
Journal of Arti�cial Intelligence Research 2 (1995) 411-446 Submitted 11/94; published 4/95

Rerepresenting and Restructuring Domain Theories:

A Constructive Induction Approach

Steven K. Donoho donoho@cs.uiuc.edu

Larry A. Rendell rendell@cs.uiuc.edu

Department of Computer Science, Univeristy of Illinois

405 N. Mathews Ave., Urbana, IL 61801 USA

Abstract

Theory revision integrates inductive learning and background knowledge by combining

training examples with a coarse domain theory to produce a more accurate theory. There

are two challenges that theory revision and other theory-guided systems face. First, a

representation language appropriate for the initial theory may be inappropriate for an

improved theory. While the original representation may concisely express the initial theory,

a more accurate theory forced to use that same representation may be bulky, cumbersome,

and di�cult to reach. Second, a theory structure suitable for a coarse domain theory may

be insu�cient for a �ne-tuned theory. Systems that produce only small, local changes to

a theory have limited value for accomplishing complex structural alterations that may be

required.

Consequently, advanced theory-guided learning systems require
exible representation

and
exible structure. An analysis of various theory revision systems and theory-guided

learning systems reveals speci�c strengths and weaknesses in terms of these two desired

properties. Designed to capture the underlying qualities of each system, a new system uses

theory-guided constructive induction. Experiments in three domains show improvement

over previous theory-guided systems. This leads to a study of the behavior, limitations,

and potential of theory-guided constructive induction.

1. Introduction

Inductive learners normally use training examples, but they can also use background knowl-
edge. E�ectively integrating this knowledge into induction has been a widely studied re-
search problem. Most work to date has been in the area of theory revision in which the
knowledge given is a coarse, perhaps incomplete or incorrect, theory of the problem domain,
and training examples are used to shape this initial theory into a re�ned, more accurate
theory (Ourston & Mooney, 1990; Thompson, Langley, & Iba, 1991; Cohen, 1992; Pazzani
& Kibler, 1992; Ba�es & Mooney, 1993; Mooney, 1993). We develop a more
exible and
more robust approach to the problem of learning from both data and theory knowledge by
addressing the two following desirable qualities:

� Flexible Representation. A theory-guided system should utilize the knowledge con-
tained in the initial domain theory without having to adhere closely to the initial
theory's representation language.

� Flexible Structure. A theory-guided system should not be unnecessarily restricted by
the structure of the initial domain theory.

c
1995 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Donoho & Rendell

Before giving more precise de�nitions of our terms, we motivate our work intuitively.

1.1 Intuitive Motivation

The �rst desirable quality,
exibility of representation, arises because the theory represen-
tation most appropriate for describing the coarse, initial domain theory may be inadequate
for the �nal, revised theory. While the initial domain theory may be compact and concise in
one representation, an accurate theory may be quite bulky and cumbersome in that repre-
sentation. Furthermore, the representation that is best for expressing the initial theory may
not be the best for carrying out re�nements. A helpful re�nement step may be clumsy to
make in the initial representation yet be carried out quite simply in another representation.

As a simple example, a coarse domain theory may be expressed as the logical conjunction
of N conditions that should be met. The most accurate theory, though, is one in which any M
of these N conditions holds. Expressing this more accurate theory in the DNF representation
used to describe the initial theory would be cumbersome and unwieldy (Murphy & Pazzani,
1991). Furthermore, arriving at the �nal theory using the re�nement operators most suitable
for DNF (drop-condition, add-condition, modify-condition) would be a cumbersome task.
But when an M-of-N representation is adopted, the re�nement simply involves empirically
�nding the appropriate M, and the �nal theory can be expressed concisely (Ba�es & Mooney,
1993).

Similarly, the second desirable quality,
exibility of structure, arises because the theory
structure that was suitable for a coarse domain theory may be insu�cient for a �ne-tuned
theory. In order to achieve the desired accuracy, a restructuring of the initial theory may be
necessary. Many theory revision systems act by making a series of local changes, but this
can lead to behavior at two extremes. The �rst extreme is to rigidly retain the backbone
structure of the initial domain theory, only allowing small, local changes. Figure 1 illustrates
this situation. Minor revisions have been made { conditions have been added, dropped,
and modi�ed { but the re�ned theory is trapped by the backbone structure of the initial
theory. When only local changes are needed, these techniques have proven useful (Ourston
& Mooney, 1990), but often more is required. When more is required, these systems often
move to the other extreme; they drop entire rules and groups of rules and then build entire
new rules and groups of rules from scratch to replace them. Thus they restructure, but
they forfeit valuable knowledge in the process. An ideal theory revision system would glean
knowledge from theory substructures that cannot be �xed with small, local changes and
use this in a restructured theory.

As an intuitive illustration, consider a piece of software that \almost works." Sometimes
it can be made useful through only a few local operations: �xing a couple of bugs, adding
a needed subroutine, and so on. In other cases, though, a piece of software that \almost
works" is in fact far from full working order. It may need to be redesigned and restructured.
A mistake at one extreme is to try to �x a program like this by making a series of patches in
the original code. A mistake at the other extreme is to discard the original program without
learning anything from it and start from scratch. The best approach would be to examine
the original program to see what can be learned from its design and to use this knowledge
in the redesign. Likewise, attempting to improve a coarse domain theory through a series
of local changes may yield little improvement because the theory is trapped by its initial

412

Rerepresenting and Restructuring Domain Theories

d e h i k l m o p q r

Refined Theory

a b c

f g

j n a b c

e

f g

i

j

k l

n

p r

s

t

u v

w o

Initial Theory

Figure 1: Typical theory revision allows only limited structural
exibility. Although con-
ditions have been added, dropped, and modi�ed, the revised theory is much
constrained by the structure of the initial theory.

structure. This does not render the original domain theory useless; careful analysis of the
initial domain theory can give valuable guidance for the design of the best �nal theory.
This is illustrated in Figure 2 where many substructures have been taken from the initial
theory and adapted for use in the re�ned theory. Information from the initial theory has
been used, but the structure of the revised theory is not restricted by the structure of the
initial theory.

a b c

d e

f g

h i

j

k l m

n

o p q r

Initial Theory Refined Theory

k l

f g m

d e h i s o p

f g r

u v

q

Figure 2: More
exible structural modi�cation. The revised theory has taken many sub-
structures from the initial theory and adapted and recombined them for its use,
but the structure of the revised theory is not restricted by the structure of the
initial theory.

413

Donoho & Rendell

1.2 Terminology

In this paper, all training data consist of examples which are classi�ed vectors of fea-
ture/value pairs. We assume that an initial theory is a set of conditions combined using the
operators AND, OR, and NOT and indicating one or more classes. While it is unreasonable
to believe that all theories will always be of this form, it covers much existing theory revision
research.

Our work is intended as an informal exploration of
exible representation and
exible
structure. Flexible representation means allowing the theory to be revised using a represen-
tation language other than that of the initial theory. An example of
exible representation
is the introduction of a new operator for combining features | an operator not used in
the initial theory. In Section 1.1 the example was given of introducing the M-of-N operator
to represent a theory originally expressed in DNF. Flexible structure means not limiting
revision of the theory to a series of small, incremental modi�cations. An example of this
is breaking the theory down into its components and using them as building blocks in the
construction of a new theory.

Constructive induction is a process whereby the training examples are redescribed using
a new set of features. These new features are combinations of the original features. Bias
or knowledge may be used in the construction of the new features. A subtle point is that
when we speak of
exible representation, we are referring only to the representation of the
domain theory, not the training data. Although the phrase \change of representation" is
often applied to constructive induction, this refers to a change of the data. In our paper,
the term
exible representation is reserved for a change of theory representation. Thus
a system can be performing constructive induction (changing the feature language of the
data) without exhibiting
exible representation (changing the representation of the theory).

1.3 Overview

Theory revision and constructive induction embody complementary aspects of the machine
learning research community's ultimate goals. Theory revision uses data to improve a
theory; constructive induction can use a theory to improve data to facilitate learning. In
this paper we present a theory-guided constructive induction approach which addresses the
two desirable qualities discussed in Section 1.1. The initial theory is analyzed, and new
features are constructed based on the components of the theory. The constructed features
need not be expressed in the same representational language as the initial theory and can
be re�ned to better match the training examples. Finally, a standard inductive learning
algorithm, C4.5 (Quinlan, 1993), is applied to the redescribed examples.

We begin by analyzing how landmark theory revision and learning systems have exhib-
ited
exibility in handling a domain theory and what part this has played in their perfor-
mance. From this analysis, we extract guidelines for system design and apply them to the
design of our own limited system. In an e�ort to integrate learning from theory and data,
we borrow heavily from the theory revision, multistrategy learning, and constructive induc-
tion communities, but our guidelines for system design fall closest to classical constructive
induction methods. The central focus of this paper is not the presentation of \another new
system" but rather a study of
exible representation and structure, their manifestation in
previous work, and their guidance for future design.

414

Rerepresenting and Restructuring Domain Theories

Section 2 gives the context of our work by analyzing previous research and its in
u-
ence on our work. Section 3 explores the Promoter Recognition domain and demonstrates
how related theory revision systems behave in this domain. In Section 4, guidelines for
theory-guided constructive induction are presented. These guidelines are a synthesis of the
positive aspects of related research, and they address the two desirable qualities,
exibility
of representation and
exibility of structure. Section 4 also presents a speci�c theory-guided
constructive induction algorithm which is an instantiation of the guidelines set forth earlier
in that section. Results of experiments in three domains are given in Section 5 followed
by a discussion of the strengths of theory-guided constructive induction in Section 6. Sec-
tion 7 presents an experimental analysis of the limits of applicability of our simple algorithm
followed by a discussion of limitations and future directions of our work in Section 8.

