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Abstract

The problem of managing spatio-temporal data arises in many applications, such as
location-based services, environmental monitoring, geographic information systems, and
many others. Often spatio-temporal data arising from such applications turn out to be
inconsistent, i.e., representing an impossible situation in the real world. Though several
inconsistency measures have been proposed to quantify in a principled way inconsistency in
propositional knowledge bases, little effort has been done so far on inconsistency measures
tailored for the spatio-temporal setting.

In this paper, we define and investigate new measures that are particularly suitable
for dealing with inconsistent spatio-temporal information, because they explicitly take into
account the spatial and temporal dimensions, as well as the dimension concerning the
identifiers of the monitored objects. Specifically, we first define natural measures that look
at individual dimensions (time, space, and objects), and then propose measures based on
the notion of a repair. We then analyze their behavior w.r.t. common postulates defined
for classical propositional knowledge bases, and find that the latter are not suitable for
spatio-temporal databases, in that the proposed inconsistency measures do not often satisfy
them. In light of this, we argue that also postulates should explicitly take into account the
spatial, temporal, and object dimensions and thus define “dimension-aware” counterparts
of common postulates, which are indeed often satisfied by the new inconsistency measures.
Finally, we study the complexity of the proposed inconsistency measures.

1. Introduction

Managing spatio-temporal data is an important problem in many applications, ranging
from location-based services and geographic information systems to air traffic control and
environmental monitoring. For this reason, the representation and processing of spatio-
temporal data has attracted much attention by the AI community (Cohn & Hazarika,
2001; Gabelaia, Kontchakov, Kurucz, Wolter, & Zakharyaschev, 2005; Yaman, Nau, &
Subrahmanian, 2004, 2005; Knapp, Merz, Wirsing, & Zappe, 2006; Bona, Grant, Hunter,
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& Konieczny, 2019) as well as by the database one (Pelanis, Saltenis, & Jensen, 2006; Tao,
Papadias, & Sun, 2003; Kollios, Gunopulos, & Tsotras, 1999; Agarwal, Arge, & Erickson,
2003; Pfoser, Jensen, & Theodoridis, 2000; Hadjieleftheriou, Kollios, Tsotras, & Gunopulos,
2002).

In this paper, we focus on databases representing atomic statements of the form “object
id is/was/will be inside region r at time t”, denoted as atoms of the form (id, r, t). This
allows the representation of information concerning moving objects in many application
domains. For instance, a cell phone provider is interested in knowing which cell phones
will be in the range of some towers at a given time (Bayir, Demirbas, & Eagle, 2010).
A transportation company is interested in predicting the vehicles that will be on a given
road at a given time in order to avoid congestion (Karbassi & Barth, 2003). A retailer
is interested in knowing the positions of shoppers moving in a shopping mall in order to
offer customized coupons on discounts (Kurkovsky & Harihar, 2006). These are just a few
examples of a common issue.

Most previous work on spatio-temporal data assumes that a consistent version of the
data is available before processing queries or performing updates. However, in real life
scenarios, this assumption is rather simplistic in general, but especially when the information
changes dynamically and in a distributed manner. Inconsistency in those settings can appear
for various reasons, such as sensing errors that can affect the estimation and generation of
spatio-temporal information. For instance, in smart video surveillance (Sedky, Moniri,
& Chibelushi, 2005), an identification system may fail to assign the same identifier to
the same object monitored by cameras having different views (An, Chen, Kafai, Yang, &
Bhanu, 2013; Zhang, Kalashnikov, Mehrotra, & Vaisenberg, 2014), thus generating wrong
object identifiers that do not correctly model the monitored situation. Likewise, different
objects may be assigned the same identifier after exiting and re-entering the monitored
space (Bedagkar-Gala & Shah, 2014), yielding an inconsistent representation of the situation
being monitored. Other errors can be due to imprecise estimation of regions occupied by
objects, and inaccurate time-stamps associated with sensor readings, because of the inherent
imprecision of the systems originating spatio-temporal data (Pfoser & Jensen, 1999).

Moreover, as data are often collected from heterogeneous sources, such as on-board GPS
devices and roadside sensors (Zhang & Trajcevski, 2014), the same monitored situation (an
object being in a given place at a given time) can result in different sets of spatio-temporal
data corresponding to the different sources. Thus, data integrated from different sources
are likely to generate inconsistent spatio-temporal databases, where an inconsistency is due
to the presence of data representing conflicting information on the monitored scenario. For
instance, an on-board GPS device could detect the car in which it is installed quite far
away from the place where it actually is at the given time (e.g., on a route parallel to that
being used), while a roadside sensor could detect (the license plate number of) that car on
a different street at the same time. The information provided by these two sources, which
are independent of each other, may be inconsistent since they entail the presence of the
same car in different places at the same time. For that matter, each of the two sources
may provide wrong information: the detection region of the GPS device may be inaccurate
and/or the license plate number detected by the roadside sensor may be wrong.

Considering the specific aspects and dimensions that spatio-temporal information con-
tains, as indicated in the examples, we observe that defining, identifying, measuring, and
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deciding how to deal with such data appear to be more complex than dealing with theories
given in propositional logic, where there has been an extensive body of work on inconsistency
measures. In this paper, we study the use of inconsistency measures in spatio-temporal
databases. An inconsistency measure is a mathematical function used to determine the
quantity of inconsistency in a database. The measure zero implies that no inconsistency is
present, while the larger this number, the “dirtier” is the information.

Contributions. This paper substantially extends our preliminary attempt to measure
inconsistency in the spatio-temporal context (Grant, Martinez, Molinaro, & Parisi, 2018a).
In particular, we make the following contributions.

• We propose new inconsistency measures for spatio-temporal databases that, differently
from classical ones, explicitly take into account the spatial, temporal, and object in-
formation characterizing such data. Specifically, we first define natural measures that
look at individual dimensions (time, space, and objects), and then propose measures
based on the notion of a repair. The basic idea of the latter is to measure inconsistency
as the cost of restoring consistency (in a “minimal” way).

• Rationality postulates are properties defined for propositional inconsistency measures
in order to describe general desirable behaviors of the measures, though it is not
universally agreed upon which postulates should be satisfied by an inconsistency
measure to be considered as a “good” one (Besnard, 2014). In fact, as we discuss
later, not all the postulates are jointly satisfiable, as there may exist properties (e.g.,
MI-Normalization and Attenuation) expressing conflicting desiderata. Nevertheless,
analyzing the compliance of inconsistency measures w.r.t. postulates is an important
way to evaluate the quality of an inconsistency measure and for this reason it is one of
the main problems investigated in the area of inconsistency measurement, even if the
set of desirable postulates is not universally accepted (Thimm, 2017, 2018). Given
the importance of postulate satisfaction, we analyze which of eight applicable postu-
lates are satisfied by the new inconsistency measures. It turns out that the classical
postulates are not satisfied in many cases. The reason is that the latter have been
devised for propositional knowledge bases and thus neglect the spatial, temporal, and
object information altogether.

• In light of the aforementioned issue, we introduce “dimensional” postulates, that is,
postulates inspired by the classical ones but explicitly taking into account the time,
space, and object dimensions. The new measures satisfy them in most of the cases.

• Finally, we characterize the complexity of deciding whether the inconsistency value
is less than or equal to a given threshold, for each of the inconsistency measures.
While this decision problem is generally intractable for the classical measures for
propositional knowledge bases (Thimm & Wallner, 2016; Thimm, 2018), we find that
it becomes generally feasible, particularly under some reasonable assumptions, for the
new measures for spatio-temporal databases.

We point out that this work provides insights into measuring inconsistency also in dif-
ferent (or more general) settings where “dimensions” (e.g., space, time, objects in our case)
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characterize the data at hand: our results suggest that both inconsistency measures and
postulates should treat such dimensions as first-class citizens in order to properly deal with
inconsistent “dimensional” data.

Organization. Section 2 introduces the syntax and semantics of spatio-temporal (ST)
databases. Section 3 defines the notion of an inconsistency measure along with classi-
cal postulates drawn from the propositional setting. Section 4 defines new inconsistency
measures tailored for spatio-temporal data that take into account the three dimensions of
objects, space, and time, and analyze their behavior w.r.t. (classical) postulates. Section 5
introduces inconsistency measures based on the notion of repair along the three dimen-
sions. Specifically, four new inconsistency measures are proposed (including a measure
based on deletions resulting in maximal consistent subsets) and their satisfaction of the
classical rationality postulates given in Section 3 is investigated. It turns out that most
of the classical postulates are not satisfied by these measures. So in Section 6 we modify
some of the postulates and propose “dimension-aware” postulates specifically devised for
spatio-temporal data and analyze in which cases they are satisfied by the new inconsistency
measures. Finally, in Section 7 we explore the computational complexity of all the new
measures introduced in Sections 4 and 5, and find that in general the new measures have
lower complexity than the standard propositional measures. The paper is concluded and
future work is outlined in Section 8.

2. Spatio-Temporal Databases

This section introduces the syntax and semantics of Spatio-Temporal (ST) Databases (DBs).

2.1 Syntax

Throughout the paper, we assume the existence of three finite sets: ID is the set of object
ids, T is the set of integer time values, and Space is the set of point locations; below we
explain in further detail what these sets represent. We assume that an object can be in only
one location at a time, but a single location may contain more than one object. This means
that objects have no size and the space is discrete. However, the granularity of the space
can be arbitrarily chosen to fit the application’s needs. As a matter of fact, real-world
geographic information systems (GISs) generally assume that space is discretized into a
grid and most geographic data structures (e.g., quadtrees, R-trees, etc.) supported by GISs
make the same assumption (Samet, 2006).

A region r is a nonempty subset of Space, that is, ∅ ⊂ r ⊆ Space.

Definition 1 (ST atom/database). An ST atom is a tuple (id, r, t), where id ∈ ID is an
object id, r is a region, and t ∈ T is a time value. An ST database is a finite set of ST
atoms.

Intuitively, the ST atom (id, r, t) says that the location of object id belongs to region r
at time t. Hence, ST atoms can represent information about the past and the present, such
as that generated by techniques for interpreting RFID readings (Fazzinga, Flesca, Furfaro,
& Parisi, 2014, 2016), but also information about the future, such as that derived from
methods for predicting the destination of moving objects (Mittu & Ross, 2003; Hammel,
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Rogers, & Yetso, 2003; Southey, Loh, & Wilkinson, 2007), or from querying predictive
databases (Akdere, Cetintemel, Riondato, Upfal, & Zdonik, 2011; Agarwal, Chen, ji Lin,
Shanmugasundaram, & Vee, 2010; Parisi, Sliva, & Subrahmanian, 2013).

We point out that Space is defined as an arbitrary set of point locations; it can be as
large as a user needs, and one can choose the granularity of space according to her needs.
The same comments can be applied to time, that is, to T .

In the definition a region may be any non-empty set of points in Space (not necessarily
connected). But in our examples, for convenience, we use a square grid for Space. In the grid,
each location can be written as (x, y), where x and y are integers and 0 ≤ x, y ≤ N for some
integer N . Thus, Space contains (N + 1)2 points. Also, we will use isothetic rectangles,
by which we mean rectangles oriented in the standard way, that is, with horizontal and
vertical sides. In the sequel, when we will refer to the restriction of isothetic rectangular
regions, the considered ST databases are implicitly defined on a set Space corresponding to a
square grid and the regions of their atoms are isothetic rectangles. An isothetic rectangular
region can be specified by 2 points, its lower left corner, (x1, y1), and its upper right corner,
(x2, y2), where x1, y1, x2, and y2 are integers, 0 ≤ x1 ≤ x2 ≤ N , and 0 ≤ y1 ≤ y2 ≤ N .
It is worth noting that we also consider degenerate isothetic rectangles consisting of single
points, where x1 = x2 = y1 = y2, or sets of (axis-)aligned points, where either x1 = x2
or y1 = y2. Sometimes it will be useful to refer to the size of a region r, denoted |r|, by
which we mean the number of points in r. Other (more complex) representations of spatial
regions and time are clearly possible. Depending on the application domain there might be
a requirement for more complex representations: this may include the modeling of vectors
for spatial-temporal information. These knowledge representation issues are outside the
scope of this paper and left to future investigation.

The following example illustrates a scenario where an ST database is used to model
spatio-temporal data.

Example 1. Consider a farm where the tasks of irrigation and fertilization are performed
automatically by means of drones. The drones have limited memory and unilateral data
transfer capabilities; therefore, they do not report about their location in time. In this
example ID = {id1, id2, id3}, T = {1, 2, 3}, and Space = {(x, y) | 0 ≤ x ≤ 16, 0 ≤ y ≤
16}, where x and y are integers.

As shown in Figure 1(b), the field of the farm is divided into 7 regions; each region
is defined by the scanning range of a sensor in the terrain. The terrain sensors, besides
monitoring soil and crop properties, such as humidity, etc., also capture and report the
position of all the drones that fly over them. The traces of drones captured by terrain
sensors are reported to a central system that stores the information.

This data is represented as tuples such the ones in Figure 1(a): every tuple consists of
the id of a drone, the region of the field where some sensor identified the position of the
drone, and the time at which the location of the drone was recorded. For instance, the tuple
in the first row of the table in Figure 1(a), representing the ST atom (id1, a, 1), says that
drone with id1 was in region a at time 1. We use SF to denote the ST database consisting of
the ST atoms represented by the tuples in Figure 1(a). Drone id1 was recognized at time 1 in
both regions a and b. In some cases, such as for id1 at time 2, SF contains no information.
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id1 a 1
id1 b 1
id1 g 3
id2 b 2
id2 e 2
id3 c 1
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I(id1, 1) = (4, 10)
I(id1, 2) = (9, 7)
I(id1, 3) = (10, 2)
I(id2, 1) = (1, 9)
I(id2, 2) = (9, 7)
I(id2, 3) = (8, 2)
I(id3, 1) = (9, 10)
I(id3, 2) = (12, 11)
I(id3, 3) = (12, 6)

(a) (b) (c)

Figure 1: (a) (Tabular representation of the) ST database SF of Example 1; (b) Regions of
the farm field for SF ; (c) Interpretation I of Example 2.

