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Abstract

We describe an extensive study of search in GSAT, an approximation procedure for

propositional satis�ability. GSAT performs greedy hill-climbing on the number of satis�ed

clauses in a truth assignment. Our experiments provide a more complete picture ofGSAT's

search than previous accounts. We describe in detail the two phases of search: rapid hill-

climbing followed by a long plateau search. We demonstrate that when applied to randomly

generated 3-SAT problems, there is a very simple scaling with problem size for both the

mean number of satis�ed clauses and the mean branching rate. Our results allow us to

make detailed numerical conjectures about the length of the hill-climbingphase, the average

gradient of this phase, and to conjecture that both the average score and average branching

rate decay exponentially during plateau search. We end by showing how these results can

be used to direct future theoretical analysis. This work provides a case study of how

computer experiments can be used to improve understanding of the theoretical properties

of algorithms.

1. Introduction

Mathematicians are increasingly recognizing the usefulness of experiments with computers
to help advance mathematical theory. It is surprising therefore that one area of mathematics
which has bene�tted little from empirical results is the theory of algorithms, especially those
used in AI. Since the objects of this theory are abstract descriptions of computer programs,
we should in principle be able to reason about programs entirely deductively. However,
such theoretical analysis is often too complex for our current mathematical tools. Where
theoretical analysis is practical, it is often limited to (unrealistically) simple cases. For
example, results presented in (Koutsoupias & Papadimitriou, 1992) for the greedy algorithm
for satis�ability do not apply to interesting and hard region of problems as described in x3.
In addition, actual behaviour on real problems is sometimes quite di�erent to worst and
average case analyses. We therefore support the calls of McGeoch (McGeoch, 1986), Hooker
(Hooker, 1993) and others for the development of an empirical science of algorithms. In
such a science, experiments as well as theory are used to advance our understanding of
the properties of algorithms. One of the aims of this paper is to demonstrate the bene�ts
of such an empirical approach. We will present some surprising experimental results and
demonstrate how such results can direct future e�orts for a theoretical analysis.

The algorithm studied in this paper is GSAT, a randomized hill-climbing procedure for
propositional satis�ability (or SAT) (Selman, Levesque, & Mitchell, 1992; Selman & Kautz,
1993a). Propositional satis�ability is the problem of deciding if there is an assignment for
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the variables in a propositional formula that makes the formula true. Recently, there has
been considerable interest in GSAT as it appears to be able to solve large and di�cult satis-
�ability problems beyond the range of conventional procedures like Davis-Putnam (Selman
et al., 1992). We believe that the results we give here will actually apply to a larger family
of procedures for satis�ability called GenSAT (Gent & Walsh, 1993). Understanding such
procedures more fully is of considerable practical interest since SAT is, in many ways, the
archetypical (and intractable) NP-hard problem. In addition, many AI problems can be
encoded quite naturally in SAT (eg. constraint satisfaction, diagnosis and vision interpret-
ation, refutational theorem proving, planning).

This paper is structured as follows. In x2 we introduce GSAT, the algorithm studied
in the rest of the paper. In x3 we de�ne and motivate the choice of problems used in our
experiments. The experiments themselves are described in x4. These experiments provide
a more complete picture of GSAT's search than previous informal accounts. The results
of these experiments are analysed more closely in x5 using some powerful statistical tools.
This analysis allow us to make various experimentally veri�able conjectures about GSAT's
search. For example, we are able to conjecture: the length of GSAT's initial hill-climbing
phase; the average gradient of this phase; the simple scaling of various important features
like the score (on which hill-climbing is performed) and the branching rate. In x6 we suggest
how such results can be used to direct future theoretical analysis. Finally, in x7 we describe
related work and end with some brief conclusions in x8.

2. GSAT

GSAT is a random greedy hill-climbing procedure. GSAT deals with formulae in conjunct-
ive normal form (CNF); a formula, � is in CNF i� it is a conjunction of clauses, where a
clause is a disjunction of literals. GSAT starts with a randomly generated truth assignment,
then hill-climbs by \ipping" the variable assignment which gives the largest increase in
the number of clauses satis�ed (called the \score" from now on). Given the choice between
several equally good ips, GSAT picks one at random. If no ip can increase the score,
then a variable is ipped which does not change the score or (failing that) which decreases
the score the least. Thus GSAT starts in a random part of the search space and searches
for a global solution using only local information. Despite its simplicity, this procedure has
been shown to give good performance on hard satis�ability problems (Selman et al., 1992).

