorem-prover precisely parallel the sequence of con�gurations ci, : : :entered by the Turing
machine.

It is easily veri�ed that the size of this program is polynomial in n and s, and that the
clauses are linear recursive, determinate, and of depth one, completing the proof.

There are number of ways in which this result can be strengthened. Precisely the
same construction used above can be used to reduce the class of nondeterministic log-space
bounded Turing machines to the constant-depth determinate linear recursive programs.
Further, a slight modi�cation to the construction can be used to reduce the class of log-space
bounded alternating Turing machines (Chandra, Kozen, & Stockmeyer, 1981) to constant-
depth determinate 2-ary recursive programs. The modi�cation is to emulate con�gurations
corresponding to universal states of the Turing machine with clauses of the form

accepting(C)  
conj(C) ^ truei ^
conj10(C1) ^ accepting(C1) ^
conj20(C2) ^ accepting(C2).

where conj1 0 and conj2 0 are the two successors to the universal con�guration conj . This is
a very strong result, since log-space bounded alternating Turing machines are known to be
able to perform every polynomial-time computation.

3.2 Programs With One n-ary Recursive Clause

We will now consider learning a single recursive clause with arbitrary closed recursion.
Again, the key result of this section is an observation about expressive power: there is
a background database that allows every log-space deterministic Turing machine M to
be emulated by a single recursive constant-depth determinate clause. This leads to the
following negative predictability result.
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Theorem 3 For every n and s, there exists a database DBn;s 2 3-DB and declaration
Decn;s 2 3-DetDEC of sizes polynomial in n and s such that

DLog[n; s] � 3-DepthRec[DBn;s;Decn;s]

Hence for d � 3 and a � 3, d-DepthRec[DBn; a-DetDEC] is not uniformly polynomially
predictable under cryptographic assumptions.

Proof: Consider a DLOG machine M . As in the proof of Theorem 2, we assume without
loss of generality that the tape alphabet is f0; 1g, that there is a unique starting con�gura-
tion c0, and that there is a unique accepting con�guration c1. We will also assume without
loss of generality that there is a unique \failing" con�guration cfail; and that there is exactly
one transition of the form

�0(b; cj)! c0j

for every combination of i 2 f1; : : : ; ng, b 2 f0; 1g, and cj 2 CON � fc1; cfailg. Thus on
input X = x1 : : : xn the machine M starts with CONFIG=c0, then executes transitions
until it reaches CONFIG=c1 or CONFIG=cfail, at which point X is accepted or rejected
(respectively). We will use p for the number of con�gurations. (Recall that p is polynomial
in n and s.)

To emulate M , we will convert an example X = b1 : : : bn into the extended instance
fi(X) = (f;D) where

f � accepting(c0)

D � fbit i(bi)g
n
i=1

Thus the predicate bit i(X) binds X to the i-th bit of the TM's input tape. We also will
de�ne the following predicates in the background database DBn;s.

� For every possible b 2 f0; 1g and j : 1 � j � p(n), the predicate statusb;j(B,C,Y) will
be de�ned so that given bindings for variables B and C, statusb;j(B,C,Y) will fail if
C = cfail; otherwise it will succeed, binding Y to active if B = b and C = cj and
binding Y to inactive otherwise.

� For j : 1 � j � p(n), the predicate nextj(Y,C) will succeed i� Y can be bound to
either active or inactive. If Y = �, then C will be bound to cj ; otherwise, C will be
bound to the accepting con�guration c1.

� The database also contains the fact accepting(c1).

It is easy to show that the size of this database is polynomial in n and s.

The declaration Decn;s is de�ned to be (accepting; 1; R) where R includes the modes
statusbj(+;+;�), nextj(+;�), and bit i(�) for b 2 f0; 1g, j = 1; : : : ; p, and i = 1; : : : ; n.

Now, consider the transition rule �0(b; cj)! c0j , and the corresponding conjunction

TRANSibj � biti(Bibj) ^ statusb;j(C,Bibj ,Yibj) ^ nextj0(Yibj ,C1ibj) ^ accepting(C1ibj)
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Given DBn;s andD, and assuming that C is bound to some con�guration c, this conjunction
will fail if c = cfail. It will succeed if xi 6= b or c 6= cj ; in this case Yibj will be bound to
inactive, C1ibj will be bound to c1, and the recursive call succeeds because accepting(c1) is in
DBn;s. Finally, if xi = b and c = cj , TRANSibj will succeed only if the atom accepting(cj0)
is provable; in this case, Yibj will be bound to active and C1ibj will be bound to cj0 .

From this it is clear that the clause fc(M) below

accepting(C) 
^

i2f1;:::;ng; b2f0;1g

j2f1;:::;pg

TRANSibj

will correctly emulate the machine M on examples that have been preprocessed with the
function fi described above. Hence this construction preserves concept membership. It is
also easily veri�ed that the size of this program is polynomial in n and s, and that the
clause is determinate and of depth three.

3.3 One k-Local Linear Closed Recursive Clause

So far we have considered only one class of extensions to the positive result given in the
companion paper (Cohen, 1995)|namely, relaxing the restrictions imposed on the recursive
structure of the target program. Another reasonable question to ask is if linear closed
recursive programs can be learned without the restriction of constant-depth determinacy.

In earlier papers (Cohen, 1993a, 1994a, 1993b) we have studied the conditions under
which the constant-depth determinacy restriction can be relaxed while still allowing learn-
ability for nonrecursive clauses. It turns out that most generalizations of constant-depth
determinate clauses are not predictable, even without recursion. However, the language of
nonrecursive clauses of constant locality is a pac-learnable generalization of constant-depth
determinate clauses. Below, we will de�ne this language, summarize the relevant previous
results, and then address the question of the learnability of recursive local clauses.

