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Abstract
We introduce PCP-nets, a formalism to model qualitative conditional preferences with proba-

bilistic uncertainty. PCP-nets generalise CP-nets by allowing for uncertainty over the preference or-
derings. We define and study both optimality and dominance queries in PCP-nets, and we propose
a tractable approximation of dominance which we show to be very accurate in our experimental
setting. Since PCP-nets can be seen as a way to model a collection of weighted CP-nets, we also
explore the use of PCP-nets in a multi-agent context, where individual agents submit CP-nets which
are then aggregated into a single PCP-net. We consider various ways to perform such aggregation
and we compare them via two notions of scores, based on well known voting theory concepts. Ex-
perimental results allow us to identify the aggregation method that better represents the given set
of CP-nets and the most efficient dominance procedure to be used in the multi-agent context.

1. Introduction

Preferences are ubiquitous in our everyday life; whenever we make a decision we exploit our pref-
erences over the candidate options. Moreover, if the decision is shared with others, we need to find
ways to reconcile the possibly conflicting preferences of all the involved decision makers (agents).
No area of our lives is free from explicit or implicit preference modeling, reasoning, and aggrega-
tion. For this reason, the study of how to model and reason with preference plays such an important
role in automated decision making, multi-agent systems and artificial intelligence broadly defined,
and many comprehensive surveys exist detailing this work, for example, Rossi, Venable, and Walsh
(2011), Fürnkranz and Hüllermeier (2010), Brafman and Domshlak (2009), Chevaleyre, Endriss,
Lang, and Maudet (2008), Pigozzi, Tsoukis, and Viappiani (2015) and Amor, Dubois, Gouider, and
Prade (2016).
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For many decision tasks that occur in, for example, e-commerce, web search, retailing, and
personalized medicine, the number of options can outstrip an agent’s ability to view and express
opinions over all the available choices (Adomavicius & Kwon, 2015). Hence, it is desirable in these
instances to have an efficient formalism to model and reason with complex, interdependent prefer-
ences that are specified over decision features, rather than entire decisions. Consider for example
expressing preferences over all cars vs. over car features such as make, model, engine, etc. The set of
all cars has a combinatorial structure and grows very fast over the features, but preferences can and
often are expressed over features, for example, I prefer red cars to blue cars. A number of compact
preference representation languages have been developed in the literature to tackle the computa-
tional challenges arising from these scenarios; see the work of Amor et al. (2016) for a survey
of compact graphical models. We mention specifically conditional preference structures (CP-nets)
(Boutilier et al., 2004), soft constraints (Bistarelli et al., 1997; Rossi et al., 2011), and GAI-nets
(Gonzales & Perny, 2004) as they have been used widely across computer science and other disci-
plines and possess complementary properties in terms of expressivity and reasoning efficiency.

Motivation and Semantics. In this paper we formalize and provide reasoning algorithms for
Probabilistic Conditional Preference networks (PCP-nets). PCP-nets are a generalization of CP-nets
(Boutilier et al., 2004) that allow for modeling qualitative conditional preference statements with
probabilistic uncertainty (Cornelio et al., 2013; Bigot et al., 2013; Cornelio et al., 2014, 2015). We
decided to generalize CP-nets since CP-nets are arguably quite natural and intuitive to use in many
circumstances (Chevaleyre et al., 2011; Allen et al., 2015), and can be used in many applications
such as recommendation engines (Pu et al., 2011), including recommendation systems over features
(Adomavicius & Kwon, 2015) or requiring aggregation (Beliakov, Calvo, & James, 2015); pref-
erence reasoning under constraints and/or ethical principles (Loreggia et al., 2018b, 2018a, 2019;
Rossi & Mattei, 2019), aggregating the preferences of multiple agents (Lang & Xia, 2009; Rossi
et al., 2004; Xia et al., 2011), and allow for expressing complex preferences over features of a de-
cision. In addition, there is experimental evidence that qualitative preferences may more accurately
reflect humans’ preferences in uncertain information settings (Roth & Kagel, 1995; Allen et al.,
2015).

Often in real life the information is not complete, or not precise, or contains some level of
uncertainty. In preference settings, an agent may be unsure about his preferences over certain items,
or there could be noise due to lack of precision in the elicitation phase or in sensor collection, for
example, a measurement error from remote sensors, or the uncertainty could come from aggregating
the preferences of multiple agents. While CP-nets specify a preference ordering over the values of
each feature of the considered objects, in a PCP-net we are given a probability distribution over all
possible preference orderings of the features’ domain. For the car example in a CP-net we would
state our preference ordering over the two colors (for example, that we prefer white to red), while
in a PCP-nets we would say that we prefer white to red with a certain probability p, and red to
white with probability 1 ´ p. For example this probability can express the percentage of the time
that we encounter a particular comparison: we may very much like Italian food (90% of the time)
but occasionally (10% of the time) we prefer burger with fries. Another example is when we are
reporting the preferences of someone else of which we are not certain.

It is interesting to think through the semantics of what the uncertainty and probabilities mean. If
I prefer red to white with probability 0.8 how does one interpret this? It could be that it represents a
strength of preference, though there are other formalisms that deal with this interpretation directly
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(Boutilier, Bacchus, & Brafman, 2001). It could be that the context is not well specified, and that in
0.8 of the cases I observe redą white while in 0.2 of the cases I observe the reverse; this is the model
used by some psychologists to resolve intransitive observations in repeated two alternative forced
choice experiments (Regenwetter, Dana, & Davis-Stober, 2010; Regenwetter & Davis-Stober, 2012;
Regenwetter, Dana, & Davis-Stober, 2011; Marden, 1995). Or it could be that the PCP-net repre-
sents the aggregation of preferences over a large population (considering the agents independent
from each other) that prefers red ą white 80% of the time; the idea that uncertain, qualitative in-
formation may come from multiple agents has been popular in the recommendation systems area
(Price & Messinger, 2005; Faltings, Torrens, & Pu, 2004; Beliakov et al., 2015). Surprisingly, the
same mathematics of PCP-net formalism works for all of these interpretations.

Summary of Results. Given a PCP-net, it is then interesting to study what it means to find the
most preferred object and to respond to dominance queries involving two objects (determining if
one outcome is more preferred than another according to the outcome ordering). For optimality,
we notice that a PCP-net defines a probability distribution over a collection of induced CP-nets,
that is, all those CP-nets that can be obtained from the PCP-net by choosing an ordering from each
probability distribution over orderings in the PCP-net, and we use this observation to define two
notions of optimality: the most probable optimal outcome and the optimal outcome of the most
probable induced CP-net. Finding both optimal objects is computationally difficult in general, but
it becomes easy if we impose some restriction on the connectivity of the dependency structure.
For dominance queries, of the form “Is o1 more preferred than o2?”, the answer is a probability
value, that is, the probability that o1 is more preferred than o2, which by definition is the sum
of the probabilities of those induced CP-nets where o1 is preferred to o2. Finding such a value
is computationally difficult, as dominance queries are already difficult in CP-nets. However, we
propose and evaluate a tractable approximation method that returns an interval in which the exact
value is positioned.

We then turn our attention to the use of PCP-nets in a multi-agent environment. This is a natural
setting for PCP-nets, since, as noted above, a PCP-net models a collection of CP-nets. Thus we may
think of individual agents specifying a CP-net that models their preferences, and a PCP-net that uses
probabilities to reconcile the possibly conflicting preferences given by the individual CP-nets. This
provides a formalism to perform collective reasoning tasks such as answering dominance queries,
in addition to finding the most preferred outcome. Moreover, we can store or communicate between
agents a single, compact structure instead of a possibly large collection of CP-nets. In contrast, pre-
vious efforts to tackle collective decision tasks over collections of CP-nets have primarily focused
on the question of optimality (Li, Vo, & Kowalczyk, 2011) or dominance (Santhanam, Basu, &
Honavar, 2010) and have not dealt with uncertainty. Generally, a voting method is defined in order
to determine the most preferred alternative and these methods usually work at the level of the indi-
vidual features in a sequential fashion (Lang & Xia, 2009; Xia et al., 2011; Li, Vo, & Kowalczyk,
2010; Li et al., 2011; Xia, Conitzer, & Lang, 2008; Maran, Maudet, Pini, Rossi, & Venable, 2013;
Mattei, Pini, Rossi, & Venable, 2013, 2012). We propose various ways to obtain a PCP-net out of
the given collection of CP-nets and then compare both optimality and dominance tasks theoretically
and experimentally by considering the satisfaction level of the contributing CP-nets. For collective
optimality, we prove that our best method gives the same result as the sequential voting procedure
proposed by Lang and Xia (2009). For collective dominance we provide an approximation that is
tractable in the case of CP-nets for which the dependency structure is a directed poly-tree or for-

1105



CORNELIO, GOLDSMITH, GRANDI, MATTEI, ROSSI, & VENABLE

est, that is, polytree-structured CP-nets (a polytree is a directed graph whose underlying undirected
graph is a tree).

Extensions and Related Work. Since PCP-nets were first introduced in the work by Bigot et al.
(2013) and Cornelio et al. (2013), there have been several generalizations and additional studies.
The question of using CP-nets and PCP-nets for group decision making was further investigated
in the work of Sikdar, Adali, and Xia (2017), closing several open questions. For example, in the
work of Bigot, Mengin, and Zanuttini (2014) they show that PCP-nets can be learnt in both on-
line and offline settings starting from a sequence of optimal items, by leveraging structure learning
techniques for Bayesian Networks. Also, Fidha and Amor (2015) introduce Probabilistic Weighted
CP-nets which allow for both uncertainty and differential preference weights, at the cost of a higher
computational complexity. Weights are also added to CP-nets in the work of Wang, Zhang, Sun,
Song, Guo, and Zhou (2012), allowing users to express more precisely the relative strength of pref-
erences between two attributes. In the work of Lukasiewicz, Martinez, and Simari (2014) the notion
of probabilistic preference logic networks are used to capture a more general notion of preferences
than those modelled by CP-nets, again at the cost of higher computational complexity. Moreover,
similar to our probabilistic extension of CP-nets, a probabilistic generalization of TCP-nets, which
is an extension of CP-nets that represents the notion of relative importance and conditional relative
importance between features (Brafman & Domshlak, 2002), has been recently proposed by Ahmed
and Mouhoub (2018a). This work exploit directly our definition of G-net (see Definition 12) to com-
pute the most probable compatible TCP-net and a generalization of the notion of Opt-Network (see
Definition 13) to compute the most probable optimal outcome.

Organization. In Section 2 we introduce the main notions used throughout the paper including a
background on CP-nets, Bayesian Networks, and voting. In Section 3 we formally define PCP-nets,
while in Section 4 and 5 we address optimality and dominance tasks at the level of a single agent’s
preferences (single network) and provide empirical experiments for our algorithms. In Section 6
we move to the multi-agent setting, showing how to compute optimality and dominance when we
have a collection of preferences (networks) again using both theoretical and empirical tools. Finally,
in Section 7 we summarize the contributions of the paper and we discuss possible lines for future
work.

2. Background and Preliminaries

In this paper we will reduce several problems regarding PCP-nets to problems on Bayesian Net-
works. Thus, in the following section, in addition to providing the main notions on CP-nets, voting
theory, and CP-net aggregation, we also discuss Bayesian Networks.

2.1 Bayesian Networks

Bayesian networks (BNs) are a compact framework for representing and reasoning with uncertain
knowledge (Pearl, 1988). A BN is a directed graph where each node corresponds to a random
variable; the set of nodes is denoted by V ; a set of directed edges connects pairs of nodes, that is, if
there is an edge from nodeX to node Y ,X is said to be a parent of Y ; the graph is a directed acyclic
graph (DAG); each node Xi has a conditional probability distribution PpXi|PapXiqq that quantifies
the effect of the parents on the nodeXi. If the nodes are discrete variables, eachXi has a conditional
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probability table (CPT) that contains the conditional probability distribution, PpXi|PapXiqq. Each
CPT row must therefore have probabilities that sum to 1.

Inference in a BN corresponds to calculating PpX|Eq where both X and E are sets of variables
of the BN, or to finding the most probable assignment for X given E. A given assignment to the
variables in E is called evidence. There are three standard inference tasks in BNs:

• belief updating, which is finding the probability of an assignment of a variable or set of
variables, possibly given evidence;

• finding the most probable explanation (MPE) means finding the most probable assignment
for all variables that are not given as evidence; and

• finding the maximum a-posteriori (MAP) means finding the most probable assignment for
some subset of variables (possibly given evidence).

These inference tasks are computationally hard in general. However, they can be solved in poly-
nomial time if we impose restrictions on the topology of the BNs such as bounding the induced
width, see the work of D’Ambrosio (1999) or Dechter (1999) for details. We recall that the width
of a graph is the maximum width among all nodes in the graph, where the width of a node X in
a graph (given an ordering of the nodes) is the number of nodes preceding X in the ordering that
are connected to X . The induced width of a graph is the width of its corresponding induced graph
(given an ordering of the variables) that is obtained by recursively connecting earlier neighbors of
each node following the given ordering (D’Ambrosio, 1999).

Given an ordering of the variables of a BN, these tractable algorithms have a number of steps
linear in the number of variables, and each step is exponential in the number of variables preceding
the current one in the ordering and connected to it in the BN graph. The largest of these numbers
is the induced width of the graph of the BN. Different variable orderings give steps with different
complexity. Finding a good variable ordering is a difficult problem. It is important to observe that if
we assume the induced width is bounded (and we know the optimal ordering), the overall algorithm
is polynomial. If we consider the case of trees or polytrees, then the induced width is bounded.

2.2 CP-nets

CP-nets are a graphical model for compactly representing conditional and qualitative preference
relations (Boutilier et al., 2004). They exploit conditional preferential independence by decompos-
ing an agent’s preferences via the ceteris paribus (cp) assumption (all other things being equal).
CP-nets bear some similarity to Bayesian networks (see 2.1). Both use directed graphs where each
node stands for a single feature (also called variable) from a set of features F “ tX1, . . . , Xnu

with finite domains D1, . . . , Dn. For each feature Xi, each user specifies a set of parent features
PapXiq that can affect her preferences over the values of Xi. This defines a dependency graph in
which each node Xi has PapXiq as its immediate predecessors. Given this structural information,
the user explicitly specifies her preference over the values of Xi for each complete assignment on
PapXiq. This preference is a total or partial order over the domain of Xi (Boutilier et al., 2004).
More formally:

Definition 1. A CP-net over a set of features F “ tX1, . . . , Xnu with finite domains is a directed
graph G over X1, . . . , Xn. The nodes of the graph G are annotated with conditional preference
tables CPT pXiq for each Xi P F . Each conditional preference table CPT pXiq associates a total
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order ąui over Xi’s domain to each complete assignment u of Xi’s parents PapXiq. A single row
of a CPT is also called cp-statement. The total number of cp-statement in the CP-net is also called
the size of the CP-net.

Note that the number of complete assignments over a set of variables (or features) is exponential
in the size of the set. However, for any particular instance, there is an implicit constant k that speci-
fies the maximum number of parent features |PapXq|, that any feature may have. In the following
we make no assumptions about the value of k other than that it is fixed for a particular problem
instance. With this restriction, and an implicit bound on |DX | (the domain of the variable X), we
can and do treat the size of the conditional preference representation for any X as a constant.

An acyclic CP-net is one in which the dependency graph is acyclic, and in this paper we focus
on acyclic CP-nets. However, a CP-net need not be acyclic.

Example 1. Consider a CP-net whose features are X1, X2, X3, and X4, with binary domains
containing x and x̄ if X is the name of the feature, and with the preference statements as follows:
x1 ą x̄1, x2 ą x̄2, x1x2 : x3 ą x̄3, x̄1x̄2 : x3 ą x̄3, x1x̄2 : x̄3 ą x3, x̄1x2 : x̄3 ą x3, x3 : x4 ą x̄4,
x̄3 : x̄4 ą x4. Here, statement x1 ą x̄1 represents the unconditional preference for X1 “ x1 over
X1 “ x̄1, while statement x3 : x4 ą x̄4 states that X4 “ x4 is preferred to X4 “ x̄4, given that
X3 “ x3.

The semantics of CP-nets are based on the notion of a worsening flip. A worsening flip is a
change in the value of a variable to a value which is less preferred by the cp-statement for that
variable. We say that one outcome α is more preferred than another outcome β (written α ą β)
if and only if there is a chain of worsening flips from α to β. This definition induces a partial
order over the outcomes. A CP-net thus represents a partial order over the set of possible complete
assignments, defined as the transitive closure of the relation induced by direct comparisons through
cp-statements under the ceteris paribus assumption.

Given a set of outcomes, an outcome o is optimal if and only if there does not exists any other
outcome o1 such that o1 ą o, formally given in the following definition.

Definition 2. Given a CP-net inducing a preorder ą over the set of outcomes, an optimal outcome
is an outcome that is maximal for ą in the set of outcomes.

There could exist more than one optimal outcome for the same CP-net, but if the CP-net has an
acyclic dependency graph the optimal outcome is unique.

Goldsmith, Lang, Truszczynski, and Wilson (2008) prove that finding an optimal outcome of a
general CP-net is PSPACE-complete. However, in acyclic CP-nets, the unique optimal outcome can
be found in linear time by sweeping through the CP-net (Boutilier et al., 2004), assigning the most
preferred values in the preference tables. We sweep through the CP-net, following the arrows in the
dependency graph and assigning at each step the most preferred value in the preference table. Each
step in the sweep forward procedure is linear in the number of assignments to parents of the current
feature, and there are as many steps as features. This algorithm takes polynomial time in the size of
the CP-net description and, if we assume that the number of parents is bounded, is polynomial in
the number of nodes.

Two outcomes o and o1 can be in one of three possible relations with respect to a CP-net C:

• o dominates o1: C |ù o ą o1
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• o1 dominates o: C |ù o1 ą o

• o and o1 are incomparable: C |ù o č o1 ^ C |ù o1 č o written also as C |ù o ’ o1

where C |ù o ą o1 means that there exists a worsening path (chain of worsening flips) from o1 to o.
A dominance query represents preferential comparison between outcomes.

