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Abstract

The theory revision problem is the problem of how best to go about revising a deficient
domain theory using information contained in examples that expose inaccuracies. In this paper we
present our approach to the theory revision problem for propositional domain theories. The
approach described here, called PTR, uses probabilities associated with domain theory elements to
numerically track the “flow” of proof through the theory. This allows us to measure the precise
role of a clause or literal in allowing or preventing a (desired or undesired) derivation for a given
example. This information is used to efficiently locate and repair flawed elements of the theory.
PTR is proved to converge to a theory which correctly classifies all examples, and shown
experimentally to be fast and accurate even for deep theories.

1. Introduction

One of the main problems in building expert systems is that models elicited from experts tend to
be only approximately correct. Although such hand-coded models might make a good first
approximation to the real world, they typically contain inaccuracies that are exposed when a fact
is asserted that does not agree with empirical observationth€bey revision problenis the
problem of how best to go about revising a knowledge base on the basis of a collection of
examples, some of which expose inaccuracies in the original knowledge base. Of course, there
may be many possible revisions that sufficiently account for all of the observed examples; ideally,
one would find a revised knowledge base which is both consistent with the examples and as
faithful as possible to the original knowledge base.

Consider, for example, the following simple propositional domain théarnyhis theory,
although flawed and incomplete, is meant to recognize situations where an investor should buy
stock in a soft drink company.

buy-stock increased-demand —product-liability
product-liability — popular-productiunsafe-packaging
increased-demand- popular-productiestablished-market
increased-demand- new-markeflsuperior-flavor

The theoryT essentially states that buying stock in this company is a good idea if demand for its
product is expected to increase and the company is not expected to face product liability lawsuits.
In this theory, product liability lawsuits may result if the product is popular (and therefore may
present an attractive target for sabotage) and if the packaging is not tamper-proof. Increased
product demand results if the product is popular and enjoys a large market share, or if there are
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new market opportunities and the product boasts a superior flavor. Using the closed world
assumptionpuy-stockis derivable given that the set of true observable propositions is precisely,
say,

{popular-product established-marketelebrity-endorsemehtor
{popular-product established-marketolorful-label

but not if they are, say,

{unsafe-packaginghew-market, or
{popular-product unsafe-packagingestablished-markgt

Suppose now that we are told for various examples whethestockshould be derivable.
For example, suppose we are told that if the set of true observable propositions is:

(1) {popular-productunsafe-packagingestablished-markgthenbuy-stocks false,

(2) {unsafe-packagingnew-market thenbuy-stocks true,

(3) {popular-productestablished-markgtelebrity-endorsemehthenbuy-stocks true,

(4) {popular-productestablished-markesuperior-flavo} thenbuy-stocks false,

(5) {popular-productestablished-markgecologically-correct thenbuy-stocks false, and
(6) {new-marketcelebrity-endorsemehthenbuy-stocks true.

Observe that examples 2, 4, 5 and 6 are misclassified by the currentfthesguming that the
explicitly given information regarding the examples is correct, the question is how to revise the
theory so that all of the examples will be correctly classified.

1.1. Two Paradigms

One approach to this problem consists of enumerating partial proofs of the various examples in
order to find a minimal set of domain theory elements (i.e., literals or clauses) the repair of which
will satisfy all the examples (EITHER, Ourston & Mooney, in press). One problem with this
approach is that proof enumeration even feingleexample is potentially exponential in the size

of the theory. Another problem with this approach is that it is unable to handle negated internal
literals, and is restricted to situations where each example must belong to one and only one class.
These problems suggest that it would be worthwhile to circumvent proof enumeration by
employing incremental numerical schemes for focusing blame on specific elements.

A completely different approach to the revision problem is based on the use of neural
networks (KBANN, Towell & Shavlik, 1993). The idea is to transform the original domain theory
into network form, assigning weights in the graph according to some pre-established scheme.
The connection weights are then adjusted in accordance with the observed examples using
standard neural-network backpropagation techniques. The resulting network is then translated
back into clausal form. The main disadvantage of this method that it tapkssentational
transparency the neural network representation does not preserve the structure of the original
knowledge base while revising it. As a result, a great deal of structural information may be lost
translating back and forth between representations. Moreover, such translation imposes the
limitations of both representations; for example, since neural networks are typically slow to
converge, the method is practical for only very shallow domain theories. Finally, revised domain
theories obtained via translation from neural networks tend to be significantly larger than their
corresponding original domain theories.
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Other approaches to theory revision which are much less closely related to the approach we
will espouse here are RTLS (Ginsberg, 1990), KR-FOCL (Pazzani & Brunk,1991), and
ODYSSEUS (Wilkins, 1988).

1.2. Probabilistic Theory Revision

Probabilistic Theory Revision (PTR) is a new approach to theory revision which combines the
best features of the two approaches discussed above. The starting point for PTR is the
observation that any method for choosing among several possible revisions is based on some
implicit bias, namely the a priori probability that each element (clause or literal) of the domain
theory requires revision.

In PTR this bias is made explicit right from the start. That is, each element in the theory is
assigned some a priori probability that it is not flawed. These probabilities might be assigned by
an expert or simply chosen by default.

The mere existence of such probabilities solves two central problems at once. First, these
probabilities very naturally define the “best” (i.e., most probable) revision out of a given set of
possible revisions. Thus, our objective is well-defined; there is no need to impose artificial
syntactic or semantic criteria for identifying the optimal revision. Second, these probabilities can
be adjusted in response to newly-obtained information. Thus they provide a framework for
incremental revision of the flawed domain theory.

Briefly, then, PTR is an algorithm which uses a set of provided examples to incrementally
adjust probabilities associated with the elements of a possibly-flawed domain theory in order to
find the “most probable” set of revisions to the theory which will bring it into accord with the
examples. Like KBANN, PTR incrementally adjusts weights associated with domain theory
elements; like EITHER, all stages of PTR are carried out within the symbolic logic framework
and the obtained theories are not probabilistic.

As a result PTR has the following features:

(1) it can handle a broad range of theories including those with negated internal literals and
multiple roots.

(2) itislinear in the size of the theory times the number of given examples.

(3) it produces relatively small, accurate theories that retain much of the structure of the
original theory.

(4) it can exploit additional user-provided bias.

In the next section of this paper we formally define the theory revision problem and discuss
issues of data representation. We lay the foundations for any future approach to theory revision
by introducing very sharply defined terminology and notation. In Section 3 we propose an
efficient algorithm for finding flawed elements of a theory, and in Section 4 we show how to
revise these elements. Section 5 describes how these two components are combined to form the
PTR algorithm. In Section 5, we also discuss the termination and convergence properties of PTR
and walk through a simple example of PTR in action. In Section 6 we experimentally evaluate
PTR and compare it to other theory revision algorithms. In Section 7, we sum up our results and

L In the following section we will make precise the notion of “most probable set of revisions.”
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indicate directions for further research.

The formal presentation of the work described here is, unfortunately, necessarily dense. To
aid the more casual reader, we have moved all formal proofs to three separate appendices. In
particular, in the third appendix we gue that, under appropriate conditions, PTR converges.
Reading of these appendices can safely be postponed until after the rest of the paper has been
read. In addition, we provide in Appendix D, a “quick reference guide” to the notation used
throughout the paper. We would suggest that a more casual reader might prefer to focus on
Section 2, followed by a cursory reading of Sections 3 and 4, and a more thorough reading of
Section 5.

2. Representing the Problem

A propositional domain theorydenoted, is a stratified set of clauses of the fo@n H; « B;
whereC; is a clause labeH; is a proposition (called theeadof C;) andB; is a set of positive

and negative literals (called thmdy of C;). As usual, the claus€;: H; — B; represents the
assertion that the propositi¢t) is implied by the conjunction of literals B,. The domain theory

is simply the conjunction of its clauses. It may be convenient to think of this as a propositional
logic program without facts (but with negation allowed).

A proposition which does not appear in the head of any clause is saidotiséeable A
proposition which appears in the head of some clause but does not appear in the body of any
clause is called sot. An example, Eis a truth assignment to all observable propositions. It is
convenient to think oE as a set of true observable propositions.

Let ' be a domain theory with roots,---,r,. For an exampleE, we define the vector
MN(E) =0 (E), --,Ty(E)O where I{(E) =1 if E|—-rr; (using resolution) and’i(E) =0 if
E |#rr;. Intuitively, I'(E) tells us which of the conclusioms, - - -, r,, can be drawn by the expert
system when given the truth assignment

Let thetargetdomain theory@, be some domain theory which accurately models the domain
of interest. In other word€) represents the correct domain theory. An ordered pEir@(E) J
is called arexemplarof the domain: if®;(E) = 1 then the exemplar is said to bel&hexemplar
of r;, while if ©,(E) =0 then the exemplar is said to be @QWT exemplanf r;. Typically, in
theory revision, we know(E) without knowing®.

Let " be some possibly incorrect theory for a domain which is in turn correctly modeled by
the target theor®. Any inaccuracies it will be reflected by exemplars for whi€i{E) # ©(E).
Such exemplars are said torhesclassifiedy I'. Thus, amisclassified IN exemplar for,ror false
negative for r, will have ®;(E) = 1 butl";(E) = 0, while amisclassified OUT exemplar foy, or
false positive for i, will have ©;(E) = 0 butI';(E) = 1.2 Typically, in theory revision we know
O(E) without knowing®.

Consider, for example, the domain thedry,and example set introduced in Section 1. The

theory T has only a single roothuy-stock The observable propositions mentioned in the
examples arepopular-product unsafe-packagingestablished-marketnew-market celebrity-

2 We prefer the new terminology “IN/OUT” to the more standard “positive/negative” because the lat-
ter is often used to refer to the classification of the example by the given theory, while we use “IN/OUT” to
refer specifically to the actual classification of the example.
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endorsement  superior-flavor and ecologically-correct For the example
E = {unsafe-packaginghew-markét we haveT(E) =[T,(E) ([0 Nevertheless, we are told
that O(E)=[0(E)E=L0O Thus, E = unsafe-packagingiew-market, (MO0 is a
misclassified IN exemplar of the rdmiy-stock

Now, given misclassified exemplars, there are fewision operatorsvailable for use with
propositional domain theories:

(1) add a literal to an existing clause,

(2) delete an existing clause,

(3) addanew clause, and

(4) delete a literal from an existing clause.

For negation-free domain theories, the first two operations resperializing™, since they may
allow some IN exemplars to become OUT exemplars. The latter two operations result in

generalizing’, since they may allow some OUT exemplars to become IN exeniplars.

We say that a set of revisions fois adequatefor a set of exemplars if, after the revision
operators are applied, all the exemplars are correctly classified by the revised domaifn'theory
Note that we are not implying that is identical to®, but rather that for every exemplar
LE,O(E)U, I'"'(E) = ©(E). Thus, there may be more than one adequate revision set. The goal of
any theory revision system, then, is to find the “best” revision sef favhich is adequate for a
given a set of exemplars.

2.1. Domain Theories as Graphs

In order to define the problem even more precisely and to set the stage for its solution, we will
show how to represent a domain theory in the form of a weighted digraph. We begin by defining a
more general version of the standamDAOR proof tree, which collapses the distinction between
AND nodes and @nodes.

For any set of proposition§P,,---,P,}, let NAND({P4, -+, P,}) be a Boolean formula
which is false if and only i{EL -+, P,} are all true. Any domain theofycan be translated into
an equivalent domain theoFyconsisting of MND equations as follows:

(1) For each clausg;: H; — B; OT, the equatiol; = NAND(B;) isin .

(2) For each non-opservable proposit®rappearing i the equatiorP = NAND(Cp) is in
I, whereCp = {C; | H; = P}, i.e., the set consisting of the label of each claugevimose
head isP.

(3) For each negative literalP appearing i, the equatior=P = NAND({ P}) is in .

[ contains no equations other than these. Observe that the literBlsiref the literals of”
together with the new literals{} which correspond to the clauses lof Most important is
equivalent td” in the sense that for each litetah ' and any assignmei of truth values to the
observable propositions 6f E |-¢! if and only if E |-I.