2. Context and Related Work

Although our work bears some resemblance in form and objective to many papers in con-
structive induction (Michalski, 1983; Fu & Buchanan, 1985; Utgo�, 1986; Schlimmer, 1987;
Drastal & Raatz, 1989; Matheus & Rendell, 1989; Pagallo & Haussler, 1990; Ragavan &
Rendell, 1993; Hirsh & Noordewier, 1994), theory revision (Ourston & Mooney, 1990; Feld-
man, Serge, & Koppel, 1991; Thompson et al., 1991; Cohen, 1992; Pazzani & Kibler, 1992;
Ba�es & Mooney, 1993), and multistrategy approaches (Flann & Dietterich, 1989; Towell,
Shavlik, & Noordeweir, 1990; Dzerisko & Lavrac, 1991; Bloedorn, Michalski, & Wnek, 1993;
Clark & Matwin, 1993; Towell & Shavlik, 1994), we focus only upon a handful of these sys-
tems, those that have signi�cant, underlying similarities to our work. In this section we
analyze Miro, Either, Focl, LabyrinthK , Kbann, Neither-MofN, and Grendel to
discuss their related underlying contributions in relationship to our perspective.

2.1 Miro

Miro (Drastal & Raatz, 1989) is a seminal work in knowledge-guided constructive induc-
tion. It takes knowledge about how low-level features interact and uses this knowledge to
construct high-level features for its training examples. A standard learning algorithm is
then run on these examples described using the new features. The domain theory is used
to shift the bias of the induction problem (Utgo�, 1986). Empirical results showed that
describing the examples in these high-level, abstract terms improved learning accuracy.

TheMiro approach provides a means of utilizing knowledge in a domain theory without
being restricted by the structure of that theory. Substructures of the domain theory can
be used to construct high-level features that a standard induction algorithm will arrange
into a concept. Some constructed features will be used as they are, others will be ignored,
others will be combined with low-level features, and still others may be used di�erently in
multiple contexts. The end result is that knowledge from the domain theory is utilized,
but the structure of the �nal theory is not restricted by the structure of the initial theory.
Miro provides
exible structure.

Another bene�t is that Miro-like techniques can be applied even when only a partial
domain theory exists, i.e., a domain theory that only speci�es high-level features but does
not link them together or a domain theory that speci�es some high-level features but not
others. One of Miro's shortcomings is that it provided no means of making minor changes

415

Donoho & Rendell

in the domain theory but rather constructed the features exactly as the domain theory
speci�ed. Also the representation of Miro's constructed features was primitive | either
an example met the conditions of a high-level feature or did not. An example of Miro's
behavior is given in Section 3.2.

2.2 Either, Focl, and LabyrinthK

The Either (Ourston & Mooney, 1990), LabyrinthK (Thompson et al., 1991), and
Focl (Pazzani & Kibler, 1992) systems represent a broad spectrum of theory revision
work. They make steps toward e�ective integration of background knowledge and inductive
learning. Although these systems have many super�cial di�erences with regard to super-
vised/unsupervised learning, concept description language, etc., they share the underlying
principle of incrementally revising an initial domain theory through a series of local changes.

We will discuss Either as a representative of this class of systems. Either's theory
revision operators include: removing unwanted conditions from a rule, adding needed con-
ditions to a rule, removing rules, and adding totally new rules. Either �rst classi�es its
training examples according to the current theory. If any are misclassi�ed, it seeks to repair
the theory by applying a theory revision operator that will result in the correct classi�cation
of some previously misclassi�ed examples without losing any of the correct examples. Thus
a series of local changes are made that allow for an improvement of accuracy on the training
set without losing any of the examples previously classi�ed correctly.

Either-type methods provide simple yet powerful tools for repairing many important
and common faults in domain theories, but they fail to meet the qualities of
exible rep-
resentation and
exible structure. Because the theory revision operators make small, local
modi�cations in the existing domain theory, the �nal theory is constrained to be similar in
structure to the initial theory. When an accurate theory is signi�cantly di�erent in struc-
ture from the initial theory, these systems are forced to one of the two extremes discussed
in Section 1. The �rst extreme is to become trapped at a local maximum similar to the
initial theory unable to reach the global maximum because only local changes can be made.
The other extreme is to drop entire rules and groups of rules and replace them with new
rules built from scratch thus forfeiting the knowledge contained in the domain theory.

Also, Either carries out all theory revision steps in the representation of the initial
theory. Consequently, the representation of the �nal theory is the same as that of the initial
theory. Another representation may be more appropriate for the revised theory than the
one in which the initial theory comes, but facilities are not provided to accommodate this.
An advanced theory revision system would combine the locally acting strengths of Either-
type systems with
exibility of structure and
exibility of representation. An example of
Either's behavior is given in Section 3.3.

2.3 Kbann and Neither-MofN

The Kbann system (Towell et al., 1990; Towell & Shavlik, 1994) makes unique contribu-
tions to theory revision work. Kbann takes an initial domain theory described symbolically
in logic and creates a neural network whose structure and initial weights encode this theory.
Backpropagation (Rumelhart, Hinton, & McClelland, 1986) is then applied as a re�ne-
ment tool for �ne-tuning the network weights. Kbann has been empirically shown to give

416

Rerepresenting and Restructuring Domain Theories

signi�cant improvement over many theory revision systems for the widely-used Promoter
Recognition domain. Although our work is di�erent in implementation from Kbann, our
abstract ideologies are similar.

One of Kbann's important contributions is that it takes a domain theory in one repre-
sentation (propositional logic) and translates it into a less restricting representation (neural
network). While logic is an appropriate representation for the initial domain theory for the
promoter problem, the neural network representation is more convenient both for re�ning
this theory and for expressing the best revised theory. This change of representation is
Kbann's real source of power. Much attention has been given to the fact that Kbann com-
bines symbolic knowledge with a subsymbolic learner, but this combination can be viewed
more generally as a means of implementing the important change of representation. It may
be the change of representation that gives Kbann its power, not necessarily its speci�c
symbolic/subsymbolic implementation. Thus the Kbann system embodies the higher-level
principle of allowing re�nement to occur in an appropriate representation.

If an alternative representation is Kbann's source of power, the question must be raised
as to whether the actual Kbann implementation is always the best means of achieving this
goal. The neural network representation may be more expressive than is required. Accord-
ingly, backpropagation often has more re�nement power than is needed. Thus Kbann may
carry excess baggage in translating into the neural net representation, performing expensive
backpropagation, and extracting symbolic rules from the re�ned network. Although the full
extent of Kbann's power may be needed for some problems, many important problems may
be solvable by applying Kbann's principles at the symbolic level using less expensive tools.

Neither-MofN (Ba�es & Mooney, 1993), a descendant of Either, is a second example
of a system that allows a theory to be revised in a representation other than that of the
initial theory. The domain theory input into Neither-MofN is expressed in propositional
logic as an AND/OR tree. Neither-MofN interprets the theory less rigidly | an AND
rule is true any time any M of its N conditions are true. Initially M is set equal to N (all
conditions must be true for the rule to be true), and one theory re�nement operator is to
lower M for a particular rule. The end result is that examples that are a close enough
partial match to the initial theory are accepted. Neither-MofN, since it is built upon
the Either framework, also includes Either-like theory revision operators: add-condition,
drop-condition, etc.

Thus Neither-MofN allows revision to take place in a representation appropriate
for revision and appropriate for concisely expressing the best re�ned theory. Neither-

MofN has achieved results comparable to Kbann on the Promoter Recognition domain,
which suggests that it is the change of representation which these two systems share that
give them their power rather than any particular implementation. Neither-MofN also
demonstrates that a small amount of representational
exibility is sometimes enough. The
M-of-N representation it employs is not as big a change from the original representation
as the neural net representation which Kbann employs yet it achieves similar results and
arrives at them much more quickly than Kbann (Ba�es & Mooney, 1993).

A shortcoming of Neither-MofN is that since it acts by making local changes in an
initial theory, it can still become trapped by the structure of the initial theory. An advanced
theory revision system would incorporate Neither-MofN's and Kbann's
exibility of

417

Donoho & Rendell

representation and allow knowledge-guided theory restructuring. Examples of Kbann's
and Neither-MofN's behavior are given in Sections 3.4 and 3.5.

2.4 Grendel

Cohen (1992) analyzes a class of theory revision systems and draws some insightful conclu-
sions. One is that \generality [in theory interpretation] comes at the expense of power."
He draws this principle from the fact that a system such as Either or Focl treats every
domain theory the same and therefore must treat every domain theory in the most gen-
eral way. He argues that rather than just applying the most general re�nement strategy
to every problem, a small set of re�nement strategies should be available that are narrow
enough to gain leverage yet not so narrow that they only apply to a single problem. Cohen
presents Grendel, a toolbox of translators each of which transforms a domain theory into
an explicit bias. Each translator interprets the domain theory in a di�erent way, and the
most appropriate interpretation is applied to a given problem.

We apply Cohen's principle to the representation of domain theories. If all domain
theories are translated into the same representation, then the most general, adaptable rep-
resentation has to be used in order to accommodate the most general case. This comes
at the expense of higher computational costs and possibly lower accuracy due to over�t
stemming from unbridled adaptability. The neural net representation into which Kbann

translates domain theories allows 1) a measure of partial match to the domain theory 2) dif-
ferent parts of the domain theory to be weighted di�erently 3) conditions to be added to
and dropped from the domain theory. All these options of adaptability are probably not
necessary for most problems and may even be detrimental. These options in Kbann also
require the computationally expensive backpropagation method.

The representation used in Neither-MofN is not as adaptable as Kbann's | it does
not allow individual parts of the domain theory to be weighted di�erently. Neither-

MofN runs more quickly than Kbann on small problems and probably matches or even
surpasses Kbann's accuracy for many domains | domains for which �ne-grained weighting
is unfruitful or even detrimental. A toolbox of theory rerepresentation translators analogous
to Grendel would allow a domain theory to be translated into a representation having the
most appropriate forms of adaptability.