Given an ST database S, an object id, and a time t, we use the notation Sid,t to refer
to the set Sid,t = {(id′, r′, t′) ∈ S | id′ = id ∧ t′ = t}, that is, the set of ST atoms in S that
refer to the specific object identifier id and time value t.

2.2 Semantics

The meaning of an ST database is given by the interpretations that satisfy it.

Definition 2 (ST interpretation). An ST interpretation I is a function I : ID×T → Space.

An interpretation specifies a trajectory for each id ∈ ID. That is, for each id ∈ ID, I
says where in Space object id was/is/will be at each time t ∈ T. In particular, this means
that an object can be in only one location at a time.

Example 2. An interpretation I for the ST database SF of Example 1 is shown in Fig-
ure 1(c).

We now define satisfaction and ST models.

Definition 3 (Satisfaction and ST model). Let a = (id, r, t) be an ST atom and I an ST
interpretation. We say that I satisfies a (denoted I |= a) iff I(id, t) ∈ r. I satisfies an ST
database S (denoted I |= S) iff for all a ∈ S, I |= a. We say that I is a model for a (resp.,
S) iff I satisfies a (resp., S).

We use M(S) to denote the set of all models for an ST database S.

Example 3. In our example, interpretation I is a model for the ST atom (id3, c, 1), as
id3 at time value 1 is assigned to the spatial point (9, 10), which is a point in region c.
Reasoning analogously, it is easy to see that I is a model for all of the atoms in Figure 1(a).
Hence, I is a model for SF .

Example 4. Let I1 be the interpretation that is equal to I except that I1(id3, 1) = (12, 6).
It is easy to check that I1 is not a model for the ST atom (id3, c, 1), because object id3 is
not assigned to a point in region c at time 1. Since (id3, c, 1) is in SF (see the last row of
the table in Figure 1(a)), I1 is not a model for SF .
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Figure 2: (a) (Tabular representation of the) ST database Se of Example 5;
(b) Regions of the farm field for Se.

In the following, we will use the symbol M to refer to interpretations that are models,
that is, elements in M(S).

Definition 4 (Consistency). An ST database S is consistent iff M(S) ∕= ∅.

Example 5. The model of Example 3 shows that SF is consistent. Consider next the ST
database Se in Figure 2, where a simpler scenario of the farm field is shown. In this case,
ID = {id1, id2} and T = {1, 2}, while Space is still the set {(x, y) | 0 ≤ x ≤ 16, 0 ≤ y ≤
16}, where x and y are integers. Note that there is no model for Se, since it is impossible to
define a function that assigns a spatial point to id1 at time values 1 and 2, and can satisfy at
the same time all the ST atoms in which it is involved (there is no overlap between regions
b and c, and between a and c, respectively). Thus, Se is inconsistent.

There is an important connection between the consistency of S and its subsets Sid,t,
that is, S is consistent iff for each id ∈ ID and t ∈ T, Sid,t is consistent. Then, checking
whether S is consistent can be accomplished in polynomial time as follows: for each non-
empty subset Sid,t, we check whether the intersection of the regions of the ST atoms in Sid,t

is non-empty. We also mention that consistency checking remains solvable in polynomial
time in the more general setting of probabilistic spatio-temporal knowledge bases of Grant,
Molinaro, and Parisi (2018b)—we refer the reader to (Grant et al., 2018b) for more details.

The set of all minimal (under set-inclusion) inconsistent subsets of an ST database S is
denoted as MI(S). For the ST database Se of Example 5,

MI(Se) = {{(id1, b, 1), (id1, c, 1)}, {(id1, a, 2), (id1, c, 2)}}.

Notice that each set in MI(S) is included in exactly one Sid,t.
As stated in the following proposition, when the regions are isothetic rectangles (with

Space being a square grid) every minimal inconsistent set has size 2. We will use this result
in Section 7 when characterizing the complexity of inconsistency measures.

Proposition 1. Under the restriction of isothetic rectangular regions, every minimal in-
consistent subset of every ST database S has size 2.

Proof. We have previously explained that the size of a minimal inconsistent subset of S
must be at least 2. Hence we need to show that it cannot be greater than 2. As mentioned
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ID Region Time
id r1 1
id r2 1
id r3 1
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Figure 3: An ST database with convex regions and a minimal inconsistent subset of cardi-
nality 3.

before, for inconsistency we need to deal only with ST atoms that have the same id, t pair,
see (Grant et al., 2018a); hence we assume that such a pair is fixed and we deal only with
the regions.

Let |S| = n + 1 where n ≥ 2. We write S = {R1, . . . , Rn, Rn+1} where for all i,
1 ≤ i ≤ n + 1, Ri = ((xℓi , y

ℓ
i ), (x

u
i , y

u
i )), using the standard representation for isothetic

rectangles. If S is minimal inconsistent then S ′ = {R1, . . . , Rn} is consistent and hence
∩n
i=1Ri ∕= ∅.
Find Rh such that xℓh ≥ xℓi for all i, 1 ≤ i ≤ n. That is, going from left to right,

no rectangle has its leftmost x value after Rh. Also, find Rk such that xuk ≤ xui for all i,
1 ≤ i ≤ n. That is, going from left to right, no rectangle has its rightmost x value before
Rk. If xuk < xℓh then Rk is to the left of Rh, so Rh ∩ Rk = ∅ which is not allowed by our
assumption. Hence xℓh ≤ xuk . In an analogous way, find Rt such that yℓt ≥ yℓi for all i,
1 ≤ i ≤ n and Rz such that yuz ≤ yui for all i, 1 ≤ i ≤ n. Then ∩n

i=1Ri = ((xh, yt), (xk, yz)).
As S is inconsistent, Rn+1 ∩ ((xh, yt), (xk, yz)) = ∅. There are 4 possibilities: Rn+1 is either
to the left, or to the right, or below, or above ∩n

i=1Ri. Suppose that Ri+1 is to the left of
∩n
i=1Ri. Then xun+1 < xℓh and so Rn+1 is also to the left of Rh and hence Rn+1 ∩ Rh = ∅.

This violates the assumption that S is minimal inconsistent. The other 3 cases are handled
similarly. This shows that no set of ST atoms of size greater than 2 can be minimal
inconsistent.

This result does not hold for arbitrary convex regions in the plane, as shown by the
(inconsistent) ST database reported in Figure 3. Notice that the point (2, 2) (resp., (1, 1),
(3, 1)) belongs to both r1 and r2 (resp., r1 and r3, r2 and r3). Thus, every subset of the ST
database having cardinality at most 2 is consistent. However, the three ST atoms together
are inconsistent, and thus there is a minimal inconsistent subset of cardinality 3.

One may wonder for which integers it is possible to obtain a minimal inconsistent subset
of that size. The next result answers this question.

Proposition 2. For every integer n ≥ 2 there is an ST database that has a minimal
inconsistent subset of size n.

Proof. For a given integer n ≥ 2 we show how to construct n ST atoms that are minimally
inconsistent. Let |Space| ≥ n. Choose a region R such that |R| = n. Let Rn−1 = {r ⊂
R such that |r| = n − 1} and S = {(id, r, t) | r ∈ Rn−1} for a fixed id, t pair. Then
|S| = |Rn−1| = n and

!

r∈Rn−1

r = ∅. Also, for every point p ∈ R, p must belong to n − 1

(all except one) regions in Rn−1. Hence the intersection of any n− 1 regions is not empty.
Therefore {(id, r, t) | r ∈ Rn−1} is a minimally inconsistent set of size n.
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ST databases can be viewed as a special case of Spatial PrObabilistic Temporal (SPOT)
databases (Parker, Infantes, Grant, & Subrahmanian, 2009; Parisi, Parker, Grant, & Sub-
rahmanian, 2010; Grant, Parisi, Parker, & Subrahmanian, 2010) which allow the represen-
tation of atomic statements of the form “object id is/was/will be inside region r at time
t with probability in the interval [ℓ, u]”. A SPOT statement is written as (id, r, t, [ℓ, u]).
Both ST databases and SPOT databases deal with uncertain information about the posi-
tion of objects at a given time, but in different ways, as explained below. Uncertainty in
ST databases is modeled by allowing the presence of inconsistent ST statements, such as
(id, r, t) and (id, r′, t), with r∩r′ = ∅, which say that object id was detected in two different
disjoint regions at the same time. In contrast, SPOT databases are assumed to be con-
sistent, and uncertainty is modeled by statements having compatible probability intervals,
which entails that the sum of the lower bound probabilities of being in different positions
for the same object at the same time must not exceed 1. For instance, the SPOT statements
(id, r, t)[0.5, 1] and (id, r′, t)[0.5, 1], with r ∩ r′ = ∅, say that object id was detected in two
different disjoint regions at time t with probability greater than or equal to 0.5 in both
cases. Herein, the probability intervals are compatible, as it is possible to find a probability
distribution on the positions of id at time t. This is not the case, for instance, for the SPOT
database consisting of the statements (id, r, t)[1, 1] and (id, r′, t)[1, 1], with r∩ r′ = ∅, which
is inconsistent (id cannot be in two disjoint regions with probability 1 in both cases).

Notably, the SPOT framework has been implemented and tested on real US Navy
databases containing ship location data by Parker et al. (2009) and Parisi et al. (2010),
where probability intervals were added to the original data in order to model spatio-temporal
uncertainty by means of consistent SPOT databases, but the original data were in the form
of an (inconsistent) ST database. Thus, ST databases can actually be used to store data
coming from real-world applications. Examples of such applications include video surveil-
lance (Sedky et al., 2005; Bedagkar-Gala & Shah, 2014) and tracking systems (Zhang &
Trajcevski, 2014) discussed in the Introduction.

3. Inconsistency Measures and Rationality Postulates for ST Databases

In this section, we provide a general definition of inconsistency measure along with the
standard postulates. (In the following two sections, we will propose concrete inconsistency
measures treating the time, space, and object dimensions as first-class citizens).

3.1 The Definition of Inconsistency Measure

An inconsistency measure (IM) is a function that assigns a nonnegative real value or infin-
ity to every database. Inconsistency measures can be classified in various ways and may
satisfy certain properties. One distinction is between absolute measures that measure the
total amount of inconsistency and relative measures that use a ratio to determine how big
a portion of the database is inconsistent. We will not deal in this paper with relative in-
consistency measures. For absolute measures the following definition is appropriate, where
R∞

≥0 is the set of nonnegative real numbers and the infinity symbol.

Definition 5 (Inconsistency measure). Let L be the set of all ST databases. An inconsis-
tency measure I : L → R∞

≥0 is a function such that the following two properties hold:
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1. (Consistency) For any S ∈ L, I(S) = 0 iff S is consistent.

2. (Monotony) For any S,S ′ ∈ L, if S ⊆ S ′, then I(S) ≤ I(S ′).

These two properties ensure that all and only consistent ST databases get a measure
of 0 and that the measure is monotonic for subsets.

3.2 Some Rationality Postulates

We now report several properties that some inconsistency measures possess. These are just
some of the properties that have been discussed as desirable for inconsistency measures.
We point out that some of the postulates we omit are not useful for ST databases. For
example, several deal with the case of logically equivalent formulas, but in our case all the
formulas are ST atoms and no pair of distinct ST atoms are logically equivalent. That is
why we deal only with the postulates given below. See (Thimm, 2018) for a thorough study
of these properties, usually called rationality postulates. Each property has some intuitive
rationale, even though some properties are not compatible with one another.

In Definition 5 we have already given two such properties that we believe all inconsistency
measures must have. In Definition 6 below, we present a list of eight additional properties
that have counterparts for propositional knowledge bases. As we are considering these
properties directly for ST databases, we write the postulates as they apply to ST databases
rather than propositional knowledge bases.

Before giving the definitions of the postulates, we introduce the notation and terminology
for problematic and free ST atoms. For an ST database S, the ST atoms that appear in
some minimal inconsistent subset are called problematic ST atoms. The ST atoms that are
not problematic are called free. Formally, we write Problematic(S) =

"
MIS∈MI(S)

MIS and

Free(S) = S \ Problematic(S).

Definition 6. Let I be an inconsistency measure, and S, S ′ be two ST databases. We
consider the following postulates:

1. (Free-Formula Independence) If (id, r, t) ∈ Free(S) then I(S) = I(S \ {(id, r, t)}).

2. (Penalty) If (id, r, t) ∈ Problematic(S) then I(S) > I(S \ {(id, r, t)}).

3. (Dominance) If (id, r, t) and (id, r′, t) are ST atoms such that r ⊆ r′ then I(S ∪
{(id, r, t)}) ≥ I(S ∪ {(id, r′, t)}).

4. (Super-Additivity) If S ∩ S ′ = ∅ then I(S ∪ S ′) ≥ I(S) + I(S ′).

5. (Attenuation) If MIS ,MIS ′ ∈ MI(S) and |MIS | < |MIS ′| then I(MIS ) > I(MIS ′).

6. (Equal Conflict) If MIS ,MIS ′ ∈ MI(S) and |MIS | = |MIS ′| then I(MIS ) = I(MIS ′).

7. (MI-Normalization) If MIS ∈ MI(S) then I(MIS )=1.

8. (MI-Separability) If MI(S ∪S ′) = MI(S)∪MI(S ′) and MI(S)∩MI(S ′) = ∅ then
I(S ∪ S ′) = I(S) + I(S ′).
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Free-Formula Independence states that free ST atoms do not contribute anything to the
inconsistency measure. Penalty states that problematic ST atoms increase the inconsistency.

In the formulation for propositional knowledge bases, Dominance states that for two
formulas α and β where α |= β and α is not a contradiction, adding α to a database
increases its inconsistency at least as much as adding β. For ST databases the only way
that an ST atom α can logically imply an ST atom β is if the id and t values are the
same and the region of α is a subset of the region of β. We do not need to check for a
contradiction as no ST atom by itself can be contradictory.