procedure GSAT(�)
for i := 1 to Max-tries

T := random truth assignment
for j := 1 to Max-ips

if T satis�es � then return T
else Poss-ips := set of vars which increase satis�ability most

V := a random element of Poss-ips
T := T with V's truth assignment ipped

end

end

return \no satisfying assignment found"
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In (Gent & Walsh, 1993) we describe a large number of experiments which suggest
that neither greediness not randomness is important for the performance of this procedure.
These experiments also suggest various other conjectures. For instance, for random 3-SAT

problems (see x3) the log of the runtime appears to scale with a less than linear dependency
on the problem size. Conjectures such as these could, as we noted in the introduction,
be very pro�tably used to direct future e�orts to analyse GSAT theoretically. Indeed,
we believe that the experiments reported here suggest various conjectures which would be
useful in a proof of the relationship between runtime and problem size (see x6 for more
details)

3. Problem Space

To be able to perform experiments on an algorithm, you need a source of problems on which
to run the algorithm. Ideally the problems should come from a probability distribution
with some well-de�ned properties, contain a few simple parameters and be representative of
problems which occur in real situations. Unfortunately, it is often di�cult to meet all these
criteria. In practice, one is usually forced to accept either problems from a well-de�ned
distribution with a few simple parameters or a benchmark set of real problems, necessarily
from some unknown distribution. In these experiments we adopt the former approach and
use CNF formulae randomly generated according to the random k-SAT model.

Problems in random k-SAT with N variables and L clauses are generated as follows:
a random subset of size k of the N variables is selected for each clause, and each vari-
able is made positive or negative with probability 1

2 . For random 3-SAT, there is a phase
transition from satis�able to unsatis�able when L is approximately 4.3N (Mitchell, Selman,
& Levesque, 1992; Larrabee & Tsuji, 1992; Crawford & Auton, 1993). At lower L, most
problems generated are under-constrained and are thus satis�able; at higher L, most prob-
lems generated are over-constrained and are thus unsatis�able. As with many NP-complete
problems, problems in the phase transition are typically much more di�cult to solve than
problems away from the transition (Cheeseman, Kanefsky, & Taylor, 1991). The region
L=4.3N is thus generally considered to be a good source of hard SAT problems and has
been the focus of much recent experimental e�ort.

4. GSAT's search

When GSAT was �rst introduced, it was noted that search in each try is divided into two
phases. In the �rst phase of a try, each ip increases the score. However, this phase is
relatively short and is followed by a second phase in which most ips do not increase the
score, but are instead sideways moves which leave the same number of clauses satis�ed.
This phase is a search of a \plateau" for the occasional ip that can increase the score.1

One of the aims of this paper is to improve upon such informal observations by making
quantitative measurements of GSAT's search, and by using these measurements to make
several experimentally testable predictions.

1. Informal observations to this e�ect were made by Bart Selman during the presentation of (Selman et al.,
1992) at AAAI-92. These observations were enlarged upon in (Gent & Walsh, 1992).
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In our experiments, we followed three methodological principles from (McGeoch, 1986).
First, we performed experiments with large problem sizes and many repetitions, to reduce
variance and allow for emergent properties. Second, we sought good views of the data. That
is, we looked for features of performance which are meaningful and which are as predictable
as possible. Third, we analysed our results closely. Suitable analysis of data may show
features which are not clear from a simple presentation. In the rest of this paper we show
how these principles enabled us to make very detailed conjectures about GSAT's search.

Many features of GSAT's search space can be graphically illustrated by plotting how
they vary during a try. The most obvious feature to plot is the score, the number of satis�ed
clauses. In our quest for a good view of GSAT's search space, we also decided to plot \poss-
ips" at each ip: that is, the number of equally good ips between which GSAT randomly
picks. This is an interesting measure since it indicates the branching rate of GSAT's search
space.