De�ne a variable V appearing in a clause C to be free if it appears in the body of C but
not the head of C. Let V1 and V2 be two free variables appearing in a clause. V1 touches V2
if they appear in the same literal, and V1 in
uences V2 if it either touches V2, or if it touches
some variable V3 that in
uences V2. The locale of a free variable V is the set of literals that
either contain V , or that contain some free variable in
uenced by V . Informally, variable
V1 in
uences variable V2 if the choice of a binding for V1 can a�ect the possible choices of
bindings for V2.

The locality of a clause is the size of its largest locale. Let k-LocalNonRec denote the
language of nonrecursive clauses with locality k or less. (That is, k-LocalNonRec is the
set of logic programs containing a single nonrecursive k-local clause.) The following facts
are known (Cohen, 1993b):

� For �xed k and a, the language family k-LocalNonRec[a-DB; a-DEC] is uniformly
pac-learnable.

� For every constant d, every constant a, every database DB 2 a-DB, every declaration
Dec 2 a-DetDEC , and every clause C 2 d-DepthNonRec[DB ;Dec], there is an
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equivalent clause C0 in k-LocalNonRec[DB ;Dec] of size bounded by kjjCjj, where k
is a function only of a and d (and hence is a constant if d and a are also constants.)

Hence
k-LocalNonRec[DB; a-DEC]

is a pac-learnable generalization of

d-DepthNonRec[DB; a-DetDEC]

It is thus plausible to ask if recursive programs of k-local clauses are pac-learnable. Some
facts about the learnability of k-local programs follow immediately from previous results.
For example, an immediate consequence of the construction of Theorem 2 is that programs
with a polynomial number of linear recursive k-local clauses are not predictable for k � 2.
Similarly, Theorem 3 shows that a single recursive k-local clause is not predictable for k � 4.

It is still reasonable to ask, however, if the positive result for bounded-depth determinate
recursive clauses (Cohen, 1995) can be extended to k-ary closed recursive k-local clauses.
Unfortunately, we have the following negative result, which shows that even linear closed
recursive clauses are not learnable.

Theorem 4 Let Dfa[s] denote the language of deterministic �nite automata with s states,
and let k-LocalLinRec be the set of linear closed recursive k-local clauses. For any con-
stant s there exists a database DB s 2 3-DB and a declaration Decs 2 3-DEC, both of size
polynomial in s, such that

Dfa[s] � 3-LocalLinRec[DB s;Decs]

Hence for k � 3 and a � 3, k-LocalLinRec[a-DB;Dec] is not uniformly polynomially
predictable under cryptographic assumptions.

Proof: Following Hopcroft and Ullman (1979) we will represent a DFAM over the alphabet
� as a tuple (q0; Q; F; �) where q0 is the initial state, Q is the set of states, F is the set of
accepting states, and � : Q � � ! Q is the transition function (which we will sometimes
think of as a subset of Q���Q). To prove the theorem, we need to construct a database
DB s of size polynomial in s such that every s-state DFA can be emulated by a linear
recursive k-local clause over DB s.

Rather than directly emulating M , it will be convenient to emulate instead a modi�ca-
tion of M . Let M̂ be a DFA with state set Q̂ � Q [ fq(�1); qe; qfg, where q(�1), qe and qf

are new states not found in Q. The initial state of M̂ is q(�1). The only �nal state of M̂ is

qf . The transition function of M̂ is

�̂ � � [ f(q(�1); a; q0); (qe; c; qf)g [
[
qi2F

f(qi; b; qe)g

where a, b, and c are new letters not in �. Note that M̂ is now a DFA over the alphabet
� [ fa; b; cg, and, as described, need not be a complete DFA over this alphabet. (That
is, there may be pairs (qi; a) such that �̂(qi; a) is unde�ned.) However, M̂ can be easily
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Figure 1: How a DFA is modi�ed before emulation with a local clause
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made complete by introducing an additional rejecting state qr, and making every unde�ned
transition lead to qr. More precisely, let �0 be de�ned as

�0 � �̂ [ f(qi; x; qr) j qi 2 Q̂ ^ x 2 � [ fa; b; cg ^ (6 9qj : (qi; x; qj) 2 �̂)g

ThusM 0 = (q(�1); Q̂[fqrg; fqfg; �
0) is a \completed" version of M̂ , with Q0 = Q̂[fqrg. We

will use M 0 in the construction below; we will also let Q0 = Q̂[ fqrg and �0 = �[ fa; b; cg.
Examples of M , M̂ and M 0 are shown in Figure 1. Notice that aside from the arcs into

and out of the rejecting state qr, the state diagram of M 0 is nearly identical to that of M .
The di�erences are that in M 0 there is a new initial state q(�1) with a single outgoing arc
labeled a to the old initial state q0; also every �nal state of M has in M 0 an outgoing arc
labeled b to a new state qe, which in turn has a single outgoing arc labeled c to the �nal
state qf . It is easy to show that

x 2 L(M) i� axbc 2 L(M 0)

Now, given a set of states Q0 we de�ne a database DB that contains the following
predicates:

� arcqi;�;qj(S,X,T) is true for any S 2 Q0, any T 2 Q0, and any X 2 �0, unless S = qi,
X = �, and T 6= qj .

� state(S) is true for any S 2 Q0.

� accept(c,nil,qe,qf) is true.