2.5 Outlook and Summary

In summary, we brie
y reexamine
exible representation and
exible structure, the two
desirable qualities set forth in Section 1. We consider how the various systems exemplify
some subset of these desirable qualities.

� Kbann and Neither-MofN both interpreted a theory more
exibly than its original
representation allowed and revised the theory in this more adaptable representation.
A �nal, re�ned theory often has many exceptions to the rule; it may tolerate partial
matches and missing pieces of evidence; it may weight some evidence more heavily
than other evidence. Kbann's and Neither-MofN's new representation may not
be the most concise, appropriate representation for the initial theory, but the new
representation allows concise expression of an otherwise cumbersome �nal theory.
These are cases of the principle of
exible representation.

418

Rerepresenting and Restructuring Domain Theories

� Standard induction programs have been quite successful at building concise theories
with high predictive accuracy when the target concept can be concisely expressed using
the original set of features. When it can't, constructive induction is a means of creating
new features such that the target concept can be concisely expressed. Miro uses
constructive induction to take advantage of the strengths of both a domain theory and
standard induction. Knowledge from the theory guides the construction of appropriate
new features, and standard induction structures these into a concise description of
the concept. Thus Miro-like construction coupled with standard induction provides
a ready and powerful means of
exibly restructuring the knowledge contained in an
initial domain theory. This is a case of the principle of
exible structure.

In the following section we introduce the DNA Promoter Recognition domain in order
to illustrate tangibly how some of the systems discussed above integrate knowledge and
induction.

3. Demonstrations of Related Work

This section introduces the Promoter Recognition domain (Harley, Reynolds, & Noordewier,
1990) and brie
y illustrates how a Miro-like system, Either, Kbann, and Neither-

MofN behave in this domain. We implemented a Miro-like system for the promoter do-
main; versions of Either and Neither-MofN were available from Ray Mooney's group;
Kbann's behavior is described by analyzing (Towell & Shavlik, 1994). We chose the pro-
moter domain because it is a non-trivial, real-world problem which a number of theory
revision researchers have used to test their work (Ourston & Mooney, 1990; Thompson
et al., 1991; Wogulis, 1991; Cohen, 1992; Pazzani & Kibler, 1992; Ba�es & Mooney, 1993;
Towell & Shavlik, 1994). The promoter domain is one of three domains in which we evaluate
our work, theory-guided constructive induction, in Section 5.

3.1 The Promoter Recognition Domain

A promoter sequence is a region of DNA that marks the beginning of a gene. Each ex-
ample in the promoter recognition domain is a region of DNA classi�ed either as a promoter
or a non-promoter. As illustrated in Figure 3, examples consist of 57 features represent-
ing a sequence of 57 DNA nucleotides. Each feature can take on the values A,G,C, or T
representing adenine, guanine, cytosine, and thymine at the corresponding DNA position.
The features are labeled according to their position from p-50 to p+7 (there is no zero
position). The notation \p-N" denotes the nucleotide that is N positions upstream from
the beginning of the gene. The goal is to predict whether a sequence is a promoter from its
nucleotides. A total of 106 examples are available: 53 promoters and 53 non-promoters.

The promoter recognition problem comes with the initial domain theory shown in Fig-
ure 4 (quoted almost verbatim from Towell and Shavlik's entry in the UCI Machine Learning
Repository). The theory states that promoter sequences must have two regions that make
contact with a protein and must also have an acceptable conformation pattern. There are
four possibilities for the contact region at minus 35 (35 nucleotides upstream from the be-
ginning of the gene). A match of any of these four possibilities will satisfy the minus 35
contact condition, thus they are joined by disjunction. Similarly, there are four possibilities

419

Donoho & Rendell

G AC TC T

p-50 p+7

DNA Sequence

Figure 3: An instance in the promoter domain consists of a sequence of 57 nucleotides
labeled from p-50 to p+7. Each nucleotide can take on the values A,G,C, or T
representing adenine, guanine, cytosine, and thymine.

for the contact region at minus 10 and four acceptable conformation patterns. Figure 5
gives a more pictorial presentation of portions of the theory. Of the 106 examples in the
dataset, none matched the domain theory exactly, yielding an accuracy of 50%.

3.2 Miro in the Promoter Domain

A Miro-like system in the promoter domain would use the rules in Figure 4 to con-
struct new high-level features for each DNA segment. Figure 6 shows an example of this. A
DNA segment is shown from position p-38 through position p-30. The minus 35 rules from
the theory are also shown, and four new features (feat minus35 A through feat minus35 D)
have been constructed for that DNA segment, one for each minus 35 rule. The new fea-
tures feat minus35 A and feat minus35 D both have the value 1 because the DNA fragment
matches the �rst and fourth minus 35 rules. Likewise, feat minus35 B and feat minus35 C
both have the value 0 because the DNA fragment does not match the second and third
rules. Furthermore, since the four minus 35 rules are joined by disjunction, a new feature,
feat minus35 all, is created for the group that would have the value 1 because at least one
of the minus 35 rules matches.

New features would similarly be created for the minus 10 rules and the conformation

rules, and a standard induction algorithm could then be applied. We implemented aMiro-
like system; Figure 7 gives an example theory created by it. (Drastal's original Miro used
the candidate elimination algorithm (Mitchell, 1977) as its underlying induction algorithm.
We used C4.5 (Quinlan, 1993).) As opposed to theory revision systems that incrementally
modify the domain theory, Miro has broken the theory down into its components and has
fashioned these components into a new theory using a standard induction program. Thus
Miro has exhibited the
exible structure principle for this domain { it was not restricted
in any way by the structure of the initial theory. Rather, Miro exploited the strengths of
standard induction to concisely characterize the training examples using the new features.

420

Rerepresenting and Restructuring Domain Theories

Promoters have a region where a protein (RNA polymerase) must make contact and

the helical DNA sequence must have a valid conformation so that the two pieces

of the contact region spatially align. Prolog notation is used.

promoter :- contact, conformation.

There are two regions "upstream" from the beginning of the gene at which the

RNA polymerase makes contact.

contact :- minus_35, minus_10.

The following rules describe the compositions of possible contact regions.

minus_35 :- p-37=c, p-36=t, p-35=t, p-34=g, p-33=a, p-32=c.

minus_35 :- p-36=t, p-35=t, p-34=g, p-32=c, p-31=a.

minus_35 :- p-36=t, p-35=t, p-34=g, p-33=a, p-32=c, p-31=a.

minus_35 :- p-36=t, p-35=t, p-34=g, p-33=a, p-32=c.

minus_10 :- p-14=t, p-13=a, p-12=t, p-11=a, p-10=a, p-9=t.

minus_10 :- p-13=t, p-12=a, p-10=a, p-8=t.

minus_10 :- p-13=t, p-12=a, p-11=t, p-10=a, p-9=a, p-8=t.

minus_10 :- p-12=t, p-11=a, p-7=t.

The following rules describe sequences that produce acceptable conformations.

conformation :- p-47=c, p-46=a, p-45=a, p-43=t, p-42=t, p-40=a, p-39=c, p-22=g,

p-18=t, p-16=c, p-8=g, p-7=c, p-6=g, p-5=c, p-4=c, p-2=c,

p-1=c.

conformation :- p-45=a, p-44=a, p-41=a.

conformation :- p-49=a, p-44=t, p-27=t, p-22=a, p-18=t, p-16=t, p-15=g, p-1=a.

conformation :- p-45=a, p-41=a, p-28=t, p-27=t, p-23=t, p-21=a, p-20=a, p-17=t,

p-15=t, p-4=t.

Figure 4: The initial domain theory for recognizing promoters (from Towell and Shavlik).

A weaknessMiro displays in this example is that it allows no
exibility of representation
of the theory. The representation of the features constructed by Miro is basically the same
all-or-none representation of the initial theory; either a DNA segment matched a rule, or it
did not.

3.3 Either in the Promoter Domain

An Either-like system re�nes the initial promoter theory by dropping and adding
conditions and rules. We simulated Either by turning o� the M-of-N option in Neither
and ran it in the promoter domain. Figure 8 shows the re�ned theory produced using a
randomly selected training set of size 80. Because the initial promoter domain theory does
not lend itself to revision through small, local changes, Either has only limited success.

421

Donoho & Rendell

p-50 p+7

DNA Sequence

A

A

A

T

T

T

TT

C

C

C

CC

G

G

G

G

*

*

*

*

*

T

T

T

A

A

*

-37 -36 -35 -34 -33 -32 -31

OR

OR

OR

Contact at minus_35

T

*

AT

A

**

*

*

A

A

A T

T

T

T

*

*

*

*

T

T

T

T AA

A

A

*

*

*

*

-14 -13 -12 -11 -10 -9 -8 -7

OR

OR

OR

Contact at minus_10

Figure 5: The contact portion of the theory. There are four possibilities for both the
minus 35 and minus 10 portions of the theory. A *" matches any nucleotide.
The conformation portion of the theory is too spread out to display pictorially.

In this run, the program exhibited the second behavioral extreme discussed in Section 1;
it entirely removed groups of rules and then tried to build new rules to replace what was
lost. The minus 10 and conformation rules have essentially been removed, and new rules
have been added to the minus 35 group. These new minus 35 rules contain the condition
p-12=t previously found in the minus 10 group and the condition p-44=a previously found
in the conformation group.

Either's behavior in this example is a direct result of its lack of
exibility of representa-
tion and
exibility of structure. It is di�cult to transform the minus 10 and conformation
rules into something useful in their initial representation using Either's locally-acting op-
erators. Either handles this by dropping these sets of rules, losing their knowledge, and
attempting to rediscover the lost knowledge empirically. The end result of this loss of
knowledge is lower than optimal accuracy shown later in Section 5.