% In the event that negative literals appear in the domain theory, the consequences of applying these
operators are slightly less obvious. This will be made precise in the second part of this section.

163



KoPPEL FELDMAN, & SEGRE

Consider, for example, the domain thedrgf Section 1. The set of D equationsT is

buy-stock= NAND({C4}),

C;1 = NanD({increased-demand-product-liability} ),
=product-liability = NAND({ product-liability} ),
increased-demand NAND({C3, C4}),

product-liability = NAND({C>}),

C, = NAND({ popular-product unsafe-packaging,

C3 = NAND({ popular-product established-markg}, and
C, = NAND({ new-marketsuperior-flavo}).

Observe thabuy-stockis true inT for precisely those truth assignments to the observables for
which buy-stocks true inT.

We now usd to obtain a useful graph representatiot ofFor an equatiofi; in I, let h(;)
refer to the left side df; and leth(f";) refer to the set of literals which appear on the right side of
[i. In other wordsh(i";) = NAND(b([})).

Definition: A dt-graphAr for a domain theory consists of a set of nodes which
correspond to the literals 6fand a set of directed edges corresponding to the set
of ordered pairs {X, y Ol x = h(F;), y Ob(F;),[; OT}. In addition, for each root

r we add an edge,, leading intar (from some atrtificial node).

In other wordsAr consists of edges from each literalfinto each of its antecedents. The dt-
graph representation @fis shown in Figure 1.

Let ne be the node to which the edgéeads and lenh® be the node from which it comes. If
Ne is a clause, then we say tleds aclause edgef n, is a root, then we say thais aroot edge
if ne is a literal anch® is a clause, then we say tleds aliteral edge if n, is a proposition and®
is its negation, then we say tles anegation edge

The dt-graph)- is very much like an AD—OR graph forT". It has, however, a very significant
advantage over WD—OR graphs because it collapses the distinction between clause edges and
literal edges which is central to theNB—OR graph representation. In fact, even negation edges
(which do not appear at all in thesB—OR representation) are not distinguished from literal edges
and clause edges in the dt-graph representation.

In terms of the dt-graphr, there are two basic revision operators — deleting edges or adding
edges. What are the effects of adding or deleting edgesNf@nif the length of every path from
arootr to a noden is even (odd) then is said to be an even (odd) node fforif n® is even (odd)
for r;, theneis said to be even (odd) for. (Of course it is possible that the depth of an edge is
neither even nor odd.) Deleting an even edger f@pecializeghe definitions of; in the sense
that if Ar- is the result of the deletion, th€h(E) < I';(E) for all exemplars'E, ©(E) [ likewise,
adding an even edge for generalizes the definition of in the sense that & is the result of
adding the edge thr thenl™',(E) = I;(E). Analogously, deleting an odd edge foigeneralizes
the definition ofr;, while adding an odd edge for specializes the definition of. (Deleting or
adding an edge which is neither odd nor evem;fonight result in a new definition of which is
neither strictly more general nor strictly more specific.)

To understand this intuitively, first consider the case in which there are no negation edges in
Ar. Then an even edge & represents a clauselin so that deleting is specialization and adding
is generalization. An odd edge I represents a literal in the body of a clausé iso that
deleting is generalization and adding a specialization. Now, if an odd number of negation edges
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buy-stock
C1
increased-demand =product-liability
C4 C3 product-liability

new-market established-market
superior-flavor

popular-product
unsafe-packaging

Figure 1: The dt-graplyr, of the theoryT.

are present on the path framto an edge then the role of the edge is reversed.

2.2. Weighted Graphs

A weighted dt-graphs an ordered paifAr, w OwhereAr is a dt-graphw and is an assignment

of values in (0, 1] to each node and edgén For an edges, w(e) is meant to represent the
user’'s degree of confidence that the edgeeed not be deleted to obtain the correct domain
theory. For a node, w(n) is the user’s degree of confidence that no edge leading from the node

n need be added in order to obtain the correct domain theory. Thus, for example, the assignment
w(n) =1 means that it is certain that no edge need be added to then modiethe assignment

w(e) means that it is certain thashould not be deleted. Observe that if the nodelabeled by

a negative literal or an observable proposition twém) = 1 by definition, since graphs obtained

by adding edges to such nodes do not correspond to any domain theory. Likewvise ifoot-

edge or a negation-edge, the(e) = 1.
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For practical reasons, we conflate the weig(#) of an edgee and the weightw(ng), of the
nodeng, into a single valuep(e) = w(e) x w(ng), associated with the edge The valuep(e) is
the user’s confidence thatneed not be repaired, either by deletion or by dilution via addition of
child edges.

There are many ways that these values can be assigned. ldeally, they can be provided by the
expert such that they actually reflect the expert's degree of confidence in each element of the
theory. However, even in the absence of such information, values can be assigned by default; for
example, all elements can be assigned equal value. A more sophisticated method of assigning
values is to assign higher values to elements which have greater “semantic impact” (e.g., those
closer to the roots). The details of one such method are given in Appendix A. It is also, of
course, possible for the expert to assign some weights and for the rest to be assigned according to
some default scheme. For example, in the weighted dt-gfah,p [ shown in Figure 2, some
edges have been assigned weight near 1 and others have been assigned weights according to a
simple default scheme.

The semantics of the values associated with the edges can be made clear by considering the
case in which it is known that the correct dt-graph is a subset of the given dtAyr&@umsider a
probability function on the space of all subgrapha.ofhe weight of an edge is simply the sum
of the probabilities of the subgraphs in which the edge appears. Thus the weight of an edge is the
probability that the edge does indeed appear in the target dt-graph. We easily extend this to the

case where the target dt-graph is not necessarily a subgraph of the giflen one.

Conversely, given only the probabilities associated with edges and assuming that the deletion
of different edges are independent events, we can compute the probability of a sulygraph,
Sincep(e) is the probability thaé is not deleted and - p(e) is the probability thae is deleted, it
follows that

p(d) = [1 pe)x [1 1-p(e).

e 0N e DA-N
Letting S= A - A', we rewrite this as
p(ad)= T1 pe)x 1 1-p(e).

e JA-S eldS

We use this formula as a basis for assigning a value to each diAjraiptainable from via
revision of the set of edge&$ even in the case where edge-independence does not hold and even
in the case in whicl\' is not a subset df. We simply define

w@)= 1 pe)x 1 1-p(e).

e JA-S eldS

(In the event thaf andA' are such tha$ is not uniquely defined, choo&esuch thatw(A') is
maximized.) Note that where independence holds Ahdis subgraph ofA, we have

“1n order to avoid confusion it should be emphasized that the meaning of the weights associated with
edges is completely different than that associated with edges of Pearl’'s Bayesian networks (1988). For us,
these weights represent a meta-domain-theory concept: the probability that this edge appears in some un-
known target domain theory. For Pearl they represent conditional probabilities within a probabilistic do-
main theory. Thus, the updating method we are about to introduce is totally unrelated to that of Pearl.
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.999
buy-stock
.99
C1
1.0 95
increased-demand =product-liabilty

product-liability

.9

established-market Cc2

superior-flavor

new-market

.99

popular-product
unsafe-packaging

Figure 2: The weighted dt-graph\y, p O

W(A') = p(A).

2.3. Obijectives of Theory Revision
Now we can formally define the proper objective of a theory revision algorithm:

Given a weighted dt-graphh, pOand a set of exempla find a dt-graphA’ such that
A' correctly classifies every exemplardrand wA') is maximal over all such dt-graphs.

Restating this in the terminology of information theory, we defingddeality of a dt-graph’
relative to an initial weighted dt-grapbh=[A, p OJas

Radc(A) = 2> -log(p(e)) + 2 -log(1- p(e))

e OA-S edsS

where S is the set of edges @& which need to be revised in order to obtAin Thus given a
weighted dt-graplk and a set of exemplags we wish to find the least radical dt-graph relative
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to K which correctly classifies the set of exemplars

Note that radicality is a straightforward measure of the quality of a revision set which neatly
balances syntactic and semantic considerations. It has been often noted that minimizing syntactic
change alone can lead to counter-intuitive results by giving preference to changes near the root
which radically alter the semantics of the theory. On the other hand, regardless of the distribution
of examples, minimizing semantic change alone results in simply appending to the domain theory
the correct classifications of the given misclassified examples without affecting the classification
of any other examples.

Minimizing radicality automatically takes into account both these criteria. Thus, for example,
by assigning higher initial weights to edges with greater semantic impact (as in our default
scheme of Appendix A), the syntactic advantage of revising close to the root is offset by the
higher cost of such revisions. For example, suppose we are given theTlafahe introduction
and the single misclassified exemplar

[ unsafe-packagingnew-markét, (L 0

There are several possible revisions which would bfingto accord with the exemplar. We
could, for example, add a new clause

buy-stock— unsafe-packagingnew-market

deletesuperior-flavorfrom clauseC4, deletepopular-productandestablished-markdtom clause
C3, or deletancreased-demanttom clauseCl. Given the weights of Figure 2, the deletion of
superior-flavorfrom clauseC4 is clearly the least radical revision.

Observe that in the special case where all edges are assigned identical initial weights,
regardless of their semantic strength, minimization of radicality does indeed reduce to a form of
minimization of syntactic change. We wish to point out, however, that even in this case our
definition of “syntactic change” differs from some previous definitions (Wogulis &
Pazzani, 1993). Whereas those definitions count the number of deleted and added edges, we
count the number of edges deleted or addedio understand why this is preferable, consider the
case in which some internal literal, which happens to have a large definition, is omitted from one
of the clause in the target theory. Methods which count the number of added edges will be
strongly biased against restoring this literal, prefering instead to swlaraldifferent repairs
which collectively involve fewer edges than to makesiagle repair involving more edges.
Nevertheless, given the assumption that the probabilities of the various edges in the given theory
being mistaken are equal, it is far more intuitive to repair only at a single edge, as PTR does. (We
agree, though, that once an edge has been chosen for repair, the chosen repair should be minimal
over all equally effective repairs.)

3. Finding Flawed Elements

PTR is an algorithm which finds an adequate set of revisions of approximately minimum
radicality. It achieves this by locating flawed edges and then repairing them. In this section we
give the algorithm for locating flawed edges; in the next section we show how to repair them.

The underlying principle of locating flawed edges is to process exemplars one at a time, in
each case updating the weights associated with edges in accordance with the information
contained in the exemplars. We measure the “flow” of a proof (or refutation) through the edges
of the graph. The more an edge contributes to the correct classification of an example, the more
its weight is raised; the more it contributes to the misclassification of the example, the more its
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weight is lowered. If the weight of an edge drops below a prespecified revision threskitdkl
revised.

The core of the algorithm is the method of updating the weights. Recall that the weight
represents the probability that an edge appears in the target domain theory. The most natural way
to update these weights, then, is to replace the probability that an edge need not be revised with
the conditional probability that it need not be revigagn the classification of an exemplaks
we shall see later, the computation of conditional probabilities ensures many desirable properties
of updating which ad hoc methods are liable to miss.

3.1. Processing a Single Exemplar

One of the most important results of this paper is timaer certain conditions the conditional
probabilities of all the edges in the graph can be computed in a single bottom-up-then-top-down
sweep through the dt-grapWe shall employ this method of computation even when those
conditions do not hold. In this way, updating is performed in highly efficient fashion while, at the
same time, retaining the relevant desirable properties of conditional probabilities.

More precisely, the algorithm proceeds as follows. We think of the nodés efhich
represent observable propositions as input nodes, and we think of the values assigned by an
exampleE to each observable proposition as inputs. Recall that the assignment of weights to the
edges is associated with an implicit assignment of probabilities to various dt-graphs obtainable
via revision ofAr. For some of these dt-graphs, the ngas provable from the examplge, while
for others it is not. We wish to make a bottom-up pass threughAr, p Oin order to compute
(or at least approximate) for each rogtthe probability that the target domain theory is such that
r; is true for the exampl&. The obtained probability can then be compared with the desired
result,®;(E), and the resulting difference can be used as a basis for adjusting the welghts,
for each edge.