As motivation for the arc predicates, observe that in emulating M 0 it is clearly useful to be
able to represent the transition function �0. The usefulness of the arc predicates is that any
transition function �0 can be represented using a conjunction of arc literals. In particular,
the conjunction ^

(qi;�;qj)2�0

arcqi;�;qj(S;X; T )

succeeds when �0(S;X) = T , and fails otherwise.
Let us now de�ne the instance mapping fi as fi(x) = (f;D) where

f = accept(a; xbc; q(�1); q0)

and D is a set of facts that de�nes the components relation on the list that corresponds to
the string xbc. In other words, if x = �1 : : :�n, then D is the set of facts

components(�1 : : : �nbc; �1; �2 : : :�nbc)
components(�2 : : : �nbc; �2; �3 : : :�nbc)
...
components(c,c,nil)

The declaration Decn will be Decn = (accept ; 4; R) where R contains the modes
components(+;�;�), state(�), and arcqi;�;qj(+;+;+) for qi, qj in Q0, and � 2 �0.

Finally, de�ne the concept mapping fc(M) for a machine M to be the clause
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accept(X,Ys,S,T)  V
(qi;�;qj)2�0 arcqi;�;qj(S,X,T)

^ components(Ys,X1,Ys1) ^ state(U) ^ accept(X1,Ys1,T,U).

where �0 is the transition function for the corresponding machine M 0 de�ned above. It is
easy to show this construction is polynomial.

In the clause X is a letter in �0, Ys is a list of such letters, and S and T are both states
in Q0. The intent of the construction is that the predicate accept will succeed exactly when
(a) the string XYs is accepted byM 0 when M 0 is started in state S, and (b) the �rst action
taken by M 0 on the string XYs is to go from state S to state T .

Since all of the initial transitions in M 0 are from q(�1) to q0 on input a, then if the
predicate accept has the claimed behavior, clearly the proposed mapping satis�es the re-
quirements of Theorem 1. To complete the proof, therefore, we must now verify that the
predicate accept succeeds i� XYs is accepted by M 0 in state S with an initial transition to
T .

From the de�nition of DFAs the string XYs is accepted by M 0 in state S with an initial
transition to T i� one of the following two conditions holds.

� �0(S;X) = T , Ys is the empty string and T is a �nal state of M 0, or;

� �0(S;X) = T , Ys is a nonempty string (and hence has some head X1 and some tail
Ys1) and Ys1 is accepted by M 0 in state T , with any initial transition.

The base fact accept(c,nil,qe,qf ) succeeds precisely when the �rst case holds, since in
M 0 this transition is the only one to a �nal state. In the second case, the conjunction of the
arc conditions in the fc(M) clause succeeds exactly when �(S;X) = T (as noted above).
Further the second conjunction in the clause can be succeeds when Ys is a nonempty string
with head X1 and tail Ys1 and X1Ys1 is accepted by M 0 in state T with initial transition
to any state U , which corresponds exactly to the second case above.

Thus concept membership is preserved by the mapping. This completes the proof.

4. DNF-Hardness Results for Recursive Programs

To summarize previous results for determinate clauses, it was shown that while a single
k-ary closed recursive depth-d clause is pac-learnable (Cohen, 1995), a set of n linear closed
recursive depth-d clauses is not; further, even a single n-ary closed recursive depth-d clauses
is not pac-learnable. There is still a large gap between the positive and negative results,
however: in particular, the learnability of recursive programs containing a constant number
of k-ary recursive clauses has not yet been established.

In this section we will investigate the learnability of these classes of programs. We will
show that programs with either two linear closed recursive clauses or one linear closed re-
cursive clause and one base case are as hard to learn as boolean functions in disjunctive
normal form (DNF). The pac-learnability of DNF is a long-standing open problem in com-
putational learning theory; the import of these results, therefore, is that establishing the
learnability of these classes will require some substantial advance in computational learning
theory.
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4.1 A Linear Recursive Clause Plus a Base Clause

Previous work has established that two-clause constant-depth determinate programs con-
sisting of one linear recursive clause and one nonrecursive clause can be identi�ed, given
two types of oracles: the standard equivalence-query oracle, and a \basecase oracle' (Cohen,
1995). (The basecase oracle determines if an example is covered by the nonrecursive clause
alone.) In this section we will show that in the absence of the basecase oracle, the learning
problem is as hard as learning boolean DNF.

In the discussion below, Dnf[n; r] denotes the language of r-term boolean functions in
disjunctive normal form over n variables.

Theorem 5 Let d-Depth-2-Clause be the set of 2-clause programs consisting of one
clause in d-DepthLinRec and one clause in d-DepthNonRec. Then for any n and
any r there exists a database DBn;r 2 2-DB and a declaration Decn;r 2 2-DEC, both of sizes
polynomial in n and r, such that

Dnf[n; r] � 1-Depth-2-Clause[DBn;r;Decn;r]

Hence for a � 2 and d � 1 the language family d-Depth-2-Clause[DB; a-DetDEC] is
uniformly polynomially predictable only if DNF is polynomially predictable.

Proof: We will produce a DBn;r 2 DB and Decn;r 2 2-DetDEC such that predicting
DNF can be reduced to predicting 1-Depth-2-Clause[DBn;r;Decn;r]. The construction
makes use of a trick �rst used in Theorem 3 of (Cohen, 1993a), in which a DNF formula is
emulated by a conjunction containing a single variable Y which is existentially quanti�ed
over a restricted range.

We begin with the instance mapping fi. An assignment � = b1 : : : bn will be converted
to the extended instance (f;D) where

f � p(1)

D � fbit i(bi)g
n
i=1

Next, we de�ne the database DBn;r to contain the binary predicates true1, false1, : : : , truer,
falser which behave as follows:

� truei(X,Y) succeeds if X = 1, or if Y 2 f1; : : : ; rg � fig.

� falsei(X,Y) succeeds if X = 0, or if Y 2 f1; : : : ; rg � fig.

Further, DBn;r contains facts that de�ne the predicate succ(Y,Z) to be true whenever
Z = Y + 1, and both Y and Z are numbers between 1 and r. Clearly the size of DBn;r is
polynomial in r.