Definition 3. Given a CP-net C and a pair of outcomes o and o1, a dominance query returns True if
C |ù o ą o1, False otherwise.

Determining if one outcome is more preferred than another according to the outcome ordering is
NP-hard even for acyclic CP-nets (Domshlak & Brafman, 2002; Goldsmith et al., 2008). However,
Boutilier et al. (2004) prove that evaluating a dominance query for binary-valued tree structured CP-
nets has complexity Opn2q, where n is the number of features. This complexity result is improved
by Bigot et al. (2013) that prove that dominance for tree-shaped CP-nets takes Opnq time. Boutilier
et al. (2004) prove that dominance is polynomial also for polytrees but NP-complete for acyclic CP-
nets that are directed path singly connected, and NP-complete for CP-nets with a bounded number of
paths between two nodes. Goldsmith et al. (2008) prove that dominance for CP-nets with a general
structure is PSPACE-complete.

2.3 Voting with CP-nets

Voting is a widely studied subject, both in economics (Arrow, Sen, & Suzumura, 2002) and, more
recently, in computer science (Brandt, Conitzer, Endriss, Lang, & Procaccia, 2016). In the standard
setting, a set of voters express their preferences over a set of candidate alternatives, and a voting
rule or social choice rule maps the set of voters’ preferences to one or more elements in the set
of candidates (the winning alternatives). In many AI settings, however, the set of candidates have
a combinatorial structure, with features and feature domains, and preferences over the candidates
needs to be modeled via compact preference formalisms.

In this paper we assume that individual preferences are modelled with CP-nets defined on the
same set of features. Candidates are all possible outcomes, that is, the complete assignments of
the set of features over their domains. To aggregate preferences modelled this way, classical voting
rules are not suitable, since they may generate the so-called “multiple election paradoxes” (Brams,
Kilgour, & Zwicker, 1998) or may have a high computational complexity to compute the winner
(Lang & Xia, 2009). Voting with CP-nets have been already studied extensively. Sequential voting
rules have been proposed in this context (Lang, Pini, Rossi, Venable, & Walsh, 2007; Lang & Xia,
2009): First, an ordering of the features is chosen, which should be compatible with the dependency
graphs of all the CP-nets, and then voting is applied to one feature at a time in the chosen order.

Let us now introduce the formal setting of voting with CP-nets, together with a number of
normative properties for voting rules in this setting, that will be useful to give a first assessment. Let
P “ pC1, . . . , Cmq be a profile of CP-nets, that is, a vector of m CP-nets each corresponding to an
individual in the set t1, . . . ,mu. We assume that each Ci is defined over the same set of variables
X1, . . . , Xn, and that each variable is binary. An anonymous profile of CP-nets, denoted with P̄ “
ppC1, freq1q, . . . , pCk, freqkqq, specifies for k different CP-nets C1, . . . , Ck, all defined on the same
set of featuresX1, . . . , Xn, their relative frequency of appearance in a population of n voters. Given
a profile of CP-nets P “ pC1, . . . , Cmq, its anonymous version P̄ can be easily constructed by
setting freqi “

|tj|Cj“Ciu|

n . In what follows we will indicate with P̄ a generic anonymous CP-
profile, or the anonymous profile associated to a profile P . In most of the paper we will make use
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of anonymous CP-profiles. We will often assume the following property for profiles (Lang & Xia,
2009). We state it here for anonymous profiles:

Definition 4. A profile P̄ “ ppC1, freq1q, . . . , pCk, freqkqq is said to beO-legal if all the dependency
graphs of the CP-nets Ci share a topological ordering of the variables.

Finally, a voting rule for CP-nets r is a function that maps each anonymous profile P̄ into a sin-
gle alternative rpP̄ q. Recall that in our case, the candidate alternatives are all possible assignments
to the variables. Voting rules are typically assessed by means of desirable properties, often named
axioms, that allow us to classify classes of rules. In this paper we consider the following ones:

• Permutation-neutrality: The voting rule is not biased towards any of the variables. That
is, for any anonymous CP-profile P̄ and any permutation σ : t1, . . . , nu Ñ t1, . . . , nu on
variable names, rpσpP̄ qq “ rpP̄ q.1

• Weak Pareto (or unanimity): If the winner in profile P̄ is rpP̄ q, there is no candidate that is
preferred by all agents over rpP̄ q. That is, for any profile P̄ “ ppC1, freq1q, . . . , pCk, freqkqq,
if we denote with ąi the preference order associated to Ci, then there is no outcome o such
that o ąi rpP̄ q, for all i P t1, ¨ ¨ ¨ , ku.

• Consistency: If two profiles P1 and P2 have the same winner, then the same winner will
result by merging the two profiles. That is, given two profiles P̄1 and P̄2 over the same can-
didates, with no voters in common, and such that rpP̄1q “ rpP̄2q, we have rpP̄1 Y P̄2q “

rpP̄1q “ rpP̄2q, where P̄1 Y P̄2 is the anonymous CP-profiles obtained by concatenating the
two profiles, and adapting the relative frequencies accordingly.

• Participation: It is always in the interest of a voter to participate in the voting process. For-
mally, for any profile P̄ and any CP-net Cj , rpP̄ YCjq is not worse than rpP̄ q in the ordering
ąj associated with Cj .

• Homogeneity: If we take several copies of a profile P̄ , the result remains the same as taking
just P̄ . For any profile P̄ and any s P N, we have rpP̄ q “ rpP̄ Y ¨ ¨ ¨ Y P̄ q where P̄ is
concatenated s times.

The properties we enumerated are rather natural and simple requirements for voting with CP-
nets (a complete and detailed axiomatic analysis is outside the scope of this paper). Note that,
although all of the above properties seem very natural to have, and it could be hard to think of why
a voting rule should not possess them, there are indeed voting rules that do not satisfy some of these
properties individually or collections of them (Arrow et al., 2002).

3. Probabilistic CP-nets (PCP-nets)

In this section we introduce a generalization of traditional CP-nets with probabilities on individ-
ual cp-statements (Cornelio et al., 2013; Bigot et al., 2013). We assume that all the cp-statements
are independent of each other since this allows us to use efficient algorithms and techniques from

1. With a slight abuse of notation, we denote with σpP̄ q the anonymous CP-profile obtained from P̄ by permuting the
names of the variables in each CP-net Ci of P̄ according to σ.
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Bayesian Networks. Moreover in many scenarios this assumption is very reasonable: for example,
when data comes from several different individuals, such as in a multi-agent scenario (see Sec-
tion 6), it is reasonable to treat the incoming preferences as independent. However, there exist also
many scenarios where it makes sense to remove this independence assumption (e.g., often people
who prefer fish over meat also prefer wine over beer) and we plan to study them in future work.

Definition 5. A Probabilistic CP-net (PCP-net) has a feature set F “ tX1, . . . , Xnu, where each
feature has domain D1, . . . , Dn. For each feature Xi, there is a set of parent features PapXiq. This
defines a dependency graph in which each node Xi has directed edges from all features in PapXiq.
Given this structural information, for each feature Xi, there is a probability distribution over the
set of all preference orderings (total orderings over Di) for each complete assignment on PapXiq.
Given a feature X in a PCP-net, its PCP-table is the table associating each combination of the
values of the parent features of X with a probability distribution over the set of total orderings over
the domain of X .

Note that PCP-nets are a strict generalization of CP-nets. When a PCP-net is restricted to prob-
abilities in t0, 1u we recover the definition of CP-nets (Boutilier et al., 2004).

In all the examples and experimental settings in this paper, we assume the domain of each vari-
able to be binary and the induced width k of the dependency graph to be bounded by a constant.
However, the definition of PCP-nets does not require these restrictions. Moreover, in what follows,
we use a lexicographic tie-breaking rule when needed, to ensure a unique top element (since gener-
ally PCP-nets may have several ones). The proofs for all theorems and lemmas are in the Appendix.

Definition 6. Given a PCP-net Q, a CP-net is said to be induced by Q if it has the same variables,
with the same domains, same dependency graph as Q and the CP-table of each variable Xi is
generated by choosing a specific ordering (with non-zero probability) for each combination of the
values of the parent features PapXiq.

Example 2. Consider the PCP-net in Figure 1(a) with two features, X and Y , with domains
DX “ tx, x̄u and DY “ ty, ȳu. We can observe: the graph with the two nodes X and Y rep-
resenting (through the edge between X and Y ) a preferential dependency between the two features;
the preference table under the nodeX showing for each ordering of the values ofX the correspond-
ing probability; and the preference table under the node Y showing for each assignment of X the
probability of observing a given ordering over values of Y . Figure 1(b) describes a CP-net that has
been induced from the PCP-net of Figure 1(a).

It is important to notice that by generating the induced CP-tables we obtain redundant informa-
tion when we select rows that are equal for each assignment to the parent variables. For example,
considering a binary PCP-net with two variables X and Y and an edge from X to Y , we can have
an induced CP-net with the following CP-table for the variable Y : x : y ą y and x : y ą y. This
redundant information can be interpreted as vacuous edges: edges that are not actually dependen-
cies. This means that removing these type of edges, does not change the preorder induced over the
set of outcomes. Eliminating this redundant information (all the vacuous edges) allows us to reduce
an (induced) CP-net to its normal form.

Definition 7. A CP-net is in normal form if it doesn’t have any vacuous edge. This means that for
each node X there does not exists any node Y P PapXq such that the rows of the CP-table of X ,
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X Y

x ą x̄ 0.8
x̄ ą x 0.2

x
y ą ȳ 0.1
ȳ ą y 0.9

x̄
y ą ȳ 0.7
ȳ ą y 0.3

(a) A PCP-net

X Y

x̄ ą x x ȳ ą y
x̄ y ą ȳ

(b) An induced CP-net

Figure 1: A PCP-net and one induced CP-net.

in correspondence to the parents assignments uiy1, uiy2, ¨ ¨ ¨ , uiyl, have the same ordering for the
values of the variable X , for each ui in the set tu1, ¨ ¨ ¨ , umu “ DompY1qˆ ¨ ¨ ¨ˆDompYkq where
DompY q “ ty1, ¨ ¨ ¨ , ylu and PapXq “ tY, Y1, ¨ ¨ ¨ , Yku.

It is important to notice that transforming a CP-net not in normal form to another CP-net that is
in normal form is always possible. This transformation preserves the same induced preorder over the
set of outcomes. Moreover the process is invariant to the order in which vacuous edges are removed
to transform a given a CP-net not in normal form to its normal form.

Example 3. This example shows the difference between a CP-net not in normal form and its normal
form. The right part of Figure 2 shows the normal form of the CP-net in the left part of Figure 2.

X1 X2

X3

x1 ą x̄1 x2 ą x̄2

x1x2 x3 ą x̄3 ą x3

x1x̄2 x3 ą x̄3 ą x3

x̄1x2 x3 ą x3 ą x̄3

x̄1x̄2 x3 ą x3 ą x̄3

(a) Non-Normal Form

X1 X2

X3

x1 ą x̄1 x2 ą x̄2

x1 x3 ą x̄3 ą x3

x̄1 x3 ą x3 ą x̄3

(b) Normal Form

Figure 2: A CP-net and its associated CP-net in normal form. Note that this example uses ternary
domains (x,x̄, and x)

.

If we transform an induced CP-net in normal form, we observe that, after the transformation,
the edges are a subset of the edges in the PCP-net. Thus, CP-nets induced by the same PCP-net may
have different dependency graphs, if considered in their normal form.

1112



REASONING WITH PCP-NETS

Each induced CP-net has an associated probability, obtained from the PCP-net by taking the
product of the probabilities of the orderings chosen in the CP-net.

Definition 8 (Probability of an Induced CP-net). Given a PCP-netQ and an induced CP-net C, let
q̄ be the set of all rows of the CPTs that define C. We define the probability of C, fpCpq̄q, to be the
product of the probabilities of the qi P q̄.

Hence, a PCP-net induces a probability distribution over the set of all induced CP-nets.

Example 4. Consider again the PCP-net in Figure 3(a) and the induced CP-net in Figure 3(b). The
probability associated with this CP-net is defined by: fpCpq̄q “ rp1´ q1q ¨ p1´ q21q ¨ q22s.

X1 X2

x1 ą x̄1 q1

x̄1 ą x1 1´ q1
x1

x2 ą x̄2 q21

x̄2 ą x2 1´ q21

x̄1
x2 ą x̄2 q22

x̄2 ą x2 1´ q22

(a) A PCP-net

X1 X2

x̄1 ą x1
x1 x̄2 ą x2

x̄1 x2 ą x̄2

(b) An induced CP-net

Figure 3: A PCP-net where the probability of the cp-statements are given as variables and one
induced CP-net.

3.1 Probability over the Edges

In this section we assume that all the CP-nets are in normal form. As shown in the previous section,
a PCP-net induces a collection of CP-nets, each one with a possibly different dependency graph.
Each edge of the PCP-net dependency graph may or may not appear in an induced CP-net. Thus
each edge, which represents whether or not some feature is dependent on another, is associated with
a probability of existing.

This probability is important as the modification of the CP-nets graph through the addition
or deletion of edges can have significant impacts on the corresponding partial order over the set
of outcomes described by the CP-net. As Boutilier et al. (2004) show, parent variables are more
important than their child variables in the ceteris paribus semantics, since violating the preference
for a parent variable is less preferred than violating the preference for any of its children.

Furthermore the probability of an edge has an additional interpretation depending on the seman-
tics of the context in which we are using the PCP-nets. For example, if we consider a PCP-net as the
representation of the preferences in a multi-agent system as we have proposed, the edge probability
can be interpreted as a measure of the agreement of the agents in the profile on the dependency
between two features, with the assumption that the rows are indeed independent from each other
in the population. Hence, in the multi-agent context, the semantics of the PCP-net edges is useful
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as it allows for a quick, interpretable understanding of the degree of agreement between the agents
about a preferential dependency. This ability can be crucial in many scenarios, for example, when
performing a market survey and using PCP-nets to represent customer preferences, the probability
over the edges allows the surveyor to prioritize some features over others, if the majority of the
customers find them more important.

Definition 9. Given a PCP-net Q and an edge e in the dependency graph of Q, we define the
probability of the existence of the edge e as the sum of the probabilities of those induced CP-nets in
normal form that have e in their dependency graph:

Ppeq “
ÿ

iPI s.t. ePCi

PpCiq

where I is the index set of induced CP-nets Ci.

This definition implies that the probability of non-existence of an edge e, thus the probability of
having an induced CP-net without the edge e, is equal to 1´ Ppeq.

This probability can be derived using the PCP-table of the child node. We consider an edge e,
from a feature X to a feature Y . The set of Y ’s parent nodes are the features in the set PapY q with
cardinality k “ |PapY q|. We define E as:

E “
ą

FPpPapY qzXq

DF

where DF is the domain for a variable F .
In the following theorem we show how to compute the probability of an edge as the complement

of the probability of its nonexistence. This last probability is computed by summing the probability
of having the same preference order for the second variable conditioned to the different values of
the parent node (defined by the edge), considering each instantiation of the other possible parent
nodes.The proofs for all theorems and lemmas can be found in the Appendix.

Theorem 1. Given a PCP-netQ with features with binary domains, and given Υ “ tσ : E Ñ ty ą
ȳ, ȳ ą yuu, the set of all possible functions σ that associate to each element v P E an element of the
set ty ą ȳ, ȳ ą yu (the set of all the possible total orders of the domain of Y ), then the probability
of an edge e “ pX,Y q can be computed by the following conditional probabilities:

Ppeq “ 1´
ÿ

σPΥ

˜

ź

vPE
Prσpvq|vxs Prσpvq|vx̄s

¸

.

The previous theorem can be easily generalized to PCP-net with features with non-binary do-
mains as follows:

Theorem 2. The probability of the edge e “ pX,Y q can be computed as follows:

Ppeq “ 1´
ÿ

σPΥ

˜

ź

vPE
Prσpvq|vx1s Prσpvq|vx2s ¨ ¨ ¨Prσpvq|vxds

¸

where DX “ tx1, x2, ¨ ¨ ¨ , xdu, ΘpY q is the set of all the possible total orders of the domain of Y
and Υ “ tσ : E Ñ ΘpY qu is the set of all possible functions σ that associate to each elementv P E
a total order over the domain of Y (an element of the set ΘpY q).
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4. Optimality

Given a PCP-net we study mainly two optimality tasks: finding the most probable induced CP-net
and finding the most probable optimal outcome.

Definition 10. Given a PCP-net Q, the most-probable induced CP-net C˚ is the induced CP-net
with highest probability, considering the probability distribution defined byQ over the set of induced
CP-nets (see Definition 8):

C˚ “ arg max
Ci

PpCiq

Another relevant optimality task is to find the optimal outcome of the most probable induced
CP-net, that can be computed using known techniques for optimality over CP-nets (e.g., the sweep
forward procedure mentioned in Section 2.2).

Definition 11. Given a PCP-net Q, the most probable optimal outcome o˚ is the outcome that
occurs with the greatest probability as the optimal one in the set of induced CP-nets:

o˚ “ arg max
oj

ÿ

CiPCoj

PpCiq

where Coj is the set of induced CP-nets that have oj as optimal outcome.

These two reasoning tasks have slightly different semantics and may be of use to different
groups in the preference reasoning community. The most probable induced CP-net is analogous
to the CP-net that has the highest probability to map onto a user in a profile. Whereas, the most
probable optimal outcome would be what a recommendation engine should suggest to maximize the
probability of being optimal. One can be seen as an aggregated model, that still retains usefulness for
prediction and sampling, while the other is an aggregated outcome, that maximizes the probability
of being optimal.

In this section we do not make any general restriction on the PCP-net structure beside acyclicity.
Thus, unless otherwise specified, we just assume an acyclic structure of the dependency graph.