We begin with one try of GSAT on a 500 variable random 3-SAT problem in the
di�cult region of L = 4.3N (Figure 1a). Although there is considerable variation between
tries, this graph illustrates features common to all tries. Both score (in Figure 1a) and
poss-ips (in Figure 1b) are plotted as percentages of their maximal values, that is L and N
respectively. The percentage score starts just above 87.5%, which might seem surprisingly
high. Theoretically, however, we expect a random truth assignment in k-SAT to satisfy
2k�1
2k

of all clauses (in this instance, 7
8). As expected from the earlier informal description,

the score climbs rapidly at �rst, and then attens o� as we mount the plateau. The graph
is discrete since positive moves increase the score by a �xed amount, but some of this
discreteness is lost due to the small scale. To illustrate the discreteness, in Figure 1b we
plot the change in the number of satis�ed clauses made by each ip (as its exact value,
unscaled). Note that the x-axis for both plots in Figure 1b is the same.
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Figure 1: GSAT's behaviour during one try, N = 500, L = 2150, �rst 250 ips

The behaviour of poss-ips is considerably more complicated than that of the score. It
is easiest �rst to consider poss-ips once on the plateau. The start of plateau search, after
115 ips, coincides with a very large increase in poss-ips, corresponding to a change from
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the region where a small number of ips can increase the score by 1 to a region where a
large number of ips can be made which leave the score unchanged. Once on the plateau,
there are several sharp dips in poss-ips. These correspond to ips where an increase by 1
in the score was e�ected, as can be seen from Figure 1b. It seems that if you can increase
the score on the plateau, you only have a very small number of ways to do it. Also, the
dominance of ips which make no change in score graphically illustrates the need for such
\sideways" ips, a need that has been noted before (Selman et al., 1992; Gent & Walsh,
1993).

Perhaps the most fascinating feature is the initial behaviour of poss-ips. There are
four well de�ned wedges starting at 5, 16, 26, and 57 ips, with occasional sharp dips.
These wedges demonstrate behaviour analogous to the that of poss-ips on the plateau.
The plateau spans the region where ips typically do not change the score: we call this
region H0 since hill-climbing typically makes zero change to the score. The last wedge
spans the region H1 where hill-climbing typically increases the score by 1, as can be seen
very clearly from Figure 1b. Again Figure 1b shows that the next three wedges (reading
right to left) span regions H2, H3, and H4. As with the transition onto the plateau, the
transition between each region is marked by a sharp increase in poss-ips. Dips in the
wedges represent unusual ips which increase the score by more than the characteristic
value for that region, just as the dips in poss-ips on the plateau represent ips where an
increase in score was possible. This exact correlation can be seen clearly in Figure 1b. Note
that in this experiment, in no region Hj did a change in score of j+2 occur, and that there
was no change in score of �1 at all. In addition, each wedge in poss-ips appears to decay
close to linearly. This is explained by the facts that once a variable is ipped it no longer
appears in poss-ips (ipping it back would decrease score), that most of the variables in
poss-ips can be ipped independently of each other, and that new variables are rarely
added to poss-ips as a consequence of an earlier ip. On the plateau, however, when a
variable is ipped which does not change the score, it remains in poss-ips since ipping it
back also does not change the score.

To determine if this behaviour is typical, we generated 500 random 3-SAT problems
with N=500 and L=4.3N, and ran 10 tries of GSAT on each problem. Figure 2a shows the
mean percentage score2 while Figure 2b presents the mean percentage poss-ips together
with the mean change in score at each ip. (The small discreteness in this �gure is due to
the discreteness of Postscript's plotting.)

The average percentage score is very similar to the behaviour on the individual run of
Figure 1, naturally being somewhat smoother. The graph of average poss-ips seems quite
di�erent, but it is to be expected that you will neither observe the sharply de�ned dips
in poss-ips from Figure 1b, nor the very sharply de�ned start to the wedges, since these
happen at varying times. It is remarkable that the wedges are consistent enough to be
visible when averaged over 5,000 tries; the smoothing in the wedges and the start of the
plateau is caused by the regions not starting at exactly the same time in each try.

Figure 2 does not distinguish between satis�able and unsatis�able problems. There
is no current technique for determining the satis�ability of 500 variable 3-SAT problems
in feasible time. From instances we have been able to test, we do not believe that large

2. In this paper we assign a score of 100% to ips which were not performed because a satisfying truth
assignment had already been found.
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Figure 2: Mean GSAT behaviour, N = 500, L = 4.3N, �rst 250 ips

di�erences from Figure 2 will be seen when it is possible to plot satis�able and unsatis�able
problems separately, but this remains an interesting topic to investigate in the future.

Experiments with other values of N with the same ratio of clauses to variables demon-
strated qualitatively similar behaviour. More careful analysis shows the remarkable fact that
not only is the behaviour qualitatively similar, but quantitatively similar, with a simple lin-
ear dependency on N. If graphs similar to Figure 2 are plotted for each N with the x-axis
scaled by N, behaviour is almost identical. To illustrate this, Figure 3 shows the mean
percentage score, percentage poss-ips, and change in score, for N = 500, 750, and 1000, for
L = 4.3N and for the �rst 0.5N ips (250 ips at N = 500). Both Figure 3a and Figure 3b
demonstrate the closeness of the scaling, to the extent that they may appear to contain just
one thick line. In Figure 3b there is a slight tendency for the di�erent regions of hill-climbing
to become better de�ned with increasing N.