Let Decn;r = (p; 1; R) where R contains the modes bit i(�), for i = 1; : : : ; n; truej(+;+)
and falsej(+;+), for j = 1; : : : ; r, and succ(+;�).

Now let � be an r-term DNF formula � = _ri=1 ^
si
j=1 lij over the variables v1; : : : ; vn.

We may assume without loss of generality that � contains exactly r terms, since any DNF
formula with fewer than r terms can be padded to exactly r terms by adding terms of the
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Background database:
for i = 1; : : : ; r
truei(b; y) for all b; y : b = 1 or y 2 f1; : : : ; rg but y 6= i

falsei(b; y) for all b; y : b = 0 or y 2 f1; : : : ; rg but y 6= i

succ(y,z) if z = y + 1 and y 2 f1; : : : ; rg and z 2 f1; : : : ; rg

DNF formula: (v1 ^ v3 ^ v4) _ (v2 ^ v3) _ (v1 ^ v4)

Equivalent program:
p(Y)  succ(Y,Z)^p(Z).
p(Y)  bit1(X1) ^ bit2(X2) ^ bit3(X3) ^ bit4(X4) ^
true1(X1,Y) ^ false1(X3,Y) ^ true1(X4,Y) ^
false2(X2,Y) ^ false2(X3,Y)^
true3(X1,Y) ^ false3(X4,Y).

Instance mapping: fi(1011) = (p(1); fbit1(1); bit2(0); bit3(1); bit4(1)g)

Figure 2: Reducing DNF to a recursive program

form v1v1. We now de�ne the concept mapping fc(�) to be the program CR; CB where CR

is the linear recursive depth 1 determinate clause

p(Y ) succ(Y; Z)^ p(Z)

and CB is the nonrecursive depth 1 determinate clause

p(Y ) 
n̂

k=1

bitk(Xk) ^
r̂

i=1

sî

j=1

Bij

where Bij is de�ned as follows:

Bij �

(
truei(Xk,Y) if lij = vk
falsei(Xk,Y) if lij = vk

An example of the construction is shown in Figure 2; we suggest that the reader refer
to this �gure at this point. The basic idea behind the construction is that �rst, the clause
CB will succeed only if the variable Y is bound to i and the i-th term of � succeeds (the
de�nitions of truei and falsei are designed to ensure that this property holds); second, the
recursive clause CR is constructed so that the program fc(�) succeeds i� CB succeeds with
Y bound to one of the values 1; : : : ; n.

We will now argue more rigorously for the correctness of the construction. Clearly, fi(�)
and fc(�) are of the same size as � and � respectively. Since DBn;r is also of polynomial
size, this reduction is polynomial.

Figure 3 shows the possible proofs that can be constructed with the program fc(�);
notice that the program fc(�) succeeds exactly when the clause CB succeeds for some value
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Figure 3: Space of proofs possible with the program fc(�)

of Y between 1 and r. Now, if � is true then some term Ti =
Vsi
j=1 lij must be true; in

this case
Vsi
j=1Bij succeeds with Y bound to the value i and

Vsi0
j=1Bi0j for every i0 6= i also

succeeds with Y bound to i. On the other hand, if � is false for an assignment, then each Ti
fails, and hence for every possible binding of Y generated by repeated use of the recursive
clause CR the base clause CB will also fail. Thus concept membership is preserved by the
mapping.

This concludes the proof.

4.2 Two Linear Recursive Clauses

Recall again that a single linear closed recursive clause is identi�able from equivalence
queries (Cohen, 1995). A construction similar to that used in Theorem 5 can be used to
show that this result cannot be extended to programs with two linear recursive clauses.

Theorem 6 Let d-Depth-2-Clause0 be the set of 2-clause programs consisting of two
clauses in d-DepthLinRec. (Thus we assume that the base case of the recursion is given
as background knowledge.) Then for any constants n and r there exists a database DBn;r 2
2-DB and a declaration Decn;r 2 2-DEC, both of sizes polynomial in n, such that

Dnf[n; r] � 1-Depth-2-Clause0[DBn;r;Decn;r]

Hence for any constants a � 2 and d � 1 the language family

d-Depth-2-Clause0[DB; a-DetDEC]
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is uniformly polynomially predictable only if DNF is polynomially predictable.

Proof: As before, the proof makes use of a prediction-preserving reducibility from DNF to
d-Depth-2-Clause0[DB ;Dec] for a speci�c DB and Dec. Let us assume that � is a DNF
with r terms, and further assume that r = 2k. (Again, this assumption is made without
loss of generality, since the number of terms in � can be increased by padding with vacuous
terms.) Now consider a complete binary tree of depth k+ 1. The k-th level of this tree has
exactly r nodes; let us label these nodes 1, : : : , r, and give the other nodes arbitrary labels.
Now construct a database DBn;r as in Theorem 5, except for the following changes:

� The predicates truei(b,y) and falsei(b,y) also succeed when y is the label of a node at
some level below k.

� Rather than the predicate succ, the database contains two predicates leftson and
rightson that encode the relationship between nodes in the binary tree.

� The database includes the facts p(!1), : : : , p(!2r), where !1, : : : , !2r are the leaves
of the binary tree. These will be used as the base cases of the recursive program that
is to be learned.

Let � be the label of the root of the binary tree. We de�ne the instance mapping to be

fi(b1 : : : b1) � (p(�); fbit1(b1); : : : ; bitn(bn)g)

Note that except for the use of � rather than 1, this is identical to the instance mapping
used in Theorem 5. Also let Decn;r = (p; 1; R) where R contains the modes bit i(�), for i =
1; : : : ; n; truej(+;+) and falsej(+;+), for j = 1; : : : ; r; leftson(+;�); and rightson(+;�).