4.1 The Most Probable Induced CP-net

We reduce the problem of finding the most probable induced CP-net, that is, the induced CP-net with
highest probability according to Definition 8, to that of finding an assignment with maximal joint
probability of an appropriately defined BN that we call the general network or G-net. Making this
explicit connection to BNs is important for several reasons: it formalizes the connection between
PCP-nets and BNs, which is of independent mathematical interest; by establishing this connection
several of our proofs become easier and it is simpler to write the equations for finding the proba-
bility of a CP-net induced by a PCP-net; and finally our PCP-net formalism (and that of Cornelio
et al. (2013)) assumes that within a CP-table all statements are independent and all variables are
independent as well.

Definition 12. Given a PCP-net Q, we define the Bayesian network called the general network, or
G-net(Q), associated with Q, as follows:

• For each independent feature A of the PCP-net, the G-net has a corresponding variable A.
The domain of A in G-net(Q) corresponds to the set of all possible total orderings over the
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domain of the corresponding featureA inQ. The probability distribution over these orderings
is given by the PCP-table of A.

• For each dependent feature B of Q, G-net(Q) has as many variables as there are combina-
tions of value assignments to the parents. The domain of the B variables in the G-net(Q)
corresponds to the set of all possible total orderings over the domain of the feature B in Q.
They are independent, since we consider all the cp-statement as independent.

Example 5. Consider the PCP-net with two features, Q, from Example 2 and Figure 1. The cor-
responding G-net is shown in Figure 4. The variables have the following domains: DX “ tx ą
x̄, x̄ ą xu, DYx “ DYx̄ “ ty ą ȳ, ȳ ą yu.

X Yx Yx̄

x ą x̄ 0.2

x̄ ą x 0.8

y ą ȳ 0.1

ȳ ą y 0.9

y ą ȳ 0.7

ȳ ą y 0.3

Figure 4: The G-net associated with the PCP-net in Example 2 and Figure 1.

By definition of G-net, given a PCP-netQ and the corresponding G-net N, there is a one-to-one
correspondence between the assignments of N and the induced CP-nets of Q. This is because an
assignment to a G-net N corresponds to a choice of a specific total order (over the domain of the
corresponding feature inQ) for each variable and for each parent assignment. This defines a specific
total order in the PCP-tables of each variable and for each parent assignment, characterizing an
induced CP-net.

Theorem 3. Given a PCP-net Q and its set of induced CP-nets, then:

• The probability of realizing one of its induced CP-nets is the joint probability of the corre-
sponding assignment in the G-net for Q;

• The probability distribution defined in Definition 8 over the set of induced CP-nets is a well
defined discrete probability distribution (i.e., the probabilities over the domain elements sum
to one and the probability of each element belongs to the interval r0, 1s).

• The most probable induced CP-net corresponds to the CP-net associated (using the one-to-
one correspondence between induced CP-nets and assignments of the corresponding G-net
described above) to the assignment of the G-net for Q, with maximal joint probability.

Because the G-net has a separable dependency graph (there are no edges and all the node are
independent), to compute the assignment with maximal joint probability takes Opñq time, where ñ
is the number of the nodes of the G-net. If k is the maximal number of parents nodes for each node
(assuming a fixed constant as maximum value for k) and d the maximal cardinality of the domain of
the nodes of the PCP-net, then ñ “ n ¨ dk (n is the number of nodes in the PCP-net). We therefore
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have the computational complexity Opndkq (since the G-net is separable) that is polynomial in the
size of the description (nodes and PCP-tables) of the PCP-net.

The most probable induced CP-net could also be found by selecting the most probable ordering
in the PCP-net CP-tables (with the same computational complexity as in G-nets). However, G-nets
are useful for the more general case where there are dependencies between cp-statements. Extending
PCP-nets to remove the independence assumption is an interesting direction for future work and
establishing the relationship with BNs will help with this process.

The G-net concept (and the Opt-net we introduce in Definition 13) that we introduce here has
been used to reason about optimally in probabilistic TCP-nets (Ahmed, 2020; Ahmed & Mouhoub,
2018b).

4.2 PCP-nets vs Induced CP-nets

Given a discrete probability distribution ~P over a collection of CP-nets C, all with the same features
and domains, there may be no PCP-netQ such that the set C of CP-nets are all and only the CP-nets
induced by Q.

Theorem 4. Given a discrete probability distribution ~P over a set of CP-nets C (whether or not
they have the same dependency graph), there may exist no PCP-net inducing ~P over the set C.

Theorem 5. Given a probability distribution over a set of CP-nets, each of which contains the same
feature variables, if this distribution is generated by a PCP-net Q, then there exists and we can
define a set of non-linear equations that provides as its unique solution the PCP-net Q inducing
them.

Theorem 4 and 5 give us interesting clues about the practicality of eliciting and aggregating CP-
nets. They indicate that, in some instances, we can derive a PCP-net for a population by eliciting
CP-nets from individuals. However, solving the system of equation generated by Theorem 5 is
likely a computationally hard problem since in general systems of non-linear equations are not even
decidable; there may be a direct algorithm to solve this problem (given the fact that the system of
equation constrains the solutions in the interval r0, 1s), but we leave this for future work.

4.3 The Most Probable Optimal Outcome

The most probable optimal outcome is the outcome that occurs with the greatest probability as the
optimal one in the set of induced CP-nets. The probability that an outcome is optimal corresponds
to the sum of the probabilities of the CP-nets that have that outcome as optimal.

To reason about this task, we first observe that the most probable optimal outcome may not be
the optimal outcome of the most probable CP-net.

Example 6. Let us consider a PCP-net with only one feature X with domain DX “ tx1, x2, x3u

and the following PCP-table:

• x1 ą x2 ą x3 with probability 0.3

• x1 ą x3 ą x2 with probability 0.3

• x3 ą x2 ą x1 with probability 0.4
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The most probable CP-net is the one corresponding to the third ordering and it has the optimal
outcome x3. The other CP-nets have x1 as optimal, so Ppx1q “ 0.6 and Ppx3q “ 0.4. The most
probable optimal outcome is therefore x1 but the optimal outcome of the most probable CP-net is
x3.

Therefore, to find the most probable optimal outcome, we cannot use the most probable induced
CP-net (by the G-net procedure described) and then find its optimal outcome. Rather, we make use
of another Bayesian network, that we call the Opt-net.

In general, given a PCP-net Q, the optimal network (Opt-net) for Q is a BN with the same
dependency graph as Q. Thus, the Opt-net has a variable for each of the PCP-net’s features. The
domains of the variables in the Opt-net are the values of the corresponding features that are ranked
first in at least one ordering with non-zero probability. The conditional probability tables of the Opt-
net are obtained from the corresponding PCP-tables as follows: for each assignment of the parent
variables, we consider the corresponding probability distribution over the values of the dependent
variable defined in the PCP-table. The probability of a value for the dependent variable is the sum
of the probabilities of the orderings that have that particular value as most preferred according to
that distribution. More formally:

Definition 13. Given a PCP-net Q, its Opt-net is a Bayesian network N such that:

• for each node XQ in Q, N has a node XN ;

• the domain DompXN q Ď DompXQq and consists of the values of XQ that are ranked first
in at least one ordering with non-zero probability in the CP-table of XQ;

• for each edge pXQ, Y Qq in Q, N has a an edge pXN , Y N q;

• the probability distribution over DompXN q is defined as:

Ppw|uiq “
ÿ

jPJw

pij , @w P DompX
N q

where:

– ui is an assignment of the variables in PapXN q;

– Jw “ tj | ojr1s “ wu, where oj is a total order over DompXN q and ojr1s is the top
element in the ordering oj;

– pij is the probability of the ordering oj given the assignment ui in the PCP-net Q.

Example 7. Consider the PCP-netQ with three featuresA,B and C with domainsDA “ ta1, a2u,
DB “ tb1, b2u and DC “ tc1, c2, c3u shown in Figure 5.

The Opt-net has the same dependency graph as Q, with three variables A, B and C with do-
mains:DA “ ta1, a2u,DB “ tb1, b2u andDC “ tc1, c2u, and two edgesAC andBC. The domain
of variable C in the Opt-net does not contain value c3 because it never appears as most preferred
in any ordering. Therefore, the Opt-net has a table for entry a1b2 where c1 appears with probability
0.2 and c2 appears with probability 0.8. The Opt-net is shown in Figure 5.

Theorem 6. Given a PCP-net Q and its Opt-net:
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A

C

B

a1 ą a2 0.8
a2 ą a1 0.2

b1 ą b2 0.7
b2 ą b1 0.3

a1 b1
c1 ą c2 ą c3 0.3
c2 ą c1 ą c3 0.7

a1 b2

c1 ą c2 ą c3 0.2
c2 ą c1 ą c3 0.4
c2 ą c3 ą c1 0.4

a2 b1
c1 ą c3 ą c2 0.4
c2 ą c3 ą c1 0.6

a2 b2
c1 ą c2 ą c3 0.1
c2 ą c1 ą c3 0.9

A PCP-net Q

A

C

B

a1 0.8
a2 0.2

b1 0.7
b2 0.3

c1 c2

a1 b1 0.3 0.7
a1 b2 0.2 0.8
a2 b1 0.4 0.6
a2 b2 0.1 0.9

The Opt-net associated with Q.

Figure 5: A PCP-net (left) and its associated Opt-net (right). We have omitted the rows of the cp-
tables with zero probabilities for simplicity.
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• There is a one-to-one correspondence between the assignments (with non-zero probability) of
the Opt-net and the outcomes that are optimal in at least one induced CP-net of Q.

• Given a PCP-net Q, the probability that an outcome is optimal is the joint probability of the
corresponding assignment in the Opt-net (we consider only the assignments of the Opt-net
with positive probability). If no such corresponding assignment exists, then the probability of
being optimal is 0.

• The most probable optimal outcome for a PCP-netQ is obtained by computing the assignment
that maximizes the joint probability of the Opt-net.

Since the problem of maximum assignment in BNs is NP-hard, the complexity of computing the
most probable optimal outcome for a generic PCP-net is not harder than NP-hard. Moreover, if the
structure of the PCP-net dependency is a poly-tree with bounded induced width, computing the most
probable optimal outcome becomes polynomial in the PCP-net description (see Section 2.1). In the
case of binary PCP-net with tree structure, Bigot et al. (2013) show that this task can be solved in
linear time by dynamic programming. Notice that the Opt-net can solve the problem with the same
computational complexity under these restrictions, however the Opt-net works for any PCP-net.

4.4 Optimality Under Partial Observations

A PCP-nets models a distribution over a collection of CP-nets: the set of induced CP-nets. The re-
sults/definitions introduced above for the two optimality tasks (most probable induced cp-net and
most probable optimal outcome) can be easily extended to deal with the presence of some evi-
dence, that is, observation of partial outcomes. This is true also for the dominance task that we will
introduce in the next section (Section 5).

A partial observation for some subset of features of a PCP-net is an instantiation of such features
to a value in their domain. Given a PCP-netQ and an instantiation of some variableX “ xi, we can
compute the result of either optimality task on Q given the evidence, by performing the standard
optimality tasks on another PCP-net Q1 (a sub-PCP-net of Q). We obtain Q1 from Q by removing
X and its outgoing edges, and modifying the cp-tables of all the features depending on X (i.e., the
children nodes) to include only the rows that correspond to the value observed for X (i.e., with the
assignment X “ xi).

Example 8. Consider the PCP-netQ with three featuresA,B and C with domainsDA “ ta1, a2u,
DB “ tb1, b2u and DC “ tc1, c2, c3u shown in Figure 6 (left). Consider the observation A “ a2.
We construct the PCP-net Q1 that has only the two features B and C with the same domains as in
Q, and only one edge, BC, as shown in Figure 6 (right).

5. Dominance in PCP-nets

In this section we restrict to acyclic dependency graphs, moreover in Section 5.2, Section 5.3, Sec-
tion 5.4 and Section 5.5 we further restrict to binary-valued PCP-nets that have a polytree structure.

Dominance queries are another relevant task to perform on a given PCP-net. In the PCP-net
context this means computing the probability that one outcome dominates another one. In a multi-
agent scenario it corresponds to understanding whether one outcome is preferred by most agents.
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A

C

B

a1 ą a2 0.8
a2 ą a1 0.2

b1 ą b2 0.7
b2 ą b1 0.3

a1 b1
c1 ą c2 ą c3 0.3
c2 ą c1 ą c3 0.7

a1 b2

c1 ą c2 ą c3 0.2
c2 ą c1 ą c3 0.4
c2 ą c3 ą c1 0.4

a2 b1
c1 ą c3 ą c2 0.4
c2 ą c3 ą c1 0.6

a2 b2
c1 ą c2 ą c3 0.1
c2 ą c1 ą c3 0.9

A PCP-net Q

CB

b1 ą b2 0.7
b2 ą b1 0.3

b1
c1 ą c3 ą c2 0.4
c2 ą c3 ą c1 0.6

b2
c1 ą c2 ą c3 0.1
c2 ą c1 ą c3 0.9

The sub-PCP-net Q1:
Q under observation A “ a2

Figure 6: A PCP-net (left) and its associated sub-PCP-net under observation A “ a2 (right). We
have omitted the rows of the cp-tables with zero probabilities for simplicity.

Definition 14 (Dominance for PCP-nets). Given a PCP-net Q and a pair of outcomes o and o1, a
dominance query returns the probability that Q |ù o ą o1. That is:

PQpo ą o1q “
ÿ

C induced byQ
s.t. C|ùoąo1

PpCq .

Since any CP-net C can be interpreted as a PCP-net with probability values in t0, 1u, a domi-
nance query for C returns either 0 or 1, where 0 corresponds to C ­|ù o ą o1 and 1 corresponds to
C |ù o ą o1.

5.1 Computational Cost of Dominance

A CP-net is a particular PCP-net where all the probabilities in the PCP-tables are 0 or 1. Thus
a CP-net can be seen as a subcase of PCP-net. It was shown by Boutilier et al. (2004) that eval-
uating a dominance query for binary-valued CP-nets is quadratic in the number of variables for
tree structured CP-nets. Later Bigot et al. (2013) provided an algorithm for dominance testing in
tree structured CP-nets with computational complexity Opnq where n is the number of features.
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Moreover, dominance testing is polynomial (in the size of the CP-net description) for poly-trees
(Boutilier et al., 2004; Domshlak & Brafman, 2002) and NP-complete for directed-path singly con-
nected CP-nets (Boutilier et al., 2004), even if the in-degree of the nodes is bounded (Domshlak
& Brafman, 2002), and for CP-nets with a bounded number of paths between each pair of nodes
(Boutilier et al., 2004; Domshlak & Brafman, 2002). Finally, Goldsmith et al. (2008) proved that
dominance is PSPACE-complete for general CP-nets .

The difficult cases remain of course difficult for PCP-nets since CP-nets are a restricted form
of PCP-nets. Bigot et al. (2013) prove that dominance for PCP-nets is #P-hard, even if the graph is
acyclic, the longest path has length 3 and each node has at most one outgoing edge and at most 4
parents. They also give an algorithm to obtain dominance for a binary-valued tree structured PCP-
net that takes Op22h2

nq time, where n is the number of features and h is the number of variables
that have a different value in o and o1.

Computing the probability of dominance for separable PCP-nets (with no edges in their de-
pendency graph) is polynomial (see Section 5.2), but computing the exact value of the probability
of dominance for a more structured PCP-net is hard. In the next sections we detail algorithms to
compute both a lower bound (Section 5.2) and an upper bound (Section 5.3) in polynomial time
for PCP-nets if the dependency graph is a polytree (a polytree is a directed graph whose underlying
undirected graph is a tree).

5.2 Lower Bound

In this section we consider only binary-valued PCP-nets that have a polytree structure. This category
includes directed trees.

Assuming the polytree structure (thus acyclicity), we can define an order O over n features Xi

such that @i P t1, ¨ ¨ ¨ , nu, PapXiq Ď tX1, ¨ ¨ ¨ , Xi´1u.
In what follows, given an outcome o “ o1o2 ¨ ¨ ¨ on, oæXi will indicate oi and oæS will indicate

oæs1 ¨ ¨ ¨ oæsm where S “ ts1, ¨ ¨ ¨ , smu Ď tX1, ¨ ¨ ¨ , Xnu and S is such that @si P S [Papsiq Ă S].
Given a CP-net C and two outcomes o and o1, when we use the notation oæS ąS o1æS , oæS ăS o1æS
or oæS ’S o1æS we mean that the comparison is considered in the sub-CP-net C 1 that has the
features in S and the arcs in C that connect them, with the corresponding CP-tables (to simplify the
heavy notation, in what follow we will indicateąS ,ăS , and ’S asą,ă, and ’ since the restriction
is clear from the context).

Definition 15. Given a PCP-net Q with n variables Xi and given two outcomes o and o1, let Diff
be the set of feature indices that have different values on o and o1:

Diff “ ti | oæXi ­“ o1æXiu.

The lower bound for dominance for o ą o1 in Q is defined as follows:

PLQpo ą o1q “
ź

iPDiff

p1´ ρ̄iq (1)

where @i P Diff, ρ̄i is defined as:

ρ̄i “

#

ś

uPUo,o1

i

Ppo1æXi ą oæXi |uq if PapXiq ­“ H

Ppo1æXi ą oæXiq if PapXiq “ H
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where u is an assignment of the parents of Xi and Uo,o
1

i is the set of all assignments to PapXiq such
that, given Y P PapXiq, if oæY “ o1æY then uæY “ oæY “ o1æY (otherwise, if oæY ­“ o1æY then
uæY P ty, ȳu).

We require Definition 16 and the following lemmas in the proof of Theorem 8. In the first
lemma we consider CP-nets and we show that if o ą o1 then the same dominance relation holds on
all prefixes of equal length of the two outcomes.

Lemma 1. Given an acyclic CP-net C with n nodes and two outcomes o “ o1o2 ¨ ¨ ¨ on and o1 “
o11o

1
2 ¨ ¨ ¨ o

1
n such that o ą o1 and given i an index in t1, ¨ ¨ ¨ , nu such that oi ­“ o1i and oj “ o1j@j ă i

then
oæX1¨¨¨Xj ą o1æX1¨¨¨Xj @j ě i.