The �gures we have presented only reach a very early stage of plateau search. To
investigate further along the plateau, we performed experiments with 100, 200, 300, 400,
and 500 variables from 0 to 2.5N ips.3 In Figure 4a shows the mean percentage score in
each case, while Figure 4b shows the mean percentage poss-ips, magni�ed on the y-axis
for clarity. Both these �gures demonstrate the closeness of the scaling on the plateau. In
Figure 4b the graphs are not quite so close together as in Figure 4a. The phases of hill-
climbing become much better de�ned with increasing N. During plateau search, although
separate lines are distinguishable, the di�erence is always considerably less than 1% of the
total number of variables.

The problems used in these experiments (random 3-SAT with L=4.3N) are believed to
be unusually hard and are satis�able with probability approximately 1

2 . Neither of these
facts appears to be relevant to the scaling of GSAT's search. To check this we performed
a similar range of experiments with a ratio of clauses to variables of 6. Although almost all
such problems are unsatis�able, we observed exactly the same scaling behaviour. The score

3. At 100 variables, 2.5N ips is close to the optimal value for Max-ips. However, experiments have
suggested that Max-ips may need to vary quadratically for larger N (Gent & Walsh, 1993).
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Figure 3: Scaling of mean GSAT behaviour, N = 500, 750, 1000, �rst 0.5N ips
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Figure 4: Scaling of mean GSAT behaviour, N = 100, 200, 300, 400, 500

does not reach such a high value as in Figure 4a, as is to be expected, but nevertheless shows
the same linear scaling. On the plateau, the mean value of poss-ips is lower than before.
We again observed this behaviour for L = 3N, where almost all problems are satis�able.
The score approaches 100% faster than before, and a higher value of poss-ips is reached
on the plateau, but the decay in the value of poss-ips seen in Figure 4b does not seem to
be present.

To summarise, we have shown that GSAT's hill-climbing goes through several distinct
phases, and that the average behaviour of certain important features scale in linear fashion
with N. These results provide a considerable advance on previous informal descriptions of
GSAT's search.
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5. Numerical Conjectures

In this section, we will show that detailed numerical conjectures can be made if the data
presented graphically in x4 is analysed numerically. We divide our analysis into two parts:
�rst we deal with the plateau search, where behaviour is relatively simple, then we analyse
the hill-climbing search.

On the plateau, both average score and poss-ips seem to decay exponentially with a
simple linear dependency on problem size. To test this, we performed regression analysis
on our experimental data, using the models

S(x) = N � (B � C � e�
x

A�N ) (1)

P (x) = N � (E + F � e�
x

D�N ) (2)

where x represents the number of ips, S(x) the average score at ip x and P (x) the average
number of possible ips. To determine GSAT's behaviour just on the plateau, we analysed
data on mean score, starting from 0.4N ips, a time when plateau search always appears to
have started (see x5). Our experimental data �tted the model very well. Detailed results for
N = 500 are given in Table 1 to three signi�cant �gures. The values of A, B, and C change
only slightly with N, providing further evidence for the scaling of GSAT's behaviour. For L
= 3N the asymptotic mean percentage score is very close to 100% of clauses being satis�ed,
while for L = 4.3N it is approximately 99.3% of clauses and for L = 6N it is approximately
98.2% of clauses. A good �t was also found for mean poss-ips behaviour (see Table 2 for
N = 500), except for L = 3N, where the mean value of poss-ips on the plateau may be
constant. It seems that for L = 4.3N the asymptotic value of poss-ips is about 10% of N
and that for 6 it is about 5% of N.

It is important to note that the behaviour we analysed was for mean behaviour over
both satis�able and unsatis�able problems. It is likely that individual problems will exhibit
similar behaviour with di�erent asymptotes, but we do not expect even satis�able problems
to yield a mean score of 100% asymptotically. Note that as N increases a small error in
percentage terms may correspond to a large error in the actual score. As a result, our
predictions of asymptotic score may be inaccurate for large N, or for very large numbers of
ips. Further experimentation is necessary to examine these issues in detail.