Let

L if Pistruein E

EP)=L) i pisfalse in E

We say that a node [ Ar is true if the literal of i which labels it is true. Now, a node passes the
value “true” up the graph if it is either true or deleted, i.e., if it is not both undeleted and false.
Thus, for an edgee such that n, is the observable propositiorP, the value
ug(e) =1-[p(e) x (1 - E(P))] is the probability of the value “true” being passed up the graph
from e.®

Now, recalling that a node ifir represents a AND operation, if the truth of a node &4 is
independent of the truth of any of its brothers, then for any edipe probability of “true” being
passed up the graph is

5 Note that, in principle, the updating can be performed exactly the same way evelE{P) < 1.
Thus, the algorithm extends naturally to the case in which there is uncertainty regarding the truth-value of
some of the observable propositions.
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ug(e) =1- p(e) . Cmrer(e) Ug(S).

We callug(e) theflow of E throughe.

We have defined the floug (e) such that, under appropriate independence conditions, for any
nodene, Ug(€) is in fact the probability that, is true given[Ar, wOandE. (For a formal proof
of this, see Appendix B.) In particular, for a regtthe flowug(e; ) is, even in the absence of the
independence conditions, a good approximation of the probability that the target theory is such
thatr; is true given[Ar, w JandE.

In the second stage of the updating algorithm, we propagate the difference between each
computed valualg(g;,) (which lies somewhere between 0 and 1) and its target @)
(which is either 0 or 1) top-down throudtt in a process similar to backpropagation in neural
networks. As we proceed, we compute a new vajye) as well as an updated value fofe),
for every edgee in Ar. The new valuevg(€e) represents an updating of(e) where the correct
classification®@(E), of the exampld& has been taken into account.

Thus, we begin by setting each valug(r;) to reflect the correct classification of the
example. Let > 0 be some very small constéand let

I ifeE)=0
Ve(e,) = Efl_g if ©,(E) = 1.

Now we proceed top down throudf}, computingve(e) for each edge id\-. In each case we
computevg (e) on the basis ofig(€e), that is, on the basis of how much of the proof (or refutation)
of E flows through the edge The precise formula is

ve(f(e)

Ve(€) = 1-(1-ug(e)) x 0 (F(9)

U f f 0
where f () is that parent o€ for which 1 - max{ve((e)), ue(f(e)] Ois greatest. We show in

g minfve(f(e)), ue(f(e)] o
Appendix B why this formula works.

Finally, we computep,.(€), the new values op(e), using the current value qi(e) and the
values ofvg(e) andug(e) just computed:

—1 1 VE(€)
Prew(®) = 1= (1= p(e) x (=
If the deletion of different edges are independent event®aadknown to be a subgraph of
I, then phew(€) is the conditional probability that the edgeappears i@, given the exemplar
[(E, ©(E) O(see proof in Appendix B). Figure 3 gives the pseudo code for processing a single
exemplar.

8 Strictly speaking, for the computation of conditional probabilities, we need toie However, in
order to ensure convergence of the algorithm in all cases, we choddésee Appendix C). In the experi-
ments reported in Section 6, we use the valae 01.
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function BottomUg [A, p [ weighted dt-graph E: exempla): array of real
begin
SO O;V 0O Leavegh);
for e O Leave$h) do
begin
if e JE thenu(e)d 1;
elseu(e) 0 1 - p(e);
SO MerggS, Parentge, A));
end
while Sz0 do
begin
el PopSuitablePare§, V);V O AddElemer(g, V);
ued 1-(pe) T[] u(d));

d O Children(e,d)
SO MerggS, Parentge, A));
end
return u;
end

function TopDowrf (A, p O weighted dt-graph u: array of real
E: exemplar e: real): weighted dt-graph
begin
SO 0O;V O Rootgd);
for r; O RootgA) do
begin
if I(E) =1thenv(r;) O ¢;
elsev(r))0 1-¢;
SO MerggS, Children(r;, A));
end
while S0 do
begin
el PopSuitabIeChiIdS V) V O AddElemerie, V); f 0 MostChangedPare(#, A);

vie)d 1-(1-u(e) x —=

%

p(e)l 1-(1-p(e) x ——

SO Merge(S,Cthrer( ))
end

return A, pQ

end

Figure 3: Pseudo code for processing a single exemplar. The funBttiosnUpand TopDown

sweep the dt-graphBottomUpreturns an array on edges representing proof flow, Whi®own

returns an updated weighted dt-graph. We are assuming the dt-graph datastructure has been de-
fined and initialized appropriately. Functio@ildren Parents Roots andLeavesreturn sets of

edges corresponding to the corresponding graph relation on the dt-graph. FuiecjeandAd-
dElementoperate on sets, and functioRspSuitableParenand PopSuitableChildeturn an ele-

ment of its first argument whose children or parents, respectively, are all already elements of its
second argument while simultaneously deleting the element from the first set, thus guaranteeing
the appropriate graph traversal strategy.
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Consider the application of this updating algorithm to the weighted dt-graph of Figure 2. We
are given the exemplaffunsafe-packagingnew-market, (L[] i.e., the example in which

unsafe-packagingind new-marketare true (and all

other observables are false) should yield a

derivation of the roobuy-stock The weighted dt-graph obtained by applying the algorithm is

shown in Figure 4.

This example illustrates some important general properties of the method.

(1) Given anIN exemplar, the weight of an odd edge cannot decrease and the weight of an
even edge cannot increag@he analogous property holds for an OUT exemplar.) In the
case where no negation edge appearArinthis corresponds to the fact that a clause
cannot help prevent a proof, and literals in the body of a clause cannot help complete a

.998
buy-stock
.999
c1
1.0 94
increased-demand =product-liability
.98 91 1.0
C4 C3 product-liability
8 15 .88
new-market established-market Cc2
superior-flavor
.99
popular-product
unsafe-packaging
Figure 4: The weighted dt-graph of Figure 2 after processing the exemplar

H unsafe-packagingnew-market, (1L (0]
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proof. Note in particular that the weights of the edges corresponding to the literals
popular-productand established-markein clauseC3 dropped by the same amount,
reflecting the identical roles played by them in this example. However, the weight of the
edge corresponding to the litesalperior-flavorin clauseC4 drops a great deal more than
both those edges, reflecting the fact that the deletisnpdrior-flavoralone would allow

a proof ofbuy-stock while the deletion of eithgpopular-productalone orestablished-
marketalone would not allow a proof difuy-stock

(2) An edge with initial weight 1 is immutable; its weight remains 1 for@bers although an
edge with weight 1, such as that corresponding to the literedased-demanih clause
C1, may contribute to the prevention of a desired proof, its weight is not diminished since
we are told that there is no possibility of that literal being flawed.

(3) If the processed exemplar can only be correctly classified if a particular edge e is revised,

then the updated probability of e will approach 0 and e will be immediately relised.
Thus, for example, were the initial weights of the edge correspondiegtablished-
marketandpopular-productn C3 to approach 1, the weight of the edge corresponding to
superior-flavorin C4 would approach 0. Since we use weights only as a temporary
device for locating flawed elements, this property renders our updating method more
appropriate for our purposes then standard backpropagation techniques which adjust
weights gradually to ensure convergence.

(4) The computational complexity of processing a single exemplar is linear in the size of the
theory I'. Thus, the updating algorithm is quite efficient when compared to revision
techniques which rely on enumerating all proofs for a root. Note further that the
computation required to update a weight is identical for every edge cégardless of
edge type. Thus, PTR is well suited for mapping onto fine-grained SIMD machines.

3.2. Processing Multiple Exemplars

As stated above, the updating method is applied iteratively to one example at a time (in random
order) until some edge drops below the revision threslaoldf, after a complete cycle no edge
has dropped below the revision threshold, the examples are reordered (randomly) and the

updating is continuef.
For example, consider the weighted dt-graph of Figure 2. After processing the exemplars

[ unsafe-packaginghew-markeét, L 00
[ popular-product established-markesuperior-flavoy, (000 and
[ popular-product established-markgetelebrity-endorsement [0 00

we obtain the dt-graph shown in Figure 5. If our threshold is,acsay,1, then we have to revise
the edge corresponding to the cla@se This reflects the fact that the claw® has contributed

" If we were to choose = 0 in the definition ofvg(g;), then the updated probability would equal 0.

8 Of course, by processing the examples one at a time we abandon any pretense that the algorithm is
Bayesian. In this respect, we are proceeding in the spirit of connectionist learning algorithms in which it is
assumed that the sequential processing of examples in random order, as if they were actually independent,
approximates the collective effect of the examples.
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.999...

buy-stock
.998

C1
1.0 .95
increased-demand =product-liability
.98 1.0
C4 C3 product-liability

.99 15 .89

new-market established-market
superior-flavor

C2
.88

popular-product
unsafe-packaging

Figure 5: The weighted dt-graph of Figure 2 after processing exemplars
[ unsafe-packagingnew-market, L 00
[ popular-product established-markesuperior-flavoy, [0 00 and
{ popular-product established-marketelebrity-endorsement [0 00
The clauseC3 has dropped below the threshold.

substantially to the misclassification of the second and third examples from theVisinditile
not contributing substantially to the correct classification of the first.

4. Revising a Flawed Edge

Once an edge has been selected for revision, we must decide how to revise it. Repéd) that
represents the product wfe) andw(n.). Thus, the drop irp(e) indicates either thag needs to

be deleted or that, less dramatically, a subtree needs to be appended to the Tiode, we need

to determine whether to delete an edge completely or to simply weaken it by adding children;
intuitively, adding edges to a clause node weakens the clause by adding conditions to its body,
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while adding edges to a proposition node weakens the proposition’s refutation power by adding
clauses to its definition. Further, if we decide to add children, then we need to determine which
children to add.

4.1. Finding Relevant Exemplars

The first stage in making such a determination consists of establishing, for each exemplar, the role
of the edge in enabling or preventing a derivation of a root. More specifically, for an IN
exemplar,[E, ©(E) J of some rootr, an edges might play a positive role by facilitating a proof

of r, or play a destructive role by preventing a proof ,0br may simply be irrelevant to a proof

ofr.

Once the sets of exemplars for whiehplays a positive role or a destructive role are
determined, it is possible to appendetan appropriate subtree which effectively redefines the

role of e such that it is used only for those exemplars for which it plays a positive iHaie,
then, can we measure the rolesah allowing or preventing a proof offrom E?

At first glance, it would appear that it is sufficient to compare the gkapith the graph;
which results from deleting from A. If E |-ar andE [+ r (or vice versa) then it is clear that
is “responsible” forr being provable or not provable given the exemplb;, @(E) I But, this
criterion is too rigid. In the case of an OUT exemplar, even if it is the casEtﬁaAter, it is still
necessary to modifg in the event thae allowed anadditional proof of r from E. And, in the
case of an IN exemplar, even if it is the case that Ar it is still necessaryot to modify e in
such a way as to further prevent a proof &bm E, since ultimately some proof is needed.

Fortunately, the weights assigned to the edges allow us the flexibility to not merely determine
whether or not there is a proofofrom E givenA or Az but also to measure numerically the flow
of E throughr both with and withoue. This is just what is needed to design a simple heuristic
which captures the degree to whigbontributes to a proof affrom E.

Let K =[A, pbe the weighted dt-graph which is being revised. K et [A, p' Owhere p’
is identical withp, except thatp'(e) = 1. LetKs =[A, p’ Owhere p’ is identical withp, except
that p'(e) = 0; that isK; is obtained fronK by deleting the edge

Then define for each root
3 -6i(B) - ug(e,)

R(LCE,©(E)0eK) = .
3-0(B)-ug'(er)

Then if R(CE,®(E)deK)>2, we say thate is needed for E and r; and if
R(CE,©(E)de, K) < 1/2 we say that is destructivdfor E andr;.