In Lemma 2 and Corollary 6.1 we prove that if o and o1 have two incomparable prefixes (of equal
length and involving the same variables), then, o and o1 are incomparable (denoted with o ’ o1).

Lemma 2. Given an acyclic CP-net C with n nodes and two outcomes o and o1, if there exists an
index i P t1, ¨ ¨ ¨ , nu such that oæX1¨¨¨Xi ’ o1æX1¨¨¨Xi then we have that oæX1¨¨¨Xj ’ o1æX1¨¨¨Xj for
each index j between i and n (i ď j ď n).

Corollary 6.1 (of Lemma 2). Given an acyclic CP-net C with n nodes and two outcomes o and o1

such that there exists an index i P t1, ¨ ¨ ¨ , nu such that oæX1¨¨¨Xi ’ o1æX1¨¨¨Xi , then o ’ o1.

In the following lemma we prove that, given two incomparable outcomes, there is a prefix length
threshold (denoted as index i in Definition 16), such that all prefixes of shorter length are ordered
and all those of equal or greater length are incomparable.

Lemma 3. Given an acyclic CP-net C with n nodes and two outcomes o and o1, then o ’ o1

if and only if there exists index i P t1, ¨ ¨ ¨ , nu such that oæX1¨¨¨Xj ­’ o1æX1¨¨¨Xj @j ă i and
oæX1¨¨¨Xl

’ o1æX1¨¨¨Xl
@l ě i.

Definition 16. Given two oucomes o and o1 such that o ’ o1, we say that they are incomparable for
the index i (o ’i o

1) if i satisfies Lemma 3.

In the following lemma we connect a topological property of the dependency graph of a CP-net
to the incomparability of certain pairs of outcomes.

Lemma 4. Given an acyclic CP-net C with n nodes formed by two connected components C1 and
C2, and given two different outcomes o and o1 such that rpoæC1 ą o1æC1 and oæC2 ă o1æC2q or
poæC1 ă o1æC1 and oæC2 ą o1æC2qs then o ’ o1.

Theorem 7. Given a polytree-structured CP-net C with n variables and two outcomes o and o1 then,
if for all Xi in Diff (see Definition 15), there exists an assignment ui P U

o,o1

i (see Definition 15)
such that ui : oæXi ą o1æXi then o ą o1.

We are now in the position of proving the main result.

Theorem 8. Given a PCP-net Q and two outcomes o and o1, PLQpo ą o1q is a lower bound for
PQpo ą o1q.

Observe that the lower bound is a product of at most n factors. The computation of each factor
is Op2kq multiplications, where k is the maximal number of parents. Thus, the formula can be
computed in Opn2kq time.
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Example 9. Consider a PCP-net G as defined in Figure 7 and outcomes o “ x1x2x̄3x4x5 and o1 “
x1x̄2x3x4x̄5. As an example, computing the dominance value is given by PGpo ą o1q “ 0.10867,
the lower bound is: PLGpo ą o1q “ r1´Ppx̄2 ą x2qs ¨ r1´Ppx3 ą x̄3|x1qs ¨ r1´Ppx̄5 ą x5|x4qs “

0.4 ¨ 0.3 ¨ 0.9 “ 0.108. The distance between the lower bound and the true value is 0.00067, which
means that the lower bound approximation gives an error of 0.067% on the correct value.

X1 X2

X3 X4

X5

x1 ą x̄1, 0.3 x2 ą x̄2, 0.4

x1x2 : x4 ą x̄4, 0.4
x1x̄2 : x4 ą x̄4, 0.8
x̄1x2 : x4 ą x̄4, 0.3
x̄1x̄2 : x4 ą x̄4, 0.5

x1 : x3 ą x̄3, 0.7
x̄1 : x3 ą x̄3, 0.1

x4 : x5 ą x̄5, 0.9
x̄4 : x5 ą x̄5, 0.2

Figure 7: A PCP-net. We show only Ppxi ą x̄iq, since Ppx̄i ą xiq “ 1.0´ Ppxi ą x̄iq.

If we apply the formula for the lower bound to separable PCP-nets, the resulting probability is
the same as the actual value of dominance and can be computed in Opnq time.

Theorem 9. Given a separable PCP-netQ over n features X1, ¨ ¨ ¨ , Xn with binary domains Di “
txi, x̄iu@i P t1, ¨ ¨ ¨ , nu and given two outcomes o and o1 then

Ppo ą o1q “

¨

˝

ź

iPDiff`po,o1q

pi

˛

‚¨

¨

˝

ź

jPDiff´po,o1q

p1´ pjq

˛

‚

where pi “ Ppxi ą x̄iq in the PCP-net (and thus p1´piq “ Ppx̄i ą xiq) and where Diff` and Diff´

are a partition of Diff. Diff` is the set of indexes of variables such that oæXi “ xi and o1æXi “ x̄i
and Diff´ is the set of indexes of variables such that oæXi “ x̄i and o1æXi “ xi .

Now we can prove the following theorem.

Theorem 10. Given a PCP-net Q with a separable dependency graph and two outcomes o and o1,
then PQpo ą o1q “ PLQpo ą o1q.

5.3 Upper Bound

We now move our attention to computing an upper bound to the probability that o ą o1 in a PCP-net
Q. The computation of the upper bound, which we denote with PUQpo ą o1q, turns out to be more
straightforward than the one for the lower bound and it is detailed in Theorem 11.

1124



REASONING WITH PCP-NETS

We say that a feature X in a PCP-net has a fixed ancestor over two outcomes o and o1 if X is
independent (has no parents in the PCP-net graph) or all the variables Y P AncpXq (ancestors ofX)
have the same value in o and o1: oæY “ o1æY @Y P AncpXq. We denote this set of all fixed-ancestor
variables as FA. As before, let Diff be the set of the indexes of features that have different values on
o and o1.

Definition 17. Given a PCP-net Q with n variables Xi and given two outcomes o and o1, the
dominance upper bound for o ą o1 in Q is:

PUQpo ą o1q “
ź

jPpDiffXFAq

PpoæXj ą o1æXj |ujq

where uj is the assignment of the parents: uj “ oæPapXjq
“ o1æPapXjq

.

The formula above is a product of at most n factors, whose computation takes Opkq, hence
Opnkq in total (which becomes Opnq, since k is bounded).

Theorem 11. Given a PCP-net Q and two outcomes o and o1, PUQpo ą o1q is an upper bound for
PQpo ą o1q.

Example 10. Consider a PCP-net G and two outcomes o and o1 as in Example 9. DiffXFA “ t2, 3u
as they have different values on o and o1 and fixed ancestors. Variable X5 has different values in o
and o1and its ancestor X2 has different values in o and o1. Thus the upper bound is: PUG po ą o1q “
Ppx2 ą x̄2q ¨ Ppx̄3 ą x3|x1q “ 0.4 ¨ 0.3 “ 0.12. We recall that the true probability of dominance is
PGpo ą o1q “ 0.10867 and the lower bound is PLGpo ą o1q “ 0.108. Thus, the interval size between
the two approximations is 0.012.

5.4 Experimental Evaluation: Dominance

Computing the lower bound and the upper bound gives us an interval in which the true value of the
probability of dominance lies. In this section we experimentally explore the quality of our bounds
by looking at the size of the interval while varying the number of features and, fixing the number of
features, varying the maximal number k of parents that a feature can have.

For all our experiments we randomly generate collections of CP-nets, and PCP-nets. Generating
PCP-nets that are independent and identically distributed (i.i.d.) is non-trivial as shown by Allen,
Goldsmith, Justice, Mattei, and Raines (2016) and Allen, Goldsmith, Justice, Mattei, and Raines
(2017) for CP-nets, a special case of PCP-nets, and to generate the PCP-nets i.i.d. is an interesting
question for future work. Therefore we use an approximation method for random generation of a
CP-nets:

• Generating DAG structured CP-nets: We assume a fixed ordering, X1, ¨ ¨ ¨ , Xn, of nodes,
to conform to O-legality, and a maximum in-degree, k. We begin by generating the CP-net
dependency graph. For each node Xi, we first randomly choose its in-degree (uniformly)
between 0 and mintk, i´ 1u. Next, we randomly add all the parents, choosing them from the
set of variables tX1, ¨ ¨ ¨ , Xi´1u (without replacement, since we cannot add the same parent
twice). When the graph is constructed, we fill in the CPTs at random: given a variable X
and a parents’ assignment u, we fill the corresponding CPT row with an ordering uniformly
sampled from the set tx ą x̄, x̄ ą xu.
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n “ 1 2 3 4 5 6 7

Pa : n´ 1 0.0000 0.0000 0.0010 0.0020 0.0047 0.0060 0.0047
Pa : n{2 0.0000 0.0000 0.0010 0.0016 0.0020 0.0046 0.0040
Pa : n{4 0.0000 0.0000 0.0000 0.0008 0.0018 0.0007 0.0014

Table 1: Distance between lower bound and the true probability of dominance.

• Generating poly-tree structured CP-nets and PCP-nets: We generate poly-tree structured CP-
nets as we did for DAG structured ones, but we generate parents differently. For each node
Xi we add parents, one by one, using rejection sampling on X1, ¨ ¨ ¨ , Xi´1, rejecting those
that add cycles in the underlying undirected graph, until we reach the in-degree or exhaust
the set of possible parents. The CPTs are filled using the same methodology used for DAG
structured CP-nets.

We use a similar approximation method for generation PCP-nets:

• Generating DAG structured PCP-nets: We generate the PCP-net graphs as we did the CP-net
graphs, and then assign probabilities to CPT rows at random: given a variable X , for each
parent assignment u we generate a value p uniformly in r0, 1s for the statement u : x ą x̄,
then we assign to u : x̄ ą x the value 1´ p.

• Generating poly-tree structured PCP-nets: We generate the dependency graph of poly-tree
structured PCP-nets as we did for poly-tree structured PCP-nets. The CPTs are filled using
the same methodology used for DAG structured PCP-nets.

To generate a profile of m CP-nets we use the method described above independently. In all our
experiments ties are broken lexicographically, that is, we select the winning element according to
the fixed lexicographical order over the elements names.

Figure 8 shows the size of the interval as a function of the number of features, n, and of the
number of parents per feature, k. In this experiment we vary n P r0, 30s and fix the maximum k
to n ´ 1, n{2 and n{4. We compute the mean of the dominance approximation interval over 100
PCP-nets for each set of parameters. For each PCP-net, we take the mean over 100 outcome pairs.2

Turning back to Figure 8, we observe that the mean interval size is small, since it is between 0.1
and 0.2 over a possible maximal interval of size 1. The number of features reaches a plateau around
10 features. We conjecture that this is due to the high number of incompatibilities in the PCP-net.
We also note that as the number of parents in the PCP-net grows, the size of the approximation
interval increases.

Table 1 and Figure 9 show the distance between our lower bound and the true value of the
dominance probability (computed using the formula in Definition 14) as we vary the number of
features. In this experiment we vary the number of features n P r0, 7s and we fix the maximum
k to n ´ 1, n{2 and n{4. We compute the mean over 50 PCP-nets for each value of n where, for
each PCP-net we use the mean over 20 outcome pairs. Hence, each point is computed from 1, 000
computational trials. We note that the true value of the probability of dominance is very close to

2. We have not included aggregate statistics about run times as the distribution was highly variable. Some instances took
seconds, others took days.
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Figure 8: Interval size vs. number of features.
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Figure 9: Distance between true probability of dominance and lower bound vs. number of features.
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Figure 10: Distribution of the true probability of dominance in the interval r0, 1s.

the lower bound since the error of the approximation is never greater than 0.6% with 7 features,
although it grows as a function of the number of nodes and parents.

To give more context to the significance of the results shown in Figure 9 we need to understand
the distribution of the true value of the probability of dominance to ensure that it is not always very
small, and hence trivial to approximate from below. Indeed, the true probability of dominance can
occur anywhere in the range r0, 0.5s for n ď 7, see Figure 10. This implies that our lower bound
has good accuracy across the possible range of values.

More precisely, in Figure 10 we perform a frequency study of the distribution of the true proba-
bility of dominance from Definition 14. We divided the interval r0, 1s in 10 bins and computed the
normalized proportion of samples of the real probability of dominance in each bin. We observe that,
for a small number of nodes, the distribution is uniform and as the number of features increases, the
true value of dominance becomes more frequent in the first bins.

5.5 Dominance as a Decision Problem

In some settings it could be enough to get a yes/no answer from a dominance query, rather than
the exact probability value. To do this, it is enough to set a threshold to transform the [0,1] interval
into two values. For example, suppose a choice between two products must be made, based on a
profile of agents’ CP-nets. In this case, instead of perform a dominance query on each CP-net, we
can simply performing a dominance query on the aggregated PCP-net representing the profile (see
Section 6 for details on aggregation methods).

Definition 18 (DD for PCP-nets). Given a PCP-net Q and a pair of outcomes o and o1, the Deci-
sional Dominance (DD) over o and o1 for Q is defined as follows:

• if PQpo ą o1q ą PQpo1 ą oq then DDQpo, o1q “ True

• if PQpo ą o1q ă PQpo1 ą oq then DDQpo, o1q “ False

• if PQpo ą o1q “ PQpo1 ą oq then DDQpo, o1q “ randomtTrue, Falseu.
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Since dominance is computationally difficult also in CP-nets, this notion of decisional dom-
inance for PCP-nets is computationally difficult as well. We define the following two notions of
approximate decisional dominance. One is just standard dominance on the most probable induced
CP-nets, while the other one is the lower bound approximation to PCP-net dominance that we de-
scribed in the previous section.

Definition 19 (MP-DD for PCP-nets). Given a PCP-net Q and a pair of outcomes o and o1, and
given the most probable CP-net C induced byQ, the most probable induced CP-net based decisional
dominance for PCP-nets (MP-DD) is defined as follows:

• if o ąC o1 then MP -DDQpo, o1q “ True

• if o ăC o1 then MP -DDQpo, o1q “ False

• if o ’C o
1 then MP -DDQpo, o1q “ randomtTrue, Falseu

Definition 20 (LB-DD for PCP-nets). Given a PCP-net Q and a pair of outcomes o and o1, the
Lower Bound based decisional dominance for PCP-nets (LB-DD) is defined as follows:

• if PLQpo ą o1q ą PLQpo1 ą oq then LB-DDQpo, o1q “ True

• if PLQpo ą o1q ă PLQpo1 ą oq then LB-DDQpo, o1q “ False

• if PLQpo ą o1q “ PLQpo1 ą oq then LB-DDQpo, o1q “ randomtTrue, Falseu.

Figure 11 shows the frequency of correct answers of MP-DD and LB-DD (in r0, 1s), varying the
number of nodes. In this experiment we vary the number of nodes n P r0, 7s and we fix the parents
ď 2. We compute the mean over 50 PCP-nets for each value of n and for each PCP-net we take the
mean over 20 outcomes pairs, obtaining a mean over 1000 iterations for each value of n. It is easy
to see that the lower bound based decisional dominance is very accurate and is much more accurate
then MP-DD. Also, LB-DD is polynomially computable, while MP-dominance is not. Moreover, we
analyzed if this result changes if we consider only affirmative DD answers or only negative ones.
As first result of this study we noticed that the frequencies of affirmative and negative answers is
uniform (50% each). Furthermore, we obtained that the affirmative and negative cases are identical
and thus correspond to the general case depicted in Figure 11.

6. PCP-nets in a Multiagent Context

Since a PCP-net can be interpreted as a probability distribution over a collection of CP-nets, it is
natural to investigate the use of PCP-nets as structures that compactly represent the aggregation of
the preferences given by a collection of agents via CP-nets. We have covered the necessary back-
ground and notations for discussing multi-agent aggregation of CP-nets and PCP-nets in Section
2.3.

CP-nets have been used in the multiagent systems literature to represent the joint preferences of
collections of agents (Rossi et al., 2004; Lukasiewicz & Malizia, 2016; Haret, Novaro, & Grandi,
2018) and as a preference formalism for aggregation using voting techniques (Xia et al., 2011;
Li et al., 2010, 2011; Xia et al., 2008; Maran et al., 2013; Mattei et al., 2013). In a real-world
scenario, the preference profile of a multiagent system may be composed of hundreds or thousands
of individual CP-nets. If the system needed to find out a collective decision of all the agents then
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Figure 11: Percentage of right answers of MP-DD and LB-DD vs. number of features.

it may be easier to communicate between agents a single, compact structure instead of the entire
profile. Moreover, imposing some reasonable assumption, such as O-legality (or O-boundedness)
(Lang & Xia, 2009), the aggregation methods can be performed in polynomial time in the size of
the profile. In addition, by using a summary or aggregation of the entire preference profile, as has
been done in some recommender systems (Adomavicius & Kwon, 2015; Beliakov et al., 2015),
we can perform tasks such as deciding optimality and dominance without having to query all the
agents again. The probability distribution over the CP-nets can be interpreted as the frequency of
each CP-net in the collection as different agents may provide the same CP-net, and the probability
values in the PCP-net can be seen as a way to reconcile the possibly different preferences stated in
the CP-nets.

In the following sections we restrict to the case in which we have O-legal profile of acyclic
CP-nets with binary features or acyclic PCP-nets with binary features, unless otherwise specified.

6.1 Aggregation Methods

We consider an O-legal anonymous profile (that is, a collection) of CP-nets over features X1, ¨ ¨ ¨ ,
Xn, each with a binary domain. Recall that the relative frequency of a CP-net Ci, written as freqi,
is the fraction of times Ci appears in the voter population, and that a profile is denoted as P̄ “

ppC1, freq1q, ¨ ¨ ¨ , pCm, freqmqq, with
řm
i“1 freqi “ 1.

As noted earlier in Theorem 4, given a profile P̄ of CP-nets, there may be no PCP-net which in-
duces exactly the same distribution over the CP-nets in P̄ . Therefore, we need to define aggregation
methods that make sense even when there is no PCP-net that exactly recovers the input profile of
CP-nets. The first method we propose (called the Proportion (PR) aggregation method) generates a
PCP-net by taking the union of the dependency graphs of the given CP-nets and by determining the
probabilities in the PCP-tables from the frequencies of the CP-nets in the profile.