Super-Additivity deals with two ST databases that do not intersect, in which case the
inconsistency of the union is at least as great as the sum of the inconsistency of the two
ST databases. Attenuation and Equal Conflict refer to minimal inconsistent subsets. The
former states that inconsistency is inversely related to size; while the latter requires minimal
inconsistent subsets of the same size to have the same inconsistency. MI-Normalization
states that a minimal inconsistent subset must have measure 1. MI-Separability means
that for any two ST databases for which there is no common minimal inconsistent subset
and for which the set of minimal inconsistent subsets of the union is obtained by taking the
union of the minimal inconsistent sets of both, the inconsistency of the union is the sum of
the inconsistencies of the components.

It is worth noting that, from the definitions of the postulates given above, analogously
to what holds for their counterparts for propositional knowledge bases (Thimm, 2018), it is
the case that:
(i) MI-Normalization is incompatible with Attenuation (i.e., there is no inconsistency mea-
sure that satisfies both these postulates at the same time), and
(ii) MI-Normalization implies Equal Conflict, i.e., if a measure satisfies MI-Normalization
then it satisfies Equal Conflict.

As we investigate these properties for the new inconsistency measures, we will find that
in most cases they are not satisfied. We do not consider this to mean that the postulates
are not good ones or that our inconsistency measures are not good; it simply means that
these specific postulates are not appropriate for the new measures. Intuitively, the reason
is that the postulates do not take into account the time, space, and object dimensional
information within ST atoms. This turns out to be too coarse-grained an approach for ST
databases. To cope with this issue, we will define “dimensional” postulates (in Section 6),
which are suitable for ST databases and the new inconsistency measures.

4. Dimensional Inconsistency Measures for ST Databases

Several inconsistency measures have been proposed in the literature for measuring incon-
sistency in propositional knowledge bases (Hunter & Konieczny, 2008; Grant & Hunter,
2013, 2011; Thimm, 2016; Doder, Raskovic, Markovic, & Ognjanovic, 2010). Therefore,
one natural approach to measuring inconsistency in ST databases is to translate them into
semantically equivalent classical propositional knowledge bases and then apply known mea-
sures. This approach has been considered by Grant et al. (2018a); however, its weakness is
that it does not take into account the three dimensions of spatio-temporal data. The reason
is that the translation introduces a propositional variable xid,p,t for each id ∈ ID, p ∈ Space,
and t ∈ T, so that the three dimensions get condensed into a single propositional variable,
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which makes it impossible to measure inconsistency along one (or more) dimensions with
known inconsistency measures.

In this section, we propose several inconsistency measures that are not possible to define
for propositional knowledge bases but are relevant for ST databases, as they explicitly take
into account the dimensions characterizing such data. We use the fact that ST databases
can be considered along three dimensions: objects, time, and space. This allows us to
measure the inconsistency along one or a combination of dimensions.

Separating the dimensions of ST databases requires looking inside the formulas. Con-
sider what such a step means for propositional knowledge bases. The formulas there contain
propositions and logical connectives (as well as parentheses). As absolute inconsistency mea-
sures typically use only the problematic formulas, a natural way of measuring inconsistency
is to count the number of distinct propositions in the problematic formulas. Let us call
a proposition p problematic if p appears in a problematic formula. Then we can define
IP (K) = |{p | p is a problematic proposition}|. Actually, we did not find this definition in
the literature on inconsistency measures. However, it is the absolute version of a relative in-
consistency measure studied by Xiao and Ma (2012). So IP is our inspiration for measuring
inconsistency along the three dimensions.

4.1 Measuring Inconsistency along the Object and Time Dimensions
Individually

In some cases we may just be interested in how many objects or how many time values are
involved in an inconsistency. Those are the two cases we deal with below.

4.1.1 Measuring Inconsistency along the Object Dimension

An inconsistency measure based strictly on objects is:

IO(S) = |{id ∈ ID | (id, r, t) ∈ MIS ∈ MI(S)}|.

Thus, IO counts how many objects are contained in some minimal inconsistent sub-
set, that is, the number of objects involved in an inconsistency. For instance, in the US
Navy databases containing the ship location data used by Parker et al. (2009) and Parisi
et al. (2010), IO could be used to get the number of ships that, at the same time, are located
in different regions having no common point.

Example 6. For Se of our running example, we have MI(Se) = {{(id1, b, 1), (id1, c, 1)},
{(id1, a, 2), (id1, c, 2)}}. Therefore, we have IO(Se) = 1, as only id1 is involved in an
inconsistency.

The following theorem shows the postulates that are satisfied by IO as well as those
that are not satisfied. Free-Formula Independence is satisfied because a free ST atom is
not involved in any inconsistency, and thus it does not contribute to the number of objects
involved in inconsistency. Dominance is satisfied because, for two ST atoms (id, r, t) and
(id, r′, t) with r ⊆ r′, (id, r, t) is involved in the same inconsistency as (id, r′, t) or possibly
more, and thus the addition of (id, r, t) to an ST database can only possibly increase the
total number of objects involved in inconsistency w.r.t. the addition of (id, r′, t). Equal
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Figure 4: ST database S2 used in the proof of Theorem 1 for Attenuation.

Conflict and MI-Normalization are satisfied because any minimal inconsistent subset MIS
involves exactly one object, and thus IO(MIS ) = 1. The remaining postulates are not
satisfied by IO, and for each of them we provide a counterexample in the proof.

Theorem 1. The IO inconsistency measure satisfies Free-Formula Independence, Dom-
inance, Equal Conflict, and MI-Normalization, but it does not satisfy Penalty, Super-
Additivity, Attenuation, and MI-Separability.

Proof. We consider the postulates individually.

1. Free-Formula Independence. A free formula does not add an inconsistency.

2. Penalty. Let S1 = {id} × {r1, r2} × {t1, t2} where t1 ∕= t2 and r1 ∩ r2 = ∅. All the
formulas are problematic because of the two inconsistencies but only one object is
involved. Hence IO(S1) = 1 = IO(S1 \ {(id, r2, t2)}).

3. Dominance. Let S be an ST database. Notice that either IO(S∪{(id, r′, t)}) = IO(S)
or IO(S ∪ {(id, r′, t)}) = IO(S) + 1. In the first case, the result is immediate. In the
second case, there must be a set of ST atoms (id, r1, t), . . . , (id, rj , t) in S such that

(∩j
i=1ri) ∩ r′ = ∅. But then r ⊆ r′ implies that (∩j

i=1ri) ∩ r = ∅, and therefore
IO(S ∪ {(id, r, t)}) = IO(S) + 1.

4. Super-Additivity. Suppose that two ST databases S and S ′ involve inconsistencies for
a single common object. Then, 1 = IO(S) = IO(S ′) = IO(S∪S ′) < IO(S)+IO(S ′) =
2.

5. Attenuation. Let
S2 = {(id, r1, t1), (id, r2, t1), (id, r3, t2), (id, r4, t2), (id, r5, t2)} where r1 ∩ r2 = ∅, r3 ∩
r4 ∕= ∅, r3 ∩ r5 ∕= ∅, r4 ∩ r5 ∕= ∅, and r3 ∩ r4 ∩ r5 = ∅—an ST database of this form is
illustrated in Figure 4.

Then, MI(S2) = {MIS ,MIS ′} where MIS = {(id, r1, t1), (id, r2, t1)} and MIS ′ =
{(id, r3, t2), (id, r4, t2), (id, r5, t2)}.
Here, 2 = |MIS | < |MIS ′| = 3, but IO(MIS ) = 1 = IO(MIS ′).

6. Equal Conflict. This follows because any minimal inconsistent subset can deal with
only one object, hence if MIS is a minimal inconsistent subset then IO(MIS ) = 1.

7. MI-Normalization. All atoms of any minimal inconsistent set MIS must have the
same object id; hence IO(MIS ) = 1.
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8. MI-Separability. Let ID = {id}, T = {t}, and Space = {p1, p2, p3}. We will
use the following two ST databases: S1 = {(id, {p1}, t), (id, {p2, p3}, t)} and S2 =
{(id, {p1}, t), (id, {p2}, t)}. Then MI(S1) = {S1} and MI(S2) = {S2}. Here S1 ∪
S2 = {(id, {p1}, t), (id, {p2, p3}, t), (id, {p2}, t)} and so MI(S1 ∪ S2) = {S1,S2} =
MI(S1)∪MI(S2) andMI(S1)∩MI(S2) = ∅. Thus the conditions for MI-Separability
are satisfied. IO(S1 ∪ S2) = 1 ∕= IO(S1) + IO(S2) = 2.

4.1.2 Measuring Inconsistency along the Time Dimension

Similar to the inconsistency measure along the object dimension, a natural inconsistency
measure along the time dimension counts how many time values are involved in an incon-
sistency:

IT(S) = |{t ∈ T | (id, r, t) ∈ MIS ∈ MI(S)}|.

For instance, considering again the US Navy databases containing the ship location data
used by Parker et al. (2009) and Parisi et al. (2010), IT could be used to get the number of
time points at which an inconsistency occurs, that is, at least one ship is located in different
regions having no common point.

Example 7. For Se we have IT(Se) = 2, as both time values 1 and 2 are involved in an
inconsistency.

As stated in the following theorem, IT satisfies the same postulates as IO (in fact, the
result for IT can be proved by reasoning analogously to the case of IO, often substituting
“time” for “object”).

Theorem 2. The IT inconsistency measure satisfies Free-Formula Independence, Dom-
inance, Equal Conflict, and MI-Normalization, but it does not satisfy Penalty, Super-
Additivity, Attenuation, and MI-Separability.

Proof. Analogous to the proof of Theorem 1.

4.2 Measuring Inconsistency along the Object and Time Dimensions Together

ST databases treat objects and time in a similar manner and differently from space, as seen
from Definition 2. So it is natural to combine the object and time dimensions before dealing
with the spatial dimension. This can be done by combining the two dimensions individually,
that is, computing IO and IT and then applying some operation(s) to the two numbers.
Instead of doing so, we observe that in many cases we are dealing with id, t pairs. Indeed,
all the ST atoms of a minimal inconsistent set must have the same id and t values. The
following inconsistency measure is thus defined looking at id, t pairs in minimal inconsistent
subsets:

IOT (S) = |{(id, t) | (id, r, t) ∈ MIS ∈ MI(S)}|.

Thus, IOT counts how many object-time pairs are involved in an inconsistency.

Example 8. In our running example for ST database Se, we have IOT (Se) = 2, as two
pairs of (id, t) values are involved in inconsistencies, namely (id1, 1) and (id1, 2).
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It should not be surprising that IOT satisfies exactly the same properties as IO and IT.

Theorem 3. The IOT inconsistency measure satisfies Free-Formula Independence, Dom-
inance, Equal Conflict, and MI-Normalization, but it does not satisfy Penalty, Super-
Additivity, Attenuation, and MI-Separability.

Proof. Analogous to the proof of Theorem 1.

4.3 Measuring Inconsistency along the Space Dimension

In this subsection we measure inconsistency by the amount of space that the inconsistencies
involve. We give two different measures. The first one is similar to what we did for objects
and time. The second involves distance.

4.3.1 The IS Inconsistency Measure

For an ST database S we define a region RS as follows:

RS =
#

{r | (id, r, t) ∈ MIS ∈ MI(S)}.

Then, we define IS(S) = |RS |.
Thus, IS counts the number of points that are in regions that are involved in an inconsis-
tency.

Example 9. In Se there are three regions involved in MI(Se), namely region a with 49
spatial points in it, region b with 49 but 15 of them also belong to a, and region c with 48
points. Therefore, among the three regions we have IS(Se) = |RSe | = 131.

The next result shows that only one postulate from Definition 6, Free-Formula Inde-
pendence, is satisfied by IS ; we provide counterexamples for the rest of the postulates that
show why they are not satisfied. The reason is similar to why such a postulate is satisfied
by the inconsistency measures introduced so far, that is, a free ST atom (id, r, t) is not
involved in any inconsistency, and thus the points in r cannot contribute to the number of
points involved in an inconsistency.

Theorem 4. The IS inconsistency measure satisfies Free-Formula Independence, but it
does not satisfy any of the other postulates from Definition 6.

Proof. We deal with each postulate individually.

1. Free-Formula Independence. A free formula does not add an inconsistency.

2. Penalty. Let S6 = {(id1, {p1}, t), (id1, {p2}, t), (id2, {p1}, t), (id2, {p2}, t)} where id1 ∕=
id2 and p1 ∕= p2. All the formulas are problematic because of the two inconsistencies.
However, IS(S6) = 2 = IS(S6 \ {(id1, {p1}, t)}).

3. Dominance. Let S7 = {(id, {p1}, t)}, r = {p2}, and r′ = {p2, p3}, where p1, p2, and
p3 are distinct points. Here 2 = IS(S7 ∪ {(id, r, t)}) < IS(S7 ∪ {(id, r′, t}) = 3.

4. Super-Additivity. Consider the ST databases S8 = {(id1, {p1}, t), (id1, {p2}, t)} and
S9 = {(id2, {p1}, t), (id2, {p2}, t)}, where id1 ∕= id2 and p1 ∕= p2. Then, IS(S8) =
IS(S9) = IS(S8 ∪ S9) = 2. Hence, IS(S8 ∪ S9) < IS(S8) + IS(S9).
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5. Attenuation. Consider the ST database

S10 = {(id, {p1}, t1), (id, {p2}, t1), (id, {p1, p2}, t2), (id, {p2, p3}, t2), (id, {p1, p3}, t2)},

where t1 ∕= t2, and p1, p2, and p3 are distinct points. Clearly, MIS 4 = {(id, {p1}, t1),
(id, {p2}, t1)} and MIS ′

4 = {(id, {p1, p2}, t2), (id, {p2, p3}, t2), (id, {p1, p3}, t2)} are in
MI(S10), 2 = |MIS 4| < |MIS ′

4| = 3, but 2 = IS(MIS 4) < IS(MIS ′
4) = 3.