3.4 Kbann in the Promoter Domain

Figure 9, modeled after a �gure by Towell and Shavlik (1994), shows the setup of a Kbann
network for the promoter theory. Each slot along the bottom represents one nucleotide
in the DNA sequence. Each node at the �rst level up from the bottom embodies a single
domain rule, and higher levels encode groups of rules with the �nal concept at the top. The
links shown in the �gure are the ones that are initially high-weighted. The net is next �lled
out to be fully connected with low-weight links. Backpropagation is then applied to re�ne
the network's weights.

422

Rerepresenting and Restructuring Domain Theories

A DNA segment fragment:

: : :p-38=g, p-37=c, p-36=t, p-35=t, p-34=g, p-33=a, p-32=c, p-31=t, p-30=t : : :

The minus 35 group of rules and corresponding constructed features:

minus 35 :- p-37=c, p-36=t, p-35=t, p-34=g, p-33=a, p-32=c. feat minus35 A = 1
minus 35 :- p-36=t, p-35=t, p-34=g, p-32=c, p-31=a. feat minus35 B = 0
minus 35 :- p-36=t, p-35=t, p-34=g, p-33=a, p-32=c, p-31=a. feat minus35 C = 0
minus 35 :- p-36=t, p-35=t, p-34=g, p-33=a, p-32=c. feat minus35 D = 1

feat minus35 all = (feat minus35 A _ feat minus35 B _ feat minus35 C _ feat minus35 D) = 1

Figure 6: An example of feature construction in a Miro-like system. The constructed
features for the �rst and fourth rules in the minus 35 group are true (value = 1)
because the DNA segment matches these rules. The constructed feature for the
entire group, feat minus35 all, is true because the four minus 35 rules are joined
by disjunction.

promoternon-promoter

1

0

promoter

promoter

1

10

0

feat_minus10_all

feat_conf_B

feat_minus35_D

Figure 7: An example theory created by aMiro-like system. A DNA segment is recognized
as a promoter if it matches any of the minus 10 rules, the second conformation

rule, or the fourth minus 35 rule.

The neural net representation is more appropriate for this domain than the propositional
logic representation of the initial theory. It allows for a measurement of partial match by
weighting the links in such a way that a subset of a rule's conditions are enough to surpass a
node's threshold. It also allows for variable weightings of di�erent parts of the theory; there-
fore, more predictive nucleotides can be weighted more heavily, and only slightly predictive
nucleotides can be weighted less heavily. Kbann has only limited
exibility of structure.
Because the re�ned network is the result of a series of incremental modi�cations in the
initial network, a fundamental restructuring of the theory it embodies is unlikely. Kbann

423

Donoho & Rendell

promoter :- contact, conformation.

contact :- minus_35, minus_10.

minus_35 :- p-35=t, p-34=g.

minus_35 :- p-36=t, p-33=a, p-32=c.

minus_35 :- p-36=t, p-32=c, p-50=c.

minus_35 :- p-34=g, p-12=t.

minus_35 :- p-34=g, p-44=a.

minus_35 :- p-35=t, p-47=g.

minus_10 :- true.

conformation :- true.

Figure 8: A revised theory produce by Either.

minus_35 minus_10

conformation

promoter

p+7p-50 DNA Sequence

contact

Figure 9: The setup of a Kbann network for the promoter theory.

is limited to �nding the best network with the same fundamental structure imposed on it
by the initial theory.

One of Kbann's advantages is that it uses a standard learning algorithm as its foun-
dation. Backpropagation has been widely used and consequently improved by previous
researchers. Theory re�nement tools that are built from the ground up or use a standard
tool only tangentially su�er from having to invent their own methods of handling standard
problems such as over�t, noisy data, etc. A wealth of neural net experience and resources
is available to the Kbann user; as neural net technology advances, Kbann technology will
passively advance with it.

424

Rerepresenting and Restructuring Domain Theories

3.5 Neither-MofN in the Promoter Domain

Neither-MofN re�nes the initial promoter theory not only by dropping and adding con-
ditions and rules but also by allowing conjunctive rules to be true if only a subset of their
conditions are true. We ran Neither-MofN with a randomly selected training set of size
80, and Figure 10 shows a re�ned promoter theory produced. The theory expressed here
with 9 M-of-N rules would require 30 rules using propositional logic, the initial theory's
representation. More importantly, it is unclear how any system using the initial representa-
tion would reach the 30-rule theory from the initial theory. Thus the M-of-N representation
adopted not only allows for the concise expression of the �nal theory but also facilitates the
re�nement process.

promoter :- 2 of (contact, conformation).

contact :- 2 of (minus_35, minus_10).

minus_35 :- 2 of (p-36=t, p-35=t, p-34=g, p-32=c, p-31=a).

minus_35 :- 5 of (p-36=t, p-35=t, p-34=g, p-33=a, p-32=c).

minus_10 :- 2 of (p-12=t, p-11=a, p-7=t).

minus_10 :- 2 of (p-13=t, p-12=a, p-10=a, p-8=t).

minus_10 :- 6 of (p-14=t, p-13=a, p-12=t, p-11=a, p-10=a, p-9=t).

minus_10 :- 2 of (p-13=t, p-12=a, p-10=a, p-34=g).

conformation :- true.

Figure 10: A revised theory produced by Neither-MofN.

Neither-MofN displays
exibility of representation by allowing an M-of-N interpreta-
tion of the original propositional logic, but it does not allow for as �ne-grained re�nement
as Kbann. Both allow for a measure of partial match, but Kbann could weight more
predictive features more heavily. For example, in the minus 35 rules, perhaps p-36=t is
more predictive of a DNA segment being a promoter than p-34=g and therefore should be
weighted more heavily. Neither-MofN simply counts the number of true conditions in a
rule; therefore, every condition is weighted equally. Kbann's �ne-grained weighting may be
needed in some domains and not in others. It may actually be detrimental in some domains.
An advanced theory revision system should o�er a range of representations.

Like Kbann, Neither-MofN has only limited
exibility of structure. The re�ned
theory is reached through a series of small, incremental modi�cations in the initial theory
precluding a fundamental restructuring. Neither-MofN is therefore limited to �nding the
best theory with the same fundamental structure as the initial theory.

4. Theory-Guided Constructive Induction

In the �rst half of this section we present guidelines for theory-guided constructive induction

that summarize the work discussed in Sections 2 and 3. The remainder of the section

425

Donoho & Rendell

presents an algorithm that instantiates these guidelines. We evaluate the algorithm in
Section 5.

4.1 Guidelines

The following guidelines are a synthesis of the strengths of the previously discussed related
work.

� As in Miro, new features should be constructed using components of the domain
theory. These new features are combinations of existing features, and a �nal theory is
created by applying a standard induction algorithm to the training examples described
using the new features. This allows knowledge to be gleaned from the initial theory
without forcing the �nal theory to conform to the initial theory's backbone structure.
It takes full advantage of the domain theory by building high-level features from the
original low-level features. It also takes advantage of a strength of standard induction
| building concise theories having high predictive accuracy when the target concept
can be concisely expressed using the given features.

� As in Either, the constructed features should be modi�able by various operators
that act locally, such as adding or dropping conjuncts from a constructed feature.

� As in Kbann and Neither-MofN, the representation of the constructed features
need not be the exact representation in which the initial theory is given. For example,
the initial theory may be given as a set of rules written in propositional logic. A
new feature can be constructed for each rule, but it need not be a boolean feature
telling whether all the conditions are met; for example it may be a count of how
many conditions of that rule are met. This allows the �nal theory to be formed and
expressed in a representation that is more suitable than the representation of the
initial theory.

� Like Grendel, a complete system should o�er a library of interpreters allowing the
domain theory to be translated into a range of representations with di�ering adapt-
ability. One interpreter might emulate Miro strictly translating a domain theory
into boolean constructed features. Another interpreter might construct features that
count the number of satis�ed conditions of the corresponding component of the do-
main theory thus providing a measure of partial match. Still another interpreter
might construct features that are weighted sums of the satis�ed conditions. The
weights could be re�ned empirically by examining a set of training examples. Thus
the most appropriate amount of expressive power can be applied to a given problem
without incurring unnecessary expense.

4.2 A Speci�c Interpreter

This section describes an algorithm which is a limited instantiation of the guidelines just
described. The algorithm is intended as a demonstration of the distillation and synthesis
of the principles embodied in previous landmark systems. It contains a main module,
Tgci described in Figure 12, and a speci�c interpreter, Tgci1 described in Figure 11.
The main module Tgci redescribes the training and testing examples by calling Tgci1

426

Rerepresenting and Restructuring Domain Theories

and then applies C4.5 to the redescribed examples (just as Miro applied the candidate
elimination algorithm to examples after redescribing them). Tgci1 can be viewed as a
single interpreter from a potential Grendel-like toolbox. It takes as input a single example
and a domain theory expressed as an AND/OR tree such as the one shown in Figure 13.
It returns a new vector of features for that example that measure the partial match of the
example to the theory. Thus it creates new features from components of the domain theory
as in Miro, but because it measures partial match, it allows
exibility in representing
the information contained in the initial theory as in Kbann and Neither-MofN. One
aspect of the guidelines in 4.1 that does not appear in this algorithm is Either's locally
acting operators such as adding and dropping conditions from a portion of the theory.
The following two paragraphs explain in more detail the workings of Tgci1 and Tgci

respectively.

Given: An example E and a domain theory with root node R. The domain
theory is an AND/OR/NOT tree in which the leaves are conditions which can
be tested to be true or false.

Return: A pair P = (F;F) where F is the top feature measuring the partial
match of E to the whole domain theory, and F is a vector of new features mea-
suring the partial match of E to various parts and subparts of the domain theory.

1. If R is a directly testable condition, return P=(1,<>) if R is true for E
and P=(-1,<>) if R is false for E.

2. n = the number of children of R

3. For each child Rj of R, call Tgci1(Rj,E) and store the respective results
in Pj = (Fj ;Fj).

4. If the major operator of R is OR, Fnew = MAX(Fj).
Return P = (Fnew ; concatenate(<Fnew>;F1;F2; :::;Fn)).

5. If the major operator of R is AND, Fnew = (
Pn

j=1 Fj)=n.
Return P = (Fnew ; concatenate(<Fnew>;F1;F2; :::;Fn)).