Definition 21 (PR aggregation method). Given a profile of CP-nets P̄ “ pCi, freqiq, the Proportion
(PR) aggregation method defines a PCP-net whose dependency graph is the union of the graphs of
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the CP-nets in the profile. Given a variable X and an assignment u to its parents, the probabilities
in the PCP-tables are defined as follows:

Ppx ą x̄|uq “
ÿ

Ci:xąx̄|u

freqi

(where the set tCi : x ą x̄|u} denotes the set of CP-nets in the profile that have the CP-row
x ą x̄|u) that is, the probability of the ordering x ą x̄ for variable X , given assignment u of
PapXq, is the sum of probabilities of the CP-nets that have that particular ordering over the domain
of X , given u . Similarly, Ppx̄ ą x|uq “ 1´ Ppx ą x̄|uq.

The second method (called the Least Square (LS) aggregation method) minimizes the mean
squared error between the probability distribution induced by the PCP-net over the CP-nets given in
the input and the relative frequency observed in the input.

Definition 22 (LS aggregation method). Let P̄ “ pCi, freqiq be a profile of m CP-nets. The Least
Square (LS) aggregation method defines a PCP-net whose underlying graph is the union of the
graphs of the CP-nets and the probabilities qij in the PCP-tables are those that solve the following
problem:

argmin
q̄Pr0,1sr

m
ÿ

i“1

rfpCi
pq̄q ´ freqis

2

where q̄ is the vector of qij ordered lexicographically with i as the first variable, qij is the probability
variable of the j-th row of the PCP-table of the variable Xi in the PCP-net, r is the number of
PCP-table-rows in the whole PCP-net, Ci are the m CP-nets observed in the profile P and fpCi

pq̄q
is the function of probability of the CP-net Ci introduced in Definition 8.

The LS method objective function is a sum of a linear number of components (one for each
CP-net in the initial profile), however, evaluating fpCi

may require exponential time as the PCP-net
resulting from a generic profile may have an exponential number of cp-statements. The quadratic
programming formulation of LS is the following:

argmin
q̄

m
ÿ

i“1

rfpCi
pq̄q ´ freqis

2

@i : qi P r0, 1s

We can ensure that the union graph of an O-legal profile has bounded induced width by assuming
the followingO-boundedness condition: for each feature j there are sets PP pXjq Ď tX1, . . . , Xnu

of possible parents such that p1q |PP pXjq| ă k for all j and a given constant k, and p2q for all
individuals i, PaipXjq Ď PP pXjq.

Example 11. Given the CP-nets profile in Figure 12, the LS method generates the following:

argmin
q̄Pr0,1s3

rp1´q11qp1´q21qq22´0.5s2`rp1´q11qp1´q21qp1´q22q´0.4s2`rq11q21p1´q22q´0.1s2 .

The result corresponds to the PCP-net in Figure 13.
The aggregated PCP-net using PR method is instead shown in Figure 14.
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X1 X2

x̄1 ą x1
x1 x̄2 ą x2

x̄1 x2 ą x̄2

(a) C1 : 0.5

X1 X2

x̄1 ą x1 x̄2 ą x2

(b) C2 : 0.4

X1 X2

x1 ą x̄1
x1 x2 ą x̄2

x̄1 x̄2 ą x2

(c) C3 : 0.1

Figure 12: A profile of CP-net with their frequencies.

X1 X2
x1 ą x̄1 0.05 rq11s

x̄1 ą x1 0.95 r1´ q11s

x1
x2 ą x̄2 0.05 rq21s

x̄2 ą x2 0.95 r1´ q21s

x̄1
x2 ą x̄2 0.56 rq22s

x̄2 ą x2 0.44 r1´ q22s

Figure 13: An aggregated PCP-net using LS.

It is interesting to observe that adding a pair pCi, 0q to a profile of CP-nets will change the LS
result. Since LS is the result of a linear program, including pCi, 0q is actually adding constraints
to this linear program, explicitly telling the aggregation procedure that a certain CP-net cannot
appear in the output distribution (of induced CP-nets). This can cause problems as the most probable
induced CP-net is the one that best summarizes the preferences of the agents. This CP-net should be
an aggregation of the preferences of the entire profile, but observe that this CP-net might not appear
in the original profile. To ensure that only a CP-net in the original profile is selected, constraints
could be added that set all other CP-nets to 0, but this is an exponential program and would not be
feasible.

Computing a PCP-net using either PR or LS may require exponential time as the PCP-net re-
sulting from a generic profile may have an exponential number of cp-statements. However, PR also
becomes a polynomial method if we have the O-boundedness condition. As LS formalized a notion
of “distance to the best” we thought it was a fitting complement to PR’s “item by item majority
best” method. We wanted two slightly different methods to compare and contrast.

6.2 Optimality in Aggregated CP-nets

Let P be the set of all anonymous CP-net profiles P̄ of m voters over a set of alternatives X . Recall
that a CP-voting rule r : P Ñ X is a function that maps each profile P to an alternative rpP q P X .
In what follows we assume that CP-voting rules use lexicographic tie-breaking to return a unique
winner. The choice and implementation of the tie-breaking rule can have significant impacts on the
properties of voting rules and, as is standard in the social choice literature for initial work in an area,
we focus on the worst case here, that is, an ordered tie-breaking rule that is known to all agents (for
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X1 X2
x1 ą x̄1 0.1
x̄1 ą x1 0.9

x1
x2 ą x̄2 0.1
x̄2 ą x2 0.9

x̄1
x2 ą x̄2 0.5
x̄2 ą x2 0.5

Figure 14: An aggregated PCP-net using PR.

more details see the work of Mattei, Narodytska, and Walsh (2014); Obraztsova and Elkind (2011);
Aziz, Gaspers, Mattei, Narodytska, and Walsh (2013), and Obraztsova, Elkind, and Hazon (2011)).

We define four voting rules by combining the two aggregation methods PR and LS presented in
Definition 21 and 22 with the two possible ways of extracting an optimal outcome from a PCP-net:
‚ PRO: PR and most probable optimal outcome;
‚ PRI : PR and optimal outcome of most probable induced CP-net;
‚ LSO: LS and most probable optimal outcome;
‚ LSI : LS and optimal outcome of most probable induced CP-net.
Computing PRI is polynomial (if theO-boundedness condition is met) and computing PRO is guar-
anteed to be polynomial only if the graph of the resulting PCP-net has bounded induced width. This
result follows from the fact that computing the most probable outcome and the optimal outcome
of the most probable induced CP-net are polynomial in the PCP-net description, if it has bounded
width. This property can be obtained via the O-boundedness condition, which also ensures a poly-
nomial complexity to the computation of the PR method.

The four methods may produce different outcomes:

Lemma 5. There exists a profile of CP-nets P̄ such that

tPROpP̄ q,PRIpP̄ qu X tLSOpP̄ q,LSIpP̄ qu “ H;

and there exists a profile of CP-nets P̄ 1 such that:

PROpP̄ 1q ­“ PRIpP̄ 1q;

and there exists a profile of CP-nets P̄ 2 such that:

LSOpP̄ 2q ­“ LSIpP 2q.

It is interesting to observe that PRI returns the same result as the sequential voting rule with
majority (Lang & Xia, 2009), which consists of applying the majority rule “locally” on each feature
of the given CP-nets in the order given by O.

Theorem 12. Given a profile of CP-nets, PRI produces the same result as sequential voting with
majority.

Other notions of optimal outcome may be defined. For example, the outcome that maximizes the
average number of outcomes worse than it in the induced CP-nets. However, this kind of optimality
(and other similar ones) is computationally hard since it exploits the full partial order defined over
the outcomes.

1133



CORNELIO, GOLDSMITH, GRANDI, MATTEI, ROSSI, & VENABLE

6.3 Axiomatic Properties

A first way to compare the four voting rules is by checking if they satisfy the axiomatic properties
discussed in Section 2.3. Our results are summarized in Table 2, where empty cells correspond to
open problems.

It is easy to see that neutrality holds for all four voting rules. Other results follow from previous
work: we can infer that PRI satisfies consistency and homogeneity, since it coincides with the
sequential voting procedure on O-legal profiles defined and studied by Lang and Xia (2009). For
the other results, we provide the following theorem:

Theorem 13. The following holds:

piq PRO, LSO, and LSI satisfy homogeneity;

piiq PRI and PRO satisfy participation.

piiiq PRI satisfies consensus and PRO satisfies consensus over a single feature.

In conclusion, the aggregation method PR, generating voting rules PRO and PRI , satisfies a
good number of desirable axiomatic properties. For LS instead there are some open problems, thus
we do not know if it is better or worse than PR from the analysis of its properties. This provides
further motivation to the experimental section that follows.

Property PRO PRI LSO LSI

Neutrality
‘ ‘ ‘ ‘

Homogeneity
‘ ‘ ‘ ‘

Consistency
‘

Participation
‘ ‘

Consensus
‘3 ‘

Table 2: Axiomatic properties of PRO, PRI , LSO and LSI .

6.4 Experimental Evaluation: Optimality

In this section we describe our experiments to evaluate the quality of the outcomes returned by
the four voting rules. We compare the results of these four voting rules with a baseline we call
PLUR, which outputs the result of the plurality voting rule applied to the initial profile of CP-nets.
PLUR takes the optimal outcome of each CP-net and returns the outcome which is optimal for the
largest number of CP-nets. We then compare these five voting rules using a scoring function that is
computed using dominance queries on the input profile of CP-nets.

Let F and G be two CP-voting rules, and let T be a set of O-legal CP-profiles. For ease of
presentation, this section considers non-anonymous profiles P “ pC1, . . . , Cnq. Given a profile P ,
we first define three parameters:

• dąP pF,Gq “ |tC P P : F pP q ąC GpP qu|,

3. With some restrictions (see Theorem 13).
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• dăP pF,Gq “ |tC P P : GpP q ąC F pP qu| and

• d’
P pF,Gq “ |tC P P : F pP q ’C GpP qu|.

Note that dąP ` d
ă
P ` d

’
P “ |P |. We then define the function DomP pF,Gq as:

DomP pF,Gq “

$

’

&

’

%

1 if dąP pF,Gq ą maxtdăP pF,Gq, d
’
P pF,Gqu

´1 if dăP pF,Gq ą maxtdąP pF,Gq, d
’
P pF,Gqu

0 otherwise.

This function captures the dominance relationship between the results of applying two voting rules
F and G. To declare dominance, we require that the number of CP-nets where dominance holds is
larger than each of the number of CP-nets (we recall that ties are broken lexicographically) where we
have incomparability, and the number of CP-nets where we have dominance in the other direction.

Based on function DomP , we define the following notion of pairwise score:

PairScoreT pF,Gq “

ř

PPT DomP pF,Gq

|T |
.

Note that this score belongs to the interval r´1, 1s. We are now ready to define the scoring function,
inspired by the Copeland voting rule, which gives a score for each voting rule, compared to all
others via the PairScore score:

CopelandScoreT pF q “
ÿ

GPV ztF u

PairScoreT pF,Gq

where V “ tPRO,PRI ,LSO,LSI ,PLURu. Observe that this score belongs to the interval r´4, 4s.
While the choice of scores can have a dramatic effect on the outcome of the experiments, we

feel that these three scores are reasonable and give interesting insight into the results. Informally, the
PairScore method only focuses on the dominance relationship while CopelandScore focuses on the
decision of the overall aggregation. Comparing PLUR to PairScore gives us an idea of the power of
the dominance relation versus just looking at the top element. CopelandScore is designed to compare
the different methods on how they do on the overall aggregation. We choose Copeland as the basis
for this score as Copeland is qualitative so it is more suitable for qualitative preference formalisms
like CP-nets and PCP-nets than other voting rules like Borda that are quantitative. In addition, to
evaluate the winner we compute dominance relationships between the pairs of outcomes, hence we
want to focus on pairs and Copeland is a popular pairwise voting rule.

Results. To generate O-legal profiles of CP-nets, and PCP-nets, we follow the same procedure
described in Section 5.4. An interesting direction for future work is to generate the profiles of CP-
nets using one or more statistical distributions, as discussed by Allen et al. (2017) and often done in
experiments for voting rules (Mattei & Walsh, 2017, 2013). However this would first require being
able to generateO-legal CP-nets i.i.d., which is a standing open problem. We show results for some
specific parameter values. Similar results were observed also for other values.

In both the experiments shown in Figure 15 and Figure 16, we compute the mean CopelandScore
over 100 O-legal profiles of CP-nets and we consider two parameters: the number of features and
the number of individuals in the profile. In the experiment in Figure 15 we investigate the quality
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Figure 15: CopelandScore vs. the number of features.

of all the voting rules, varying the number of features and fixing the number of individuals in the
profile. In Figure 16 we analyze the quality of the voting rules, varying the number of individuals in
the profile and fixing the number of features.

In the first set of experiments (Figure 15) the profiles have 20 individual CP-nets and the number
of features varies from 1 to 10, and each has at most 2 parents. According to the CopelandScore,
the best voting rule is PRI , and we observe that PR is consistently better than LS using either the O
or I method. PRI is consistently better than PRO and LSI is also better than LSO. Hence, the most
probable optimal outcome (O) is worse than the optimal outcome of the most probable induced
CP-net (I) in both the PR and the LS method.

The dominance of the I methods over the O methods is interesting and consistent across the
experiments. Looking specifically at PRI , we think the result is due to the fact that PRI selects the
most representative agent in the profile, that is, the one that best represents all the preferences of all
the agents, and then computes the optimal outcome of this agent. While, in contrast, PRO is selecting
the outcome that most frequently appears in the profile as optimal. As each of the agent can have a
different optimal outcome, this may spread out the voting and lead us toward fewer “compromise”
candidates.

The variance in Figure 15 could be explained by the fact that, with more features, the number of
pairs of outcomes that are incomparable increases. There is also a noticeable difference of behavior
of the PR method between even and odd numbers of features (and even and odd numbers of indi-
viduals in Figure 16). Our conjecture is that an odd number of features (resp. individuals) leads to
more decisiveness in the voting rules because of the presence of a smaller number of ties.

In the second set of experiments (Figure 16) the profiles have n “ 3 and at most k “ 1 parent
per feature, and the number of individual CP-nets varies in r1, 30s. We observed that the number
of CP-nets in the profile does not significantly influence the CopelandScore of the voting rule. We
therefore conclude that, in our experimental setting, the PR method is the best one, since it better
satisfies the preferences expressed by the CP-nets, according to the scores we defined.
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Figure 16: CopelandScore vs. the number of individuals from 1 to 30 (and trendlines).

Intuitively, we explain the better performance of the PR method with its “majoritarian” nature,
that is, it looks at the set of CP-nets and select the cp-statement present in the majority of input
CP-nets. Instead, the LS method finds a mid-point between the cp-statements in all the CP-nets.
If we look at our outcome metrics, I is the optimal outcome of the most probable induced CP-net
and O the most probable optimal outcome of the resulting PCP-net, and both of these are “majori-
tarian” metrics since they are attempting to pick an outcome with highest probability. Hence these
outcome metrics are closer to the philosophy of PR as aggregation method, rather than LS, which is
attempting to minimize the distance to the CP-nets in the input set.

6.5 Dominance on PR

Given that PR is the best method for optimality in PCP-nets for multi-agent scenarios, we now
analyze both exact and approximate dominance in this setting.

It turns out that PR is also accurate in terms of dominance. To show this, we compare the result
of dominance tests on random pairs of outcomes in CP-net profiles and their associated PCP-net.
Given two outcomes o and o1, the dominance value in the initial profile is the probability mass of the
CP-nets that entail o ą o1. In Table 3, we report the difference between the two values of dominance.
Note that this values are in the interval r0, 1s where 1 is the worst value (maximum difference). We
can see that the two values of dominance had maximum difference 0.047 when varying the number
of features and the number of CP-nets in the profile. Thus, the approximation induced by a PCP-net
generated with the PR method, given a profile of CP-nets, is accurate both for optimality and for
dominance.
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n features “ 1 2 3 4 5 6

difference 0.0 0.023 0.028 0.037 0.045 0.047

Table 3: Difference between the value of dominance in the initial profile of CP-nets and in the
PCP-net aggregated with PR.

7. Conclusions and Future Work

We have defined and shown how to reason with PCP-nets, a generalized version of CP-nets, that
can model probabilistic conditional preferences. PCP-nets can be seen as a way to extend CP-
nets by including probability information similarly to Bayesian Nets, thus modeling preference
and probabilities in one unified structure. We have studied how to reason with PCP-nets in terms
of both optimality and dominance. Since dominance is computationally hard, we also provided a
tractable approximation which is very accurate when the dependency graph of the PCP-net has a
polytree structure. We have also studied the use of PCP-nets as a compact representation structure
for expressing the aggregated preferences of a set of agents. Starting from a collection of individual
CP-nets, we introduced and evaluated two aggregation methods to obtain a PCP-net, comparing
them both theoretically and experimentally. By generating a compact representation of a set of
CP-net preferences via a single PCP-net, we are able to perform both optimality and (exact or
approximate) dominance reasoning on the given collection of CP-nets.

There are several lines for future work regarding PCP-nets. The first one concerns the possi-
bility of relaxing the independence assumption that is fundamental to CP-nets. In both CP-nets
and PCP-nets, the dependencies are among features, and they appear in the dependency graph, but
the cp-statements are considered to be independent from each other (Bigot et al., 2013; Cornelio
et al., 2013). This means that the preferences of a user over a feature, given an assignment to the
parent nodes, are independent from her preferences over another feature (or over the same feature
but with another assignment of the parent nodes). This independence assumption appears clearly
in the structure of the G-net (see Section 3). The G-net structure expresses the relation between
the cp-statements and, in our formulation, has a separable graph (that is, without edges), while the
graph of a PCP-net has edges between the features. Thus, in PCP-nets, we are considering all the
cp-statements independent. In many scenarios it makes sense to stick to this independence assump-
tion: when we are modelling noise in choices, hidden external factors, or when data comes from
several different individuals, such as in a multi-agent scenario, and we want to treat the incoming
preferences as independent. However, there are also other scenarios where it makes sense to remove
this independence assumption. By doing this, the G-net will model a non-trivial relation between
the cp-statements, since it will admit edges between its nodes, representing the connection between
cp-statements. For example, we may observe that there is a strong correlation among the probability
distributions of the preferences over the same variable (for different values of its parents), or among
the probability distributions associated to preferences defined over different variables (e.g., often
people who prefer fish over meat also prefer wine over beer). Moreover we want expand the profiles
of CP-nets that we consider to include different generation methods and correlations.