6. Equal Conflict. Let S11 = {(id, {p1}, t1), (id, {p2}, t1), (id, {p1}, t2), (id, {p2, p3}, t2)}
where t1 ∕= t2 and p1, p2, and p3 are distinct points. Then, MIS 5 = {(id, {p1}, t1), (id,
{p2}, t1)} and MIS ′

5 = {(id, {p1}, t2), (id, {p2, p3}, t2)} are in MI(S11), |MIS 5| = 2 =
|MIS ′

5|, but IS(MIS 5) = 2 and IS(MIS ′
5) = 3.

7. MI-Normalization. Consider MIS 1 = {(id, {p1}, t), (id, {p2}, t)} where p1 ∕= p2. Then,
IS(MIS 1) = 2.

8. MI-Separability. Let ID = {id}, T = {t}, and Space = {p1, p2, p3}. We will
use the following two ST databases: S1 = {(id, {p1}, t), (id, {p2, p3}, t)} and S2 =
{(id, {p1}, t), (id, {p2}, t)}. Then MI(S1) = {S1} and MI(S2) = {S2}. Here S1 ∪
S2 = {(id, {p1}, t), (id, {p2, p3}, t), (id, {p2}, t)} and so MI(S1 ∪ S2) = {S1,S2} =
MI(S1)∪MI(S2) andMI(S1)∩MI(S2) = ∅. Thus the conditions for MI-Separability
are satisfied. IS(S1 ∪ S2) = 3 ∕= IT (S1) + IT (S2) = 5.

Clearly, space is one important dimension for ST databases, however, the rationality
postulates are not satisfied for the simple (and intuitive) inconsistency measure IS .

4.3.2 The ID Inconsistency Measure

For this measure we require a metric d : Space × Space → [0,∞) satisfying the following
axioms, which are the standard properties a metric (or distance function) has to satisfy:

• d(p, p′) = 0 if and only if p = p′ (identity of indiscernibles);

• d(p, p′) = d(p′, p) (symmetry);

• d(p, p′) ≤ d(p, p′′) + d(p′′, p′) (triangle inequality).

This allows us to define a function on regions as follows:1

d(r, r′) = min{d(p, p′) | p ∈ r, p′ ∈ r′}.

Next we define distance for minimal inconsistent subsets. Let MIS be a minimal incon-
sistent subset of an ST database S: MIS = {(id, r1, t), . . . , (id, rn, t)}. We start by defining
n new regions, one for each i, 1 ≤ i ≤ n,

Ri =
$

j ∕=i

rj

1. Note that d(r, r′) is not a metric because the triangle inequality does not hold. For instance, consider
r1 = {(x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 2}, r2 = {(x, y) | 0 ≤ x ≤ 7, 3 ≤ y ≤ 5}, and r3 = {(x, y) | 5 ≤ x ≤
7, 0 ≤ y ≤ 2}. Then, d(r1, r3) = 3 ≰ d(r1, r2) + d(r2, r3) = 1 + 1.
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Since MIS is a minimal inconsistent set, for each i, 1 ≤ i ≤ n, Ri ∕= ∅, but ∩n
i=1ri = ∅. We

define the value d(MIS ) as follows:

d(MIS ) = min{d(Ri, ri) | 1 ≤ i ≤ n}.

We can think of d(MIS ) as the minimal distance in Space between any regions involved
in a minimal inconsistent subset.

Then, we define:

ID(S) =
%

MIS∈MI(S)
d(MIS ).

Thus ID sums the minimal distances between regions involved in minimal inconsistent
subsets for the given ST database.

Example 10. Let MI(Se) = {M1,M2}, where M1 = {(id1, b, 1), (id1, c, 1)} and M2 =
{(id1, a, 2), (id1, c, 2)}. Then for M1, R1 = c and R2 = b, d(M1) = min{d(c, b), d(b, c)}, and
assuming that d is the Euclidean distance, we obtain d(M1) = d(c, b) = d(b, c) = 1, because
a pair of closest points are (8, 10) ∈ b and (9, 10) ∈ c. In the same way, d(M2) = d(a, c) =
d(c, a) = 3, because a pair of closest points are (6, 12) ∈ a and (9, 12) ∈ c. Therefore,
ID(S) =

&
Mi∈MI(Se)

d(Mi) = 3 + 1 = 4.

Recall that the definition of ID relies on an arbitrary metric d over Space. Thus, in a
sense, ID is a family of inconsistency measures, one inconsistency measure for each specific
metric. The next result shows the postulates from Definition 6 that are satisfied by ID
and counterexamples for those that are not satisfied by the measure. Notice that when we
say that ID satisfies a postulate, it means that the postulate is satisfied no matter which
metric is employed, that is, ID satisfies the postulate for every metric. On the other hand,
when we say that ID does not satisfy a postulate, it means that there is at least one metric
for which ID does not satisfy the postulate—in such a case, we show the metric and the
scenario that violates the postulate (notice that there might be specific metrics for which the
postulate might be satisfied). Thus, in the following theorem, specific metrics are employed
to show that ID does not satisfy Attenuation, Equal Conflict, and MI-Normalization (details
are reported in the proof). For Free-Formula Independence, Penalty, Dominance, Super-
Additivity, and MI-Separability, we show that ID satisfies such postulates whichever metric
is employed.

Theorem 5. The ID inconsistency measure satisfies Free-Formula Independence, Penalty,
Dominance, Super-Additivity, and MI-Separability, but it does not satisfy Attenuation,
Equal Conflict, and MI-Normalization.

Proof. We deal with each postulate individually.

1. Free-Formula Independence. A free formula does not add an inconsistency.

2. Penalty. First of all, notice that, for any two ST databases S and S ′, if S ⊆ S ′, then
MI(S) ⊆ MI(S ′). Let S be an ST database. If (id, r, t) ∈ Problematic(S) then
there exists MIS ∈ MI(S) such that MIS /∈ MI(S \ {(id, r, t)}). Hence, ID(S) >
ID(S \ {(id, r, t)}).
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3. Dominance. First, suppose that (id, r′, t) ∕∈ Problematic(S∪{(id, r′, t)}). Then ID(S∪
{(id, r′, t)}) = ID(S) ≤ ID(S∪{(id, r, t)}). The other case is where (id, r′, t) ∈ MIS ′ ∈
MI(S∪{(id, r′, t)}). This means that there is a set of ST atoms (id, r′1, t), . . . , (id, r

′
j , t)

in S such that writing R′
j for ∩

j
i=1r

′
i, R

′
j ∕= ∅, but R′

j ∩ r′ = ∅. But then r ⊆ r′ implies
that R′

j ∩ r = ∅ also. Hence (id, r, t) ∈ MIS ∈ MI(S ∪ {(id, r, t)}). Consider how
d(MIS ) is calculated as the distance between 2 points, say p and p′. One of those
points must be in r, say p. Let p′ ∈ R′

j such that d(MIS ) = d(p, p′). By r ⊆ r′, p ∈ r′,
and there may be points in r′ closer to R′

j than p. Hence d(MIS ′) ≤ d(MIS ). This
is true for every MIS ′ such that (id, r′, t) ∈ MIS ′. Therefore ID(S ∪ {(id, r, t)}) ≥
ID(S ∪ {(id, r′, t)}).

4. Super-Additivity. Given two ST databases S and S ′, S ∩ S ′ = ∅ implies that
MI(S) ∩ MI(S ′) = ∅. Then MI(S) ∪ MI(S ′) ⊆ MI(S ∪ S ′). So ID(S ∪ S ′) =&
MIS∈MI(S∪S′)

d(MIS ) ≥ ID(S) + ID(S ′) =
&

MIS∈MI(S)
d(MIS ) +

&
MIS∈MI(S′)

d(MIS ).

5. Attenuation. Consider the following ST database S12 = {(id, {p1}, t1), (id, {p2}, t1),
(id, {p3, p4}, t2), (id, {p4, p5}, t2), (id, {p3, p5}, t2)}, where t1 ∕= t2, all the points p1, p2,
p3, p4, p5 are distinct, d(p1, p2) = 1, d(p3, p4) = 2, d(p4, p5) = 2, and d(p3, p5) = 2.
Then, we have that MIS = {(id, {p1}, t1), (id, {p2}, t1)} and MIS ′ = {(id, {p3, p4}, t2),
(id, {p4, p5}, t2), (id, {p3, p5}, t2)} are in MI(S), 2 = |MIS | < |MIS ′| = 3, but 1 =
ID(MIS ) < ID(MIS ′) = 2.

6. Equal Conflict. Let S13 = {(id, {p1}, t), (id, {p2}, t), (id, {p3}, t)}, where p1, p2, p3 are
all distinct, d(p1, p2) = 1, and d(p1, p3) = 2. Then MIS = {(id, {p1}, t), (id, {p2}, t)}
and MIS ′ = {(id, {p1}, t), (id, {p3}, t)} are in MI(S), |MIS | = 2 = |MIS ′|, but
ID(MIS ) = 1 and ID(MIS ′) = 2.

7. MI-Normalization. Consider MIS 1 = {(id, {p1}, t), (id, {p2}, t)} where p1 ∕= p2. If
d(p1, p2) = 2 then ID(MIS 1) = 2.

8. MI-Separability. Consider any two ST databases S and S ′ that satisfy the two prop-
erties for MI-Separability. Then,

ID(S ∪ S ′) =
%

MIS∈MI(S∪S′)

d(MIS ) =
%

MIS∈MI(S)
d(MIS ) +

%

MIS∈MI(S′)

d(MIS ) =

= ID(S) + ID(S ′).

4.4 Discussion

Table 1 summarizes which properties are satisfied by the inconsistency measures introduced
in this section.

Not surprisingly, IO, IT, and IOT satisfy the same set of postulates. As already observed
before, the results for IT can be proved by reasoning analogously to the case of IO, and the
same holds for IOT, which behaves similarly to IO and IT.
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Dimensional IMs

IO IT IOT IS ID
Free-Formula Ind. ✓ ✓ ✓ ✓ ✓

Penalty ✗ ✗ ✗ ✗ ✓

Dominance ✓ ✓ ✓ ✗ ✓

Super-Additivity ✗ ✗ ✗ ✗ ✓

Attenuation ✗ ✗ ✗ ✗ ✗

Equal Conflict ✓ ✓ ✓ ✗ ✗

MI-Normalization ✓ ✓ ✓ ✗ ✗

MI-Separability ✗ ✗ ✗ ✗ ✓

Table 1: Postulates satisfaction of dimensional inconsistency measures.

The two inconsistency measures based on the space dimension, namely IS and ID,
behave quite differently. Specifically, IS satisfies only Free-Formula Independence, which is
also satisfied by all other inconsistency measures. Regarding ID, on the one hand, it satisfies
postulates that are not satisfied by any of the other inconsistency measures (namely, Penalty,
Super-Additivity, and MI-Separability), on the other hand, it does not satisfy postulates
(namely, Equal Conflict and MI-Normalization) that are satisfied by other inconsistency
measures (namely, IO, IT, and IOT). Thus, from this point of view, ID is incomparable to
IO, IT, and IOT. We also notice that Attenuation is not satisfied by any of the measures
(recall that Attenuation and MI-Normalization cannot be jointly satisfied).

In Section 6, we will propose dimensional counterparts of some postulates that better fit
the dimensional nature of the inconsistency measures, and, as we will show, such dimensional
postulates are satisfied in most of the cases.

5. Repair-Based Inconsistency Measures

In this section, we define three new inconsistency measures, namely Iid, Itime, and Iregion,
which are based on the cost of restoring consistency along the object, time, and spatial
dimensions. We also introduce measure Icard, which is not dimensional (it deals with whole
ST atoms), but it is also based on the cost of restoring consistency in a minimal way as the
other three measures introduced in this section.

In this work we rely on the notion of a repair commonly used when dealing with in-
consistency (Bertossi, 2011), which in our case is a consistent ST database that minimally
differs from the original one. In this regard, we will explain two aspects: what kind of
modifications can be applied to the original ST database so as to obtain a repair, and how
to measure the difference between two ST databases (in particular, the original and the
“repaired” ones).

To formalize “repair-based” inconsistency measures, we first need to define repairs for ST
databases, inspired by the approach for probabilistic spatio-temporal databases by Parisi
and Grant (2017), and then define an inconsistency measure as the minimum cost of a
repair—a similar idea has been recently considered by Bertossi (2018) to define inconsistency
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measures for relational databases, where the issues concerning spatio-temporal data, as well
as postulates satisfaction, are not considered.

Before defining the concept of repair for ST databases, we formalize the basic concepts
of update and correction, which will be used to define repairs. Basically, updates are ways of
modifying ST databases by changing some attribute values of ST atoms, while corrections
consist of updates that restore consistency.

5.1 Updates and Corrections

In general, an update of an ST atom a is an ST atom a′ derived from a by changing (at
most) one of its dimensions. Hence, we will deal with 3 types of updates.

Definition 7 (Update). Given an ST atom a = (id, r, t),

1. an id-update of a is an ST atom a′ = (id′, r, t);

2. a time-update of a is an ST atom a′ = (id, r, t′);

3. a region-update of a is an ST atom a′ = (id, r′, t).

Thus, an id-update (resp., time-update, region-update) of a is either the result of chang-
ing the id value (resp., time value, region) of a or a itself.

Corrections are specific ways of changing an inconsistent ST database to one that is
consistent using updates.

Definition 8 (Correction). Let S be an ST database. A consistent ST database S ′ is
called an X-correction of S, where X ∈ {id, time, region}, if there is a surjective function
Xcorr : S → S ′ such that for every a ∈ S, Xcorr(a) is an X-update of a.

So an id-correction allows only id-updates, and the other types of corrections are defined
analogously. We assure that every element in S ′ is the result of an update of an element
of S. Thus, it is possible that |S ′| < |S| because, for instance, for an id-correction it may
happen that idcorr(a1) = idcorr(a2) where a1, a2 are two distinct ST atoms in S (a similar
behavior can occur also for the other types of corrections).

Example 11. Consider the atoms a = (id1, b, 1) and b = (id1, a, 2) in our running example,
where id-updates of a and b, respectively, could be a′ = (id2, b, 1) and b′ = (id2, a, 2).
In this case, if we define idcorr(id1, b, 1) = (id2, b, 1), idcorr(id1, a, 2) = (id2, a, 2), and
idcorr(x) = x for all other ST atoms x in Se, then the resulting ST database induced by
idcorr is an id-correction of Se.