6. If the major operator of R is NOT, Fnew = �1 � F1.
Return P = (Fnew ;F1).

Figure 11: The Tgci1 algorithm

The Tgci1 algorithm, given in Figure 11, is recursive. Its inputs are an example E and
a domain theory with root node R. It ultimately returns a redescription of E in the form
of a vector of new features F . It also returns a value F called the top feature which is used
in intermediate calculations described below. The base case occurs if the domain theory is
a single leaf node (i.e., R is a simple condition). In this case (Line 1), Tgci1 returns the
top feature 1 if the condition is true and -1 if the condition is false. No new features are
returned in the base case because they would simply duplicate the existing features. If the

427

Donoho & Rendell

domain theory is not a single leaf node, Tgci1 recursively calls itself on each of R's children
(Line 3). When a child of R, Rj , is processed, it returns a vector of new features Fj (which
measures the partial match of the example to the jth child of R and its various subparts).
It also returns the top feature Fj which is included in Fj but is marked as special because it
measures the partial match of the example to the whole of the jth child of R. If there are n
children, the result of Line 3 is n vectors of new features, F1 to Fn, and n top features, F1
to Fn. If the operator at node R is OR (Line 4), then Fnew , the new feature created for that
node, is the maximum of Fj . Thus Fnew measures how closely the best of R's children come
to having its conditions met by the example. The vector of new features returned in this
case is a concatenation of Fnew and all the new features from R's children. If the operator
at node R is AND (Line 5), then Fnew is the average of Fj . Thus Fnew measures how closely
all of R's children as a group come to having their conditions met by the example. The
vector of new features returned in this case is again a concatenation of Fnew and all the new
features from R's children. If the operator at node R is NOT (Line 6), R should only have
one child, and Fnew is F1 negated. Thus Fnew measures the extent to which the conditions
of R's child are not met by the example.

Given: A set of training examples Etrain, a set of testing examples Etest, and a
domain theory with root node R.

Return: Learned concept and accuracy on testing examples.

1. For each example Ei 2 Etrain, call Tgci1(R,Ei) which returns Pi =
(Fi;Fi). Etrain�new = fFig.

2. For each example Ei 2 Etest, call Tgci1(R,Ei). which returns Pi =
(Fi;Fi). Etest�new = fFig.

3. Call C4.5 with training examples Etrain�new and testing examples
Etest�new . Return decision tree and accuracy on Etest�new .

Figure 12: The Tgci algorithm

If Tgci1 is called twice with two di�erent examples but with the same domain theory,
the two vectors of new features will be the same size. Furthermore, corresponding features
measure the match of corresponding parts of the domain theory. The Tgci main module
in Figure 12 takes advantage of this by creating redescribed example sets from the input
example sets. Line 1 redescribes each example in the training set producing a new training
set. Line 2 does the same for the testing set. Line 3 runs the standard induction program
C4.5 on these redescribed example sets. The returned decision tree can be easily interpreted
by examining which new features were used and what part of the domain theory they
correspond to.

4.3 Tgci1 Examples

As an example of how the Tgci1 interpreter works, consider the toy theory shown in
Figure 13. Tgci1 redescribes the input example by constructing a new feature for each node

428

Rerepresenting and Restructuring Domain Theories

in the input theory. Consider the situation where the input example matches conditions A,
B, and D but not C and E. When Tgci1 evaluates the children of Node 6, it gets the values
F1 = 1, F2 = 1, F3 = �1, F4 = 1, and F5 = �1. Since the operator at Node 6 is AND, Fnew
is the average of the values received from the children, 0.20 ((1+ 1+ (�1)+ 1+ (�1))=5 =
0:20). Likewise, if condition G matchs but not F and H, Fnew for Node 5 will have the value
0.33 (�1 � ((1+ (�1) + (�1))=3)) because two of three matching conditions at Node 7 give
the value �0:33, and this is negated by the NOT at Node 5. Since Node 2 is a disjunction,
its new feature measures the best partial match of its two children and has the value 0.33
(MAX(0.20,0.33)), and so on.

A B C D E F G H I J K L M N O

NOT

NOT

1

2

3

4

5

6 7
8 9

Figure 13: An example theory in the form of an AND/OR tree that might be used by the
interpreter to generate constructed features.

Figure 14 shows how Tgci1 redescribes a particular DNA segment using the minus 35
rules of the promoter theory. A partial DNA segment is shown along with the fourminus 35
rules and the new feature constructed for each rule (We have given the new features names
here to simplify our illustration). For the �rst rule, four of the six nucleotides match; there-
fore, for that DNA segment feat minus35 A has the value 0.33 ((1+1+1+1+(�1)+(�1))=6).
For the second rule, four of the �ve nucleotides match; therefore, feat minus35 B has
the value 0.60. Because these and the other two minus 35 rules are joined by disjunc-
tion in the original domain theory, feat minus35 all, the new feature constructed for this
group, takes the maximum value of its four children; therefore, feat minus35 all has the
value 0.60 because feat minus35 B has the value 0.60, the highest in the group. Intu-
itively, feat minus35 all represents the best partial match of this grouping | the extent
to which the disjunction is partially satis�ed. The results of running Tgci1 on each DNA
sequence is a set of redescribed training examples. Each redescribed example has a value for
feat minus35 A through feat minus35 D, feat minus35 all, and all other nodes in the pro-
moter domain theory. The training set is essentially redescribed using a new feature vector
derived from information contained in the domain theory. In this form, any o�-the-shelf
induction program can be applied to the new example set.

Anomalous situations can be created in which Tgci1 gives a \good score" to a seemingly
bad example and a bad score to a good example. Situations can also be created where
logically equivalent theories give di�erent scores for a single example. These occur because

429

Donoho & Rendell

A DNA segment fragment:

: : :p-38=g, p-37=c, p-36=t, p-35=t, p-34=g, p-33=c, p-32=a, p-31=a, p-30=t : : :

The minus 35 group of rules and corresponding constructed features:

minus 35 :- p-37=c, p-36=t, p-35=t, p-34=g, p-33=a, p-32=c. feat minus35 A = 0.33
minus 35 :- p-36=t, p-35=t, p-34=g, p-32=c, p-31=a. feat minus35 B = 0.60
minus 35 :- p-36=t, p-35=t, p-34=g, p-33=a, p-32=c, p-31=a. feat minus35 C = 0.33
minus 35 :- p-36=t, p-35=t, p-34=g, p-33=a, p-32=c. feat minus35 D = 0.20

feat minus35 all = max(feat minus35 A, feat minus35 B, feat minus35 C, feat minus35 D) = 0.60

Figure 14: An example of how Tgci1 generates constructed features from a portion of the
promoter domain theory and a DNA segment. Four of the conditions in the �rst
minus 35 rule match the DNA segment; therefore, the constructed feature for
that rule has the value 0.33 ((1+ 1+ 1+1+ (�1)+ (�1))=6). Feat minus35 all,
the new feature for the entire minus 35 group takes the maximum value of its
children thus embodying the best partial match of the group.

Tgci1 is biased to favor situations where more matched conditions of an AND is desirable,
but more matched conditions of an OR is not necessarily better. Eliminating these anomalies
would remove this bias.

5. Experiments and Analysis

This section presents the results of applying theory-guided constructive induction to three
domains: the promoter domain (Harley et al., 1990), the primate splice-junction domain (No-
ordewier, Shavlik, & Towell, 1992), and the gene identi�cation domain (Craven & Shavlik,
1995). In each case the Tgci1 interpreter was applied to the domain's theory and examples
in order to redescribe the examples using new features. Then C4.5 (Quinlan, 1993) was
applied to the redescribed examples.

5.1 The Promoter Domain

Figure 15 shows a learning curve for theory-guided constructive induction in the promoter
domain accompanied by curves for Either, LabyrinthK , Kbann, and Neither-MofN.
Following the methodology described by Towell and Shavlik [1994], the set of 106 examples
was randomly divided into a training set of size 80 and a testing set of size 26. A learning
curve was created by training on subsets of the training set of size 8, 16, 24, : : :72, 80,
using the 26 examples for testing. The curves for Either, LabyrinthK , and Kbann were
taken from Ourston and Mooney (1990), Thompson, Langley, and Iba (1991), and Towell

430

Rerepresenting and Restructuring Domain Theories

and Shavlik (1994) respectively and were obtained by a similar methodology1. The curve
forTgci is the average of 50 independent random data partitions and is given along with 95%
con�dence ranges. The Neither-MofN program was obtained from Ray Mooney's group
and was used in generating the Neither-MofN curve using the same 50 data partitions
as were used for Tgci2.

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

35

37.5

40

42.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

%
 E

rr
or

Size of Training Sample

 EITHER
Labyrinth-k

NEITHER-MofN
KBANN

TGCI
95% confidence of NEITHER-MofN

95% confidence of TGCI

Figure 15: Learning curves for theory-guided constructive induction and other systems in
the promoter domain.

Tgci showed improvement over Either and LabyrinthK for all portions of the curve
and also performed better than Kbann and Neither-MofN for all except the small-
est training sets. Con�dence intervals were not available for Either, LabyrinthK , and

1. Either used a testing set of size 25 and did not use the conformation portion of the domain theory. The
testing set in LabyrinthK always consisted of 13 promoters and 13 non-promoters.

2. Ba�es and Mooney (1993) report a slightly better learning curve for Neither-MofN than we obtained,
but after communication with Paul Ba�es, we think the di�erence is caused by the random selection of
data partitions.

431

Donoho & Rendell

Kbann, but in a pairwise comparison with Neither-MofN, the improvement of Tgci was
signi�cant at the 0.0005 level of con�dence for training sets of size 48 and larger.