The second line of possible future work concerns learning PCP-nets starting from examples
defined by pairs of outcomes. We already have initial results on learning PCP-nets with only in-
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dependent features, but since a separable structure is not always compatible with the input data,
we intend to define methods to also learn non-separable PCP-nets, which are more expressive. We
believe that using pairs of outcomes (rather than optimal outcomes, as done by Bigot et al. (2014))
as training data makes the collection of training data much easier, since it is easier for people to
compare two outcomes rather than to recognise if an outcome is optimal (Allen et al., 2015). This
claim is also supported by an extensive literature on learning from pairs (Chevaleyre et al., 2011;
Lang & Mengin, 2009). A possible approach to this learning problem is to follow a methodology
similar to the one in the work of Bigot et al. (2014) (where however PCP-nets are learnt from opti-
mal outcomes), in which first we learn the structure of the PCP-net and then, once the structure is
fixed, we learn the probabilities in the PCP-tables.

To ensure good computational complexity properties of the various reasoning tasks in (P)CP-
nets, we also plan to combine the PCP-net framework with machine learning approaches (Li, 2011),
with the intent to learn the dominance relation. Finally, another interesting direction for future work
would be performing more empirical experiments comparing the similarity, for example, overlap
of the structure, of a learned PCP-net to a CP-net profile. Another experiment could compare the
results from the LS and PR (as well as others) approaches starting from a noisy, “ground-truth”
PCP-net. However, doing this would require also understanding how to efficiently and statistically
accurately sample from a PCP-net (Allen et al., 2017).
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Appendix A. Proofs

Theorem 1. Given a PCP-net Q with features with binary domains, the probability of an edge
e “ pX,Y q can be computed as follows:

Ppeq “ 1´
ÿ

σPΥ

˜

ź

vPE
Prσpvq|vxs Prσpvq|vx̄s

¸

where Υ “ tσ : E Ñ ty ą ȳ, ȳ ą yuu is the set of all possible functions σ that associate to each
element v P E an element of the set ty ą ȳ, ȳ ą yu (the set of all the possible total orders of the
domain of Y ).
Proof. We equivalently prove that the probability of nonexistence of the edge e “ pX,Y q is:

ÿ

σPΥ

˜

ź

vPE
Prσpvq|vxs Prσpvq|vx̄s

¸

.

To prove the formula, we have to reason about the particular configurations of the PCP-table of
Y that induce CP-nets that do not have the edge e.

A node X is not a parent of Y exactly when (by definition of a parent) for each configuration v
of the other parents, the preference over Y is the same for vx and for vx̄. Given σ, a mapping from
each element v P E to a total order over the domain of Y , this happens with probability

Prσpvq|vxsPrσpvq|vx̄s

for each configuration v. Since all the rules are independent (per definition of a PCP-net), this
happens with probability:

ź

vPE
Prσpvq|vxsPrσpvq|vx̄s

for each σ. Since different σ’s concern different CP-nets, this happens with probability

ÿ

σPΥ

˜

ź

vPE
Prσpvq|vxs Prσpvq|vx̄s

¸

overall.
l

Theorem 2. The probability of the edge e “ pX,Y q can be computed as follows:

Ppeq “ 1´
ÿ

σPΥ

˜

ź

vPE
Prσpvq|vx1s Prσpvq|vx2s ¨ ¨ ¨Prσpvq|vxds

¸

where DX “ tx1, x2, ¨ ¨ ¨ , xdu, ΘpY q is the set of all the possible total orders of the domain of Y
and Υ “ tσ : E Ñ ΘpY qu is the set of all possible functions σ that associate to each elementv P E
a total order over the domain of Y (an element of the set ΘpY q).
Proof. The proof follows step by step the proof of the binary case. l
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Theorem 3. Given a PCP-net Q and its set of induced CP-nets, then:

1. The probability of realizing one of its induced CP-nets is the joint probability of the corre-
sponding assignment in the G-net for Q;

2. The probability distribution defined in Definition 8 over the set of induced CP-nets is a well
defined discrete probability distribution (i.e., the probabilities over the domain elements sum
to one and the probability of each element belongs to the interval r0, 1s).

3. The most probable induced CP-nets correspond to the CP-nets associated (using the one-to-
one correspondence between induced CP-nets and assignment of the corresponding G-nets
described above) to the assignment of the G-net for Q, with maximal joint probability.

Proof.

1. The first statement of this theorem follows from the fact that we take exactly the product of
the chosen rows in the PCP-tables.

2. The probability defined in the first statement is computed as a product of non-negative fac-
tors, thus it is non-negative. Moreover, the sum of the probabilities of all the CP-nets in the
set of the induced CP-nets is equal to 1, because there’s a 1-1 correspondence between the
assignments of the G-net with positive (not zero) probability and the induced CP-nets, and
the sum of the probabilities of all the assignments of a BN is equal to 1.

3. This statement follows directly from the first one. l

Theorem 4. Given a probability distribution over a set of CP-nets (even if they have the same
dependency graph), there may exist no PCP-net inducing it.
Proof. Consider the following two CP-nets over two variables X1 and X2:

• pC1, 0.5q: px1 ą x̄1q and px2 ą x̄2q

• pC2, 0.5q: px̄1 ą x1q and px̄2 ą x2q.

The PCP-net representing such a collection of CP-nets must satisfy the following system of equa-
tions, where q̄ “ pq1, q2q, q1 is the probability of x1 ą x̄1, q2 is the probability of x2 ą x̄2:

#

fpC1
pq̄q “ q1q2

fpC2
pq̄q “ p1´ q1qp1´ q2q

ñ

#

fpC1
pq̄q “ 0.5

fpC2
pq̄q “ 0.5.

This system has no solution for q̄ P r0, 1s2 (it has only complex solutions). l

Theorem 5. Given a probability distribution over a set of CP-nets defined over the same features,
if this distribution is generated by a PCP-netQ, then we can write a system of non-linear equations
that provides a unique solution that uniquely recovers the PCP-net Q.
Proof. It is equivalent to prove that, if the system generated by a probability distribution over a set
of CP-nets has a solution, it is unique.

We consider a PCP-net and then, to compute the probabilities, we consider the G-net associated.
We suppose that the G-net has n variables X1, X2, ..., Xn with domains D1 “ ta1

j : for j “ 1 to
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k1u, ... , Dn “ ta
n
j : for j “ 1 to knu (the values of aij can be either an order, or 0 or 1). We define

pij as the probability PpXi “ aijq.
Our system of equations (by definition) contains the numerical values of all the joint probabili-

ties of every assignment to the n variables.
We suppose now that there are two distinct solutions pij

˚ and pij
˛ (@i “ 1, ..., n and @j “

1, ..., ki).
We know that pij is equal to:

k1
ÿ

t1“1

..

ki´1
ÿ

ti´1“1

ki`1
ÿ

ti`1“1

..
kn
ÿ

tn“1

PpX1 “ a1
t1 , .., Xi´1 “ ai´1

ti´1
, Xi “ aij , Xi`1 “ ai`1

ti`1
, .., Xn “ antnq.

But all the numerical values of the joint probabilities are known (for all assignments of the n
variables), so all the probabilities:

PpX1 “ a1
t1 , .., Xi´1 “ ai´1

ti´1
, Xi “ aij , Xi`1 “ ai`1

ti`1
, .., Xn “ antnq

are known as well.
Let us consider the value of pij , which we call it bij . Now since both pij

˚ and pij
˛ are equal to bij ,

they coincide.
This allows us to conclude that there is a unique solution. l

Theorem 6. Given a PCP-net Q and its Opt-net:

1. There is a one-to-one correspondence between the assignments (with non-zero probability) of
the Opt-net and the outcomes that are optimal in at least one induced CP-net of Q.

2. Given a PCP-net Q, the probability that an outcome is optimal is the joint probability of the
corresponding assignment in the Opt-net (we consider only the assignments of the Opt-net
with positive probability). If no such corresponding assignment exists, then the probability of
being optimal is 0.

3. To find the most probable optimal outcome for a PCP-net Q, it is sufficient to compute the
assignment that maximizes the joint probability on the Opt-net.

Proof.

1. True by construction.

2. By construction, the set of assignments of the Opt-net is a subset of those of Q. By the
definition of the Opt-net, if an assignment of Q is not an assignment of the Opt-net then it
cannot be optimal in any induced CP-net.

Let us now focus only on the subset of assignments of Q that have a corresponding assign-
ment in the Opt-net. Let x “ px1, x2, ..., xnq be one of these assignments. We denote by
Poptpxq “ PpX1 “ x1, ..., Xn “ xnq the joint probability of x in the Opt-net. We recall that
the probability that x is optimal in the PCP-net is the sum of the probabilities of the induced
CP-nets that have assignment x as optimal. We call this probability Pcppxq. Thus we want to
prove that Poptpxq “ Pcppxq .
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Let us consider Ax, the set of induced CP-nets that have x as their optimal assignment. Thus
we have:

Pcppxq “
ÿ

CPAx

PpCq .

To compute the optimal value for an induced CP-net C, the sweep-forward procedure does
not consider all the rows of the CP-tables, but only a subset of them. For example in the
CP-net with two variables Y and Z with the cp-tables: y1 ą y2, y1 : z1 ą z2 ą z3 and
y2 : z2 ą z3 ą z1, the sweep-forward procedure will consider only the first two and not
y2 : z2 ą z3 ą z1. So, we can split the CP-tables of C into two parts, one affecting the choice
of the optimal outcome (denoted with C`) and one not used by the sweep-forward procedure
(denoted with C´). In the example above we will have C` “ ty1 ą y2, y1 : z1 ą z2 ą z3u

and C´ “ ty2 : z2 ą z3 ą z1u.

Since each row in the CP-tables of an induced CP-net is associated with a probability (the
probability of that row in the PCP-net) and contributes to define the probability of the in-
duced CP-net, we can divide the induced CP-net probability in two independent parts: one is
the product of the rows that are used in the sweep-forward procedure (the product of the prob-
abilities of the rows belonging to C`, that we will denote as PpC`q) and one as the product of
the rows that are not used in the sweep-forward procedure (the product of the probabilities of
the rows belonging to C´, that we will denote as PpC´q):

PpCq “ PpC`qPpC´q .

Thus we have that:
Pcppxq “

ÿ

CPAx

PpCq “
ÿ

CPAx

PpC`qPpC´q .

We observe now that the optimal outcome x can be produced in many different ways, as there
can be many different orderings that produce the same result (all these orderings belonging
to C` and not to C´). For example, considering an independent variable Y , the orderings
y1 ą y2 ą y3 and y1 ą y3 ą y2 both produce the optimal value y1, but in different ways. For
this reason we consider a partition (Ax,1, ..., Ax,t) of the set Ax (the set of induced CP-nets
that produce the same optimal outcome x) such that each induced CP-net belonging to the
same equivalence class produces the same optimal outcome in the same way. This means that
given two CP-netsD and E that belong to the same equivalence classAx,i, they have the same
rows that actively affect the choice of the optimal value and differ only in the remaining part,
namely D` “ E` and D´ ‰ E´.
We now define as Ci` the part that is equal for all the members of the equivalence class Ax,i.
That means:

Ci` “
č

CPAx,i

C` “ C` @C P Ax,i .

Then we can rewrite the probability Pcppxq as:

Pcppxq “
t
ÿ

i“1

ÿ

CPAx,i

“

PpC`qPpC´q
‰

“

t
ÿ

i“1

ÿ

CPAx,i

“

PpCi`qPpC´q
‰

“

t
ÿ

i“1

“

PpCi`q¨
ÿ

CPAx,i

PpC´q
‰

.
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We observe now that:
ÿ

CPAx,i

PpC´q “ 1 @i “ 1, ..., t

since we are summing the probabilities of all possible cases (the entire distribution) in the part
C´ (the part not influencing the sweep-forward procedure). Thus, the probability becomes

Pcppxq “
t
ÿ

i“1

PpCi`q .

We notice now that the joint probability in the Opt-net PpX1 “ x1, ..., Xn “ xnq corresponds
exactly to

řt
i“1 PpCi`q by contruction. We recall that we built the rows of the probability

tables for the variablesX1, ..., Xn by summing the probabilities of the orderings that have the
same head (first ranked value) in the PCP-netQ. This is the same as summing the probabilities
PpCi`q over the subset Ax,i.

Thus we proved that Pcppxq “ Poptpxq.

3. This statement is an immediate consequence of the previous two. l

Lemma 1. Given an acyclic CP-net C with n nodes and two outcomes o “ o1o2 ¨ ¨ ¨ on and o1 “
o11o

1
2 ¨ ¨ ¨ o

1
n such that o ą o1 and given i an index in t1, ¨ ¨ ¨ , nu such that oi ­“ o1i and oj “ o1j@j ă i

then
oæX1¨¨¨Xj ą o1æX1¨¨¨Xj @j ě i.

Proof. Because of o ą o1, there exists a worsening path from o to o1: P “ o, o1, o2, ¨ ¨ ¨ , o1. We prove
that PæX1,¨¨¨ ,Xj “ oæX1,¨¨¨ ,Xj , o

1æX1,¨¨¨ ,Xj , ¨ ¨ ¨ , o
1æX1,¨¨¨ ,Xj is a worsening path from oæX1,¨¨¨ ,Xj to

o1æX1,¨¨¨ ,Xj (considering only non-repeated outcomes in the projected space tX1, ¨ ¨ ¨ , Xju, thus
removing from PæX1,¨¨¨ ,Xj the repetition steps in which oiæX1,¨¨¨ ,Xj “ oi`1æX1,¨¨¨ ,Xj ). We have to
prove that each step of PæX1,¨¨¨ ,Xj is a worsening flip. Considering a flip of the value of variableXl,
the fact that it is a worsening step does not depend on the values of Xl’s children or of the values
of the nodes that are independent of Xl. All the nodes Xj`1, ¨ ¨ ¨ , Xn are either children or nodes
(conditionally) independent of Xl. Thus, removing Xl does not change the preferences for the out-
comes restricted to the variables X1, ¨ ¨ ¨ , Xj . Thus, each worsening flip oi ą oi`1 in the path P ,
it is also a worsening flip in the path PæX1,¨¨¨ ,Xj (unless oiæX1,¨¨¨ ,Xj “ oi`1æX1,¨¨¨ ,Xj ). We proved
that each step in the path PæX1,¨¨¨ ,Xj obtained from P and projecting on the variables X1, ¨ ¨ ¨ , Xj

without repetitions is a worsening path from oæX1¨¨¨Xj to o1æX1¨¨¨Xj . l

Lemma 2. Given an acyclic CP-net C with n nodes and two outcomes o and o1, if there exists an
index i P t1, ¨ ¨ ¨ , nu such that oæX1¨¨¨Xi ’ o1æX1¨¨¨Xi then we have that oæX1¨¨¨Xj ’ o1æX1¨¨¨Xj for
each index j between i and n (i ď j ď n).

Proof. We prove the lemma by contradiction. Suppose that oæX1¨¨¨Xj ­’ o1æX1¨¨¨Xj , then either
oæX1¨¨¨Xj ą o1æX1¨¨¨Xj or oæX1¨¨¨Xj ă o1æX1¨¨¨Xj . We suppose oæX1¨¨¨Xj ą o1æX1¨¨¨Xj (the other
case is analogous). Since oæX1¨¨¨Xj ą o1æX1¨¨¨Xj there exists a worsening path P from oæX1¨¨¨Xj

to o1æX1¨¨¨Xj and P “ oæX1¨¨¨Xj , o1æX1¨¨¨Xj , ¨ ¨ ¨ , o
1æX1¨¨¨Xj . From Lemma 1 we have that @k P
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t1, ¨ ¨ ¨ , ju oæX1,¨¨¨ ,Xk
ě oæX1,¨¨¨ ,Xk

because the pathPæX1,¨¨¨ ,Xk
“ oæX1,¨¨¨ ,Xk

, o1æX1,¨¨¨ ,Xk
, ¨ ¨ ¨ , o1æX1,¨¨¨ ,Xk

is a worsening path from oæX1,¨¨¨ ,Xk
to o1æX1,¨¨¨ ,Xk

in the sub-CP-net of the nodes X1, ¨ ¨ ¨ , Xk, in
particular for k “ i. Thus, oæX1¨¨¨Xi ą o1æX1¨¨¨Xi . That is a contradiction. l

Lemma 3. Given an acyclic CP-net C with n nodes and two outcomes o and o1, then o ’ o1

if and only if there exists index i P t1, ¨ ¨ ¨ , nu such that oæX1¨¨¨Xj ­’ o1æX1¨¨¨Xj @j ă i and
oæX1¨¨¨Xl

’ o1æX1¨¨¨Xl
@l ě i.

Proof. ð Consequence of Lemma 2.
ñWe suppose o ’ o1 and prove that exists index i such that

oæX1¨¨¨Xj ­’ o1æX1¨¨¨Xj @j ă i and

oæX1¨¨¨Xl
’ o1æX1¨¨¨Xl

@l ě i

by induction on the number of variables.
Base case: The base case for induction considers two variables A and B (in the case of 1 variable,
i “ 1). In the case in which there is an edge between them, there are no incomparable outcomes.
Thus we consider only the cases in which there is no edge between the two variables. We have four
cases for the CP-tables:

• a ą ā and b ą b̄, which implies that ab̄ ’ āb

• a ą ā and b̄ ą b, which implies that āb̄ ’ ab

• ā ą a and b ą b̄, which implies that āb̄ ’ ab

• ā ą a and b̄ ą b, which implies that ab̄ ’ āb.