L/N N A B C R2

3 500 0.511 2.997 0.0428 0.995

4.3 500 0.566 4.27 0.0772 0.995

6 500 0.492 5.89 0.112 0.993

Table 1: Regression results for average score of GSAT.4

4. The value of R2 is a number in the interval [0; 1] indicating how well the variance in data is explained by
the regression formula. 1�R2 is the ratio between variance of the data from its predicted value, and the
variance of the data from the mean of all the data. A value of R2 close to 1 indicates that the regression
formula �ts the data very well.
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L/N N D E F R2

4.3 500 0.838 0.100 0.0348 0.996

6 500 0.789 0.0502 0.0373 0.999

Table 2: Regression results on average poss-ips of GSAT.

We have also analysed GSAT's behaviour during its hill-climbing phase. Figure 1b
shows regions where most ips increase the score by 4, then by 3, then by 2, then by 1.
Analysis of our data suggested that each phase lasts roughly twice the length of the previous
one. This motivates the following conjectures: GSAT moves through a sequence of regions
Hj for j = :::; 3; 2; 1 in which the majority of ips increase the score by j, and where the
length of each region Hj is proportional to 2

�j (except for the region H0 which represents
plateau search).

To investigate this conjecture, we analysed 50 tries each on 20 di�erent problems for
random 3-SAT problems at N=500 and L=4.3N. We very rarely observe ips in Hj that
increase the score by less than j, and so de�ne Hj as the region between the �rst ip which
increases the score by exactly j and the �rst ip which increases the score by less than
j (unless the latter actually appears before the former, in which case Hj is empty). One
simple test of our conjecture is to compare the total time spent in Hj with the total time up
to the end of Hj ; we predict that this ratio will be

1
2 . For j = 1 to 4 the mean and standard

deviations of this ratio, and the length of each region are shown in Table 3.5 This data
supports our conjecture although as j increases each region is slightly longer than predicted.
The total length of hill-climbing at N=500 is 0.22N ips, while at N=100 it is 0.23N. This
is consistent with the scaling behaviour observed in x4.

Region mean ratio s.d. mean length s.d.

All climbing | | 112 7.59
H1 0.486 0.0510 54.7 7.69
H2 0.513 0.0672 29.5 5.12
H3 0.564 0.0959 15.7 3.61
H4 0.574 0.0161 7.00 2.48

Table 3: Comparative and Absolute Lengths of hill-climbing phases

Our conjecture has an appealing corollary. Namely, that if there are i non-empty hill-
climbing regions, the average change in score per ip during hill-climbing is:

1

2
� 1 +

1

4
� 2 +

1

8
� 3 +

1

16
� 4 + � � �+

1

2i
� i � 2: (3)

It follows from this that mean gradient of the entire hill-climbing phase is approximately 2.
At N=500, we observed a mean ratio of change in score per ip during hill-climbing of 1.94

5. The data for \All climbing" is the length to the start of H0.
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with a standard deviation of 0.1. At N=100, the ratio is 1.95 with a standard deviation of
0.2.

The model presented above ignores ips in Hj which increase the score by more than
j. Such ips were seen in Figure 1b in regions H3 to H1. In our experiment 9.8% of ips
in H1 were of size 2 and 6.3% of ips in H2 were of size 3. However, ips of size j + 2
were very rare, forming only about 0.02% of all ips in H1 and H2. We conjectured that
an exponential decay similar to that in H0 occurs in each Hj . That is, we conjecture that
the average change in number of satis�ed clauses from ip x to ip x+ 1 in Hj is given by:

j +Ej � e
� x
Dj �N (4)

This might correspond to a model of GSAT's search in which there are a certain number
of ips of size j + 1 in each region Hj , and the probability of making a j + 1 ip is merely
dependent on the number of such ips left; the rest of the time, GSAT is obliged to make
a ip of size j. Our data from 1000 tries �tted this model well, giving values of R2 of 96.8%
for H1 and 97.5% for H2. The regression gave estimates for the parameters of: D1 = 0:045,
E1 = 0:25, D2 = 0:025, E2 = 0:15. Not surprisingly, since the region H3 is very short,
data was too noisy to obtain a better �t with the model (4) than with one of linear decay.
These results support our conjecture, but more experiments on larger problems are needed
to lengthen the region Hj for j � 3.