100% of
first
minus_35
rule

100% of
second
minus_35
rule

100% of
third
minus_35
rule

100% of
fourth
minus_35
rule

100% of
first
minus_10
rule

100% of
second
minus_10
rule

100% of
third
minus_10
rule

100% of
fourth
minus_10
rule

100% of
first
conf.
rule

100% of
second
conf.
rule

100% of
third
conf.
rule

100% of
fourth
conf.
rule

>33% of
first
minus_10
rule

>33% of
second
minus_10
rule

>33% of
third
minus_10
rule

>33% of
fourth
minus_10
rule

>20% of
second
minus_35
rule

Structure of Initial Promoter Theory

Structure of Revised Promoter Theory

Figure 16: The revised theory produced by theory-guided constructive induction has bor-
rowed substructures from the initial theory, but as a whole has not been re-
stricted by its structure.

Figure 16 compares the initial promoter theory with a theory created by Tgci. Reasons
for Tgci's improvement can be inferred from this �gure. Tgci has extracted the com-
ponents of the original theory that are most helpful and restructured them into a more
concise theory. Neither Kbann nor Neither-MofN facilitates this radical extraction and
restructuring. As seen in the leaf nodes, the new theory also measures the partial match
of an example to components of the original theory. This aspect is similar in Kbann and
Neither-MofN.

Part of Tgci's improvement over Kbann and Neither-MofN may be due to a knowl-
edge/bias con
ict in the latter two systems, a situation where revision biases con
ict with
knowledge in such a way as to undo some of the knowledge's bene�ts. This can occur
whenever detailed knowledge is opened up to revision using a set of examples. The revision
is not guided only by the examples but rather by the examples as interpreted by a set

432

Rerepresenting and Restructuring Domain Theories

of algorithmic biases. Biases that are useful in the absence of knowledge may undo good
knowledge when improperly applied. Yet these biases developed and perfected for pure in-
duction are often unquestioningly applied to the revision of theories. The biases governing
the dropping of conditions in Neither-MofN and reweighting conditions in Kbann may
be neutralizing the promoter theory's potential. We speculate this because we conducted
some experiments that allowed bias-guided dropping and adding of conditions within Tgci.
We found that these techniques actually reduced accuracy in this domain.

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

35

37.5

40

42.5

45

0 20 40 60 80 100 120 140 160 180 200

%
 E

rr
or

Size of Training Sample

c4.5
backpropagation

KBANN
TGCI

95% confidence of TGCI
domain theory

Figure 17: Learning curves for Tgci and other systems in the primate splice-junction do-
main.

5.2 The Primate Splice-junction Domain

The primate splice-junction domain (Noordewier et al., 1992) involves analyzing a DNA
sequence and identifying boundaries between introns and exons. Exons are the parts of a
DNA sequence kept after splicing; introns are spliced out. The task then involves placing a

433

Donoho & Rendell

given boundary into one of three classes: an intron/exon boundary, an exon/intron bound-
ary, or neither. An imperfect domain theory is available which has a 39.0% error rate on
the entire set of available examples.

Figure 17 shows learning curves for C4.5, backpropagation, Kbann, and Tgci in the
primate splice-junction domain. The results for Kbann and backpropagation were taken
from Towell and Shavlik (1994). The curves for plain C4.5 and the Tgci algorithm were
created by training on sets of size 10,20,30,...90,100,120,...200 and testing on a set of size
800. The curves for C4.5 and Tgci are the average of 40 independent data partitions.
No comparison was made with Neither-MofN because the implementation we obtained
could handle only two-class concepts. For training sets larger than 200, Kbann, Tgci, and
backpropagation all performed similarly.

The accuracy of Tgci appears slightly worse than that of Kbann but perhaps not sig-
ni�cantly. Kbann's advantage over Tgci is its ability to assign �ne-grained weightings
to individual parts of a domain theory. Tgci's advantage over Kbann is its ability to
more easily restructure the information contained in a domain theory. We speculate that
Kbann's capability to assign �ne-grained weights outweighted its somewhat rigid struc-
turing of this domain theory. Theory-guided constructive induction has an advantage of
speed over Kbann because C4.5, its underlying learner, runs much more quickly than
backpropagation, Kbann's underlying learning algorithm.

5.3 The Gene Identi�cation Domain

The gene identi�cation domain (Craven & Shavlik, 1995) involves classifying a given DNA
segment as a coding sequence (one that codes a protein) or a non-coding sequence. No
domain theory was available in the gene identi�cation domain; therefore, we created an
arti�cial domain theory using the information that organisms may favor certain nucleotide
triplets over others in gene coding. The domain theory embodies the knowledge that a DNA
segment is likely to be a gene coding segment if its triplets are coding-favoring triplets or if
its triplets are not noncoding-favoring triplets. The decision of which triplets were coding-
favoring, which were noncoding-favoring, and which favored neither, was made empirically
by analyzing the makeup of 2500 coding and 2500 noncoding sequences. The speci�c arti-
�cial domain theory used is described in Online Appendix 1.

Figure 18 shows learning curves for C4.5 and Tgci in the gene identi�cation domain.
The original domain theory yields 31.5% error. The curves were created by training on
example sets of size 50,200,400,...2000 and testing on a separate example set of size 1000.
The curves are the average of 40 independent data partitions.

Only a partial curve is given for Neither-MofN because it became prohibitively slow
for larger training sets. In the promoter domain where training sets were smaller than 100,
Tgci and Neither-MofN ran at comparable speeds (approximately 10 seconds on a Sun4
workstation). In this domain Tgci ran in approximately 2 minutes for larger training sets.
Neither-MofN took 21 times as long as Tgci on training sets of size 400, 69 times as
long for size 800, and 144 times as long for size 1200. Consequently, Neither-MofN's
curve only extends to 1200 and only represents �ve randomly selected data partitions. For
these reasons, a solid comparison of Neither-MofN and Tgci cannot be made from these
curves, but it appears that Tgci's accuracy is slightly better. We speculate that Neither-

434

Rerepresenting and Restructuring Domain Theories

20

22.5

25

27.5

30

32.5

35

37.5

40

42.5

45

0 200 400 600 800 1000 1200 1400 1600 1800 2000

%
 E

rr
or

Number training examples

TGCI
95% confidence of TGCI

C4.5
NEITHER-MofN

domain theory

Figure 18: Learning curves for Tgci and other systems in the gene identi�cation domain.

MofN's slightly lower accuracy is partially due to the fact that it revises the theory to
correctly classify all the training examples. The result is a theory which likely over�ts the
training examples. Tgci does not need to explicitly avoid over�t because this is handled
by its underlying learner.

5.4 Summary of Experiments

Our goal in this paper has not been to present a new technique but rather to understand
the behavior of landmark systems, distill their strengths, and synthesize them into a simple
system, Tgci. The evaluation of this algorithm shows that its accuracy roughly matches or
exceeds that of its predecessors. In the promoter domain, Tgci showed sizable improvement
over many published results. In the splice-junction domain, Tgci narrowly falls short of
Kbann's accuracy. In the gene identi�cation domain, Tgci outperforms Neither-MofN.
In all these domains Tgci greatly improves on the original theory alone and C4.5 alone.

435

Donoho & Rendell

Tgci is faster than its closest competitors. Tgci runs as much as 100 times faster than
Neither-MofN on large datasets. A strict quantitative comparison of the speeds of Tgci
and Kbann was not made because 1) backpropagation is known to be much slower than
decision trees (Mooney, Shavlik, Towell, & Gove, 1989), 2) Kbann uses multiple hidden
layers which makes its training time even longer (Towell & Shavlik, 1994), and 3) Towell
and Shavlik (1994) point out that each run of Kbann must be made multiple times with
di�erent initial random weights, whereas a single run of Tgci is su�cient.

Overall, our experiments support two claims of this paper: First, the accuracy of Tgci
substantiates our delineation of system strengths in terms of
exible theory representation
and
exible theory structure, since this characterization is the basis for this algorithm's
design. Second, Tgci's combination of speed and accuracy suggest that unnecessary com-
putational complexity can be avoided in synthesizing the strengths of landmark systems.
In the following section we take a closer look at the strengths of theory-guided constructive
induction.

6. Discussion of Strengths

Below a number of strengths of theory-guided constructive induction are discussed within
the context of the Tgci algorithm used in our experiments.

6.1 Flexible Representation

As discussed in Section 1, for many domains the representation most appropriate for an
initial theory may not be most appropriate for a re�ned theory. Because theory-guided con-
structive induction allows the translation of the initial theory into a di�erent representation,
it can accommodate such domains. In the experiments in this paper a representation was
needed which allowed for a measurement of partial match to the domain theory. Tgci1

accomplished this by simply counting the matching features and propagating this infor-
mation up the theory appropriately. Either and LabyrinthK do not easily a�ord this
measure of partial match and therefore are more appropriate for problems in which the best
representation of the �nal theory is the same as that of the initial theory. Kbann allows
a �ner-grained measurement of partial match than both Neither-MofN and our work,
but a price is paid in computational complexity. The theory-guided constructive induc-
tion framework allows for a variety of potential tools with varying degrees of granularity of
partial match, although just one tool is used in our experiments.

6.2 Flexible Structure

As discussed in Section 2.5, a strength of existing induction programs is fashioning a concise
and highly predictive description of a concept when the target concept can be concisely
described with the given features. Consequently, the value of a domain theory lies not in its
overall structure. If the feature language is su�cient, any induction program can build a
good overall theory structure. Instead, the value of a domain theory lies in the information
it contains about how to redescribe examples using high-level features. These high-level
features facilitate a concise description of the target concept. Systems such as Either and
Neither-MofN that reach a �nal theory through a series of modi�cations in the initial

436

Rerepresenting and Restructuring Domain Theories

theory hope to gain something by keeping the theory's overall structure intact. If the initial
theory is su�ciently close to an accurate theory, this method works, but often clinging to
the structure hinders full exploitation of the domain theory. Theory-guided constructive
induction provides a means of fully exploiting both the information in the domain theory and
the strengths of existing induction programs. Figure 16 in Section 5.1 gives a comparison of
the structure of the initial promoter theory to the structure of a revised theory produced by
theory-guided constructive induction. Substructures have been borrowed, but the revised
theory as a whole has been restructured.