In each we obtain i “ 2.
Induction step: Supposing the lemma holds for n variables, we prove it for n` 1.

We consider a CP-net with n ` 1 variables in which o ’ o1. We consider oæX1,¨¨¨ ,Xn and
o1æX1,¨¨¨ ,Xn . We can have three cases:

1. oæX1,¨¨¨ ,Xn ą o1æX1,¨¨¨ ,Xn

2. oæX1,¨¨¨ ,Xn ă o1æX1,¨¨¨ ,Xn

3. oæX1,¨¨¨ ,Xn ’ o1æX1,¨¨¨ ,Xn

In Case 3 we can apply the induction hypothesis. Cases 1 and 2 are symmetric so we will just prove
Case 1. We observe that oæX1,¨¨¨ ,Xn ­“ o1æX1,¨¨¨ ,Xn , because otherwise the two outcome o and o1 are
a flipping pair, which are never incomparable.

We consider the case in which o ’ o1 and oæX1,¨¨¨ ,Xn ą o1æX1,¨¨¨ ,Xn . We have to prove that
@j ă n oæX1,¨¨¨ ,Xj ą o1æX1,¨¨¨ ,Xj . We prove it by contradiction.

• Suppose that Dj ă n such that oæX1,¨¨¨ ,Xj ’ o1æX1,¨¨¨ ,Xj . We apply Lemma 2 and we obtain
that oæX1,¨¨¨ ,Xn ’ o1æX1,¨¨¨ ,Xn is also a contradiction.
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• Suppose that Dj ă n such that oæX1,¨¨¨ ,Xj ă o1æX1,¨¨¨ ,Xj . Thus, there is a worsening path
P from oæX1,¨¨¨ ,Xn to o1æX1,¨¨¨ ,Xn . Considering P restricted to the variables X1, ¨ ¨ ¨ , Xj we
obtain P̄ that is a worsening path from oæX1,¨¨¨ ,Xj to o1æX1,¨¨¨ ,Xj . That is a contradiction. l

Lemma 4. Given an acyclic CP-net C with n nodes formed by two connected components4 C1 and
C2, and given two different outcomes o and o1 such that rpoæC1 ą o1æC1 and oæC2 ă o1æC2q or
poæC1 ă o1æC1 and oæC2 ą o1æC2qs then o ’ o1.

Proof. We prove only the case in which oæC1 ą o1æC1 and oæC2 ă o1æC2 , because the other one is
symmetric.

We suppose by contradiction that o ­’ o1. Then we can have either o ą o1 or o ă o1. We suppose
o ą o1 (the other case is analogous). Since o ą o1 there exists a worsening path P from o to o1,
P “ o, o1, o2, ¨ ¨ ¨ , o

1. Each step oi of the path correspond to a worsening flip of a variable Xj that
belongs either to C1 or to C2. Thus, the two sub-paths P1 and P2 such that:

P1 “ PæC1 “ oæC1 , o1æC1 , o2æC1 , ¨ ¨ ¨ , o
1æC1

P2 “ PæC2 “ oæC2 , o1æC2 , o2æC2 , ¨ ¨ ¨ , o
1æC2

are paths (with repetition) such that P1 is a worsening path from oæC1 to o1æC1 in CP-net C1

and P2 is a worsening path from oæC2 to o1æC2 in CP-net C2. We obtain that oæC1 ą o1æC1 and
oæC2 ą o1æC2 . That is a contradiction. l

Theorem 7. Given a polytree-structured CP-net C with n variables and two outcomes o and o1, if
for all Xi in Diff (see Definition 15) there exists an assignment ui P U

o,o1

i (see Definition 15) such
that ui : oæXi ą o1æXi then o ą o1.
Proof. Let’s order the variables such that for each variableXi thenXj P PapXiq implies that j ă i.
Such an order always exists since the CP-net is polytree-shaped. Moreover, it is possible that there
exists more than one. We will take a random order ω between those.

We prove by contradiction that o ą o1. We have to consider two cases: o ă o1 and o ’ o1:

• Let’s suppose o ă o1.

Considering the first variable Xī in Diff following the order ω, from Lemma 1 and o ă o1 we
have that oæX1¨¨¨Xj ă o1æX1¨¨¨Xj @j ě ī. In particular oæX1¨¨¨Xī

ă o1æX1¨¨¨Xī
.

We notice that Uo,o
1

ī
has only one element: Uo,o

1

ī
“ toæPapXīq

“ o1æPapXīq
u. Thus, for all the

assignments in Uo,o
1

ī
(only one in this case: uī) we have that uī : oæXī

ą o1æXī
. This is in

contradiction with our hypothesis, since we proved that there exists a variable Xi in Diff such
that for all the assignments ui P U

o,o1

i the following does not hold: ui : oæXi ą o1æXi .

• Let’s now suppose o ’ o1.

By Lemma 3 we have that there exists an index ĩ P t1, ¨ ¨ ¨ , nu such that

oæX1¨¨¨Xj ­’ o1æX1¨¨¨Xj @j ă ĩ and oæX1¨¨¨Xl
’ o1æX1¨¨¨Xl

@l ě ĩ .

4. Connected components are subgraphs in which any two vertices are connected to each other by an undirected paths;
there are no edges connecting nodes belonging to different connected components.
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Let’s consider the case in which ­’ is equal to ą.

We do not consider the other case (with ­’ equal toă) because this would lead to an immediate
contradiction.5

So, given that ­’ is equal to ą, we can suppose that oæX1¨¨¨Xĩ´1
ą o1æX1¨¨¨Xĩ´1

.6

We will prove now that also oæX1¨¨¨Xĩ
ą o1æX1¨¨¨Xĩ

, which is a contradiction to our hypothesis
of oæX1¨¨¨Xĩ

’ o1æX1¨¨¨Xĩ
.

Let’s consider two cases assuming that Xĩ P Diff :7 the case in which Xĩ is an independent
node and the case in which it is a dependent node.

– Xĩ is an independent node.
Let’s consider a worsening path P from oæX1,¨¨¨ ,Xĩ´1

to o1æX1,¨¨¨ ,Xĩ´1
:

P “ oæX1,¨¨¨ ,Xĩ´1
Ñ O1 Ñ O2 Ñ ¨ ¨ ¨ Ñ o1æX1,¨¨¨ ,Xĩ´1

.

Then it is easy to find a worsening path from oæX1,¨¨¨ ,Xĩ
to o1æX1,¨¨¨ ,Xĩ

given the assump-

tion that for all Xi in Diff there exists an assignment ui P U
o,o1

i such that ui : oæXi ą

o1æXi . In this case Xĩ P Diff. and Uo,o
1

ĩ
“ H and thus oæXĩ

ą o1æXĩ
. Thus one possible

worsening path would be:

P̃ “ oæX1,¨¨¨ ,Xĩ´1
oæXĩ

Ñ O1oæXĩ
Ñ O2oæXĩ

Ñ ¨ ¨ ¨

¨ ¨ ¨ Ñ o1æX1,¨¨¨ ,Xĩ´1
oæXĩ

Ñ o1æX1,¨¨¨ ,Xĩ´1
o1æXĩ

.

leading to the contradiction that oæX1¨¨¨Xĩ
ą o1æX1¨¨¨Xĩ

.

– Now we consider the case in which Xĩ is not an independent node.
Because C is polytree-structured, the sub-CP-net C̃ of the nodesX1, ¨ ¨ ¨ , Xĩ´1 is formed
by |PapXĩq| connected components,8 each one containing exactly one parent of Xĩ.
Without lack of generality, we can assume that we picked the order ω that has all the
siblings of Xĩ appearing after ĩ in the order.

In this case, for each u P Uo,o
1

ĩ
we can have a worsening path P from oæX1,¨¨¨ ,Xĩ´1

to
o1æX1,¨¨¨ ,Xĩ´1

that contains u. This is because the parents belong to different connected
components and we can permute, in the worsening path, the order in which we make the
worsening flips of the variables in the single connected components (as a consequence
of Lemma 4 and the fact that all the siblings of Xĩ appearing after ĩ in the order ω).

5. For the first variable in Diff (Xī, following the order ω) we have that there exists an assignment ui P U
o,o1

i such
that ui : oæXi ą o1æXi . Since Xī is the first variable to change in the order then ui “ oæPapXī

q “ o1æPapXī
q.

Moreover since Xī is the first variable to change in the order, this implies that also oæX1¨¨¨Xī
ą o1æX1¨¨¨Xī

. This is
in contradiction with oæX1¨¨¨X ˜i´1

ă o1æX1¨¨¨X ˜i´1
by the application of Lemma 1.

6. For Lemma 1 we have also that oæX1¨¨¨Xj ě o1æX1¨¨¨Xj @j ă ĩ Thus, we obtain that: oæX1¨¨¨Xj ą o1æX1¨¨¨Xj @j ă

ĩ and oæX1¨¨¨Xl ’ o1æX1¨¨¨Xl @l ě ĩ .
7. We make this assumption because the other case would lead to an immediate contradiction: Xĩ R Diff implies that
oæX

ĩ
“ o1æX

ĩ
and thus since oæX1¨¨¨Xĩ´1

ą o1æX1¨¨¨Xĩ´1
also oæX1¨¨¨Xĩ

ą o1æX1¨¨¨Xĩ
.

8. We recall that connected components are subgraphs in which any two vertices are connected to each other by an
undirected paths; there are no edges connecting nodes belonging to different connected components.
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Thus for each u P Uo,o
1

ĩ
there exists a worsening path P containing u:

P “ oæX1,¨¨¨ ,Xĩ´1
Ñ o1 Ñ o2 Ñ ¨ ¨ ¨ Ñ ol Ñ ¨ ¨ ¨ Ñ o1æX1,¨¨¨ ,Xĩ´1

.

Now consider uĩ such that uĩ : oæXĩ
ą o1æXĩ

, which exists by hypothesis.
Let’s suppose that ol in the worsening path P contains uĩ: olæPapXĩq

“ uĩ.
Therefore, we can create a worsening path from oæX1,¨¨¨ ,Xĩ

to o1æX1,¨¨¨ ,Xĩ
as follows:

P̃ “ oæX1,¨¨¨ ,Xĩ´1
oæXĩ

Ñ o1oæXĩ
Ñ o2oæXĩ

Ñ ¨ ¨ ¨

¨ ¨ ¨ Ñ oloæXĩ
Ñ olo

1æXĩ
Ñ ¨ ¨ ¨ Ñ o1æX1,¨¨¨ ,Xij´1o

1æXĩ

leading to the contradiction that oæX1¨¨¨Xĩ
ą o1æX1¨¨¨Xĩ

.

Thus we can conclude that o ą o1. l

Theorem 8. Given a PCP-net Q and two outcomes o and o1, PLQpo ą o1q is a lower bound for
PQpo ą o1q.
Proof.

Intuitively the lower bound value is just the probability that a randomly generated induced CP-
net (from the PCP-net Q) satisfies the condition expressed in Theorem 7. Let’s now prove it for-
mally.

We can rewrite the lower-bound formula (Equation 1) as:

PLQpo ą o1q “ p1´ ρ̄0qp1´ ρ̄1q ¨ ¨ ¨ p1´ ρ̄mq (2)

where j “ 1, ¨ ¨ ¨ ,m are indices that belongs to Diff (set of m indices (m ď n) of variables that
change value from o to o1) and are ordered as in ω (an ordering of the PCP-net variables such that
for each variable Xi, if Xj P PapXiq then j ă i).

Equation 2 is equivalent to:

PLQpo ą o1q “ p1´ ρ̄0q ´ rp1´ ρ̄0qpρ̄1qs´rp1´ ρ̄0qp1´ ρ̄1qpρ̄2qs ´ ¨ ¨ ¨ ´

´ rp1´ ρ̄0qp1´ ρ̄1q ¨ ¨ ¨ p1´ ρ̄m´1qpρ̄mqs.

Let’s consider the first term 1´ ρ̄0 (we rename this term q for simplicity). We will see now that
q corresponds to the following probability:

q “ PpoæXdp0q
ą o1æXdp0q

q if Xdp0q is independent (3)

q “ PpoæXdp0q
ą o1æXdp0q

|uq if Xdp0q is not independent (4)

where dp¨q is a function such that d : Diff Ñ t1, ¨ ¨ ¨ , nu and dpjq is the corresponding index in
t1, ¨ ¨ ¨ , nu of the index j P Diff following the order ω.

This is because we notice that (from Definition 15):

• if the variable Xdp0q is independent then: ρ̄0 “ Ppo1æXdp0q
ą oæXdp0q

q, so p1 ´ ρ̄0q “

PpoæXdp0q
ą o1æXdp0q

q.
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. . .

S̄1 S̄2 S̄3
. . . S̄m

S0 (o ą o1 or o ’ o1)

Induced CP-nets

CP-nets s.t. o ’ o1

real value of dominance
(CP-nets s.t.o ą o1)

lower bound: PLQpo ą o1q

Figure 17: Sets S0 and S̄1 ¨ ¨ ¨ , S̄m in the proof of Theorem 8

• if Xdp0q is dependent on a set of parents PapXdp0qq, then the set Uo,o
1

dp0q has only one ele-
ment u “ oæPapXdp0qq

“ o1æPapXdp0qq
. Thus ρ̄0 “ Ppo1æXdp0q

ą oæXdp0q
|uq and p1 ´ ρ̄0q “

PpoæXdp0q
ą o1æXdp0q

|uq.

Then Formula 2 is equivalent to:

PLQpo ą o1q “ q ´ qρ̄1 ´ qp1´ ρ̄1qpρ̄2q ´ ¨ ¨ ¨ ´ qp1´ ρ̄1q ¨ ¨ ¨ p1´ ρ̄m´1qpρ̄mq (5)

where j “ 1, ¨ ¨ ¨ ,m are indices that belong to Diff. We note that each term of the sum contains q.
Considering o “ px1x2 ¨ ¨ ¨xnq and o1 “ py1y2 ¨ ¨ ¨ ynq, the probability q is the probability in Q that
xdp0q ą ydp0q (or xdp0q ą ydp0q|u) and corresponds to the probability that an induced CP-net has
that row in their CP-tables. Let’s call S0 the set of all the induced CP-nets that have that row in their
CP-tables. We can think of q as the probability of an induced CP-net belonging to the set S0. For
simplicity, in what follows, we will refer to q as the probability of the set S0

9 (and we will denote it
as PpS0q).

We notice that when we restrict to the set S0, we restrict our attention to the induced CP-nets
for which either o ą o1 or o ’ o1.10 Moreover S0 contains all the induced CP-nets that have o ą o1

(this follows from Lemma 1), but only some of the induced CP-nets that have o ’ o1 (since there
could exist induced CP-nets with o ’ o1 that have xdp0q ă ydp0q – or xdp0q ă ydp0q|u).

Definition 23. We define now two different types of sets:

• Sj: a set of induced CP-nets with probability PpSjq “ qp1´ ρ̄1q ¨ ¨ ¨ p1´ ρ̄j´1qp1´ ρ̄jq. This
set includes all the CP-nets with xdpiq ą ydpiq (or xdpiq ą ydpiq|u) for all the i ď j and, for

9. The probability PpSq of a set S of induced CP-nets corresponds to the sum of the probabilities of the CP-nets
belonging to that set.

10. It is not possible that a CP-net in S0 has o ă o1 because all of the CP-nets in S0 contain the CPT row that says that
xdp0q ą ydp0q (or xdp0q ą ydp0q|u). This follows from Lemma 1.
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Sj

Sj`1 S̄j`1

Figure 18: Partition of set Sj into Sj`1 and S̄j`1 in the proof of Theorem 8

the other indexes l not in Diff the set includes both the CP-net with xl ą yl (or xl ą yl|u)
and with the opposite xl ă yl (or xl ă yl|u), in all possible combinations.

• S̄j: a set of induced CP-nets with probability PpS̄jq “ pqqp1 ´ ρ̄1q ¨ ¨ ¨ p1 ´ ρ̄j´1qpρ̄jq. This
set includes all the CP-nets with xdpiq ą ydpiq (or xdpiq ą ydpiq|u) for all the i ă j and
ydpjq ą xdpjq (or ydpjq ą xdpjq|u). For the other indexes l not in Diff or in Diff but with
dplq ą j the set includes both the CP-net with xl ą yl (or xl ą yl|u) and with the opposite
xl ă yl (or xl ă yl|u), in all possible combinations.

Proof idea: The idea of this proof is to start with the set S0: the set that contains all the CP-nets
with o ą o1 and some CP-nets with o ’ o1. We then remove from S0 all the induced CP-nets with
o ’ o1 (since our goal is to have just the CP-nets that contribute to the dominance value o ą o1). To
do so we consider Equation 5 and we consider a correspondence between sets of induced CP-nets
and the probability of these sets. Each term of Equation 5 corresponds to the probability of the set
S̄j , a subset of S0. We will see that each set S̄j contains all the CP-nets with o ’j o

1 but might also
contain few CP-net such that o ą o1 (so this is a lower bound). See Figure 17 for a visualization of
this concept.