5.2 Measuring Inconsistency by the Repairing Cost

Repairs are minimal corrections. In general, we would like to preserve as much of the in-
formation in the original database as possible. The idea for the three types of corrections
in Definition 8 is to define a distance between two ST atoms for the type of update under
consideration, take the sum of the distances between all atoms and their updated counter-
parts, and find the corrections whose sum is minimal. To measure the distance between
two ST atoms when id- (resp., time-, region-) corrections are considered, we will rely on a
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metric on the set of object identifiers (resp., time values, regions). Rather than committing
to specific metrics, we will assume arbitrary ones, as done for the ID inconsistency measure
(cf. Section 4.3.2). As discussed for the ID inconsistency measure, we point out that when
one of the inconsistency measures Iid, Itime, Iregion satisfies a postulate, it does so for ev-
ery metric employed, while when an inconsistency measure does not satisfy a postulate, it
means that there is at least one metric for which the postulate is not satisfied. After the
aforementioned inconsistency measures based on repairing along the object identifier, time,
and space dimensions, we will consider also maximal consistent subsets of an ST database,
which correspond to a repair strategy performing atom deletions.

5.2.1 The Measure Iid
Our first repairing strategy is based on minimally updating the object identifiers of the ST
atoms to restore consistency. This means assuming that some object may be associated
with a wrong identifier, not corresponding to the object from which an ST atom has been
generated. As an example, license plate recognition systems may give wrong identifiers to
vehicles passing in the proximity of a roadside sensor due to both bad external conditions
(such as sun and headlights, dirty plates) and the limited level of the recognition software
and vision hardware employed. Nevertheless, recognizing systems are generally designed to
minimize the error rate and in particular the difference between the acquired and the true
values. Thus, this is taken into account by id-repairs by choosing as good corrections those
for which the difference between the acquired and the true values is minimized according
to a metric that measures such a difference.

We assume a metric dID on the set ID of object identifiers for measuring the cost of
updating id to id′ for an ST atom. Thus, the cost of fixing the object identifier id of
an ST atom a by setting it to id′ is given by the distance dID(id, id

′) between the two
identifiers. For instance, if the objects are cars and the identifiers are the license plate
numbers, then dID can be the edit-distance between the strings encoding these numbers. In
the following, we denote by costid(a, a

′) the cost of changing atom a into an id-update a′

(here the only difference between a and a′ is that the object identifier id in a was changed
to id′ in a′). Thus, costid(a, a

′) = dID(id, id
′). Moreover, given an ST database S and an

id-correction S ′, let Cid be the set of all functions idcorr as per Definition 8. We define
costid(S,S ′) = minidcorr∈Cid

{
&

a∈S costid(a, idcorr(a))}.

Definition 9 (id-repair). An id-repair for an ST database S is an id-correction S ′ of S
such that for all id-corrections S ′′ of S, costid(S,S ′) ≤ costid(S,S ′′).

We are now ready to define the measure Iid. It is the cost of an id-repair, if one exists.
It is possible that there is no id-correction at all, as all possible sets of id-updates result in
an inconsistent database. Recall that ID is fixed.

Definition 10 (Measure Iid). Given an ST database S, Iid(S) = ∞ if there is no id-repair;
otherwise Iid(S) = costid(S,S ′) where S ′ is an id-repair for S.

Example 12. For the ST database Se of our running example, let idcorr(id1, b, 1) =
(id2, b, 1), idcorr(id1, a, 2) = (id2, a, 2), and idcorr(x) = x for all other ST atoms x. As-
suming a cost based on edit distance, idcorr yields an id-repair, and we have Iid(Se) = 2.
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The following result shows that Iid satisfies Dominance and Super-Additivity, but in
general it does not satisfy the other postulates, as shown in the counterexamples reported
in the proof (recall that counterexamples employ specific metrics dID).

Theorem 6. The Iid inconsistency measure satisfies Dominance and Super-Additivity, but
it does not satisfy Free-Formula Independence, Penalty, Attenuation, Equal Conflict, MI-
Normalization, and MI-Separability.

Proof. In all the counterexamples we use dID(idi, idj) = |i− j|.

1. Free-Formula Independence. Let ID = {id1, id2}, T = {t}, Space = {p1, p2, p3},
and S = {(id1, {p1}, t), (id1, {p2}, t), (id2, {p3}, t)}. Then Iid(S) = ∞ ∕= Iid(S \
{(id2, {p3}, t)}) = 1.

2. Penalty. Let ID = {id}, T = {t}, Space = {p1, p2, p3}, and S = {(id, {p1}, t),
(id, {p2}, t), (id, {p3}, t)}. Clearly, (id, {p3}, t) ∈ Problematic(S) but Iid(S) = ∞ ∕>
Iid(S \ {(id, {p3}, t)}) = ∞.

3. Dominance. Let S ′ be an id-repair for S∪{(id, r, t)}, and let idcorr be an id-correction
s.t. Iid(S∪{(id, r, t)}) = costid(S∪{(id, r, t)},S ′) =

&
a∈S∪{(id,r,t)} costid(a, idcorr(a)).

Since r ⊆ r′, it is the case that idcorr is an id-correction also for S∪{(id, r′, t)} (in fact,
every inconsistency that is solved w.r.t. (id, r, t) is also solved w.r.t. (id, r′, t), where
r ⊆ r′). By the definition of an id-repair, every id-repair S ′′ for S ∪ {(id, r′, t)} is s.t.
Iid(S ∪{(id, r′, t)}) = costid(S ∪{(id, r′, t)},S ′′) ≤

&
a∈S∪{(id,r′,t)} costid(a, idcorr(a)),

from which it follows that Iid(S ∪ {(id, r′, t)}) ≤ Iid(S ∪ {(id, r, t)}).

4. Super-Additivity. Let S∗ be an id-repair for S ∪S ′, and let idcorr be an id-correction
such that Iid(S ∪ S ′) = costid(S ∪ S ′,S∗) =

&
a∈S∪S′ costid(a, idcorr(a)). Given this,

we define restrictions of idcorr to the atoms in S and S ′, respectively, as follows:
idcorr1 : S → S∗

1 such that idcorr1(a) = idcorr(a) and
idcorr2 : S ′ → S∗

2 such that idcorr2(a) = idcorr(a),
where S∗

1 (resp., S∗
2 ) is the image of idcorr under S (resp., S ′).

We can easily check that idcorr1 and idcorr2 are corrections for S and S ′, respectively,
since idcorr is a correction for S∪S ′. Also, since S∩S ′ = ∅, it holds that Iid(S∪S ′) =&

a∈S∪S′ costid(a, idcorr(a)) =
&

a∈S costid(a, idcorr1(a))+
&

a∈S′ costid(a, idcorr2(a)).
Finally, by the definition of an id-repair, every id-repair S1 for S (resp., S2 for S ′)
is such that Iid(S) = costid(S,S1) ≤

&
a∈S costid(a, idcorr1(a)) (resp., Iid(S ′) =

costid(S,S2) ≤
&

a∈S′ costid(a, idcorr2(a))), from which it follows that Iid(S ∪ S ′) ≥
Iid(S) + Iid(S ′).

5. Attenuation. Let ID = {id1, id2}, T = {t}, Space = {p1, p2, p3}, S = {(id1, {p1, p2}, t),
(id1, {p2, p3}, t), (id1, {p1, p3}, t), (id2, {p1}, t), (id2, {p2}, t)}. There are two minimal
inconsistent subsets,MIS = {(id2, {p1}, t), (id2, {p2}, t)} andMIS ′ = {(id1, {p1, p2}, t),
(id1, {p2, p3}, t), (id1, {p1, p3}, t)}. Also, let dID be such that: dID(idx, idy) ≥ 1 for all
idx ∕= idy ∈ ID and dID(id1, id2) = 1. Then, |MIS | < |MIS ′|, but Iid(MIS ) = 1 ∕>
Iid(MIS ′) = 1.
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6. Equal Conflict. Let ID = {id1, id3, id4}, T = {t}, Space = {p1, p2}, and S =
{(id1, {p1}, t), (id1, {p2}, t), (id3, {p1}, t), (id3, {p2}, t)}. Clearly, there are two min-
imal inconsistent subsets, namely MIS = {(id1, {p1}, t), (id1, {p2}, t)} and MIS ′ =
{(id3, {p1}, t), (id3, {p2}, t)}. Then, |MIS | = |MIS ′|, but Iid(MIS ) = 2 ∕= Iid(MIS ′) =
1.

7. MI-Normalization. Let ID = {id1, id3}, T = {t}, Space = {p1, p2}, and S =
{(id1, {p1}, t), (id1, {p2}, t)}. Thus, there is MIS = S ∈ MI(S) such that Iid(MIS ) =
2 ∕= 1.

8. MI-Separability. Let us consider ID = {id1, id2}, T = {t}, Space = {p1, p2, p3, p4},
S = {(id1, {p1}, t), (id1, {p2}, t)}, and S ′ = {(id2, {p3}, t), (id2, {p4}, t)}. Although
MI(S ∪ S ′) = {S,S ′} = MI(S)∪MI(S ′) and MI(S)∩MI(S ′) = ∅, Iid(S ∪ S ′) =
∞ ∕= Iid(S) + Iid(S ′) = 1 + 1 = 2.

5.2.2 The Measure Itime

The next repairing strategy we use is based on minimally updating the time values associated
with the ST atoms. This means assuming that some error occurred when assigning time
stamps. This may happen for example in a tracking system where sensors report the position
and time that they sense to a server application that combines and stores this information.
If the sensors are not synchronized, considering together the time values obtained from the
several sources is likely to reveal some inconsistency. Again, in the following, to define a
time-repair we rely on the assumption that the differences between the actual time values
and those detected by sensors are generally low, and thus time values in a repair should be
as close as possible to the original ones.

We need a metric dT on the set of time values in T measuring the cost of updating
t to t′. For this purpose we can use for instance dT (t, t

′) = |t′ − t|. Then, we denote by
costtime(a, a

′) the cost of changing atom a to a time-update a′, where t in a was changed
to t′ in a′, and define costtime(a, a

′) = dT (t, t
′). Finally, given an ST database S and a

time-correction S ′, let Ct be the set of all functions timecorr as per Definition 8. We define
costtime(S,S ′) = mintimecorr∈Ct{

&
a∈S costtime(a, timecorr(a))}.

The notions of time-repair and Itime are defined analogously to id-repair and Iid but
for the time dimension.

Definition 11 (time-repair). A time-repair for an ST database S is a time-correction S ′

of S such that for all time-corrections S ′′ of S, costtime(S,S ′) ≤ costtime(S,S ′′).

Hence, we define measure Itime as the cost of a time-repair, if one exists.

Definition 12 (Measure Itime). Given an ST database S, Itime(S) = ∞ if there is no
time-repair, otherwise Itime(S) = costtime(S,S ′) where S ′ is a time-repair for S.

Example 13. For Se, let timecorr(id1, c, 1) = (id1, c, 2), timecorr(id1, a, 2) = (id1, a, 1),
and timecorr(x) = x for all other ST atoms x. Using dT (t, t

′) = |t − t′|, timecorr yields a
time-repair and Itime(Se) = 2.
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As stated in the following theorem, Itime satisfies that same postulates as Iid. As for
Iid, when Itime satisfies a postulate, it does so for every metric dT , while when a postulate
is not satisfied by Itime, a counterexample employing a specific metric dT is used.

Theorem 7. The Itime inconsistency measure satisfies Dominance and Super-Additivity,
but it does not satisfy Free-Formula Independence, Penalty, Attenuation, Equal Conflict,
MI-Normalization, and MI-Separability.

Proof. The proofs are the same as for Theorem 6 with the id and t values switched. In all
the counterexamples, the standard time distance is used, that is, dT (t, t

′) = |t− t′|.

The counterexamples reported in the proof of Theorem 6, which apply also to Theorem 7,
show that the same kind of issues prevent both Iid and Itime from satisfying other postulates
besides Dominance and Super-Additivity.

5.2.3 The Measure Iregion
The next repairing strategy we use is based on minimally updating regions in ST atoms.
Similar to the previously introduced notions of repairs, we use a metric dR(r, r

′) on the set
of regions. For instance, since a region is a set of point locations, we might measure the
cost of updating a region r into a region r′ as the cardinality of their symmetric difference,
that is, we might define dR(r, r

′) = |(r \ r′) ∪ (r′ \ r)|.
We denote by costregion(a, a

′) the cost of changing atom a to a region-update a′, where
r in a was changed to r′ in a′, and define costregion(a, a

′) = dR(r, r
′). Given an ST database

S and a region-correction S ′, let Cr be the set of all functions regcorr as per Definition 8.
We define costregion(S,S ′) = minregcorr∈Cr{

&
a∈S costregion(a, regcorr(a))}.

The notions of region-repair and Iregion are defined analogously to the previous ones.

Definition 13 (region-repair). A region-repair for an ST database S is a region-correction
S ′ of S such that for all region-corrections S ′′ of S, costregion(S,S ′) ≤ costregion(S,S ′′).

Measure Iregion is defined as the cost of a region-repair.

Definition 14 (Measure Iregion). Given an ST database S, Iregion(S) = costregion(S,S ′)
where S ′ is a region-repair for S.

Example 14. Assuming that regions must be rectangles and the cardinality of the symmetric
difference between two regions is the cost function, a region-repair for Se is the region-
correction given by the function regcorr defined as follows: regcorr(id1, c, 1) = (id1, c

′, 1),
regcorr(id2, c, 2) = (id2, c

′′, 2), and regcorr(x) = x for all other ST atoms x, where c′ =
((8, 9), (16, 14)) and c′′ = ((6, 9), (16, 14)). Hence, Iregion(Se) = 6 + 18 = 24.

The following theorem shows that Iregion satisfies Super-Additivity, but it does not
satisfy all the other postulates—for the latter, we exhibit counterexamples (where specific
dR metrics are employed).