9 PTR is not strictly incremental in the sense that when an edge is revised its role in proving or refut-
ing eachexemplar is checked. If strict incrementality is a desideratum, PTR can be slightly modified so
that an edge is revised on the basis of only those exemplars which have already been processed. Moreover,
it is generally not necessary to check all exemplars for relevance. For exarajdeaif odd edge arf is
a correctly classified IN exemplar, thencan be neither needed f& (since odd edges can only make
derivations more difficult) nor destructive far(sinceE is correctly classified despi&.
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Intuitively, this means, for example, that the edge needed for an IN exempldt, of r;, if
most of the derivation of; from E passes through the edgeWe have simply given formal
definition to the notion that “most” of the derivation passes throaghamely, that the flow,

uEé(eri), of E throughr; without eis less than half of the rovu,Ee(eri), of E throughr; with e

For negation-free theories, this corresponds to the case where the esjgesents a clause

which is critical for the derivation aof from E. The intuition for destructive edges and for OUT
exemplars is analogous. Figure 6 gives the pseudo code for computing the needed and destructive
sets for a given edgeand exemplar set.

In order to understand this better, let us now return to our example dt-graph in the state in
which we left it in Figure 5. The edge corresponding to the cl@Bbas dropped below the
threshold. Now let us check for which exemplars that edge is needed and for which it is
destructive. Computin®([E, ©(E) [0 C3,H) for each exampl& we obtain the following:

R({ popular-product unsafe-packagingestablished-markgt [0 0] C3,H) = 0. 8

R({ unsafe-packagingrew-market, (1L 0] C3,H) = 1.0

R({ popular-product established-markgtelebrity-endorsement1l O[] C3,H) = 136. 1
R( [ popular-product established-markesuperior-flavoy, L0 00 C3,H) = 0. 1

R({ popular-product established-markeecologically-correct, (0O C3,H) = 0.1
R({ new-marketcelebrity-endorsement1 (0[] C3,H) = 1.0

function Relevanc€[, p O weighted dt-graph, Z: exemplar set e: edgg: tuple of set
begin
NO O;
DO O;
psaved[| COPX p);
for E 0Z do
for r; O RootgA) do
p(e) 0 1; ul BottomUKA, p, E); u* 0 u(r;); PO Psaved
p(e) 0 0; ull BottomUKA, p, E); ug® 0 u(ri); PO Psaved

if [(E)=1then R 0 £ ;
ug®

1
elseR, 0 ——
1—L|Ee
if R >2then NO N [I{E};
1
if R < then DI D LI {E});
end
end

return N,D O
end

Figure 6: Pseudo code for computing the relevant sets (i.e., the needed and destructive sets) for a
given edgee and exemplar se. The general idea is to compare proof “flow” (computed using
function BottomUp) both with and without the edge in question for each exemplar in the exemplar
set. Note that the original weights are saved and later restored at the end of the computation.
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The high value of
R({ popular-product established-marketelebrity-endorsementl 0] C3, H)

reflects the fact that without the clau38, there is scant hope of a derivatiorbay-stockior this
example. (Of course, in principle, batew-marketindsuperior-flavormight still be deleted from
the body of claus€4, thus obviating the need f@3, but the high weight associated with the
literal new-marketn C4 indicates that this is unlikely.) The low values of

R({ popular-product established-markesuperior-flavog, [D OO0 C3,H) and
R({ popular-product established-markeecologically-correct, [0 00 C3,H)

reflect the fact that eliminating the clauS8 would greatly diminish the currently undesirably
high flow throughbuy-stock(i.e., probability of a derivation dbuy-stock from each of these
examples.

An interesting case to examine is that of
[ popular-product unsafe-packagingestablished-markgt [0 00

It is true that the elimination &3 is helpful in preventing an unwanted derivatiorbaf/-stock
because it prevents a derivationinéreased-demandhich is necessary fdyuy-stockin clause
C1. NeverthelessR correctly reflects the fact that the claus8 is not destructive for this
exemplar since even in the presenceC8f buy-stockis not derivable due to the failure of the
literal ~product-liability.

4.2. Appending a Subtree

Let N be the set of examples for whielis needed for some root and 2te the set of examples
for which e is destructive for some root (and not needed for any other root). Having found the
setsN andD, how do we repaie?

At this point, if the seD is non-empty and the sé&t is empty, we simply delete the edge
from Ar. We justify this deletion by noting that no exemplars regejreo deletion will not
compromise the performance of the theory. On the other haNdisiihot empty, we apply some

inductive algorithm? to produce a disjunctive normal form (DNF) logical expression constructed
from observable propositions which is true for each exempl& but no exemplar irN. We
reformulate this DNF expression as a conjunction of clauses by taking a single new discitad

head of each clause, and using each conjunct in the DNF expression as the body of one of the
clauses. This set of clauses is converted into dt-gkgptith | as its root. We then sutufg, to e

by adding tdAr a new nodd, an edge frone to t, and another edge frotrio the root], of I',,.

In order to understand why this works, first note the important fact that (like every other
subroutine of PTR), this method is essentially identical whether the edgeing repaired is a
clause edge, literal edge or negation edge. However, when translating back from dt-graph form to
domain theory form, the new nodlevill be interpreted differently depending on whetingris a
clause or a literal. I, is a literal, thert is interpreted as the clausg « I. If ng is a clause,

10 Any standard algorithm for constructing decision trees from positive and negative examples can be
used. Our implementation of PTR uses ID3 (Quinlan, 1986). The use of an inductive component to add
new substructure is due to Ourston and Mooney (Ourston & Mooney, in press).
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thent is interpreted as the negative litersl.!*

Now it is plain that those exemplars for whiels destructive will use the graph rooted &
overcome the effect @. If n, is a literal which undesirably excludg&s thenE will get by n, by
satisfying the clausk if n is a clause which undesirably allolsthenE will be stopped by the

function Revis¢[, p @ weighted dt-graph, Z: set of exemplarse: edge A: real): weighted dt-graph
begin
[N, D 00 Relevance®, p0d Z, e);
if D#0 then
begin
if N =0 then p(e)d O;
else
begin
p(e) O 4;
I O NewlLiteral);
Ap3 = DTGraphl, DNF-ID3(D, N));
t 0 NewNod@); AT AddNodé¢A, t);
if Clause?n,) then Labelt) O -l;
elseLabelt) 0 NewClausé);
A QD AdDdEdgéA, [, t O; p(the, tD O 2;
AT AddEdgéA, (1, Roo(Ap3) D; p(, Roo(Ap3) D O 1;
AO A[]Apg; fore OAp; do p(e) O 1;
end
end
return A, pO
end

Figure 7: Pseudo code for performing a revision. The fun&®m®riseiakes a dt-graph, a set of ex-
emplarsZ, an edge to be revisegland a parameter as inputs and produces a revised dt-graph as
output. The functioDNF-ID3 is an inductive learning algorithm that produces a DNF formula
that accepts elements Dfbut not of N, while the functiorDTGraphproduces a dt-graph with the
given root from the given DNF expression as described in the text. For the sake of expository sim-
plicity, we have not shown the special cases in whicks a leaf ore is a negation edge, as dis-
cussed in Footnote 11.

11 Of course, if we were willing to sacrifice some elegance, we could allow separate sub-routines for
the clause case and the literal case. This would allow us to make the dt-graphs to be sutured considerably
more compact. In particular, if, is a literal we could suture the childrenl ah A, directly ton,. If ngis a
clause, we could use the inductive algorithm to find a DNF expression which excludes exarbpseslin
includes those iN (rather than the other way around as we now do it). Translating this expression to a dt-
graphA with root |, we could suturé\,, to Ar by simply adding an edge from the claugeto the rootl.
Moreover, ifA, represents a single clause- 14, - -, 1, then we can simply suture each of the leaf-nodes
l4,--+, 1y directly to n.. Note that ifn, is a leaf or a negative literal, it is inappropriate to append child
edges ta.. In such cases, we simply replagewith a new literal’ and append t8 bothA,, and the graph
of the claus¢’ — n..
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new literalt =-l .

Whenever a graph, is sutured intd\r, we must assign weights to the edgeégfUnlike
the original domain theory, however, the new substructure is really just an artifact of the inductive
algorithm used and the current relevant exemplar set. For this reason, it is almost certainly
inadvisable to try to revise it as new exemplars are encountered. Instead, we would prefer that
this new structure be removed and replaced with a more appropriate new construct should the
need arise. To ensure replacement instead of revision, we assign unit certainty factors to all edges
of the substructure. Since the internal edges of the new structure have weights equal to 1, they
will never be revised. Finally, we assign a default weigjd the substructure root eddé,, t [
that connects the new component to the exidingnd we reset the weight of the revised edge,
e, to the same valud. Figure 7 gives the pseudo code for performing the revision step just
described.

Consider our example from above. We are repairing the cla@s&Ve have already found
that the seD consists of the examples

{popular-product established-markesuperior-flavof and
{popular-product established-markeecologically-correct

while the selN consists of the single example
{popular-product established-marketelebrity-endorsement

Using ID3 to find a formula which excluded and includesD, we obtain{ -celebrity-
endorsemeftwhich translates into the single clauke . —-celebrity-endorsemeht Translating

into dt-graph form and suturing (and simplifying using the technique of Footnote 11), we obtain
the dt-graph shown in Figure 8.

Observe now that the domain thedryrepresented by this dt-graph correctly classifies the
examples

{ popular-product established-markesuperior-flavo} and
{ popular-product established-markegcologically-correct

which were misclassified by the original domain thebry

5. The PTR Algorithm

In this section we give the details of the control algorithm which puts the pieces of the previous
two sections together and determines termination.

5.1. Control
The PTR algorithm is shown in Figure 9. We can briefly summarize its operation as follows:

(1) PTR process exemplars in random order, updating weights and performing revisions
when necessatry.

(2) Whenever a revision is made, the domain theory which corresponds to the newly revised
graph is checked against all exemplars.

(3) PTRterminates if:
(i) All exemplars are correctly classified, or
(i) Every edge in the newly revised graph has weight 1.

179



KoPPEL FELDMAN, & SEGRE

.999...
buy-stock
.998
C1
1.0 .95
increased-demand =product-liability
.98 .70 1.0

C4 C3 product-liability

.99 15 .89

C2

new-market established-market
superior-flavor celebrity-endorsergent

.88

popular-product

unsafe-packaging

Figure 8: The weighted dt-graph of Figure 2 after revising the cl@@séhe graph has been

slightly simplified in accordance with the remark in Footnote 11).

(4) If, after a revision is made, PTR does not terminate, then it continues processing

exemplars in random order.

(5) if, after a complete cycle of exemplars has been processed, there remain misclassified

exemplars, then we
(i) Increment the revision threshaddso thato = min[o + J,,, 1], and

(i) Increment the valuel assigned to a revised edge and to the root edge of an added

component, so that = min[A + J,, 1].

(6) Now we begin anew, processing the exemplars in (new) random order.
It is easy to see that PTR is guaranteed to terminate. The argument is as follows. Within

U1

10
maxi— , —[jcycles, bothy and A will reach 1. At this point, every edge with weight less than

o A0
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1 will be revised and will either be deleted or have its weight resettd. Moreover, any edges
added during revision will also be assigned certainty fattod. Thus all edges will have weight
1 and the algorithm terminates by the termination criterion (ii).

Now, we wish to show that PTR not only terminates, but that it terminates with every
exemplar correctly classified. That is, we wish to show that, in fact, termination criterion (ii) can
never be satisfied unless termination criterion (i) is satisfied as well. We call this property
convergence In Appendix C we mve that, under certain very general conditions, PTR is
guaranteed to converge.

5.2. A Complete Example
Let us now review the example which we have been considering throughout this paper.
We begin with the flawed domain theory and set of exemplars introduced in Section 1.

C1:buy-stock- increased-demand —~product-liability

C2: product-liability — popular-productiunsafe-packaging
C3:increased-demand- popular-productiestablished-market
C4:increased-demand- new-market]superior-flavor

We translate the domain theory into the weighted dt-graldh, p O of Figure 2, assigning
weights via a combination of user-provided information and default values. For example, the user
has indicated that their confidence in the first litaralréased-demandn the body of claus€1

is greater than their confidence in the second litefpidduct-liability).

function PTR A, p O weighted dt-graph Z: set of exemplars
Mg, 09, 9y, 9, € L1 five tuple of regt weighted dt-graph
begin
A0 Ag,
ol oy
while OE 0OZ such thatl'(E) # ©(E) do
begin
for E O RandomlyPermu{&) do
begin
ul BottomUg A, pO E);
A, pO0 TopDowr{ A, pOu, E, £);
if Oe OA such that p(e) < o then [\, pO0 Revisé[h, pOZ, e, 1);
if JedA, p(e)=1or OE OZ,T(E) =06(E) then return [\, pO
end
A0 maxA +9,,1];
o 0 maxfo +9,, 1];
end
end

Figure 9: The PTR control algorithm. Input to the algorithm consists of a weighted dt-graph
[, pd a set of exemplarg, and five real-valued parameterg oy, J,, J,, ande. The algorithm
produces a revised weighted dt-graph whose implicit theory correctly classifies all exemgplars in
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We set the revision threshotd to .1, the reset valug initially to .7 and their respective
incrementsd, andJd, to .03. We now start updating the weights of the edges by processing the
exemplars in some random order.