6.3 Use of Standard Induction as an Underlying Learner

Because theory-guided constructive induction uses a standard induction program as its
underlying learner, it does not need to reinvent solutions to over�t avoidance, multi-class
concepts, noisy data, etc. Over�t avoidance has been widely studied for standard induction,
and many standard techniques exist. Any system which modi�es a theory to accommodate
a set of training examples must also address the issue of over�t to the training examples. In
many theory revision systems existing over�t avoidance techniques cannot be easily adapted,
and the problem must be addressed from scratch. Theory-guided constructive induction can
take advantage of the full range of previous work in over�t avoidance for standard induction.

When multiple theory parts are available for multi-class concepts, the interpreter is
run on the multiple theory parts, and the resulting new feature sets are combined. The
primate splice-junction domain presented in Section 5.2 has three classes: intron/exon
boundaries, exon/intron boundaries, and neither. Theories are given for both intron/exon
and exon/intron. Both theories are used to create new features, and then all new features
are concatenated together for learning. Interpreters such as Tgci1 also trivially handle
negation in a domain theory.

6.4 Use of Theory Fragments

Theory-guided constructive induction is not limited to using full domain theories. If only
part of a theory is available, this can be used. To demonstrate this, three experiments
were run in which only fragments of the promoter domain theory were used. In the �rst
experiment, only the four minus 35 rules were used. Five features were constructed | one
feature for each rule and then an additional feature for the group. Similar experiments were
run for the minus 10 group and the conformation group.

Figure 19 gives learning curves for these three experiments along with curves for the en-
tire theory and for no theory (C4.5 using the original features). Although the conformation
portion of the theory gives no signi�cant improvement over C4.5, both the minus 35 and
minus 10 portions of the theory give signi�cant improvements in performance. Thus even
partial theories and theory fragments can be used by theory-guided constructive induction
to yield sizable performance improvements.

The use of theory fragments should be explored as a means of evaluating the contribution
of di�erent parts of a theory. In Figure 19, the conformation portion of the theory is shown
to yield no improvement. This could signal a knowledge engineer that the knowledge that
should be conveyed through that portion of the theory is not useful to the learner in its
present form.

437

Donoho & Rendell

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

35

37.5

40

42.5

45

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

%
 E

rr
or

Size of Training Sample

 C4.5
conformation portion of theory

minus_10 portion of theory
minus_35 portion of theory

whole theory

Figure 19: Learning curves for theory-guided constructive induction with only fragments of
the promoter domain theory. Theminus 35 portion of the theory, theminus 10
portion of the theory, and the conformation portion of the theory were used
separately in feature construction. Curves are also given for the full theory and
for C4.5 alone for comparison.

6.5 Use of Multiple Theories

Theory-guided constructive induction can use multiple competing and even incompatible
domain theories. If multiple theories exist, theory-guided constructive induction provides
a natural means of integrating them in such a way as to extract the best from all theories.
Tgci1 would be called for each input theory producing new features. Next, all the new
features are simply pooled together and the induction program selects from among them
in fashioning the �nal theory. This is seen on a very small scale in the promoter domain.

438

Rerepresenting and Restructuring Domain Theories

In Figure 4 some minus 35 rules subsume other minus 35 rules. According to the entry in
the UCI Database, this is because \the biological evidence is inconclusive with respect to
the correct speci�city." This is handled by simply using all four possibilities, and selection
of the most useful knowledge is left to the induction program.

Tgci could also be used to evaluate the contributions of competing theories just as it was
used to evaluate theory fragments above. A knowledge engineer could use this evaluation
to guide his own revision and synthesis of competing theories.

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

%
 E

rr
or

Size of Training Sample

TGCI using C4.5
TGCI using LFC

95% confidence of LFC

Figure 20: Theory-guided constructive induction with Lfc and C4.5 as the underlying
learning system. Theory-guided constructive induction can use any inductive
learner as its underlying learning component. Therefore, more sophisticated
underlying induction programs can further improve accuracy.

6.6 Easy Adoption of New Techniques

Since theory-guided constructive induction can use any standard induction method as its
underlying learner, as improvements are made in standard induction, theory-guided con-
structive induction passively improves. To demonstrate this, tests were also run with Lfc
(Ragavan & Rendell, 1993) as the underlying induction program. Lfc is a decision tree
learner that performs example-based constructive induction by looking ahead at combi-
nations of features. Characteristically, Lfc improves accuracy for a moderate number of
examples. Figure 20 shows the resulting learning curve along with the C4.5 Tgci curve.
Both curves are the average of 50 separate runs with the same data partitions used for each
program. In a pairwise comparison the improvement of Lfc over C4.5 was signi�cant at the
0.025 level of con�dence for training sets of size 72 and 80. More sophisticated underlying
induction programs can further improve accuracy.

439

Donoho & Rendell

7. Testing the Limits of Tgci

The purpose of this section is to explore the performance of theory-guided constructive
induction on theory revision problems ranging from easy to di�cult. In easy problems
the underlying concept embodied in the training and testing examples matches the domain
theory fairly closely; therefore, the examples themselves match the domain theory fairly
closely. In di�cult problems the underlying concept embodied in the examples does not
match the domain theory very well so the examples do not either. Although many other
factors determine the di�culty of an individual problem, this aspect is an important com-
ponent and worth exploring. Our experiment in this section is intended to relate ranges of
di�culty to the amount of improvement produced by Tgci.

Since a number of factors a�ect problem di�culty we chose that the theory revision
problems for the experiment should all be variations of a single problem. By doing this we
are able to hold all other factors constant and vary the closeness of match to the domain
theory. Because we wanted to avoid totally arti�cial domains, we chose to start with the
promoter domain and create \new" domains by perverting the example set.

These \new" domains were created by perverting the examples in the original promoter
problem to either more closely match the promoter domain theory or less closely match the
promoter domain theory. Only the positive examples were altered. For example, one domain
was created with 30% fewer matches to the domain theory than the original promoter
domain as follows: Each feature value in a given example was examined to see if it matched
part of the theory. If so, with a 30% probability, it was randomly reassigned a new value
from the set of possible values for that feature. The end result is a set of examples with 30%
fewer matches to the domain theory than the original example set3. For our experiment
new domains such as this were created with 10%, 30%, 60%, and 90% fewer matches.

For some features, multiple values may match the theory because di�erent disjuncts
of the theory specify di�erent values for a single feature. For example, referring back to
Figure 4, feature p-12 matches two of the minus 10 rules if it has the value a and another
two rules if it has the value t. So a single feature might accidentally match one part of a
theory when in fact the example as a whole more closely matches another part of the theory.
For cases such as these, true matches were separated from accidental matches by examining
which part of the theory most clearly matched the example as a whole and expecting a
match from that part of the theory.

New domains thatmore closely matched the theory were created in a similar manner. For
example, a domain was created with 30% fewer mismatches to the domain theory than the
original promoter domain as follows: Each feature value in a given example was examined
to see if it matched its corresponding part of the theory. If not, with a 30% probability,
it was reassigned a value that matched the theory. The end result is a set of examples in
which 30% of the mismatches with the domain theory are eliminated. For our experiment
new domains such as this were created with 30%, 60%, and 90% fewer mismatches.

Ten di�erent example sets were created for each level of closeness to the domain theory:
10%, 30%, 60%, 90% fewer matches, and 30%, 60%, 90% fewer mismatches. In total, forty
example sets were created which matched the original theory less closely than the original

3. More precisely, there would be slightly more matches than 30% fewer matches because some features
would be randomly reassigned back to their original matching value.

440

Rerepresenting and Restructuring Domain Theories

0

5

10

15

20

25

30

35

40

45

50

55

-100 -80 -60 -40 -20 0 20 40 60 80 100

%
 E

rr
or

Closeness to theory

C4.5
TGCI

Figure 21: Seven altered promoter domains were created, three that more closely matched
the theory than the original domains and four that less closely matched. A
100 on the x-axis indicates a domain in which the positive examples match the
domain theory 100%. A negative 100 indicates a domain in which any match
of the positive examples to the domain theory is purely chance. The accuracy
of C4.5 and Tgci are plotted for di�erent levels of proximity to the domain
theory.

example set, and thirty example sets were created which matched the original theory more
closely than the original example set. Each of these example sets was tested using a leave-
one-out methodology using C4.5 and the Tgci algorithm. The results are summarized in
Figure 21. The x-axis is a measure of theory proximity { closeness of an example set to the
domain theory. \0" on the x-axis indicates no change in the original promoter examples.
\100" on the x-axis means that each positive example exactly matches the domain theory.
\-100" on the x-axis means that any match of a feature value of a positive example to the

441

Donoho & Rendell

domain theory is totally by chance4. Each datapoint in Figure 21 is the result of averaging
the accuracies of the ten example sets for each level of theory proximity (except for the
point at zero which is the accuracy of the exact original promoter examples).

One notable portion of Figure 21 is the section between 0 and 60 on the x-axis. Domains
in this region have a greater than trivial level of mismatch with the domain theory but not
more than moderate mismatch. This is the region of Tgci's best performance. On these
domains, Tgci achieves high accuracy while a standard learner, C4.5, using the original
feature set gives mediocre performance. A second region to examine is between -60 and 0
on the x-axis where the level of mismatch ranges from moderate to extreme. In this region
Tgci's performance falls o� but its improvement over the original feature set remains high
as shown in Figure 22 which plots the improvement of Tgci over C4.5. The �nal two
regions to notice are greater than 60 and less than -60 on the x-axis. As the level of
mismatch between theory and examples becomes trivially small (x-axis greater than 60),
C4.5 is able to pick out the theory's patterns leading to high accuracy that approaches that
of Tgci's. As the level of mismatch becomes extreme (x-axis less than -60) the theory gives
little help in problem-solving resulting in similarly poor accuracy for both methods. In
summary, as shown in Figure 22 for variants of the promoter problem there is a wide range
of theory proximity (centered around the real promoter problem) for which theory-guided
constructive induction yields sizable improvement over standard learners.