Theorem 8. The Iregion inconsistency measure satisfies Super-Additivity, but it does not
satisfy Free-Formula Independence, Penalty, Dominance, Attenuation, Equal Conflict, MI-
Normalization, and MI-Separability.
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Proof. We deal with each postulate individually.

1. Free-Formula Independence. Let ID = {id}, T = {t}, Space = {p1, p2, p3, p4, p5}, and
S = {(id, {p1}, t), (id, {p2}, t), (id, {p1, p2}, t)}, where dR({p1}, {p3, p4}) = dR({p2},
{p4, p5}) = 1 and dR(rx, ry) = 3 for all other pairs of distinct regions rx and ry. Then,
(id, {p1, p2}, t) ∈ Free(S), and Iregion(S) = 3 ∕= Iregion(S) \ {(id, {p1, p2}, t)} = 2.

2. Penalty. Let ID = {id}, T = {t}, Space = {p1, p2, p3, p4}, and S = {(id, {p1, p2}, t),
(id, {p2, p3}, t), (id, {p4}, t)}, where dR(rx, ry) = 1 for all pairs of distinct regions rx
and ry. Notice that every ST atom in S is problematic. A region-repair for S is
obtained by updating {p4} into {p1, p2} (or {p2, p3})—the so obtained ST database is
consistent and has minimal cost as at least one region has to be updated and every
update has cost 1. Thus, Iregion(S) = 1 ∕> Iregion(S \ {(id, {p1, p2}, t)}) = 1.

3. Dominance. Let ID = {id}, T = {t}, Space = {p1, p2, p3, p4}, and S = {(id, {p1, p2}, t)}.
Consider two regions r = {p3} and r′ = {p3, p4}. Let dR be defined as follows:
dR(r, {p2}) = 1, and dR(rx, ry) = 2 for all other pairs of distinct regions rx and ry. A
region-repair for S∪{(id, r, t)} is obtained by updating r into {p2}—the so obtained ST
database is consistent and has minimal cost, namely 1, as at least one region has to be
updated and every update has cost at least 1. A region-repair for S∪{(id, r′, t)} can be
obtained by updating r′ into a region that overlaps with {p1, p2} (or updating {p1, p2}
into a region that overlaps with r′)—the so obtained ST database is consistent and has
minimal cost, namely 2, as at least one region has to be updated, the only update with
cost 1 (i.e., updating r into {p2} or vice versa) cannot be applied to S ∪ {(id, r′, t)},
and all other updates have cost 2. Thus, I(S ∪ {(id, r, t)}) < I(S ∪ {(id, r′, t)}).

4. Super-Additivity. Let S∗ be a region-repair for S ∪ S ′, and regcorr be a region-
correction s.t. Iregion(S∪S ′) = costregion(S∪S ′,S∗) =

&
a∈S∪S′ costregion(a, regcorr(a)).

Let regcorr1 and regcorr2 be restrictions of regcorr to the ST atoms in S and S ′, re-
spectively, defined as follows:
regcorr1 : S → S∗

1 such that regcorr1(a) = regcorr(a) for all a ∈ S, and
regcorr2 : S ′ → S∗

2 such that regcorr2(a) = regcorr(a) for all a ∈ S ′,
where S∗

1 (resp., S∗
2 ) is the image of regcorr under S (resp., S ′).

It is easy to check that regcorr1 and regcorr2 are region-corrections for S and S ′, re-
spectively, since regcorr is a region-correction for S∪S ′. Also, since S∩S ′ = ∅, we have
Iregion(S ∪ S ′) =

&
a∈S∪S′ costregion(a, regcorr(a))=

&
a∈S costregion(a, regcorr1(a)) +&

a∈S′ costregion(a, regcorr2(a)). Finally, by definition of region-repair, we have that
every region-repair S1 for S (resp., S2 for S ′) is such that Iregion(S) = costregion(S,S1)≤&

a∈S costregion(a, regcorr1(a)) (resp., we have that Iregion(S ′) = costregion(S,S2)≤&
a∈S′ costregion(a, regcorr2(a))), from which it follows Iregion(S ∪ S ′) ≥ Iregion(S) +

Iregion(S ′).

5. Attenuation. Let ID = {id}, T = {1, 2}, Space = {p1, p2, p3}, and S = {(id, {p1, p2}, 1),
(id, {p2, p3}, 1), (id, {p1, p3}, 1), (id, {p1}, 2), (id, {p2}, 2)}. where dR(rx, ry) = 1 for
all pairs of distinct regions rx and ry. Clearly, there are two minimal inconsistent
subsets, namely MIS = {(id, {p1, p2}, 1), (id, {p2, p3}, 1), (id, {p1, p3}, 1)} and MIS ′ =

757



Grant, Martinez, Molinaro, & Parisi

{(id, {p1}, 2), (id, {p2}, 2)}. Then, |MIS | = 3 > |MIS ′| = 2 but Iregion(MIS ) = 1 ∕>
Iregion(MIS ′) = 1.

6. Equal Conflict. Let ID = {id}, T = {t}, Space = {p1, p2, p3}, and S = {(id, {p1}, t),
(id, {p2}, t), (id, {p3}, t)}, where dR({p1}, {p2}) = dR({p2}, {p3}) = 1 and dR(rx, ry) =
2 for all other pairs of distinct regions rx and ry. Clearly, there are three minimal
inconsistent subsets, namely MIS = {(id, {p1}, t), (id, {p2}, t)}, MIS ′ = {(id, {p1}, t),
(id, {p3}, t)}, and MIS ′′ = {(id, {p2}, t), (id, {p3}, t)}. Then, |MIS | = |MIS ′| = 2, but
Iregion(MIS ) = 1 ∕= Iregion(MIS ′) = 2.

7. MI-Normalization. The scenario above discussed for Equal Conflict shows a minimal
inconsistent subset MIS ′ with Iregion(MIS ′) = 2.

8. MI-Separability. Let us consider ID = {id}, T = {t}, Space = {p1, p2, p3, p4},
and S = {(id, {p1}, t), (id, {p2, p3}, t)} and S ′ = {(id, {p1}, t), (id, {p3, p4}, t)}, where
dR(rx, ry) = 1 for all pairs of distinct regions rx and ry. Then MI(S) = {S},
MI(S ′) = {S ′}, and MI(S ∪ S ′) = {S,S ′}. Therefore Iregion(S ∪ S ′) = 1 ∕=
Iregion(S) + Iregion(S ′) = 1 + 1 = 2.

Similar to Iid and Itime, Iregion satisfies Super-Additivity. As opposed to Iid and Itime,
Iregion does not satisfy Dominance. All other postulates are not satisfied by Iid, Itime, and
Iregion . Thus, Iid and Itime satisfy one postulate more than Iregion . Interestingly, we will
show in Section 6 that Iregion satisfies one dimensional postulate more than Iid and Itime.

5.2.4 The Measure Icard
The last repairing strategy we consider relies on assuming that some ST atoms were wrongly
generated and thus need to be removed to restore consistency. We require that the result be
a maximal consistent subset, for otherwise we would be deleting atoms that can be safely
left in. Moreover, we require that the number of removed atoms be minimal.

Definition 15 (card-repair). A card-repair for an ST database S is a consistent subset
S ′ of S such that |S ′| = max {|S ′′| such that S ′′ is a consistent subset of S }. The cost of
card-repair S ′ for S is costcard(S,S ′) = |S|− |S ′|.

Card-repairs assume that the information encoded by each ST atom is either fully correct
or incorrect, and thus they delete a minimal number of whole atoms. Measure Icard is the
cost of a card-repair.

Definition 16 (Measure Icard ). Given an ST database S, Icard (S) = costcard(S,S ′) where
S ′ is a card-repair for S.

Example 15. For Se at least 2 ST atoms must be deleted to attain consistency. Hence,
Icard (Se) = 2.

The following theorem shows the postulates satisfied by Icard . Interestingly, Icard be-
haves differently from the other repair-based inconsistency measures introduced so far in
that more postulates are satisfied.
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Theorem 9. The Icard inconsistency measure satisfies Free-Formula Independence, Dom-
inance, Super-Additivity, Equal Conflict, and MI-Normalization, but it does not satisfy
Penalty, Attenuation, and MI-Separability.

Proof. 1. Free-Formula Independence. Let S ′ be a card-repair for S. Notice that if
(id, r, t) ∈ Free(S) then (id, r, t) ∈ S ′. Then, S ′′ = S ′ \ {(id, r, t)} is a card-repair for
S \ {(id, r, t)}. In fact, S ′′ is consistent, as it is a subset of S ′. Moreover, S ′′ has to be
of maximal cardinality. Suppose by contradiction that there exists a consistent subset
S∗ of S \{(id, r, t)} such that |S∗| > |S ′′|. Then, S∗ ∪ {(id, r, t)} is a consistent subset
of S and has strictly higher cardinality than S ′, which is a contradiction. Clearly,
|S|− |S ′| = |S \ {(id, r, t)}|− |S ′ \ {(id, r, t)}|. Hence, Icard (S) = Icard (S \ {(id, r, t)}).

2. Penalty. Let ID = {id}, T = {t}, Space = {p1, p2, p3, p4}, and S = {(id, {p1, p2}, t),
(id, {p2, p3}, t), (id, {p4}, t)}. Notice that every ST atom in S is problematic and
Icard (S) = 1, as the only card-repair for S is S \ {(id, {p4}, t)}. Now Icard (S \
{(id, {p1, p2}, t)}) = 1 as there are two card-repairs for it obtained by discarding
either of the two ST atoms in S ′. Hence Icard (S) ∕> Icard (S \ {(id, {p1, p2}, t)}).

3. Dominance. Let S ′ be a card-repair for S ∪ {(id, r, t)}. There are two cases.
If (id, r, t) ∕∈ S ′, then S ′ is also a consistent subset of S ∪ {(id, r′, t)}, but it is possible
that S∪{(id, r′, t)} has a card-repair S ′′ such that S ′′ = S ′∪{(id, r′, t)}. So, Icard (S∪
{(id, r, t)}) ≥ Icard (S ∪ {(id, r′, t)}).
If (id, r, t) ∈ S ′, then S ′′ = S ′ \ {(id, r, t)} ∪ {(id, r′, t)} is a consistent subset of
S ∪ {(id, r′, t)}, and thus every card-repair for S ∪ {(id, r′, t)} does not delete more
tuples than the number deleted to get S ′. Again, Icard (S ∪ {(id, r, t)}) ≥ Icard (S ∪
{(id, r′, t)}).

4. Super-Additivity. Let S ′′ = S ∪ S ′ and S ′′
r a card-repair for S ′′. Also, let Sr = S ′′

r ∩ S
and S ′

r = S ′′
r ∩ S ′. Since S ∩ S ′ = ∅, |S ′′

r | = |Sr| + |S ′
r|. Since both Sr and S ′

r are
consistent, every card-repair of S (resp., S ′) has cardinality no less than |Sr| (resp., S ′

r).
Thus, Icard (S) ≤ |S|− |Sr| and Icard (S ′) ≤ |S ′|− |S ′

r|. Hence, Icard (S) + Icard (S ′) ≤
|S|+ |S ′|− |Sr|− |S ′

r| = |S ′′|− |S ′′
r | = Icard (S ′′).

5. Attenuation and Equal Conflict. The fact that Attenuation does not hold and Equal
Conflict holds follow from the fact that MI-Normalization holds. See below.

6. MI-Normalization. Let S be an ST database and MIS ∈ MI(S). By the definition
of minimal inconsistent subset, every proper subset of MIS is consistent and thus
MIS \ {(id, r, t)} is consistent for every (id, r, t) in MIS . Hence, Icard (MIS ) = 1.

7. MI-Separability. Let ID = {id}, T = {t}, Space = {p1, p2, p3, p4}, S = {(id, {p1}, t),
(id, {p2, p3}, t)}, and S ′ = {(id, {p1}, t), (id, {p3, p4}, t)}. ThenMI(S) = {S},MI(S ′)
= {S ′}, and MI(S ∪ S ′) = {S,S ′}. Hence Icard (S ∪ S ′) = 1 ∕= Icard (S) + Icard (S ′) =
1 + 1 = 2.

Table 2 summarizes the behavior of the repair-based inconsistency measures with respect
to the postulates. Observe that the classical postulates fit quite well with the measure Icard ,
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Repair-based IMs

Iid Itime Iregion Icard
Free-Formula Ind. ✗ ✗ ✗ ✓

Penalty ✗ ✗ ✗ ✗

Dominance ✓ ✓ ✗ ✓

Super-Additivity ✓ ✓ ✓ ✓

Attenuation ✗ ✗ ✗ ✗

Equal Conflict ✗ ✗ ✗ ✓

MI-Normalization ✗ ✗ ✗ ✓

MI-Separability ✗ ✗ ✗ ✗

Table 2: Postulates satisfaction of repair-based inconsistency measures.

which satisfies all of them except Penalty, Attenuation, and MI-Separability. This should
not be surprising since the classical postulates are designed for non-dimensional measures
like Icard. However, we will show in Section 6 that the measures based on the dimensions
satisfy the dimensional versions of some classical postulates they do not satisfy.

5.2.5 Relationships between Icard and the Other Measures

In this section, we identify some conditions under which measure Icard coincides with pre-
viously considered measures, which in turn implies also equivalences between measures
different from Icard .

The following theorem states the equivalence between Icard and Iid, as well as between
Icard and Itime, under the restrictions that the distance between different objects (resp.,
time values) is 1 and there is a sufficient number of object ids (resp., time values).

Theorem 10. Let S be an ST database. If dID(id, id
′) = 1 for all distinct id, id′ ∈ ID and

|ID| ≥ |S|, then Icard(S) = Iid(S). Similarly, if dT (t, t
′) = 1 for all distinct t, t′ ∈ T and

|T | ≥ |S|, then Icard(S) = Itime(S).

Proof. We prove the statement for Iid only as the proof for Itime is similar: it suffices to
use time points instead of object identifiers.