We first process the exemplar
[ unsafe-packaginghew-markeét, (1L (01

First, the leaves of the dt-graph are labeled according to their presence or absence in the exemplar.
Second,ug(e) values (proof flow) are computed for all edges of the dt-graph in bottom up
fashion. Nextyve(e;,) values are set to reflect the vector of correct classifications for the example
O(E). New values fowg(e) are computed in top down fashion for each edge in the dt-graph. As
these values are computed, new values (@) are also computed. Processing of this first
exemplar produces the updated dt-graph shown in Figure 3.

Processing of exemplars continues until either an edge weight falls belavdicating a
flawed domain theory element has been located), a cycle (processing of all known exemplars) is
completed, or the PTR termination conditions are met. For our example, after processing the
additional exemplars

[ popular-product established-markesuperior-flavoy, L0 O0and
[ popular-product established-markgecologically-correct, [0 OO

the weight of the edge corresponding to claD8edrops belowr (see Figure 5), indicating that
this edge needs to be revised.

We proceed with the revision by using the heuristic in Section 4.2 in order to determine for
which set of exemplars the edge in question is needed and for which it is destructive. The edge
corresponding to the clau€s is needed for

{ d popular-product established-marketelebrity-endorsement 1l (I}
and is destructive for

{  popular-product established-markgeecologically-correct, [0 OO
[ popular-product established-markesuperior-flavoy, [0 O0}.

Since the set for which the edge is needed is not empty, PTR chooses to append a subtree
weakening claus€3 rather than simply deleting the clause outright. Using these sets as input to
ID3, we determine that the factlebrity-endorsemermsuitably discriminates between the needed

and destructive sets. We then repair the graph to obtain the weighted dt-graph shown in Figure 8.
This graph corresponds to the theory in which the liwgbdbrity-endorsemetias been added to

the body ofC3.

We now check the newly-obtained theory embodied in the dt-graph of Figure 8 (i.e., ignoring
weights) against all the exemplars and determine that there are still misclassified exemplars,
namely

{ unsafe-packagingnew-markeét, (L OOand
[ new-marketcelebrity-endorsementL 0

Thus, we continue processing the remaining exemplars in the original (random) order.
After processing the exemplars

[ popular-product unsafe-packagingestablished-markgt [0 CC]
[ popular-product established-marketelebrity-endorsemeht(lL (] and
[ new-marketcelebrity-endorsemeht1L (1]
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the weight of the edge corresponding to the litetgderior-flavorin clauseC4 drops below the
revision thresholdr. We then determine that this edge is not needed for any exemplar and thus
the edge is simply deleted.

At this point, no misclassified exemplars remain. The final domain theory is:

C1:buy-stock— increased-demand -product-liability

C2: product-liability — popular-productiunsafe-packaging

C3:increased-demand- popular-productiestablished-markéicelebrity-endorsement
C4:increased-demand- new-market

This theory correctly classifies all known exemplars and PTR terminates.

6. Experimental Evaluation

In this section we will examine experimental evidence that illustrates several fundamental
hypotheses concerning PTR. We wish to show that:

(1) theories produced by PTR are of high quality in three respects: they are of low radicality,
they are of reasonable size, and they provide accurate information regarding exemplars
other than those used in the training.

(2) PTR converges rapidly — that is, it requires few cycles to find an adequate set of
revisions.

(3) well-chosen initial weights provided by a domain expert can significantlyoirapthe
performance of PTR.

More precisely, given a theofy obtained by using PTR to revise a thebrgn the basis of a
set of training examplars, we will test these hypotheses as follows.

Radicality Our claim is thaRadc (") is typically close to minimal over all theories which
correctly classify all the examples. For cases where the target t@easyknown, we measure
Rad (')
Rad(©)
finding the target theory in the sense that it was able to correctly classify all training examples
using less radical revisions than those required to restore the target theory. If the value is greater
than 1, then PTR can be said to have “over-revised” the theory.

If this value is less than 1, then PTR can be said to have done even “better” than

Cross-validation We perform one hundred repetitions of cross-validation using nested sets
of training examples. It should be noted that our actual objective is to minimize radicality, and
that often there are theories that are less radical than the target theory which also satisfy all
training examples. Thus, while cross-validation gives some indication that theory revision is
being successfully performed, it is not a primary objective of theory revision.

Theory sizeWe count the number of clauses and literals in the revised theory merely to
demonstrate that theories obtained using PTR are comprehensible. Of course, the precise size of
the theory obtained by PTR is largely an artifact of the choice of inductive component.

Complexity Processing a complete cycle of exemplarS(is x d) wheren is the number of
edges in the graph antis the number of exemplars. Likewise repairing an ed@¥ns< d). We
will measure the number of cycles and the number of repairs made until convergence. (Recall

01 10
that the number of cycles until convergence is in any event bounded by—max- 7 We will

o
g A O
show that, in practice, the number of cycles is small even # J, =0.
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Utility of Bias We wish to show that user-provided guidance in choosing initial weights
leads to faster and more accurate results. For cases in which the target@heokyiown, letS

be the set of edges Af which need to be revised in order to restore the target ti@&ddefine
1 1

ps(€) such that for eacle 'S, 1- pg(e) = (1-p(e))? and for eacte 'S, pgs(e) = (p(e)~.

That is, each edge which needs to be revised to obtain the intended theory has its initial weight
diminished and each edge which need not be revised to obtain the intended theory has its weight
increased. LeK; =[Ar, pg [ Then, for eacls,

1 1
Radc,(©) =~log([1 (1~ p(&)? x T (P(e)#) = ; Radk(©).

Here, we compare the results of cross-validation and number-of-cycles experimegfts 2or
with their unbiased counterparts (i.6.7 1).

6.1. Comparison with other Methods

In order to put our results in perspective we compare them with results obtained by other
methodst?

(1) ID3 (Quinlan, 1986) is the inductive component we use in PTR. Thus using ID3 is
equivalent to learning directly from the examples without using the initial flawed domain
theory. By comparing results obtained using ID3 with those obtained using PTR we can
gauge the usefulness of the given theory.

(2) EITHER (Ourston & Mooney, in press) uses enumeration of partial proofs in order to find
a minimal set of literals, the repair of which will satisfy all the exemplars. Repairs are
then made using an inductive component. EITHER is exponential in the size of the
theory. It cannot handle theories with negated internal literals. It also cannot handle
theories with multiple roots unless those roots are mutually exclusive.

(3) KBANN (Towell & Shavlik, 1993) translates a symbolic domain theory into a neural net,
uses backpropagation to adjust the weights of the net's edges, and then translates back
from net form to partially symbolic form. Some of the rules in the theory output by
KBANN might be numerical, i.e., not strictly symbolic.

(4) RAPTURE (Mahoney & Mooney, 1993) uses a variant of backpropagation to adjust
certainty factors in a probabilistic domain theory. If necessary, it can also add a clause to
a root. All the rules produced by RAPTURE are numerical. Like EITHER, RAPTURE
cannot handle negated internal literals or multiple roots which are not mutually exclusive.

Observe that, relative to the other methods considered here, PTR is liberal in terms of the
theories it can handle, in that (like KBANN, but unlike EITHER and RAPTURE) it can handle
negated literals and non-mutually exclusive multiple roots; it is also strict in terms of the theories
it yields in that (like EITHER, but unlike KBANN and RAPTURE) it produces strictly symbolic
theories.

12 There are other interesting theory revision algorithms, such as RTLS (Ginsberg, 1990), for which no
comparable data is available.
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We have noted that both KBANN and RAPTURE output “numerical” rules. In the case of
KBANN, a numerical rule is one which fires if the sum of weights associated with satisfied
antecedents exceeds a threshold. In the case of RAPTURE, the rules are probabilistic rules using
certainty factors along the lines of MYCIN (Buchanan & Shortliffe, 1984). One might ask, then,
to what extent are results obtained by theory revision algorithms which output numerical rules
merely artifacts of the use of such numerical rules? In other words, can we separate the effects of
using numerical rules from the effects of learning?

To make this more concrete, consider the following simple method for transforming a
symbolic domain theory into a probabilistic domain theory and then reclassifying examples using
the obtained probabilistic theory. Suppose we are given some possibly-flawed domair theory
Suppose further that we are not given the classification of even a single example. Assign a weight
p(e) to each edge dfr according to the default scheme of Appendix A. Now, using the bottom-
up subroutine of the updating algorithm, compuée,) for each test examplg. (Recall that
ug(e) is a measure of how close to a derivatiom fifom E there is, given the weighted dt-graph
[Ar, pO) Now, for some chosen “cutoff” value € n < 100, if Eq is such thaug (g ) lies in
the uppemn% of the set of valuegug(e,)} then conclude thdt is true forEg; otherwise conclude
thatl is false fork.

This method, which for the purpose of discussion we call PTR*, does not use any training
examples at all. Thus if the results of theory revision systems that employ numerical rules can be
matched by PTR* —which performs no learning— then it is clear that the results are merely
artifacts of the use of numerical rules.

6.2. Results on the PROMOTER Theory

We first consider the PROMOTER theory from molecular biology (Murphy & Aha, 1992), which

is of interest solely because it has been extensively studied in the theory revision literature
(Towell & Shavlik, 1993), thus enabling explicit performance comparison with other algorithms.
The PROMOTER theory is a flawed theory intended to recognize promoters in DNA nucleotides.
The theory recognized none of a set of 106 examples as promoters despite the fact that precisely

half of them are indeed promotérs.

Unfortunately, the PROMOTER theory (like many others used in the theory revision
literature) is trivial in that it is very shallow. Moreover, it is atypical of flawed domains in that it
is overly specific but not overly general. Given the shortcomings of the PROMOTER theory, we
will also test PTR on a synthetically-generated theory in which errors have been artificially
introduced. These synthetic theories are significantly deeper than those used to test previous
methods. Moreover, the fact that the intended theory is known will enable us to perform
experiments involving radicality and bias.

13 1n our experiments, we use the default initial weights assigned by the scheme of Appendix A. In ad-
dition, the clause whose head is the propositimmactis treated as a definition not subject to revision but
only deletion as a whole.
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6.2.1. Cross-validation

In Figure 10 we compare the results of cross-validation for PROMOTER. We distinguish
between methods which use numerical rules (top plot) and those which are purely symbolic
(bottom plot).

The lower plot in Figure 10 highlights the fact that, using the vala&0, PTR* achieves
better accuracyusing no training exampleshan any of the methods considered here achieve
using 90 training examples. In particular, computirge, ) for each example, we obtain that of
the 53 highest-ranking examples 50 are indeed promoters (and, therefore, of the 53 lowest-
ranking examples 50 are indeed non-promoters). Thus, PTR* achieves 94. 3% accuracy. (In fact,
all of the 47 highest-ranking examples are promoters and all of the 47 lowest-ranking are not
promoters. Thus, a more conservative version of PTR* which classifies the, say, 40% highest-
ranking examples as IN and the 40% lowest-ranking as OUT, would indeed achieve 100%
accuracy over the examples for which it ventured a prediction.)

This merely shows that the original PROMOTER theory is very accurate provided that it is
given a numerical interpretation. Thus we conclude that the success of RAPTURE and KBANN
for this domain is not a consequence of learning from examples but rather an artifact of the use of
numerical rules.