6. Theoretical Conjectures

Empirical results like those given in x5 can be used to direct e�orts to analyse algorithms
theoretically. For example, consider the plateau region of GSAT's search. If the model (1)
applies also to successful tries, the asymptotic score is L, giving

S(x) = L� C �N � e�
x
A�N

Di�erentiating with respect to x we get,

dS(x)

dx
=

C

A
� e�

x
a�N =

L � S(x)

A �N

The gradient is a good approximation for Dx, the average size of a ip at x. Hence,

Dx =
L � S(x)

A �N

Our experiments suggest that downward ips and those of more than +1 are very rare on the
plateau. Thus, a good (�rst order) approximation for Dx is as follows, where prob(Dx = j)
is the probability that a ip at x is of size j.

Dx =
LX

j=�L

j � prob(Dx = j) = prob(Dx = 1)

Hence,

prob(Dx = 1) =
L� S(x)

A �N
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That is, on the plateau the probability of making a ip of size +1 may be directly pro-
portional to L � S(x), the average number of clauses remaining unsatis�ed and inversely
proportional N, to the number of variables. A similar analysis and result can be given for
prob(Dx = j+1) in the hill-climbing region Hj , which would explain the model (4) proposed
in x5.

If our theoretical conjecture is correct, it can be used to show that the mean number
of ips on successful tries will be proportional to N lnN. Further investigation, both ex-
perimental and theoretical, will be needed to determine the accuracy of this prediction.
Our conjectures in this section should be seen as conjectures as to what a formal theory
of GSAT's search might look like, and should be useful in determining results such as av-
erage runtime and the optimal setting for a parameter like Max-ips. In addition, if we
can develop a model of GSAT's search in which prob(Dx = j) is related to the number
of unsatis�ed clauses and N as in the above equation, then the experimentally observed
exponential behaviour and linear scaling of the score will follow immediately.

7. Related Work

Prior to the introduction of GSAT in (Selman et al., 1992), a closely related set of proced-
ures were studied by Gu (Gu, 1992). These procedures have a di�erent control structure
to GSAT which allows them, for instance, to make sideways moves when upwards moves
are possible. This makes it di�cult to compare our results directly. Nevertheless, we are
con�dent that the approach taken here would apply equally well to these procedures, and
that similar results could be expected. Another \greedy algorithm for satis�ability" has
been analysed in (Koutsoupias & Papadimitriou, 1992), but our results are not directly
applicable to it because, unlike GSAT, it disallows sideways ips.

In (Gent & Walsh, 1993) we describe an empirical study of GenSAT, a family of pro-
cedures related to GSAT. This study focuses on the importance of randomness, greediness
and hill-climbing for the e�ectiveness of these procedures. In addition, we determine how
performance depends on parameters like Max-tries and Max-ips. We showed also that
certain variants of GenSAT could outperform GSAT on random problems. It would be
very interesting to perform a similar analysis to that given here of these closely related
procedures.

GSAT is closely related to simulated annealing (van Laarhoven & Aarts, 1987) and
the Metropolis algorithm, which both use greedy local search with a randomised method of
allowing non-optimal ips. Theoretical work on these algorithms has not applied to SAT
problems, for example (Jerrum, 1992; Jerrum & Sorkin, 1993), while experimental studies of
the relationship between GSAT and simulated annealing have as yet only reached tentative
conclusions (Selman & Kautz, 1993b; Spears, 1993).

Procedures like GSAT have also been successfully applied to constraint satisfaction
problems other than satis�ability. For example, (Minton, Johnston, Philips, & Laird, 1990)
proposed a greedy local search procedure which performed well scheduling observations on
the Hubble Space Telescope, and other constraint problems like the million-queens, and
3-colourability. It would be very interesting to see how the results given here map across
to these new problem domains.
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8. Conclusions

We have described an empirical study of search in GSAT, an approximation procedure for
satis�ability. We performed detailed analysis of the two basic phases of GSAT's search,
an initial period of fast hill-climbing followed by a longer period of plateau search. We
have shown that the hill-climbing phases can be broken down further into a number of
distinct phases each corresponding to progressively slower climbing, and each phase lasting
twice as long as the last. We have also shown that, in certain well de�ned problem classes,
the average behaviour of certain important features of GSAT's search (the average score
and the average branching rate at a given point) scale in a remarkably simple way with
the problem size We have also demonstrated that the behaviour of these features can be
modelled very well by simple exponential decay, both in the plateau and in the hill-climbing
phase. Finally, we used our experiments to conjecture various properties (eg. the probability
of making a ip of a certain size) that will be useful in a theoretical analysis ofGSAT. These
results illustrate how carefully performed experiments can be used to guide theory, and how
computers have an increasingly important rôle to play in the analysis of algorithms.
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