Given a card-repair S ′ for S with costcard(S,S ′) = |S|− |S ′|, we define an id-repair S∗

for S as follows. Let ID(S) = {id1, . . . , idn} be the set of distinct ids in S (clearly, n ≤ |S|).
For each ST atom ai ∈ S \ S ′, let idn+i be a fresh id in ID \ ID(S). Let S∗ be the id-
correction S ′∪{(idn+i, r, t) | ai ∈ S \S ′}. Observe that, since |ID| ≥ |S|, there is a sufficient
number of ids in ID so that each ST atom in S \S ′ can be updated to a different id. Clearly,
costid(S,S ′) = costcard(S,S ′) as dID(id, id

′) = 1 for all distinct id, id′ ∈ ID. Moreover, S∗

is a minimal id-correction as changing the id of any ST atom (idx, r, t) ∈ (S\S ′) to any other
id in ID(S) would still have cost equal to 1 and cannot resolve any inconsistency other than
that involving (idx, r, t), thus the number of id-updates needed to obtain S∗ is minimum.
Therefore, S∗ is an id-repair for S whose cost is equal to the cost of a card-repair, from
which it follows that Icard(S) = Iid(S).

The following corollary follows.
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Corollary 1. Let S be an ST database. If dID(id, id
′) = 1 for all distinct id, id′ ∈ ID,

|ID| ≥ |S|, dT (t, t′) = 1 for all distinct t, t′ ∈ T, and |T | ≥ |S|, then Icard(S) = Iid(S) =
Itime(S).

The previous results will be particularly useful in Section 7, where we characterize the
complexity of inconsistency measures. In fact, the results above will allow us to single
out some tractable cases for Iid and Itime, which are NP-complete in the general case.
More specifically, we will prove that Icard has polynomial time complexity and, since Icard
coincides with Iid and Itime under the aforementioned conditions, this in turn allows us to
get tractability for Iid and Itime under those conditions.

Finally, it turns out that the value of Icard is equal to that of Iregion if the metric is the
symmetric difference.

Theorem 11. Given an ST databases S, if dR(r, r′) = |(r \ r′) ∪ (r′ \ r)| for r, r′ ⊆ Space,
then Icard(S) = Iregion(S).

Proof. Given a card-repair S ′ for S with cost costcard(S,S ′) = |S|− |S ′|, we define a region-
repair S∗ for S as follows. Let S∗ be the region-correction defined as follows. For each
id, t pair in S ′, let pid,t be a point in Space such that pid,t belongs to the intersection of the
regions of all the ST atoms in S ′

id,t (clearly such a point exists as S ′
id,t is consistent). Let

S∗ be S ′ ∪ {(id, r ∪ {pid,t}, t) | (id, r, t) ∈ S \ S ′}. Clearly, costregion(S,S ′) = |S|− |S ′| since
dR is symmetric difference, and thus the addition of a point to a region has cost equal to
1. Moreover, as every ST atom in S \ S ′ needs to be updated to restore consistency, this is
the minimum cost that can be achieved. Therefore, S∗ is a region-repair for S whose cost
is equal to that of a card-repair, from which it follows that Icard(S) = Iregion(S).

Besides its own interest, the previous theorem will be particularly valuable to character-
ize the complexity of Icard in Section 7. In fact, we will show that Iregcorr has polynomial
time complexity when the metric for regions is the symmetric difference, which, combined
with Theorem 11 above, allows us to claim that the complexity of Icard is polynomial time
too.

6. Dimensional Postulates

In Section 3.2, we presented eight rationality postulates that are properties proposed as
desirable in the literature for inconsistency measures. These postulates were formulated
for propositional knowledge bases. In our case we deal with a database where the data
has three dimensions: objects, time, and space. There seems to be a mismatch in some
cases between the postulates that have nothing to do with dimensions and our inconsistency
measures that are based on dimensions. In this section, we propose dimensional versions
for some of the postulates and find that in several cases the dimensional postulate holds
even though the original postulate does not hold.

We start with the fact that the atoms under consideration are tuples in n dimensions.
For spatio-temporal databases there are three dimensions, but in other contexts the number
of dimensions may be different. In some dimensions (objects and time in our case) the value
is an element while in other dimensions (space in our case) the value is a set, and there is
a consistency requirement (for every pair of id and t values the space regions must have a
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nonempty intersection in our case). As we deal only with spatio-temporal databases, we
will restrict our consideration to this case.

Next we consider the postulates we have been dealing with and explain how to define
dimensional versions for them. We notice that for some of them there are no dimensional
versions. Attenuation and Equal Conflict simply deal with the size of minimal inconsis-
tent subsets. MI-Normalization sets the inconsistency measure of a minimal inconsistent
set to 1. Free-Formula Independence and Dominance also do not appear to have dimen-
sional versions. Hence, we restrict our attention to the three remaining postulates: Penalty,
Super-Additivity, and MI-Separability. These postulates have been formulated in Defini-
tion 6 as a direct translation of their original definition for propositional knowledge bases
to ST databases. Roughly speaking, while for propositional knowledge bases we look at
propositional formulas, for ST databases we look at ST atoms. However, looking at whole
ST atoms can be a too coarse-grained approach, since each ST atom is indeed character-
ized by an object id, a time value, and a point location. More fine-grained formulations
of the postulates can be achieved by focusing on the object, time, and space dimensions
individually, which is the main idea of the dimensional postulates introduced in the follow-
ing. Thus, for each postulate, we introduce three variants, with each of them looking at a
specific dimension (as opposed to looking at entire ST atoms).

We start with the dimensional version of the Penalty postulate. First of all, we recall
the Penalty postulate as formulated in Definition 6: If (id, r, t) ∈ Problematic(S) then
I(S) > I(S \ {(id, r, t)}). Thus, Penalty states that problematic ST atoms increase the
inconsistency (or, from another point of view, deleting a problematic ST atom from an
ST database decreases its inconsistency). As already mentioned above, this was a coarse-
grained, direct translation of the Penalty postulate for propositional knowledge bases to ST
databases. Indeed, such a postulate is not satisfied by any of the inconsistency measures
we introduced other than ID (cf. Tables 1 and 2).

A natural “dimensional” version of the Penalty postulate would focus on the object
(resp., time, space) dimension and say that the deletion of a problematic object (resp., time
value, region) decreases the inconsistency of an ST database. This leads us to the following
definition.

Definition 17 (Dimensional Penalty). Let I be an inconsistency measure and S be an
ST database.

1. (Object Penalty) If (id, r, t) ∈ Problematic(S) and A = {(id, r′, t′) ∈ Problematic(S)}
then I(S) > I(S \A).

2. (Time Penalty) If (id, r, t) ∈ Problematic(S) and A = {(id′, r′, t) ∈ Problematic(S)}
then I(S) > I(S \A).

3. (Space Penalty) If (id, r, t) ∈ Problematic(S) and A = {(id′, r′, t′) ∈ Problematic(S) |
r ∩ r′ ∕= ∅} then I(S) > I(S \A).

We now turn our attention to the Super-Additivity postulate, which was formulated
in Definition 6 as follows: If S ∩ S ′ = ∅ then I(S ∪ S ′) ≥ I(S) + I(S ′). The rationale
behind this postulate is that if two ST databases do not share any ST atoms, then the
inconsistency of their union is at least as great as the sum of the inconsistency of the two
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ST databases. However, once again, we are reasoning at the level of ST atoms, which can
be too coarse-grained, given the different kinds of information encoded in ST atoms. As
for the Penalty postulate above, dimensional versions of the Super-Additivity postulate can
be achieved by focusing on the object, time, and space dimensions individually. A natural
formulation is thus as follows: if two ST databases do not share any object (resp., time
value, point location), then the inconsistency of their union is at least as great as the sum
of the inconsistency of the two ST databases, which is formalized in the definition below.

In the following, for an ST database S, we use the following notations:

ID(S) = {id | (id, r, t) ∈ S},
Time(S) = {t | (id, r, t) ∈ S},
Region(S) =

"
{r | (id, r, t) ∈ S}.

Definition 18 (Dimensional Super-Additivity). Let I be an inconsistency measure,
and S,S ′ be two ST databases. For X ∈ {ID,Time,Region}, if X(S) ∩ X(S ′) = ∅ then
I(S ∪ S ′) ≥ I(S) + I(S ′).

Finally, we get to MI-Separability, which was formulated in Definition 6 as follows: If
MI(S ∪S ′) = MI(S)∪MI(S ′) and MI(S)∩MI(S ′) = ∅ then I(S ∪S ′) = I(S)+I(S ′).
For this postulate, we can reason analogously to the Penalty and Super-Additivity postu-
lates, that is, provide counterparts of the postulate that focus on each dimension individ-
ually. Here we find that because of the dimensional requirement the condition MI(S) ∩
MI(S ′) = ∅ is implied by X(S) ∩ X(S ′) = ∅ for X ∈ {ID,Time,Region}, thus we omit
MI(S) ∩MI(S ′) = ∅ in the dimensional version of the MI-Separability postulate defined
below.

Definition 19 (Dimensional MI-Separability). Let I be an inconsistency measure,
and S,S ′ be two ST databases. For X ∈ {ID,Time,Region}, if X(S) ∩ X(S ′) = ∅ and
MI(S ∪ S ′) = MI(S) ∪MI(S ′), then I(S ∪ S ′) = I(S) + I(S ′).

As stated next, for the object and time dimensions, Dimensional MI-Separability implies
Dimensional Super-Additivity.

Proposition 3. If an inconsistency measure satisfies Object (resp., Time) Dimensional
MI-Separability then it satisfies Object (resp., Time) Dimensional Super-Additivity.

Proof. The claim follows from the fact that, given two ST databases S and S ′, for X ∈
{ID,Time}, it is the case that MI(S∪S ′) = MI(S)∪MI(S ′) whenever X(S)∩X(S ′) = ∅.
In fact, if S and S ′ do not share any object (resp., time value), then S∩S ′ = ∅, from which it
follows that MI(S∪S ′) = MI(S)∪MI(S ′). Therefore, Object (resp., Time) Dimensional
MI-Separability can be rewritten as follows: For X ∈ {ID,Time}, if X(S)∩X(S ′) = ∅ then
I(S ∪ S ′) = I(S) + I(S ′), from which the statement follows.

In contrast, Space Dimensional MI-Separability does not imply Space Dimensional
Super-Additivity. To prove this claim, we need to show an arbitrary inconsistency mea-
sure that satisfies Space Dimensional MI-Separability but does satisfy Space Dimensional
Super-Additivity. Below we show that this is the case for the ICC measure defined for
propositional knowledge bases (Thimm, 2018).
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A set {S1, . . . ,Sn} of pairwise disjoint subsets of S is called a conditional independent
Minimal Unsatisfiable Subset (MUS) partition of S iff each Si is inconsistent and MI(S1 ∪
. . .∪ Sn) is the disjoint union of all MI(Si)’s, that is, MI(S1 ∪ . . .∪ Sn) is the union of all
MI(Si)’s and the latter are pairwise disjoint. The ICC inconsistency measure is defined as

ICC(S) = max{n | {S1, . . . ,Sn} is a conditional independent MUS partition of S},

which is an adaptation of the ICC measure defined for propositional knowledge bases
by Thimm (2018) to the case of ST databases.

To see why ICC satisfies Space Dimensional MI-Separability, observe that, given two ST
databases S and S ′, if Region(S)∩Region(S ′) = ∅ and MI(S∪S ′) = MI(S)∪MI(S ′), and
thus as observed earlier MI(S)∩MI(S ′) = ∅, then every maximal conditional independent
MUS partition {S1, . . . ,Sn} of S ∪ S ′ is such that it can be partitioned into two disjoint
maximal conditional independent MUS partitions, one for S and another for S ′, and thus
ICC(S ∪ S ′) = ICC(S) + ICC(S ′).

To show that ICC does not satisfy Space Dimensional Super-Additivity, it suffices to con-
sider the ST databases S = {(id, {p1}, t), (id, {p2}, t)} and S ′ = {(id, {p3}, t), (id, {p4}, t)},
where all pi’s are distinct. Although Region(S) = {p1, p2} does not intersect Region(S ′) =
{p3, p4}, it is the case that ICC(S ∪ S ′) = 1 ∕≥ 2 = ICC(S) + ICC(S ′). Notice that
ICC(S) = 1, as the largest conditional independent MUS partition of S is {S}, and
ICC(S ′) = 1, as the largest conditional independent MUS partition of S ′ is {S ′}. Also,
ICC(S ∪ S ′) = 1, as the largest conditional independent MUS partitions of S ∪ S ′ are of
the form {{(id, pi, t), (id, pj , t)}} with pi, pj distinct and belonging to {p1, p2, p3, p4}. Notice
that there is no conditional independent MUS partition of S ∪ S ′ of cardinality 2. The
reason is that for such a partition {S1,S2}, it has to be the case that |S1| = |S2| = 2
in order for S1 and S2 to be inconsistent and disjoint. Then, MI(S1 ∪ S2) has six min-
imal inconsistent subsets and thus it is not the disjoint union of MI(S1) and MI(S2),
as |MI(S1)| = |MI(S2)| = 1. Thus, {S1,S2} cannot be a conditional independent MUS
partition of S ∪ S ′.

Now we are ready to consider the dimensional postulates for the inconsistency measures
we have dealt with. We do not include IOT as it deals with two dimensions and we restricted
the dimensional postulates to a single dimension.

In the following, we first focus on the dimensional inconsistency measures introduced in
Section 4 (namely IO, IT , IS , and ID), and then focus on the repair-based inconsistency
measures introduced in Section 5 (namely Iid, Itime, Iregion).

The following four propositions show which dimensional postulates are satisfied by IO,
IT , IS , and ID, respectively—indeed, all of them satisfy all the dimensional postulates.

We start by considering the object dimension and show that IO satisfies all the dimen-
sional postulates in the following proposition.

Proposition 4. The IO inconsistency measure satisfies Object Penalty, Object Super-
Additivity, and Object MI-Separability.

Proof. 1. Object Penalty. IO(S \A) = IO(S)− 1 < IO(S).