The concept mapping fc(�) is the pair of clauses R1; R2, where R1 is the clause

p(Y ) 
n̂

k=1

bitk(Xk) ^
r̂

i=1

sî

j=1

Bij ^ leftson(Y; Z)^ p(Z)

and R2 is the clause

p(Y ) 
n̂

k=1

bitk(Xk) ^
r̂

i=1

sî

j=1

Bij ^ rightson(Y; Z)^ p(Z)

Note that both of these clause are linear recursive, determinate, and have depth 1. Also,
the construction is clearly polynomial. It remains to show that membership is preserved.

Figure 4 shows the space of proofs that can be constructed with the program fc(�); as
in Figure 3, B(i) abbreviates the conjunction

V
bit i(Xi)^

VV
Bij . Notice that the program

will succeed only if the recursive calls manage to �nally recurse to one of the base cases
p(!1), : : : , p(!2r), which correspond to the leaves of the binary tree. Both clauses will both
succeed on the the �rst k � 1 levels of the tree. However, to reach the base cases of the
recursion at the leaves of the tree, the recursion must pass through the k-th level of the tree;
that is, one of the clauses above must succeed on some node y of the binary tree, where
y is on the k-th level of the tree, and hence the label of y is a number between 1 and r.
The program thus succeeds on fi(�) precisely when there is some number y between 1 and
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Figure 4: Proofs possible with the program fc(�)

r such that the conjunction B(i) succeeds, which (by the argument given in Theorem 5)
can happen if and only if � is satis�ed by the assignment �. Thus, the mappings preserve
concept membership. This completes the proof.

Notice that the programs fc(�) used in this proof all have the property that the depth
of every proof is logarithmic in the size of the instances. This means that the hardness
result holds even if one additionally restricts the class of programs to have a logarithmic
depth bound.

4.3 Upper Bounds on the Di�culty of Learning

The previous sections showed that several highly restricted classes of recursive programs
are at least as hard to predict as DNF. In this section we will show that these restricted
classes are also no harder to predict than DNF.

We will wish to restrict the depth of a proof constructed by a target program. Thus, let
h(n) be any function; we will use Langh(n) for the set of programs in the class Lang such
that all proofs of an extended instance (f;D) have depth bounded by h(jjDjj).
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Theorem 7 Let Dnf[n; �] be the language of DNF boolean functions (with any number
of terms), and recall that d-Depth-2-Clause is the language of 2-clause programs con-
sisting of one clause in d-DepthLinRec and one clause in d-DepthNonRec, and that
d-Depth-2-Clause0 is the language of 2-clause programs consisting of two clauses in
d-DepthLinRec.

For all constants d and a, and all databases DB 2 DB and declarations Dec 2 a-DetDEC,
there is a polynomial function poly(n) such that

� d-Depth-2-Clause[DB ;Dec] � Dnf[poly(jjDB jj); �]

� d-Depth-2-Clause0h(n)[DB ;Dec] � Dnf[poly(jjDB jj); �] if h(n) is bounded by c logn
for some constant c.

Hence if either of these language families is uniformly polynomially predictable, then Dnf[n; �]
is polynomially predictable.

Proof: The proof relies on several facts established in the companion paper (Cohen, 1995).

� For every declaration Dec, there is a clause BOTTOM �
d(Dec) such that every nonre-

cursive depth-d determinate clause C is equivalent to some subclause of BOTTOM �
d.

Further, the size of BOTTOM �d is polynomial in Dec. This means that the lan-
guage of subclauses of BOTTOM � is a normal form for nonrecursive constant-depth
determinate clauses.

� Every linear closed recursive clause CR that is constant-depth determinate is equiv-
alent to some subclause of BOTTOM� plus a recursive literal Lr; further, there are
only a polynomial number of possible recursive literals Lr.

� For any constants a, a0, and d, any database DB 2 a-DB, any declaration Dec =
(p; a0; R), any databaseDB 2 a-DB, and any program P in d-Depth-2-Clause[DB ;Dec],
the depth of a terminating proof constructing using P is no more than hmax, where
hmax is a polynomial in the size of DB and Dec.

� At can be assumed without loss of generality that the databaseDB and all decsriptions
D contain an equality predicate, where an equality predicate is simply a predicate
equal(X,Y) which is true exactly when X = Y .

The idea of the proof is to contruct a prediction-preserving reduction between the two
classes of recursive programs listed above to and DNF. We will begin with two lemmas.

Lemma 8 Let Dec 2 a-DetDEC, and let C be a nonrecursive depth-d determinate clause
consistent with Dec. Let SubclauseC denote the language of subclauses of C, and let
Monomial[u] denote the language of monomials over u variables. Then there is a polyno-
mial poly1 so that for any database DB 2 DB,

SubclauseC [DB ;Dec] � Monomial[poly1(jjDB jj)]
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Proof of lemma: Follows immediately from the construction used in Theorem 1 of
D�zeroski, Muggleton, and Russell (D�zeroski et al., 1992). (The basic idea of the construc-
tion is to introduce a propositional variable representing the \success" of each connected
chain of literals in C. Any subclause of C can then be represented as a conjunction of these
propositions.)

This lemma can be extended as follows.

Lemma 9 Let Dec 2 a-DetDEC, and let S = fC1; : : : ; Crg be a set of r nonrecursive depth-
d determinate clauses consistent with Dec, each of length n or less. Let SubclauseS denote
the set of all programs of the form P = (D1; : : : ; Ds) such that each Di is a subclause of
some Cj 2 S.