As for the three methods — EITHER, PTR and ID3 — which yield symbolic rules, we see in
the top plot of Figure 10 that, as reported in (Ourston & Mooney,in press; Towell &
Shavlik, 1993), the methods which exploit the given flawed theory do indeed achieve better
results on PROMOTER than ID3, which does not exploit the theory. Moreover, as the size of the

training set grows, the performance of PTR is increasingly better than that of EffHER.

Finally, we wish to point out an interesting fact about the example set. There is a set of 13
out of the 106 examples which each contain information substantially different than that in the
rest of the examples. Experiments show that using ten-fold cross-validation on the 93 “good”
examples yields 99. 2% accuracy, while training on all 93 of these examples and testing on the 13
“bad” examples yields below 40% accuracy.

6.2.2. Theory size

The size of the output theory is an important measure of the comprehensibility of the output
theory. Ideally, the size of the theory should not grow too rapidly as the number of training
examples is increased, as larger theories are necessarily harder to interpret. This observation
holds both for the number of clauses in the theory as well as for the average number of
antecedents in each of those clauses.

Theory sizes for the theories produced by PTR are shown in Figure 11. The most striking
aspect of these numbers is that all measures of theory size are relatively stable with respect to
training set size. Naturally, the exact values are to a large degree an artifact of the inductive
learning component used. In contrast, for EITHER, theory size increases with training set size

1 Those readers familiar with the PROMOTER theory should note that the improvement over El-
THER is a consequence of PTR repairing one flaw at a time and using a sharper relevance criterion. This
results in PTR always deleting the extranecmsformationliteral, while EITHER occasionallly fails to do
so, particularly as the number of training exmaple increases.
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60 I I I I
% Misclassified
50+ o—oID3 -
+ +EITHER
40 @---aPTR _
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# Training Exemplars
60 I I I I
% Misclassified
505 —oRAPTURE -
+ +KBANN
@ ---8aPTR*
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20
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100

# Training Exemplars

Figure 10: PROMOTER: Error rates using nested training sets for purely symbolic theories (top
plot) and numeric theories (bottom plot). Results for EITHER, RAPTURE, and KBANN are taken
from (Mahoney & Mooney, 1993), while results for ID3 and PTR were generated using similar ex-
perimental procedures. Recall that PTR* is a non-learning numerical rule system; the PTR* line is

extended horizontally for clarity.
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Training Mean Mean Mean Mean
Set Size  Clausesin Literalsin  Revisionsto  Exemplars to
Output Output Convergence  Convergence

Original
Theory 14 83

20 11 39 10.7 88

40 11 36 15.2 140

60 11 35 18.2 186

80 11 32 22.1 232

100 12 36 22.0 236

Figure 11: PROMOTER: Results. Numbers reported for each training set size are average values
over one hundred trials (ten trials for each of ten example partitions).

(Ourston, 1991). For example, for 20 training examples the output theory size (clauses plus
literals) is 78, while for 80 training examples, the output theory size is 106.

Unfortunately, making direct comparisons with KBANN or RAPTURE is difficult. In the
case of KBANN and RAPTURE, which allow numerical rules, comparison is impossible given
the differences in the underlying representation languages. Nevertheless, it is clear that, as
expected, KBANN produces significantly larger theories than PTR. For example, using 90
training examples from the PROMOTER theory, KBANN produces numerical theories with, on
average, 10 clauses and 102 literals (Towell & Shavlik, 1993). These numbers would grow
substantially if the theory were converted into strictly symbolic terms. RAPTURE, on the other
hand, does not change the theory size, but, like KBANN, yields numerical rules (Mahoney &
Mooney, 1993).

6.2.3. Complexity

EITHER is exponential in the size of the theory and the number of training examples. For
KBANN, each cycle of the training-by-backpropagation subroutin@(éx n) (whered is the

size of the network and is the number of exemplars), and the number of such cycles typically
numbers in the hundreds even for shallow nets.

Like backpropagation, the cost of processing an example with PTR is linear in the size of the
theory. In contrast, however, PTR typically converges after processing only a tiny fraction of the
number of examples required by standard backpropagation techniques. Figure 11 shows the
average number of exemplars (not cycles!) processed by PTR until convergence as a function of
training set size. The only other cost incurred by PTR is that of revising the theory. Each such
revision inO(d x n). The average number of revisions to convergence is also shown in Figure 11.

6.3. Results on Synthetic Theories

The character of the PROMOTER theory make it less than ideal for testing theory revision
algorithms. We wish to consider theories which (i) are deeper, which (ii) make substantial use of
negated internal literals and which (iii) are overly general as well as overly specific. As opposed
to shallow theories which can generally be easily repaired at the leaf level, deeper theories often
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require repairs at internal levels of the theory. Therefore, a theory revision algorithm which may
perform well on shallow theories will not necessarily scale up well to larger theories. Moreover,
as theory size increases, the computational complexity of an algorithm might preclude its
application altogether. We wish to show that PTR scales well to larger, deeper theories.

Since deeper, propositional, real-world theories are scarce, we have generated them
synthetically. As an added bonus, we now know the target theory so we can perform controlled
experiments on bias and radicality. In (Feldman, 1993) the aggregate results of experiments
performed on a collection of synthetic theories are reported. In order to avoid the dubious
practice of averaging results over different theories and in order to highlight significant features of
a particular application of PTR, we consider here one synthetic theory typical of those studied in
(Feldman, 1993).

r « AB L-T,p

r - C,-D L < P2, P12, P16

A<— E,F M<—Z,‘|p17

A < po, =G, P1, P2, P3 M « pi1g, P19

B «-po N « =po, P1

B « py,~H N < ps3, Ps Ps

B « ps, - P11 N « pio,7P12

C < I,J Z ~ P2, P3

C « pp,-K Z ~ =P, P3, P17: P1ss P20
C « -pg,~Pg O « =p3, P4, Ps, P11, 7 P12
D « pio, P12 L O « =p13, P18

D < p3,—pg,~M Y < P4, PsPe

E « N, ps, Ps P« =ps, P7, P

E « =-0,-p7,ps X < P7, Py

F Pa Q < Po: Pa

F-Q-R Q « P3,7P13, P14 P15

G < S -ps pg W« pio, P11

G « P10 P12 W « ps, Pg

H UV R « P12,7P13, P14

H < p1, P2; P3, Pa V « =p14, P15

I« W S « P3, Ps; P14, P15s P16
I < ps U <« p11, P12

J < X, ps U < P13, P14, 7 P15 P16 P17
J Y T < P7

K < P,=ps, Po T < =p7, Ps; Pg, " P16 P17, P18
K « =Pe, Po

Figure 12: The synthetic domain the@yused for the experiments of Section 6.
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The theory® is shown is Figure 12. Observe ti@tincludes four levels of clauses and has
many negated internal nodes. It is thus substantially deeper than theories considered before in
testing theory revision algorithms. We artificially introduce, in succession, 15 errors into the
theory®. The errors are shown in Figure 13. For each of these theories, we use the default initial
weights assigned by the scheme of Appendix A.

Let I'; be the theory obtained after introducing the firsf these errors. In Figure 14 we
show the radicalityRad-, (©), of © relative to each of the flawed theori€sfori = 3,6, 9, 12, 15,
as well as the number of examples misclassified by each of those theories. Note that, in general,
the number of misclassified examples cannot necessarily be assumed to increase monotonically
with the number of errors introduced since introducing an error may either generalize or
specialize the theory. For example, the fourth error introduced is “undone” by the fifth error.
Nevertheless, it is the case that for this particular set of errors, each successive theory is more
radical and misclassifies a larger number of examples with respg@ct to

To measure radicality and accuracy, we choose 200 exemplars which are classified according
to ©. Now for eachH’; (i =3, 6,9, 12, 15), we withhold 100 test examples and train on nested sets
of 20, 40, 60, 80 and 100 training examples. We choose ten such partitions and run ten trials for
each partition.

, Rad- (') ,

In Figure 15, we graph the average value—R%, wherel™ is the theory produced by

PTR. As can be seen, this value is consistently below 1. This indicates that the revisions found

Added clausé\ — -pg

Added claus& ~ —ps

Added clausé\ —~ pg,—p1s

Added literal-pg to clauseB — pg,=p11
Deleted claus® — p4,-Pg, P11
Added claus® ~ -pq4

Added claus& « —p1o, pPg

Added literalp, to clauseA — E, F
Added clausé. — pig

10 Added claus® — =pq3,—p7

11 Deleted claus® ~ ps,—p13, P14, P15

12 Deleted clausk « p,, p12, P1s

13 Addedclausd ~ pq;

14  Deleted literalp, from clauseF — py

15 Deleted literalp; from clauseB ~ pq,-H

O©OoO~NOOUTA, WNPE

Figure 13: The errors introduced into the synthetic théig order to produce the flawed syn-
thetic theories’;. Note that the fifth randomly-generated error obviates the fourth.
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M3 e Mo 12 15
Number of Errors 3 6 9 12 15
Rad®) 7.32 17.53 2266 27.15 33.60
Misclassified IN 0 26 34 34 27
Misclassified OUT 50 45 45 46 64
Initial Accuracy 75% 64.5% 60.5% 60% 54.5%

Figure 14: Descriptive statistics for the flawed synthetic thebriés= 3, 6, 9, 12, 15).

1
Normalized
Radicality
0.8} i
0.6} -
0.4+ -
<>—<>F15
+ +r12
0.2} E---aly i
x — x[g
A—Ars
0 | | | | |
20 40 60 80 100

# Training Exemplars

. . . .Rad- (') .
Figure 15: The normalized radlcah%—' , for the output theoriel' produced by PTR from
I (i=3,6,9,12,15). Error bars reflect 1 standard error.

by PTR are less radical than what is needed to restore the oyifdus by the criterion of
success that PTR set for itself, minimizing radicality, PTR does better than resforkgis to

be expected, the larger the training set the closer this value is to 1. Also note that as the number
of errors introduced increases, the saving in radicality achieved by PTR increases as well, since a
larger number of opportunities are created for more parsimonious revision. More precisely, the
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average number of revisions made by PTR4d ¢, g, 15, andl" ;5 with a 100 element training
setare 1.4, 4.1, 7.6, 8.3, and 10.4, respectively.

An example will show how PTR achieves this. Note from Figure 13 that the errors introduced
in 5 are the additions of the rules:

A~ -ps

S« ps

S < pg,7P1s.
In most cases, PTR quickly locates the extraneous clusepg, and discovers that deleting it
results in the correct classification of all exemplars in the training set. In fact, this change also
results in the correct classification of all test examples as well. The other two added rules do not
affect the classification of any training examples, and therefore are not deleted or repaired by
PTR. Thus the radicality of the changes made by PTR is lower than that required for restoring the
original theory. In a minority of cases, PTR first deletes the clBuse-pgy and only then deletes
the clauseA — pg. Since the literaB is higher in the tree than the litei&lthe radicality of these
changes is marginally higher that that required to restore the original theory.

In Figure 16, we graph the accuracyl¢fon the test set. As expected, accuracy degenerates
somewhat as the number of errors is increased. Nevertheless, eVgg BTR yields theories
which generalize accurately.

Figure 17 shows the average number of exemplars required for convergence. As expected,
the fewer errors in the theory, the fewer exemplars PTR requires for convergence. Moreover, the

60 | | | |

% Misclassified -
S—=1 15

50 - + +I15 7]

40,
30
Vi

20

10

100
# Training Exemplars

Figure 16: Error rates for the output theories produced by PTRIfr¢in* 3, 6, 9, 12, 15).
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300 | | | |
Exemplars to
Convergence

250 -

200 |-

150

100 -

£ N

0 | | | |

0 20 40 60 .80 100
# Training Exemplars

Figure 17: Number of exemplars processed until convergen€e fior 3, 6,9, 12, 15).

number of exemplars processed grows less than linearly with the training set size. In fact, in no
case was the average number of examples processed greater than 4 times the training set size. In
comparison, backpropagation typically requires hundreds of cycles when it converges.

Next we wish show the effects of positive bias, i.e., to show that user-provided guidance in
the choice of initial weights can ingwre speed of convergence and accuracy in cross-validation.
For each of the flawed theori€g andl 15, we compare the performance of PTR using default
initial weights and biased initial weightg € 2). In Figure 18, we show how cross-validation
accuracy increases when bias is introduced. In Figure 19, we show how the number of examples
which need to be processed until convergence decreases when bias is introduced.