0

2.5

5

7.5

10

12.5

15

17.5

20

-100 -80 -60 -40 -20 0 20 40 60 80 100

%
 E

rr
or

Closeness to theory

error difference

Figure 22: The di�erence in error between C4.5 and Tgci for di�erent levels of proximity
of the example set to the domain theory.

4. The scale 0 to -100 on the left half of the graph may not be directly comparable with the scale 0 to 100
on the right half of the graph since there were not a equal number of matches and mismatches in the
original examples.

442

Rerepresenting and Restructuring Domain Theories

8. Conclusion

Our goal in this paper has not been just to present another new system, but rather to
study the two qualities
exible representation and
exible structure. These capabilities are
intended as a frame of reference for analyzing theory-guided systems. These two principles
provide guidelines for purposeful design. Once we had distilled the essence of systems
such as Miro, Kbann, and Neither-MofN, theory-guided constructive induction was
a natural synthesis of their strengths. Our experiments have demonstrated that even a
simple application of the two principles can e�ectively integrate theory knowledge with
training examples. Yet there is much room for improvement; the two principles could be
quanti�ed and made more precise, and the implementations that proceed from them should
be explored and re�ned.

Quantifying representational
exibility is one step. Section 4 gave three degrees of

exibility: one measured the exact match to a theory, one counted the number of matching
conditions, and one allowed for a weighted sum of the matching conditions. The amount of

exibility should be quanti�ed, and �ner-grained degrees of
exibility should be explored.
The accuracy in assorted domains should be evaluated as a function of representational

exibility.

Finer-grained structural
exibility would be advantageous. We have presented systems
that make small, incremental modi�cations in a theory as lacking structural
exibility. Yet
theory-guided constructive induction falls at the other extreme, perhaps allowing excessive
structural
exibility. Fortunately, existing induction tools are capable of fashioning simple
yet highly predictive theory structures when the problem features are suitably high-level.
Nevertheless, approaches should be explored that take advantage of the structure of the
initial theory without being unduly restricted by it.

The strength discussed in Section 6.5 should be given further attention. Although the
promoter domain gives a very small example of synthesizing competing theories, this should
be explored in a domain in which entire competing, inconsistent theories are available such as
synthesizing the knowledge given by multiple experts. The point was made in Section 6.4
that Tgci can use theory fragments to evaluate the contribution of di�erent parts of a
theory. This should also be explored further.

In an exploration of bias in standard induction, Utgo� (1986) refers to biases as ranging
from weak to strong and from incorrect to correct. A strong bias restricts the concepts that
can be represented more than a weak bias thus providing more guidance in learning. But as
a bias becomes stronger, it may also become incorrect by ruling out useful concept descrip-
tions. A similar situation arises in theory revision | a theory representation language that
is inappropriately rigid may impose a strong, incorrect bias on revision. A language that
allows adaptability along too many dimensions may provide too weak a bias. A Grendel-
like toolbox would allow a theory to be translated into a range of representations with
varying dimensions of adaptability. Utgo� advocates starting with a strong, possibly incor-
rect bias and shifting to an appropriately weak and correct bias. Similarly, a theory could
be translated into successively more adaptable representations until an appropriate bias is
found. We have implemented only a single tool; many open problems remain along this line
of research.

443

Donoho & Rendell

The converse relationship of theory revision and constructive induction warrants further
examination | theory revision uses data to improve a theory; constructive induction can
use theory to improve data to facilitate learning. Since the long-term goal of machine
learning is to use data, inference, and theory to improve any and all of them, we believe
that a consideration of these related methods can be bene�cial, particularly because each
research area has some strengths that the other lacks.

An analysis of landmark theory revision and theory-guided learning systems has led
to the two principles
exible representation and
exible structure. Because theory-guided
constructive induction was based upon these high-level principles, it is simple yet achieves
good accuracy. These principles provide guidelines for future work, yet as discussed above,
the principles themselves are imprecise and call for further exploration.

Acknowledgements

We would like to thank Geo� Towell, Kevin Thompson, Ray Mooney, and Je� Mahoney for
their assistance in getting the datapoints forKbann, LabyrinthK , and Either. We would
also like to thank Paul Ba�es for making the Neither program available and for advice on
setting the program's parameters. We thank the anonymous reviewers for their constructive
criticism of an earlier draft of this paper. We gratefully acknowledge the support of this
work by a DoD Graduate Fellowship and NSF grant IRI-92-04473.

References

Ba�es, P., & Mooney, R. (1993). Symbolic revision of theories with M-of-N rules. In
Proceedings of the 1993 IJCAI.

Bloedorn, E., Michalski, R., & Wnek, J. (1993). Multistrategy constructive induction:
AQ17-MCI. In Proceeding of the second international workshop on multistrategy learn-
ing.

Clark, P., & Matwin, S. (1993). Using qualitative models to guide inductive learning. In
Proceedings of the 1993 International Conference on Machine Learning.

Cohen, W. (1992). Compiling prior knowledge into an explicit bias. In Proceedings of the
1992 International Conference on Machine Learning.

Craven, M. W., & Shavlik, J. W. (1995). Investigating the value of a good input representa-
tion. Computational Learning Theory and Natural Learning Systems, 3. Forthcoming.

Drastal, G., & Raatz, S. (1989). Empirical results on learning in an abstraction space. In
Proceedings of the 1989 IJCAI.

Dzerisko, S., & Lavrac, N. (1991). Learning relations from noisy examples: An empirical
comparison of LINUS and FOIL. In Proceedings of the 1991 International Conference

on Machine Learning.

444

Rerepresenting and Restructuring Domain Theories

Feldman, R., Serge, A., & Koppel, M. (1991). Incremental re�nement of approximate
domain theories. In Proceedings of the 1991 International Conference on Machine
Learning.

Flann, N., & Dietterich, T. (1989). A study of explanation-based methods for inductive
learning. Machine Learning, 4, 187{226.

Fu, L. M., & Buchanan, B. G. (1985). Learning intermediate concepts in constructing a
hierarchical knowledge base. In Proceedings of the 1985 IJCAI.

Harley, C., Reynolds, R., & Noordewier, M. (1990). Creators of original promoter dataset.

Hirsh, H., & Noordewier, M. (1994). Using background knowledge to improve inductive
learning of DNA sequences. In Tenth IEEE Conference on AI for Applications San
Antonio, TX.

Matheus, C. J., & Rendell, L. A. (1989). Constructive induction on decision trees. In
Proceedings of the 1989 IJCAI.

Michalski, R. S. (1983). A theory and methodology of inductive learning. Arti�cial Intelli-
gence, 20 (2), 111{161.

Mitchell, T. (1977). Version spaces: A candidate elimination approach to rule learning. In
Proceedings of the 1977 IJCAI.

Mooney, R. J. (1993). Induction over the unexplained: Using overly-general domain theories
to aid concept learning. Machine Learning, 10 (1), 79{110.

Mooney, R. J., Shavlik, J. W., Towell, G. G., & Gove, A. (1989). An experimental com-
parison of symbolic and connectionist learning algorithms. In Proceedings of the 1989
IJCAI.

Murphy, P., & Pazzani, M. (1991). ID2-of-3: Constructive induction of M-of-N concepts for
discriminators in decision trees. In Proceedings of the 1991 International Conference

on Machine Learning.

Noordewier, M., Shavlik, J., & Towell, G. (1992). Donors of original primate splice-junction
dataset.

Ourston, D., & Mooney, R. (1990). Changing the rules: A comprehensive approach to theory
re�nement. In Proceedings of the 1990 National Conference on Arti�cial Intelligence.

Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning. Machine
Learning, 5 (1), 71{99.

Pazzani, M., & Kibler, D. (1992). The utility of knowledge in inductive learning. Machine
Learning, 9 (1), 57{94.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann.

445

Donoho & Rendell

Ragavan, H., & Rendell, L. (1993). Lookahead feature construction for learning hard con-
cepts. In Proceedings of the 1993 International Conference on Machine Learning.

Rumelhart, D. E., Hinton, G. E., & McClelland, J. L. (1986). A general framework for
parallel distributed processing. In Rumelhart, D. E., & McClelland, J. L. (Eds.),
Parallel Distributed Processing: Explorations in the Microarchitecture of Cognition,

Volume I. Cambridge, MA: MIT Press.

Schlimmer, J. C. (1987). Learning and representation change. In Kaufmann, M. (Ed.),
Proceedings of the 1987 National Conference on Arti�cial Intelligence.

Thompson, K., Langley, P., & Iba, W. (1991). Using background knowledge in concept
formation. In Proceedings of the 1991 International Conference on Machine Learning.

Towell, G., & Shavlik, J. (1994). Knowledge-based arti�cial neural networks. Arti�cial

Intelligence, 70, 119{165.

Towell, G., Shavlik, J., & Noordeweir, M. (1990). Re�nement of approximately correct
domain theories by knowledge-based neural networks. In Proceedings of the 1990
National Conference on Arti�cial Intelligence.

Utgo�, P. E. (1986). Shift of bias for inductive concept learning. In Michalski, Carbonell,
& Mitchell (Eds.), Machine Learning, Vol. 2, chap. 5, pp. 107{148. San Mateo, CA:
Morgan Kaufmann.

Wogulis, J. (1991). Revising relational domain theories. In Proceedings of the 1991 Inter-
national Conference on Machine Learning.

446