Then there is a polynomial poly2 so that for any database DB 2 DB,

SubclauseS [DB ;Dec] � Dnf[poly2(jjDBjj; r); �]

Proof of lemma: By Lemma 8, for each Ci 2 S, there is a set of variables Vi of size
polynomial in jjDB jj such that every clause in SubclauseCi

can be emulated by a monomial
over Vi. Let V =

Sr
i=1 Vi. Clearly, jV j is polynomial in n and r, and every clause inS

i SubclauseCi
can be also emulated by a monomial over V . Further, every disjunction

of r such clauses can be represented by a disjunction of such monomials.
Since the Ci's all satisfy a single declaration Dec = (p; a; R), they have heads with the

same principle function and arity; further, we may assume (without loss of generality, since
an equality predicate is assumed) that the variables appearing in the heads of these clauses
are all distinct. Since the Ci's are also nonrecursive, every program P 2 SubclauseS can
be represented as a disjunction D1_ : : :_Dr where for all i, Di 2 (

S
i SubclauseCi

). Hence
every P 2 SubclauseS can be represented by an r-term DNF over the set of variables V .

Let us now introduce some additional notation. If C and D are clauses, then we will use
C u D to denote the result of resolving C and D together, and Ci to denote the result of
resolving C with itself i times. Note that C u D is unique if C is linear recursive and C and
D have the same predicate in their heads (since there will be only one pair of complementary
literals.)

Now, consider some target program

P = (CR; CB) 2 d-Depth-2-Clause[DB ;Dec]

where CR is the recursive clause and CB is the base. The proof of any extended instance
(f;D) must use clause CR repeatedly h times and then use clause CB to resolve away
the �nal subgoal. Hence the nonrecursive clause Ch

R u CB could also be used to cover the
instance (f;D).

Since the depth of any proof for this class of programs is bounded by a number hmax

that is polynomial in jjDBjj and ne, the nonrecursive program

P 0 = fCh
R u CB : 0 � h � hmax g
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is equivalent to P on extended instances of size ne or less.
Finally, recall that we can assume that CB is a subclause of BOTTOM �

d; also, there
is a polynomial-sized set LR = Lr1 ; : : : ; Lrp of closed recursive literals such that for some
Lri 2 LR, the clause CR is a subclause of BOTTOM �

d [ Lri . This means that if we let S
be the polynomial-sized set

S1 = f(BOTTOM
�
d [ Lri)

h u BOTTOM �
d j 0 � h � hmax and Lri 2 LRg

then P 0 2 SubclauseS1 . Thus by Lemma 9, d-Depth-2-Clause � Dnf. This concludes
the proof of the �rst statement in the the theorem.

To show that

d-Depth-2-Clause0h(n)[DB ;Dec] � Dnf[poly(jjDB jj; �]

a similar argument applies. Let us again introduce some notation, and de�ne
MESHh;n(CR1

; CR2
) as the set of all clauses of the form

CRi;1
u CRi;2

u : : : u CRi;h0

where for all j, CRij
= CR1

or CRij
= CR2

, and h0 � h(n). Notice that for functions
h(n) � c logn the number of such clauses is polynomial in n.

Now let p be the predicate appearing in the heads of CR1 and CR2
, and let Ĉ (respectively

D̂B) be a a version of C (DB) in which every instance of the predicate p has been replaced
with a new predicate p̂. If P is a recursive program P = fCR1

; CR2
g in d-Depth-2-Clause0

over the database DB , then P ^ DB is equivalent4 to the nonrecursive program P 0 ^ D̂B,
where

P 0 = fĈ j C 2MESHh;ne(CR1
; CR2

)g

Now recall that there are a polynomial number of recursive literals Lri , and hence a
polynomial number of pairs of recursive literals Lri ; Lrj . This means that the set of clauses

S2 =
[

(Lri
;Lrj

)2LR�LR

fĈ j C 2 MESHh;ne(BOTTOM
�
d [ Lri ;BOTTOM

�
d [ Lrj )g

is also polynomial-sized; furthermore, for any program P in the language d-Depth-2-Clause,
P 0 2 SubclauseS2 . The second part of the theorem now follows by application of Lemma 9.

An immediate corollary of this result is that Theorems 6 and 5 can be strengthened as
follows.

Corollary 10 For all constants d � 1 and a � 2, the language family

d-Depth-2-Clause[DB; a-DetDEC]

is uniformly polynomially predictable if and only if DNF is polynomially predictable.
For all constants d � 1 and a � 2, the language family

d-Depth-2-Clause0[DB; a-DetDEC]

is uniformly polynomially predictable if and only if DNF is polynomially predictable.

4. On extended instances of size ne or less.
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Thus in an important sense these learning problems are equivalent to learning boolean
DNF. This does not resolve the questions of the learnability of these languages, but does
show that their learnability is a di�cult formal problem: the predictability of boolean DNF
is a long-standing open problem in computational learning theory.

5. Related Work

The work described in this paper di�ers from previous formal work on learning logic pro-
grams in simultaneously allowing background knowledge, function-free programs, and recur-
sion. We have also focused exclusively on computational limitations on e�cient learnability
that are associated with recursion, as we have considered only languages known to be pac-
learnable in the nonrecursive case. Since the results of this paper are all negative, we have
concentrated on the model of polynomial predictability; negative results in this model im-
mediately imply a negative result in the stronger model of pac-learnability, and also imply
negative results for all strictly more expressive languages.

Among the most closely related prior results are the negative results we have previously
obtained for certain classes of nonrecursive function-free logic programs (Cohen, 1993b).
These results are similar in character to the results described here, but apply to nonrecursive
languages. Similar cryptographic results have been obtained by Frazier and Page (1993) for
certain classes of programs (both recursive and nonrecursive) that contain function symbols
but disallow background knowledge.