Returning to the example above, we see that the introduction of bias allows PTR to
immediately find the flawed claus® — pg and to delete it straight away. In fact, PTR never
requires the processing of more than 8 exemplars to do so. Thus, in this case, the introduction of
bias both speeds up the revision process and results in the consistent choice of the optimal
revision.

Moreover, it has also been shown in (Feldman,1993) that PTR is robust with respect to
random perturbations in the initial weights. In particular, in tests on thirty different synthetically-
generated theories, introducing small random perturbations to each edge of a dt-graph before
training resulted in less than 2% of test examples being classified differently than when training
was performed using the original initial weights.
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60 I I I I
% Misclassified
50 L o——=l 15 _
+ +3
g B***E]rl5+bias
40 | x — <[ 3+ bias -
30
5
20
10
0
0 20 40 60 80 100

# Training Exemplars

Figure 18: Error rates for the output theories produced by PTRIfrdin= 3, 6, 9, 12, 15), using
favorably-biased initial weights.

6.4. Summary

Repairing internal literals and clauses is as natural for PTR as repairing leaves. Moreover, PTR
converges rapidly. As a result, PTR scales up to deep theories without difficulty. Even for very
badly flawed theories, PTR quickly finds repairs which correctly classify all known exemplars.
These repairs are typicallgssradical than restoring the original theory and are close enough to
the original theory to generalize accurately to test examples.

Moreover, although PTR is robust with respect to initial weights, user guidance in choosing
these weights can significantly ingwe both speed of convergence and cross-validation accuracy.

7. Conclusions

In this paper, we have presented our approach, called PTR, to the theory revision problem for
propositional theories. Our approach uses probabilities associated with domain theory elements
to numerically track the “flow” of proof through the theory, allowing us to efficiently locate and
repair flawed elements of the theory. Wevwthat PTR converges to a theory which correctly
classifies all examples, and show experimentally that PTR is fast and accurate even for deep
theories.

There are several ways in which PTR can be extended.

First-order theories The updating method at the core of PTR assumes that provided
exemplars unambiguously assign truth values to each observable proposition. In first-order
theory revision the truth of an observable predicate typically depends on variable assignments.
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Figure 19: Number of exemplars processed until convergence using favorably-biased initial
weights.

Thus, in order to apply PTR to first-order theory revision it is necessary to determine “optimal”
variable assignments on the basis of which probabilities can be updated. One method for doing so
is discussed in (Feldman, 1993).

Inductive bias PTR uses bias to locate flawed elements of a theory. Another type of bias can
be used to determine which revision to make. For example, it might be known that a particular
clause might be missing a literal in its body but should under no circumstances be deleted, or that
only certain types of literals can be added to the clause but not others. Likewise, it might be
known that a particular literal is replaceable but not deletable, etc. It has been shown (EEeldman
al., 1993) that by modifying the inductive component of PTR to account for such bias, both
convergence speed and cross-validation accuracy are substantially improved.

Noisy exemplars We have assumed that it is only the domain theory which is in need of
revision, but that the exemplars are all correctly classified. Often this is not the case. Thus, it is
necessary to modify PTR to take into account the possibility of reclassifying exemplars on the
basis of the theory rather than vice-versa. The PTR* algorithm (Section 6) suggests that
misclassed exemplars can sometimes be detected before processing. Briefly, the idea is that an
example which allows multiple proofs of some root is almost certainly IN for that root regardless
of the classification we have been told. Thusigife ) is high, thenE is probably IN regardless
of what we are told; analogously, ui(e) is low. A modified version of PTR based on this
observation has already been successfully implemented (Kepakl1993).

In conclusion, we believe the PTR system marks an important contribution to the domain
theory revision problem. More specifically, the primary innovations reported here are:
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(1) By assigning bias in the form of the probability that an element of a domain theory is
flawed, we can clearly define the objective of a theory revision algorithm.

(2) By reformulating a domain theory as a weighted dt-graph, we can numerically trace the
flow of a proof or refutation through the various elements of a domain theory.

(3) Proof flow can be used to efficiently update the probability that an element is flawed on
the basis of an exemplar.

(4) By updating probabilities on the basis of exemplars, we can efficiently locate flawed
elements of a theory.

(5) By using proof flow, we can determine precisely on the basis of which exemplars to revise
a flawed element of the theory.
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Appendix A: Assigning Initial Weights

In this appendix we give one method for assigning initial weights to the elements of a domain
theory. The method is based on the topology of the domain theory and assumes that no user-
provided information regarding the likelihood of errors is available. If such information is
available, then it can be used to override the values determined by this method.

The method works as follows. First, for each edge Ar we define the “semantic impact”
of e, M(e). M(e) is meant to signify the proportion of examples whose classification is directly
affected by the presence®in Ar.

One straightforward way of formally defining(e) is the following. LetK' be the pair
[(Ar, | Osuch thatl assigns all root and negation edges the weight 1 and all other edges the

1
weighté. Let I (e) be identical tol except thake and all its ancestor edges have been assigned
the weight 1. LeE be the example such that for each observable propo§itiod, E(P) is the
a priori probability thatP is true in a randomly selected examplén particular, for the typical
: . " . 1
case in which observable propositions are Boolean and all example are equrﬁ(ﬁbie,é.
E can be thought of as the “average” example. Then, if no edde bhs more than one parent-
edge, we formally define the semantic significaig), of an edge in Ar as follows:
M(e) = uf “(e) ~ U (&),
That is,M(e) is the difference of the flow d& through the root, with and without the edge

Note thatM(e) can be efficiently computed by first computimn@I (e) for every edgee in a
single bottom-up traversal &, and then computinlyl(e) for every edges in a single top-down
traversal of;r, as follows:

(1)  For aroot edge, M(r) = 1-uf'(r).

2(1- ug'(e))
uf' (e)

If some edge i\ has more than one parent-edge then we dMi@ for an edge by

using this method of computation, where in plack16f (e)) we usemfax%{/l(f(e))g

(2) For all other edgedl(e) = M(f(e)) x , where f (e) is the parent edge &

Finally, for a setR, of edges irG, we defineM(R) = 5 M(e).1®
eldR

Now, having computed(e) we compute the initial weight assignmenteop(e), in the
following way. Choose some larg='’ For eacte in Ar define:

15 Although we have defined an example g9 a1} truth assignment to each observable proposition,
we have already noted in Footnote 4 that we can just as easily process examples which assign to observ-
ables any value in the interval [0, 1].

16 Observe that the number of examples reclassified as a result of edge-deletion is, in fact, superaddi-
tive, a fact not reflected by this last definition.

17We have not tested how to chod3éoptimally.” In the experiments reported in Section 6, the val-
ueC = 10° was used.
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CM(e)
p(e) - CM(e) +1 .

Now, regardless of hoM(e) is defined, the virtue of this method of computp(@) from M(e) is
the following: for such an initial assignmemt, if two sets of edge8Ar, p Jare of equal total
strength then as revision sets they are of equal radicdlitys means that all revision sets of
equal strength are a priori equally probable.

For a set of edges @i, define
(b ifedsS
e) = .
() Difens
Then the abvecan be formalized as follows:

Theorem AL If RandS are sets of elements bfsuch thatM(R) = M(S) then it
follows thatRad(R) = Rad(S).

Proof of Theorem Al Let R and S be sets of edges such tHd{R) = M(S).

Recall that
Ra.CKS) = — |0g |:ll—l [1 _ p(e)] S(e) x [p(e)] l—S(e)D
Leoa O
Then
expCRads)) _ [1- p(e)]3® x p(e)t=S@
m " ena[1- p(e)]R@ x p(e)-RE)
_ _ ﬂ?(e)-s(e)
1 pE1-pep
_ M(e ﬁ(e)—s(e)
eI;IA %: 0

= CMRMO = 1

It follows immediately thaRad(R) = Rad(S). O

A simple consequence which illustrates the intuitiveness of this theorem is the following:
suppose we have two possible revisionsApkach of which entails deleting a simple literal.
Suppose further that one literbl, is deep in the tree and the otHer,is higher in the tree so that
M(l,) =4 xM(l1). Then, using default initial weights as assigned above, the radicality of
deletingl, is 4 times as great as the radicality of deleting
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Appendix B: Updated Weights as Conditional Probabilities

In this appendix we pwe that under certain limiting conditions, the algorithm computes the
conditional probabilities of the edges given the classification of the example.

Our first assumption for the purpose of this appendix is that the correct dtAgragpknown
to be a subgraph of the given dt-grdigh This means that for every noden Ar, w(n) = 1 (and,
consequently, for every edgen Ar, p(e) = w(e)). A pair (A, wOwith this property is said to
bedeletion-only

Although we informally defined probabilities directly on edges, for the purposes of this
appendix we formally define our probability function on the space of all subgraphsTfat is,
the elementary events are of the fakgn= Ar whereAr OAr. Then the probability that 00 Ag

is simplyr%r{ p(Ao =Ar)|le OA}.
We say that a deletion-only, weighted dt-graphr, pdis edge-independernif for any
ror,
p(lo =)= [1 pe)x [1 1-p(e).
e DAr' e DAr'
Finally, we say thaf\r is tree-likeif no edgee O Ar has more than one parent-edge. Observe that
any dt-graph which is connected and tree-like has only one root.

We will proveresults for deletion-only, edge-independent, tree-like weighted dt-gtéphs.

First we introduce some more terminology. Recall that every nofig i labeled by one of
the literals il and that by definition, this literal is true if not all of its childremjnare true.
Recall also that the dt-gragh 0 Ar represents the sets oAND equations[’ O . A literal | in
[ forces its parent if to be true, given the set of equatidisand the exampl&, if | appears in
" and is false givenﬁ’ andE. (This follows from the definition of AND.) Thus we say that an
edgeein Ar isusedby E in A if e DA andi™ |- g =n,.

If eis not used b¥E in A we write NE (€). Note thatNE (e,) if and only if (E) = 1.

Note that, given the probabilities of the elementary evépts Ag, the probabilityp(NS(e))
that the edgee is not used by E in the target domain theory® is simply

0 .0
S p(Ar = Ag)INE (e)0 Where there is no ambiguity we will ubk: (e) to refer toNZ(e).
rorQ 0
Theorem BI If [Ar, wllis a deletion-only, edge-independent, tree-like weighted
dt-graph, then for every edgen Ar, ug(€) = p(Ng(€)).

Proof of Theorem BX We use induction on the distance pf from its deepest
descendant. Ifn, is an observable propositioR then e is used byE in ©
precisely ife 0 © andP is false inE. Thus the probability that is not used bye
in@is[1-p(e)] x[1 - E(P)] = ug(e).

18 Empirical results show that our algorithm yields reasonable approximations of the conditional prob-
abilities even when these conditions do not hold.
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If ne is not a observable proposition théﬂ—E—-ne precisely if all its
children in® are true i@, that is, if all its children are unused@n But then

P(NEe(€) = p(e) x p(© |- —ne) (edge independenge

= ple) x Ne(s : :
o s Dcr!;cljrer(e) P(Ne(S) (induction hypothesjs

=pe)x 1 ue(s
s [ children(e)
= ug(e).
a

This justifies the bottom-up part of the algorithm. In order to justify the top-down part we need
one more definition.

Let p(elE,®(E)D be the probability thate OAg given [, pO and the exemplar
(E,©(E)d Then
2 {p(bo =Ar)le DAr, O(E) =T"(E)}

E. O(E _ror
P(el CE, ©(E) D 2 {plo=2r)OE) =T (E}

Now we have

Theorem B2 If [Ar, wis deletion-only, edge-independent and tree-like, then for
every edge in Ar, pren(®) = p(e|CE, O(E) D).

In order to povethe theorem we need several lemmas:
Lemma B1 For every exampl& and every edgein Ar

P(~Ng(e)) = p(=Ng(e), Ne(f(€))) = p(=Ne(e)|Ne(f(€))) x p(Ne(f(€))).
This follows immediately from the fact that if an edggis used, then its parent-edddg), is not

used.
Lemma B2 For every exampl& and every edgein Ar,

P(Ne(E)INe(f(e), [E, ©(E) D) = p(Ne(€)|Ne(f(€))).