If we think of a generic j-term of Equation 5 as the probability of the set S̄j we can rewrite
Equation 5 as:

PLQpo ą o1q “ PpS0q ´

m
ÿ

j“1

PpS̄jq “ P
`

S0z

m
ď

j“1

S̄j
˘

“ PpSmq .

where j “ 1, ¨ ¨ ¨ ,m are indices that belong to Diff. We have the following assumptions:

1. Sj and S̄j are a partition of the set Sj´1 for each j P t1, ¨ ¨ ¨ ,mu “ Diff (which implies that
Sj X S̄j “ H @j P t1, ¨ ¨ ¨ ,mu and that Sj , S̄j Ă S0 @j P t1, ¨ ¨ ¨ ,mu )

2. each set S̄j contains all the induced CP-nets that are incomparable for index dpjq (o ’dpjq o
1,

see Definition 16), and oæX1,¨¨¨ ,Xdpjq´1
ą o1æX1,¨¨¨ ,Xdpjq´1

We will now prove the two conditions described above:

1. Sj and S̄j are a partition of the set Sj´1 (Figure 18):

This is true by construction (considering the correspondence between the probability of an
induced CP-net and the choice of its cp-tables) and follows from Definition 23.11

11. Thus we do not remove the same CP-net more than once from the set S0, because we are removing partitions. In
particular, since we are removing the probability of the j-term of the sum, we remove the probability of the set S̄j .
The final probability that we obtain is the probability of the set Sm (as we can see from the first formulation of the
formula: Equation 2).
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2. S̄j contains all the induced CP-nets that have o ’ o1 for index dpjq and oæ1,¨¨¨ ,dpjq´1 ą

o1æ1,¨¨¨ ,dpjq´1:

First we note that, since S̄j are subset of S0, they can only contain induced CP-nets such that
o ’ o1 or o ą o1. Moreover, we know that all the induced CP-nets P S0 that have o ’ o1

satisfy the following:

• there exists an index l such that o ’l o
1 (for Lemma 1);

• oæ1,¨¨¨ ,l´1 ą o1æ1,¨¨¨ ,l´1 (it cannot be ă because of Lemma 3).

We will now prove that S̄j contains all the induced CP-nets that have o ’dpjq o
1 but we

cannot exclude that it might also contain few CP-nets such that o ą o1. We show that, given
an induced CP-net C and two outcomes o and o1, such that o ’dpjq o

1 then C P S̄j . We know
that C P S0, thus there are three options for C:

(a) C P S̄l with l ă j;

(b) C P Sj ;

(c) C P S̄j .

We show now that:

• C R Sj : Suppose that C P Sj , that is the set of the CP-nets with oæXdpiq
ą o1æXdpiq

(or oæXdpiq
ą o1æXdpiq

|u) for all the i ď j. In particular this is true for the index j:
oæXdpjq

ą o1æXdpjq
(or oæXdpjq

ą o1æXdpjq
|u). Moreover, since o and o1 are incomparable

for index dpjq, then oæX1,¨¨¨ ,Xdpjq´1
­’ o1æX1,¨¨¨ ,Xdpjq´1

. Then we know that in this case
­’ corresponds to ą (see comment above). We can now apply Theorem 7 and conclude
that also oæX1,¨¨¨ ,Xdpjq

ą o1æX1,¨¨¨ ,Xdpjq
, which is a contradiction.

• C R S̄l with l ă j: Suppose that C P S̄l with l ă j, this implies that o and o1 are
incomparable for dplq ă dpjq and it is a contradiction given the assumption that dpjq is
the minimum index for the incomparability.

Thus we can conclude that C P S̄j .

l

Theorem 9. Given a separable PCP-netQ over n features X1, ¨ ¨ ¨ , Xn with binary domains Di “
txi, x̄iu@i P t1, ¨ ¨ ¨ , nu and given two outcomes o and o1 then

Ppo ą o1q “

¨

˝

ź

iPDiff`po,o1q

pi

˛

‚¨

¨

˝

ź

jPDiff´po,o1q

p1´ pjq

˛

‚

where pi “ Ppxi ą x̄iq in the PCP-net (and thus p1´piq “ Ppx̄i ą xiq) and where Diff` and Diff´

are a partition of Diff. Diff` is the set of indexes of variables such that oæXi “ xi and o1æXi “ x̄i
and Diff´ is the set of indexes of variables such that oæXi “ x̄i and o1æXi “ xi .
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Proof. We call IpQq the set of CP-nets induced by Q, and OpCq the partial order defined by a
CP-net C. We know that

Ppo ą o1q “
ÿ

CPIpQq s.t.
poąo1qPOpCq

PpCq .

Now we show that:

1. if i P Diff`po, o1q then the induced CP-nets that have x̄i ą xi don’t have o ą o1 in their
partial order over the features (o č o1).

2. if i P Diff´po, o1q then the induced CP-nets that have xi ą x̄i don’t have o ą o1 in their
partial order over the features (o č o1).

We prove only the first assertion because the second is symmetric.
We suppose that i P Diff`po, o1q. We must have a chain of worsening flips from o to o1, such

that o ą o1.
We consider o “ pyxizq and o1 “ py1x̄iz1q where y and y1 are the assignments of the variables

X1, ¨ ¨ ¨ , Xi´1 and z and z1 are the assignments of the variablesXi`1, ¨ ¨ ¨ , Xn respectively of o and
o1.

Because the features are all independent, to have a chain of worsening flips from o to o1 we must
have a chain of worsening flips from y to y1, from z to z1 and for xi to x̄i. But, in some induced
CP-nets that have x̄i ą xi, the first two may be possible, but the third one is an improvement. Thus,
the induced CP-nets with x̄i ą xi have no chains of worsening flips from o to o1.

Thus, we have to consider only the induced CP-nets that for all the features i P Diff`po, o1q
have xi ą x̄i, and for all the features i P Diff´po, o1q have x̄i ą xi.

Ppo ą o1q “
ÿ

CPIpQq s.t.
pxiąx̄iq@iPDiff`po,o1q
px̄iąxiq@iPDiff´po,o1q

PpCq .

We now observe that all of these induced CP-nets have po ą o1q P OpCq. That is because the
variables xj R pDiff`po, o1q Y Diff´po, o1qq have the same values in o and o1, and so we can build
a chain of worsening flip for the variables xj P pDiff`po, o1q Y Diff´po, o1qq by definition, while
holding the other variables fixed.
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We can compute the probability Ppo ą o1q:

Ppo ą o1q “
ÿ

CPIpQq s.t.
pxiąx̄iq

@iPDiff`po,o1q
px̄iąxiq

@iPDiff´po,o1q

PpCq

“
ÿ

CPIpQq s.t.
pxiąx̄iq

@iPDiff`po,o1q
px̄iąxiq

@iPDiff´po,o1q

¨

˝

ź

j s.t. xjąx̄j

pj
ź

j s.t. x̄jąxj

p1´ pjq

˛

‚

“

¨

˝

ź

iPDiff`po,o1q

pi
ź

iPDiff´po,o1q

p1´ piq

˛

‚¨
ÿ

CPIpQq s.t.
pxiąx̄iq

@iPDiff`po,o1q
px̄iąxiq

@iPDiff´po,o1q

¨

˚

˚

˝

ź

j s.t. xjąx̄j
jRDiff`po,o1q

pj
ź

j s.t. x̄jąxj
jRDiff´po,o1q

p1´ pjq

˛

‹

‹

‚

.

But we know that:

ÿ

CPIpQq s.t.
pxiąx̄iq

@iPDiff`po,o1q
px̄iąxiq

@iPDiff´po,o1q

¨

˚

˚

˝

ź

j s.t. xjąx̄j
jRDiff`po,o1q

pj
ź

j s.t. x̄jąxj
jRDiff´po,o1q

p1´ pjq

˛

‹

‹

‚

“ 1 .

Thus we can conclude that:

Ppo ą o1q “

¨

˝

ź

iPDiff`po,o1q

pi

˛

‚

¨

˝

ź

iPDiff´po,o1q

p1´ piq

˛

‚ .

l

Theorem 10. Given a PCP-net Q with a separable dependency graph and two outcomes o and o1,
then PQpo ą o1q “ PLQpo ą o1q.
Proof. We prove that the formula for the lower bound in the case of separable PCP-nets is equal to
the formula described in Theorem 9. We observe that each formulation is a product of factors and
each factor corresponds to a variable that has a different value in o and o1. Each variable that has
a different value in o and o1 has a unique factor in each formulation. We prove that the factors that
correspond to the same variable coincide in the two formulations.

Suppose we have a PCP-net that has the following PCP-tables: Xi : xi ą x̄i, qi where qi is the
probability Ppxi ą x̄iq.
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We consider two cases: the first one is the case of a variable Xi such that oæXi “ xi and
o1æXi “ x̄i. In the formulation of dominance for separable PCP-nets (Theorem 9), we have a factor
that corresponds to qi because the variable Xi belongs to the set Diff`po, o1q. In the lower bound
formulation we have a factor that corresponds to:

p1´ Ppo1æXi ą oæXiqq “ p1´ Ppx̄i ą xiqq “ Ppxi ą x̄iq “ qi .

The second case is the case of a variable Xi such that oæXi “ x̄i and o1æXi “ xi. In the
formulation of Theorem 9, we have a factor that corresponds to p1 ´ qiq because the variable Xi

belongs to the set Diff´po, o1q. In the lower bound formulation we have a factor that corresponds to:

p1´ Ppo1æXi ą oæXiqq “ p1´ Ppxi ą x̄iqq “ 1´ qi .

Thus, the two formulations coincide. l

Theorem 11. Given a PCP-net Q and two outcomes o and o1, PUQpo ą o1q is an upper bound for
PQpo ą o1q.
Proof. It is enough to prove that all CP-nets induced by Q that support o ą o1 have the row
u : oæXj ą o1æXj for all variables Xj P pDiff X FAq. We prove this sentence by contradiction:
we consider an induced CP-net C that contains row u : o1æX ą oæX for X P pDiff X FAq and
we prove that C |ù po1 ą oq _ po ’ o1q. We have two cases: (1) X is an independent node. Then
flip oæX Ñ o1æX can’t be a worsening flip. That implies that all the worsening paths starting from
o do not contain a flip for variable X , so o1 can’t be reached. (2) X is a dependent node. Thus,
the set AncpXq “ tXi1 , ¨ ¨ ¨ , Xiku with k ě 1 and all of them have fixed value on o and o1. We
call u the assignment of PapXq in o and o1. Each worsening path from o to o1 has the value u for
PapXq in each step of the path, because all the ancestors of X are fixed. This implies that no wors-
ening path from o to o1 contains other assignments for the parents of X . Thus, no worsening path
starting from o contains a flip for variable X , so o1 can’t be reached. Thus C ­|ù po ą o1q and so
C |ù po1 ą oq _ po ’ o1q. l

Lemma 5. There exists a profile of CP-nets P such that

tPROpP q,PRIpP qu X tLSOpP q,LSIpP qu “ H;

and there exists a profile of CP-nets P 1 such that:

PROpP 1q ­“ PRIpP 1q;

and there exists a profile of CP-nets P 2 such that:

LSOpP 2q ­“ LSIpP 2q.

Proof.

• First we prove that there exists a profile of CP-netsP such that tPROpP q,PRIpP quXtLSOpP q,LSIpP qu “
H. Let us take the following profile P of four CP-nets over two variables A and B:
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– C1 with probability 0.095. C1 has an edge from X1 to X2 and CP-tables: x1 ą x̄1 and
x1 : x̄2 ą x2, x̄1 : x2 ą x̄2.

– C2 with probability 0.505. C2 has an edge from X1 to X2 and CP-tables: x1 ą x̄1 and
, x1 : x2 ą x̄2, x̄1 : x̄2 ą x2.

– C3 with probability 0.005. C3 does not have an edge from X1 to X2 and has CP-tables:
x̄1 ą x1 and x2 ą x̄2.

– C4 with probability 0.395. C4 does not have an edge from X1 to X2 and has CP-tables:
x̄1 ą x1 and x̄2 ą x2.

Proportion gives us the PCP-net px1 ą x̄1, 0.6q and px1 : x2 ą x̄2, 0.51q, px̄1 : x2 ą x̄2, 0.1q,
while LS outputs px1 ą x̄1, 0.59q and px1 : x2 ą x̄2, 0.29q, px̄1 : x2 ą x̄2, 0q. Thus we obtain
that PROpP q “ x̄1x̄2, PRIpP q “ x1x2, LSOpP q “ x1x̄2 and LSIpP q “ x1x̄2.

• The fact that there exists profiles P 1 and P 2 such that PROpP 1q ­“ PRIpP 1q (or LSOpP 2q ­“
LSIpP 2q) is an immediate consequence of the fact that the most probable optimal outcome
and the outcome of the most probable CP-net can be different. For example, consider a PCP-
net on two variables X1 and X2 with the PCP-tables px1 ą x̄1, 0.6q, px1 : x2 ą x̄2, 0.6q
and px̄1 : x2 ą x̄2, 0q. The most probable induced CP-net has x1 ą x̄1, x1 : x2 ą x̄2 and
x̄1 : x̄2 ą x2, thus x1x2 is the optimal outcome. However, the most probable optimal out-
come of the PCP-net is x̄1x̄2. Therefore, PRO (respectively, LSO) will differ from PRI (resp.
LSI ) on a profile that produces this PCP-net. l

Theorem 12. Given a profile of CP-nets, PRI produces the same result as sequential voting with
majority.
Proof. Consider a variable Xi with domain txi, x̄iu, and an assignment u for the parents of Xi.
With sequential voting we choose the value of the domain that corresponds to the first value of the
ordering that maximizes the following:

max
jPt1,¨¨¨ ,mu

tr
ÿ

Cj :xiąx̄i|u

PpCjqs, r1´
ÿ

Cj :xiąx̄i|u

PpCjqsu.

With PRI , we create a PCP-net that has, for the row in the PCP-table ofXi corresponding to assign-
ment u for its parents, the probability

ř

Cj :xiąx̄i|u
PpCjq for xi ą x̄i and 1´

ř

Cj :xiąx̄i|u
PpCjq for

x̄i ą xi. To compute the CP-tables of the most probable induced CP-net, we choose the orderings
with maximal probability: for each variable Xi, given u, we choose the ordering that maximizes the
following probability:

max
jPt1,¨¨¨ ,mu

tr
ÿ

Cj :xiąx̄i|u

PpCjqs, r1´
ÿ

Cj :xiąx̄i|u

PpCjqsu.

To compute the optimal outcome of the most probable induced CP-net, we choose the greater literal
in the ordering that appears in the CP-table, given u. This is for a generic variable Xi and assign-
ment u, thus is true for all the variables and assignment of their parents. l

Theorem 13. The following holds:
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REASONING WITH PCP-NETS

piq PRO, LSO, and LSI satisfy homogeneity;

piiq PRI and PRO satisfy participation.

piiiq PRI satisfies consensus and PRO satisfies consensus over a single feature.

Proof. iq For PRO, consider a profile P̄ “ pC1, f1q, ¨ ¨ ¨ , pCk, fkq from which we can get the
normalised frequencies pC1,

f1

m q, ¨ ¨ ¨ , pCk,
fk
m q. Considering each CP-net N times, we obtain the

following distribution over Nm CP-nets, P̄ 1 “ pC1, Nf1q, ¨ ¨ ¨ , pCk, Nfkq, with the following nor-
malised frequencies pC1,

Nf1

Nm q, ¨ ¨ ¨ , pCk,
Nfk
Nm q. The probability of a generic CP-net Ci in P̄ 1 is

Nfi
Nm “

fi
m which is the same as the probability generated by P̄ . For LSO, and LSI , consider the

fact that if, in the previous proof, we added N copies of each CP-net to the original profile it would
result in the same probability distribution over the CP-nets. This fact is true for any collection of
CP-nets, therefore, we generate the same set of equations to minimize in the definition of LS, and
thus the same PCP-net solution.

iiq We first consider the case r “ PRI . We provide a proof for non-anonymous profiles, for
ease of readability. The version for anonymous profiles can easily be deduced. Consider a profile
P “ pC1, ¨ ¨ ¨ , Cmq and an additional CP-net C. We have to prove that rpP Y tCuq ąC rpP q. PR
gives us a PCP-net Q for P and a PCP-net Q1 for P Y tCu. Since P and P Y tCu are O-legal, let
X be the first variable according to O such that rpP Y tCuq|X ‰ rpP q|X and let u “ rpP q|PApXq.
This means that in the most probable induced CP-net of Q there is a preference statement u :
rpP q|X ą rpP Y tCuq|X and in Q1 there is u : rpP Y tCuq|X ą rpP q|X . Thus the probability
Pru : rpP q|X ą rpP Y tCuq|Xs ě 0.5 in Q, but ď 0.5 in Q1. This means that C has the row
u : rpP Y tCuq|X ą rpP q|X in X’s CP-table. Thus the outcome rpP Y tCuq ěC rpP q.

A similar reasoning applies to the case r “ PRO. In the PCP-tables of Q1, the probabilities of
the rows corresponding to the CP-tables of C increase with respect to Q. Thus, for each feature X
and each assignment u of its parents, the probability to obtain the first ranked value in the u rows of
C CP-tables increases. This means that it improves the result for C.

iiiqWe first consider the case r “ PRI . Consider profile P̄ and assume there is an alternative o
s.t. o ąCi rpP̄ q@i P t1, ¨ ¨ ¨ ,mu. Since P̄ is O-legal, let X be the first variable according to O such
that o|X ‰ rpP̄ q|X . Let u be the assignment to X’s parents in o and rpP̄ q (o|PApXq “ rpP̄ qPApXq
sinceX is the first variable according toO in which they differ). Since o ąCi rpP̄ q@i P t1, ¨ ¨ ¨ ,mu,
it must be that u : o|X ą rpP q|X@Ci. Let us now consider the PCP-net Q obtained from P̄ by PR.
It is easy to see that in the PCP-table of X the probability of u : o|X ą rpP̄ q|X will be strictly
higher than the probability of u : o|X ă rpP̄ q|X , which implies that the most probable induced
CP-net must have the row ui : o|X ą rpP̄ q|X . The optimal outcome of the most probable induced
CP-net must have the assignment o|X for the variable X because is ranked first in the table in the u
row. But rpP̄ q|X ‰ o|X and we have a contradiction.

A similar reasoning applies to the case r “ PRO, but in a weaker version. We will prove that,
for any profile P̄ , there is no alternative o such that o differs from rpP̄ q on only a single variable and
o ąCi rpP̄ q@Ci. Assume that there were an alternative o such that o ąCi rpP̄ q, @Ci and o differs
from rpP̄ q only on the variable X . The probability of u : o|X ą rpP̄ q|X in the PCP-table of X is
equal to 1 because all the CP-nets in the profile prefer o to rpP̄ q. Thus the probability of rpP̄ q is
equal to 0, and we have a contradiction. l
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