Some prior negative results have also been obtained on the learnability of other �rst-
order languages using the proof technique of consistency hardness (Pitt & Valiant, 1988).
Haussler (1989) showed that the language of \existential conjunction concepts" is not pac-
learnable by showing that it can be hard to �nd a concept in the language consistent with a
given set of examples. Similar results have also been obtained for two restricted languages
of Horn clauses (Kietz, 1993); a simple description logic (Cohen & Hirsh, 1994); and for the
language of sorted �rst-order terms (Page & Frisch, 1992). All of these results, however, are
speci�c to the model pac-learnability, and none can be easily extended to the polynomial
predictability model considered here. The results also do not extend to languages more
expressive than these speci�c constrained languages. Finally, none of these languages allow
recursion.

To our knowledge, there are no other negative learnability results for �rst-order lan-
guages. A discussion of prior positive learnability results for �rst-order languages can be
found in the companion paper (Cohen, 1995).

6. Summary

This paper and its companion (Cohen, 1995) have considered a large number of di�erent
subsets of Datalog. Our aim has been to be not comprehensive, but systematic: in particu-
lar, we wished to �nd precisely where the boundaries of learnability lie as various syntactic
restrictions are imposed and relaxed. Since it is all too easy for a reader to \miss the forest
for the trees", we will now brie
y summarize the results contained in this paper, together
with the positive results of the companion paper (Cohen, 1995).
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Local Constant-Depth Determinate
Clauses Clauses

nC�R nC�R nCRjC
�
B nCR; C

�
B k � nC�R n� nC�R

kC�R kC+
R kCRjC

+
B kCR; C

�DNF
B k � k0C

�DNF
R n� kC�R

1C�R 1C+
R 1CRjC

+
B 1CR; C

=DNF
B 2� 1C=DNF

R n� 1C�R

Table 1: A summary of the learnability results

Throughout these papers, we have assumed that a polynomial amount of background
knowledge exists; that the programs being learned contain no function symbols; and that
literals in the body of a clause have small arity. We have also assumed that recursion is
closed , meaning that no output variables appear in a recursive clause; however, we believe
that this restriction can be relaxed without fundamentally changing the results of the paper.

In the companion paper (Cohen, 1995) we showed that a single nonrecursive constant-
depth determinate clause was learnable in the strongmodel of identi�cation from equivalence
queries . In this learning model, one is given access to an oracle for counterexamples|that
is, an oracle that will �nd, in unit time, an example on which the current hypothesis is
incorrect|and must reconstruct the target program exactly from a polynomial number of
these counterexamples. This result implies that a single nonrecursive constant-depth deter-
minate clause is pac-learnable (as the counterexample oracle can be emulated by drawing
random examples in the pac setting). The result is not novel (D�zeroski et al., 1992); however
the proof given is independent, and is also of independent interest. Notably, it is somewhat
more rigorous than earlier proofs, and also proves the result directly, rather than via reduc-
tion to a propositional learning problem. The proof also introduces a simple version of the
forced simulation technique, variants of which are used in all of the positive results.

We then showed that the learning algorithm for nonrecursive clauses can be extended
to the case of a single linear recursive constant-depth determinate clause, leading to the
result that this restricted class of recursive programs is also identi�able from equivalence
queries. With a bit more e�ort, this algorithm can be further extended to learn a single
k-ary recursive constant-depth determinate clause.

We also considered extended the learning algorithm to learn recursive programs consist-
ing of more than one constant-depth determinate clauses. The most interesting extension
was to simultaneously learn a recursive clause CR and a base clause CB, using equivalence
queries and also a \basecase oracle" that indicates which counterexamples should be covered
by the base clause CB. In this model, it is possible to simultaneously learn a recursive clause
and a nonrecursive base case in all of the situations for which a recursive clause is learned
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Language Family B R L/R Oracles Notation Learnable
d-DepthNonRec[a-DB; a-DetDEC] 1 0 � EQ CB yes
d-DepthLinRec[a-DB; a-DetDEC] 0 1 1 EQ 1CR yes
d-Depth-k-Rec[a-DB; a-DetDEC] 0 1 k EQ kCR yes
d-Depth-2-Clause[a-DB; a-DetDEC] 1 1 1 EQ,BASE 1CRjCB yes
kd-MaxRecLang[a-DB; a-DetDEC] 1 1 k EQ,BASE kCRjCB yes
d-Depth-2-Clause[a-DB; a-DetDEC] 1 1 1 EQ 1CR; CB =DNF
d-Depth-2-Clause0[a-DB; a-DetDEC] 0 2 1 EQ 2� 1CR =DNF
d-DepthLinRecProg[a-DB; a-DetDEC] 0 n 1 EQ n� 1CR no
d-DepthRec[a-DB; a-DetDEC] 0 1 n EQ nCR no
k-LocalLinRec[a-DB; a-DEC] 0 1 1 EQ 1CR no

Table 2: Summary by language of the learnability results. Column B indicates the number
of base (nonrecursive) clauses allowed in a program; column R indicates the num-
ber of recursive clauses; L/R indicates the number of recursive literals allowed in
a single recursive clause; EQ indicates an oracle for equivalence queries and BASE
indicates a basecase oracle. For all languages except k-LocalLinRec, all clauses
must be determinate and of depth d.

alone; for instance, one can learn a k-ary recursive clause to together with its nonrecursive
base case. This was our strongest positive result.

These results are summarized in Tables 1 and 2. In Table 1, a program with one r-
ary recursive clause is denoted rCR, a program with one r-ary recursive clause and one
nonrecursive basecase is denoted rCR; CB, or rCRjCB if there is a \basecase" oracle, and
a program with s di�erent r-ary recursive clauses is denoted s � rCR. The boxed results
are associated with one or more theorems from this paper, or its companion paper, and
the unmarked results are corollaries of other results. A \+" after a program class indicates
that it is identi�able from equivalence queries; thus the positive results described above are
summarized by the four \+" entries in the lower left-hand corner of the section of the table
concerned with constant-depth determinate clauses.