This lemma states thaig(e) and [E,®(E) O are conditionally independent givedg(f(€))
(Pearl, 1988). That is, oncBg(f(e)) is known, [E,®(E) 0 adds no information regarding
Ne(e). This is immediate from the fact thpf [E, ©(E) (JNg(f(€))) can be expressed in terms of
the probabilities associated with non-descendants(ef, while p(Ng(€)) can be expressed in
terms of the probabilities associated with descendami@pf

Lemma B3 For every exampl& and every edgein Ar,
Ve(e) = p(Ne(e)| LE, ©(E) D).

Proof of Lemma B3 The proof is by induction on the depth of the edgd;or
the root edgeg,, we have
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Ve(&r) = ©(E) = p(&(E) = 1|LE, ©(E) O = p(Ne(e)ILE, ©(E) .

Assuming that the theorem is known fbfe), we show that it holds foe as
follows:

f

1-ve(@ = 3 ue(@2E (deiniion o)
_ Veli(@) o
= p(-Ng(e) S(N:(f(9) (Th B)
= p(Ng(e)|[E,O(E) O x m (induction hypothesjs
= p(Ne(8)|CE, ©(E) D x p(=Ng(e)|Ne(f(e) (Lemma B)
= p(Ne(e)|LE,©(E) D) (Lemma B3

x p(=Ng(e)|Ne(f(e), LE, ©(E) D

= p(~Ng(e), Ne(f(€))|LE, ©(E) D (Bayes rul}
= p(-Ne(e)|LE,O(E) D (LemmaB)

=1-p(Ne(e)|LE, ©(E) D.

0
Let —e be short for the evert [l Ag. Then we have

Lemma B4 For every exampl& and every edgein Ar,

p(—e) = p(-e,=Ng(e)) = p(~e|Ng(e)) x p(Ne(e)).

This lemma, which is analogous to Lemma B1, follows from the fact tleas ifleleted, thee is
unused.

Lemma B5: For every exampl& and every edgein Ar,

p(-e[-Ng(e), LE,O(E) D) = p(—~e|~Ng(€)).

This lemma, which is analogous to Lemma B2, states-thadnd [E, ©(E) Oare conditionally
independent givermNg(€). That is, once=Ng(e) is known, [E, ©(E) O adds no information
regarding the probability ofie. This is immediate from the fact thp{ (E, ©(E) []-Ng(€)) can

be expressed in terms of the probabilities of edges otheethan

We now have all the pieces taope Theorem B2.
Proof of Theorem B2

_ — 0 _ nedE®E) -
1~ Pnenl®) = % p(e)DuE(e) (definition ofp )
_ . Ve(®
= p(-e) P(Ne(e) (Theorem B)
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= p(Ne(€)| [E, ©(E) ) x

= p(Ne(€)ILE, ©(E) D x p(-e[Ne(e))

= p(Ne(€)|LE, ©(E) D x p(-e[Ne(e), [E, ©(E) U

p(-e)
P(Ne(e))

= p(-e, Ne(e)|LE,©(E) D)

= p(-e|[E,©(E)D

=1- p(e|CE,©(E) D.
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Appendix C: Proof of Convergence

We have seen in Section 5 that PTR always terminates. We wish to show that when it does, all
exemplars are classified correctly. We wilbpe this for domain theories which satisfy certain
conditions which will be made precise below. The general idea of the proof is the following: by
definition, the algorithm terminates either when all exemplars are correctly classified or when all
edges have weight 1. Thus, it is only necessary to show that it is not possible to reach a state in
which all edges have weight 1 and some exemplar is misclassified. We avid that such a

state fails to possess the property of “consistency” which is assumed to hold for the initial
weighted dt-graplK, and which is preserved at all times by the algorithm.

Definition (Consistency The weighted dt-graptK =CA, pOis consistentwith
exemplarCE, ©(E) Oif, for every rootr; in A, either:

() ©,(E)=1anduf(r;)>0,or

(i) ©,(E) = 0anduf(r;) < 1.

Recall that an edgeis defined to be even if it is of even depth along every path from a root and
odd if is of odd depth along every path from a root. A domain theory is saiduttabgbiguousf

every edge is either odd or even. Note that negation-free domain theories are unambiguous. We
will proveour main theorem for unambiguous, single-root domain theories.

Recall that the only operations performed by PTR are:
(1) updating weights,
(2) deleting even edges,
(3) deleting odd edges,
(4) adding a subtree beneath an even edge, and
(5) adding a subtree beneath an odd edge.

We shall show that each of these operations is performed in such a way as to preserve
consistency.

Theorem C1 (Consistency If K=[A, pOis a single-rooted, unambiguous
weighted dt-graph which is consistent with the exempld, ©(E)C and
K" =[Q', p' Uis obtained fronK via a single operation performed by PTR, thén
is also a single-rooted, unambiguous dt-graph which is consistenEwith

Before we povethis theorem we show that it easily implies convergence of the algorithm.

Theorem C2 (Convergence Given a single-rooted, unambiguous weighted dt-
graphK and a set of exemplarssuch thaK is consistent with every exemplar in
Z, PTR terminates and produces a dt-grApWwhich classifies every exemplardn
correctly.

Proof of Theorem C2 If PTR terminates prior to each edge being assigned the
weight 1, then by definition, all exemplars are correctly classified. Suppose then
that PTR produces a weighted dt-gragh=[A', p' Osuch thatp'(e) = 1 for every

e OA'. Assume, contrary to the theorem, that some exemplRrO(E) O is
misclassified byK' for the rootr. Without loss of generality, assume that
[E, ©(E) Ois an IN exemplar of. Sincep’(e) = 1 for every edge, this means that
uf'(e,) =0. But this is impossible since the consistency Kofimplies that

uk (/) > 0 and thus it follows from Theorem C1 that for afyobtainable form
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K, uf'(g,) > 0. This contradicts the assumption tBas misclassified bi'. O

Let us now turn to the proof of Theorem C1l. We will use the following four lemmas, slight
variants of which are proved in (Feldman, 1993).

Lemma CIL If K' =[A, p' Uis obtained fronK =[A, p Ovia updating of weights,
then for every edge 0 A such that 0 p(e) < 1, we have 0 g'(e) < 1.2°

Lemma C2 Let K =[N\, pbe a weighted dt-graph such that 0%(e,) < 1 and
let K' =[A, p' 0 Then if for every edge in A such that 0 g(e) < 1, we have
0 < p'(e) < 1, it follows that 0 <uf (e,) < 1.

Lemma C3 Let K =[N, pObe a weighted dt-graph such th&#(e,) > 0 and let
K'=[\', p'd The, if for every edgein A, it holds that either:

(i) p'(e) = p(e), or ,
(i) deptHe) is odd andi&'(e) > 0, or
(i) depth(e) is even andif (e) < 1
thenuk'(e) > 0.
An analogous lemma holds where the roles of “> 0” and “< 1” are reversed.
Lemma C4 If eis even edge iiK, thenuEé(er) >uf(e) 2 uEe(r). In addition, if
eis an odd edge i, thenu*éé(er) <uf(e) < uEe(r).

We can now pve consistency (Theorem C1). We assume, without loss of generality, that
CE,O(E)Uis an IN exemplar of the roatand pove that for each one of the five operations
(updating and four revision operators) of PTR, th&t'ifs obtained by that operation frakand
uf(e) > 0, thenuf (e;) > 0.

Proof of Theorem C1 The proof consists of five separate cases, each
corresponding to one of the operations performed by PTR.

Case 1K' is obtained fronK via updating of weights.

By Lemma C1, for every edgein A, if 0 < p(e) < 1then 0 <p'(e) < 1. But then
by Lemma C2, iif(e;) > 0 thenuf'(e;) > 0.

Case 2K' is obtained fronK via deletion of an even edge,
From Lemma CA4(i), we have-®(e;) = uf(e) > 0.
Case 3K' is obtained fronK via deletion of an odd edge,

The edgee is deleted only if it is not needed for any exemplar. Suppose that,
contrary to the theorem, there is an IN exemplg; ©(E) Osuch thauf(e) > 0
butuk'(e,) = 0. Then

19 Recall that in the updating algorithm we defined

T ife(E) =0
ve(er) = d-¢ ifQE)=1

The somewhat annoying presence of 0 is necessary for the proof of Lemma C1.
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K
ug®(er)

R(CE, ©(E) D e,K) = o)

K
ug®(er)
uk'(er)

K
ug®(er)
= =>>2.
0

But thene is needed folE, contradicting the fact that is not needed for any
exemplar.
Case 4K’ is obtained fronK via appending a subtree beneath an even edge,

If p'(e) < 1, then the result is immediate from Lemma C2. Otherwisd, ket the
root edge of the subtre®, which is appended tA, beneathe. ThenK'|f =K.
Suppose that, contrary to the theorem, there is some IN exenipl&(E) Usuch
that uf(g)>0 but u(e)=0. Then by Lemma  CA4ii),
uke(e,) = uk'®(e,) < Uf () = 0. But then,

K
ug®(er)

K-
ug®(er)

R(CE,O(E) e K) =

0
" ugt(er)

Thuse is destructive foiE in K. But then, by the construction Af, uf (f) = 1.
Thus,uf'(e) =0 < 1. The result follows immediately from Lemma C3.

Case 5K' is obtained fronK via appending a subtree Kobeneath the odd edge,
e.

Suppose that, contrary to the theorem, some IN exenia®(E) [ uf(e) > 0
butuk'(e,) = 0. SinceK ', = K, it follows that

K
uge(g
R(LE,©(E) e K) = ,Ef( )
ug®(er)
_ Ug(er)
Ug *(e)
Now, using Lemma CA4(ii) on both numerator and denominator, we have

K
ug*(er)

K',
Ug °(&)

2 u}é(er)urlg(er) =00>2.
Thus,eis needed foE in K. Now, let f be the root edge of the appended subtree,

A,. Then, by the construction df,, it follows thatuf (f) < 1 and, therefore
uf'(e) > 0. The result is immediate from Lemma C3.
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This completes the proof of the theorem.

It is instructive to note why the proof of Theorem C1 failsAifis not restricted to
unambiguous single-rooted dt-graphs. In case 4 of the proof of Theorem C1, we use the fact that
if an edgee is destructive for an exemplark, ©(E) O then the revision algorithm used to
construct the subgraph,, appended t@ will be such thauf (f) = 1. However, this fact does
not hold in the case whereis simultaneously needed and destructive. This can oceuisif
descendant of two roots whekeis IN for one root and OUT for another root. It can also occur
when one path fromto the root is of even length and another path is of odd length.
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Appendix D: Guide to Notation

ue(e)
Ve(e)

Ri(LE,©(E)UeK)

Oy
)
Rad (')

A domain theory consisting of a set of clauses of the foymi; — B;.

A clause label.

A clause head; it consists of a single positive literal.

A clause body; it consists of a conjunction of positive or negative literals.
An example; it is a set of observable propositions.

The classification of the exampkefor theith root according to domain
theoryl .

The correct classification of the exampldor theith root.
An exemplar, a classified example.

The set of MND clauses equivalent fo.

The dt-graph representationof

The node to which the edgdeads.

The node from which the edgeomes.

The weight of the edge; it represents the probability that the edge
needs to be deleted or that edges need to be appended to ting.node

A weighted dt-graph.

Same a¥ but with the weight of the edgeequal to 1.
Same a¥ but with the edge deleted.

The “flow” of proof from the exampleE through the edge.

The adjusted flow of proof througé taking into account the correct
classification of the example.

The extent (ranging from O t®) to which the edge in the weighted dt-
graphK contributes to the correct classification of the exaripfer the

ith root. If R; is less/more than 1, theris harmful/helpful; ifR, = 1 then

eis irrelevant.

The revision threshold; ip(e) < o theneis revised.

The weight assigned to a revised edge and to the root of an appended

component.
The revision threshold increment.
The revised edge weight increment.

The radicality of the changes requiredktidn order to obtain a revised
theoryl".
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