Table 2 presents the same information in a slightly di�erent format, and also relates the
notation of Table 1 to the terminology used elsewhere in the paper.

This paper has considered the learnability of the various natural generalizations of the
languages shown to be learnable in the companion paper. Consider for the moment single
clauses. The companion paper showed that for any �xed k a single k-ary recursive constant-
depth determinate clause is learnable. Here we showed that all of these restrictions are
necessary. In particular, a program of n constant-depth linear recursive clauses is not
polynomially predictable; hence the restriction to a single clause is necessary. Also, a single
clause with n recursive calls is hard to learn; hence the restriction to k-ary recursion is
necessary. We also showed that the restriction to constant-depth determinate clauses is
necessary, by considering the learnability of constant locality clauses . Constant locality
clauses are the only known generalization of constant-depth determinate clauses that are
pac-learnable in the nonrecursive case. However, we showed that if recursion is allowed,
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then this language is not learnable: even a single linear recursive clause is not polynomially
predictable.

Again, these results are summarized in Table 1; a \�" after a program class means that
it is not polynomially predictable, under cryptographic assumptions, and hence neither
pac-learnable nor identi�able from equivalence queries.

The negative results based on cryptographic hardness give an upper bound on the ex-
pressiveness of learnable recursive languages, but still leave open the learnability of programs
with a constant number of k-ary recursive clauses in the absence of a basecase oracle. In
the �nal section of this paper, we showed that the following problems are, in the model of
polynomial predictability, equivalent to predicting boolean DNF:

� predicting two-clause constant-depth determinate recursive programs containing one
linear recursive clause and one base case;

� predicting two-clause recursive constant-depth determinate programs containing two
linear recursive clauses, even if the base case is known.

We note that these program classes are the very nearly the simplest classes of multi-clause
recursive programs that one can imagine, and that the pac-learnability of DNF is a long-
standing open problem in computational learning theory. These results suggest, therefore,
that pac-learning multi-clause recursive logic programs is di�cult; at the very least, they
show that �nding a provably correct pac-learning algorithm will require substantial advances
in computational learning theory. In Table 1, a \= Dnf" (respectively � Dnf) means that
the corresponding language is prediction-equivalent to DNF (respectively at least as hard
as DNF).

To further summarize Table 1: with any sort of recursion, only programs containing
constant-depth determinate clauses are learnable. The only constant-depth determinate
recursive programs that are learnable are those that contain a single k-ary recursive clause
(in the standard equivalence query model) or a single k-ary recursive clause plus a base
case (if a \basecase oracle" is allowed). All other classes recursive programs are either
cryptographically hard, or as hard as boolean DNF.

7. Conclusions

Inductive logic programming is an active area of research, and one broad class of learning
problems considered in this area is the class of \automatic logic programming" problems.
Prototypical examples of this genre of problems are learning to append two lists, or to
multiply two numbers. Most target concepts in automatic logic programming are recursive
programs, and often, the training data for the learning system are simply examples of the
target concept, together with suitable background knowledge.

The topic of this paper is the pac-learnability of recursive logic programs from random
examples and background knowledge; speci�cally, we wished to establish the computational
limitations inherit in performing this task. We began with some positive results established
in a companion paper. These results show that one constant-depth determinate closed k-ary
recursive clause is pac-learnable, and that further, a program consisting of one such recursive
clause and one constant-depth determinate nonrecursive clause is also pac-learnable given
an additional \basecase oracle".
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In this paper we showed that these positive results are not likely to be improved. In
particular, we showed that either eliminating the basecase oracle or learning two recur-
sive clauses simultaneously is prediction-equivalent to learning DNF, even in the case of
linear recursion. We also showed that the following problems are as hard as breaking (pre-
sumably) secure cryptographic codes: pac-learning n linear recursive determinate clauses,
pac-learning one n-ary recursive determinate clause, or pac-learning one linear recursive
k-local clause.

These results contribute to machine learning in several ways. From the point of view
of computational learning theory, several results are technically interesting. One is the
prediction-equivalence of several classes of restricted logic programs and boolean DNF; this
result, together with others like it (Cohen, 1993b), reinforces the importance of the learn-
ability problem for DNF. This paper also gives a dramatic example of how adding recursion
can have widely di�ering e�ects on learnability: while constant-depth determinate clauses
remain pac-learnable when linear recursion is added, constant-locality clauses become cryp-
tographically hard.

Our negative results show that systems which apparently learn a larger class of recursive
programs must be taking advantage either of some special properties of the target concepts
they learn, or of the distribution of examples that they are provided with. We believe that
the most likely opportunity for obtaining further positive formal results in this area is to
identify and analyze these special properties. For example, in many examples in which
FOIL has learned recursive logic programs, it has made use of \complete example sets"|
datasets containing all examples of or below a certain size, rather than sets of randomly
selected examples (Quinlan & Cameron-Jones, 1993). It is possible that complete datasets
allow a more expressive class of programs to be learned than random datasets; in fact, some
progress has been recently made toward formalizing this conjecture (De Raedt & D�zeroski,
1994).

Finally, and most importantly, this paper has established the boundaries of learnability
for determinate recursive programs in the pac-learnability model. In many plausible auto-
matic programming contexts it would be highly desirable to have a system that o�ered some
formal guarantees of correctness. The results of this paper provide upper bounds on what
one can hope to achieve with an e�cient, formally justi�ed system that learns recursive
programs from random examples alone.
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