2. Object Super-Additivity. This follows from Proposition 3.
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3. Object MI-Separability. IO(S) and IO(S ′) count different objects. As there is no
interaction between S and S ′, IO(S ∪ S ′) = IO(S) + IO(S ′).

We now focus on the time dimension and show that IT satisfies all the dimensional
postulates.

Proposition 5. The IT inconsistency measure satisfies Time Penalty, Time Super-Additivity,
and Time MI-Separability.

Proof. 1. Time Penalty. IT (S \A) = IT (S)− 1 < IT (S).

2. Time Super-Additivity. This follows from Proposition 3.

3. Time MI-Separability. IT (S) and IT (S ′) count different time values. As there is no
interaction between S and S ′, IT (S ∪ S ′) = IT (S) + IT (S ′).

Finally, we consider the space dimension, that is, we focus on the inconsistency measures
IS (in Proposition 6) and ID (in Proposition 7) showing that both satisfy all the dimensional
postulates.

Proposition 6. The IS inconsistency measure satisfies Space Penalty, Space Super-Additivity,
and Space MI-Separability.

Proof. First of all, for an ST database S we define a region RS as follows:

RS =
#

{r | (id, r, t) ∈ MIS ∈ MI(S)}

and IS(S) = |RS |.

1. Space Penalty. IS(S \A) ≤ IS(S)− |r| < IS(S).

2. Space Super-Additivity. By definition, IS(S) = |RS | and IS(S ′) = |RS′ |. Then
RS ∪ RS′ ⊆ RS∪S′ and as RS and RS′ are disjoint, IS(S) + IS(S ′) = |RS | + |RS′ | ≤
|RS∪S′ | = IS(S ∪ S ′).

3. Space MI-Separability. Continuing with the proof of Space Super-Additivity, the
additional condition assures that all minimal inconsistent sets in S∪S ′ must be either
in S or S ′. Hence RS ∪RS′ = RS∪S′ and the result follows.

In the next proposition we show the relationship between the dimensional postulates
and the inconsistency measure ID.

Proposition 7. The ID inconsistency measure satisfies Space Penalty, Space Super-Additivity,
and Space MI-Separability.

Proof. 1. Space Penalty. MI(S \A) ⊂ MI(S), hence ID(S \A) < ID(S).
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2. Space Super-Additivity. MI(S) ∪ MI(S ′) ⊆ MI(S ∪ S ′), hence ID(S ∪ S ′) ≥
ID(S) + ID(S ′).

3. Space MI-Separability. MI(S∪S ′) = MI(S)∪MI(S ′), hence ID(S∪S ′) = ID(S)+
ID(S ′).

We now consider the dimensional repair-based inconsistency measures introduced in
Section 5, namely Iid, Itime, and Iregion. We show that all of them satisfy the Penalty
postulate, even though Iid and Itime do so provided that they return finite values—recall
that Iid and Itime return ∞ when there is no id- and time-repair, respectively. All the three
inconsistency measures satisfy Super-Additivity, while only Iregion satisfies MI-Separability.

Proposition 8. The Iid inconsistency measure satisfies Object Penalty when the mea-
sure returns a finite value and Object Super-Additivity, but does not satisfy Object MI-
Separability.

Proof. 1. Object Penalty. Assume that Iid(S) < ∞. As (id, r, t) ∈ Problematic(S), any
id-repair must update at least one atom, say a, whose object id is id to an atom a′.
Then Iid(S \A) ≤ Iid(S)− costid(a, a

′) < Iid(S).

2. Object Super-Additivity. If either S or S ′ does not have an id-repair, then S ∪ S ′

cannot have one either. In this case Iid(S ∪ S ′) = ∞ and the result holds. So assume
that both S and S ′ have an id-repair, say S1 and S ′

1 respectively. If S ∪ S ′ does not
have an id-repair, then Iid(S∪S ′) = ∞ and the result holds. Otherwise, any id-repair
for S ∪ S ′ must do an id-correction for each atom that needed one in S and S ′. Such
an id-correction cannot have smaller cost than the corresponding one for S and S ′.
Hence the cost cannot decrease. Thus in all cases, Iid(S ∪ S ′) ≥ Iid(S) + Iid(S ′).

3. Object MI-Separability. Let ID = {id1, id2, id3}, T = {t}, Space = {p1, p2, p3},
S = {(id1, {p1}, t), (id1, {p2}, t), (id3, {p1}, t)}, and also let S ′ = {(id2, {p3}, t)} where
dID(idi, idj) = |i − j|. Then Iid(S) = 1 as an id-repair of S must correct the id1 in
either the first or the second atom to id2 and Iid(S ′) = 0 (S ′ is consistent). But for
Iid(S ∪ S ′) an id-repair must change id1 in the first atom to id3. Hence Iid(S ∪ S ′) =
2 ∕= Iid(S) + Iid(S ′) = 1 + 0 = 1.

An analogous result is shown for Itime in the next proposition.

Proposition 9. The Itime inconsistency measure satisfies Time Penalty when the measure
returns a finite value and Time Super-Additivity, but does not satisfy Time MI-Separability.

Proof. 1. Time Penalty. Assume that Itime(S) < ∞. As (id, r, t) ∈ Problematic(S), any
time-repair must update at least one atom, say a, whose time value is t to an atom
a′. Then Itime(S \A) ≤ Itime(S)− costtime(a, a

′) < Itime(S).

2. Time Super-Additivity. If either S or S ′ does not have a time-repair, then S∪S ′ cannot
have one either. In this case Itime(S ∪ S ′) = ∞ and the result holds. So assume that
both S and S ′ have a time-repair, say S2 and S ′

2 respectively. If S∪S ′ does not have a
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time-repair, then Itime(S ∪ S ′) = ∞ and the result holds. Otherwise, any time-repair
for S ∪S ′ must do a time-correction for each atom that needed one in S and S ′. Such
a time-correction cannot have smaller cost than the corresponding one for S and S ′.
Hence the cost cannot decrease. Thus in all cases, Itime(S∪S ′) ≥ Itime(S)+Itime(S ′).

3. Time MI-Separability. Let ID = {id}, T = {1, 2, 3}, Space = {p1, p2, p3}, S =
{(id, {p1}, 1), (id, {p2}, 1), (id, {p1}, 3)}, and S ′ = {(id, {p3}, 2)} where dT (i, j) =
|i− j|. Then Itime(S) = 1 as a time-repair of S must correct the 1 in either the first
or the second atom to 2 and Itime(S ′) = 0 (S ′ is consistent). But for Itime(S ∪ S ′)
a time-repair must change 1 in the first atom to 3. Hence Itime(S ∪ S ′) = 2 ∕=
Itime(S) + Itime(S ′) = 1 + 0 = 1.

In contrast with the two previous results, Proposition 10 shows that all the dimensional
postulates are satisfied by Iregion without further assumptions or conditions.

Proposition 10. The Iregion inconsistency measure satisfies Space Penalty, Space Super-
Additivity, and Space MI-Separability.

Proof. 1. Space Penalty. Let a = (id, r, t) ∈ Problematic(S) and suppose that a region-
repair, among other changes, corrects a. Then the removal of a removes from Iregion(S)
the cost of such a change, and hence Iregion(S \ A) < Iregion(S). On the other hand,
suppose that a region-repair does not correct a. Then it must correct some other
problematic atom, say a′ = (id, r′, t) with the same id and t values. So again, the
value of Iregion is lessened giving Iregion(S \A) < Iregion(S).

2. Space Super-Additivity. Every region-repair of S ∪ S ′ must repair both S and S ′

separately in the process. In fact, a region-repair of S ∪ S ′ may require additional
region updates. In any case, under the condition of separate combined regions for S
and S ′, Iregion(S ∪ S ′) ≥ Iregion(S) + Iregion(S ′).

3. Space MI-Separability. Continuing with the proof of Space Super-Additivity consider
the additional condition about minimal inconsistent subsets. Combining the two
conditions means that an atom in S cannot have the same id and t values as an atom
in S ′. Therefore a region-repair of S∪S ′ must be a region-correction whose restriction
to S (resp., S ′) is a region-correction for S (resp., S ′). Hence Iregion(S ∪ S ′) =
Iregion(S) + Iregion(S ′).

Dimensional postulates satisfaction for the inconsistency measures are summarized in
Table 3, which suggests that the dimensional postulates suit very well the dimensional in-
consistency measures. Table 3 shows that the dimensional postulates are jointly satisfiable.

On the whole, Tables 1, 2, and 3 show that, considering the dimensional postulates in
place of the classical ones, IO and IT satisfy all the postulates except Attenuation, that
is, IO and IT satisfy the maximum number of postulates considered, since Attenuation is
incompatible with MI-Normalization, as observed after Definition 6. In general, the number
of postulates satisfied by considering dimensional and classical postulates has doubled for all

767



Grant, Martinez, Molinaro, & Parisi

IO IT IS ID Iid Itime Iregion
Dimensional Penalty ✓ ✓ ✓ ✓ ✓* ✓* ✓

Dimensional Super-Additivity ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dimensional MI-Separability ✓ ✓ ✓ ✓ ✗ ✗ ✓

Table 3: Dimensional postulates satisfaction (✓∗ means satisfied when measures return a
finite value).

the measures except for ID (which satisfies both the classical and the dimensional version
of the postulates in Table 3).

As for the repair-based measures Iid, Itime, and Iregion , under the assumptions of The-
orem 10, for which Icard coincides with Iid and Itime, considering dimensional and classical
postulates, Iid and Itime satisfy all the postulates except (Dimensional) MI-Separability
and Attenuation (which is incompatible with MI-Normalization). This follows from the
fact that, in addition to the postulates satisfied by Icard, also Dimensional Penalty is sat-
isfied in this case. Analogously, under the assumptions of Theorem 11, for which Icard
coincides with Iregion, considering dimensional and classical postulates, Iregion satisfies all
the postulates except Attenuation, that is, the maximum number of postulates that can be
jointly satisfied, as it happens also for IO and IT .

7. Complexity Analysis

In this section, we provide complexity results for all the inconsistency measures we intro-
duced.

Following Thimm and Wallner (2016) and Thimm (2018), who have explored the com-
plexity of problems related to computing classical inconsistency measures, we characterize
the complexity of the following decision problem, named Upper by Thimm (2018), for an
inconsistency measure I: given an ST database S and rational number k, decide whether
I(S) ≤ k. Let C be a complexity class. In the following, we will say that Upper for I is
in C if deciding whether I(S) ≤ k is in C. We say that Upper for I is C-hard if deciding
whether I(S) ≤ k is C-hard. If deciding whether I(S) ≤ k is in C and it is C-hard, we say
that Upper for I is C-complete. We assume the reader is familiar with standard complexity
classes such as P and NP (Papadimitriou, 1994).

We start with the dimensional measures introduced in Section 4. It turns out that these
measures are generally tractable in contrast to the measures for propositional knowledge
bases considered by Thimm (2018). Then, we consider the repair-based measures introduced
in Section 5, which in general have higher complexity.

7.1 Complexity Results for Dimensional Measures

We start with an algorithm that computes the IOT measure, which runs in polynomial time.

Proposition 11. Upper for the dimensional inconsistency measure IOT is in P.

Proof. The calculation of IOT (S) is accomplished by Algorithm 1, which is in P. It proceeds
as follows. We initialize the inconsistency measure counter to 0 (line 1). For each id, t pair
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Algorithm 1 Compute the IOT measure

Input: An ST database S.
Output: IOT (S).
1: let IOT (S) = 0
2: for each (id, r, t) in S do
3: let Pid,t = ∅
4: end for
5: for each (id, r, t) in S do
6: if Pid,t ∕= Space then
7: let Pid,t = Pid,t ∪ (Space \ r)
8: if Pid,t = Space then
9: let IOT (S) = IOT (S) + 1

10: end if
11: end if
12: end for
13: return IOT (S)

we use Pid,t to indicate the amount of space not in the intersection of all the regions for the
id, t pair. If Pid,t becomes equal to Space then the intersection of all the regions for that
pair is empty, signifying an inconsistent id, t pair. The first loop (lines 2–4) traverses all the
ST atoms in S and initializes the amount of space not in the intersections of all the regions
for all id, t pairs to the empty set. The next loop (lines 5–12) again traverses all the ST
atoms and for each such atom (id, r, t) it first (line 6) checks to see if the amount of space
already not in the intersection of all the regions for the id, t pair is not all of Space—we
assume this check can be accomplished in constant time. If it is all of Space then we have
already counted the id, t pair as inconsistent at a previous step. Otherwise, we add (line 7)
the complement of r to the amount of space not in the intersection of all the regions for
the id, t pair. If the result is all of Space (line 8) then we have a new inconsistency for the
id, t pair and add 1 to our inconsistency measure counter (line 9). At the end (line 13),
the inconsistency measure counter, IOT (S), is set correctly. Assuming that the basic union
operation in line 7 can be done in constant time, we have that the running time of the
algorithm is O(|S|); however, in the worst case this operation could take time O(|Space|).
Therefore, the general result is that the running time of the algorithm is O(|S|∗C∪), where
C∪ is the cost of computing the union of two regions. Notice that in the worst-case the
algorithm has to keep a region Pid,t for each atom in S (this case occurs when all atoms of
S refer to different id,t pairs), which requires polynomial space.

A small modification of this proposition results in obtaining the same complexity for
the IO and IT measures, as stated in the following two propositions.

Proposition 12. Upper for the dimensional inconsistency measure IO is in P.

Proof. We can use the algorithm given in the proof of Proposition 11 with a slight mod-
ification. The modification is that we also keep a list of objects that we initialize to the
empty set. Then, as we obtain a new inconsistency in the algorithm, that is, Pid,t = Space,
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we check to see if the id is already in the list. We increment the inconsistency measure
counter, IO(S), and insert the object id into the list only if the object is not already in the
list.

Proposition 13. Upper for the dimensional inconsistency measure IT is in P.

Proof. Similar to the proof of Proposition 12, we can use the algorithm given in the proof
of Proposition 11 with a slight modification. The modification is that we also keep a list of
time values that we initialize to the empty set. Then, as we obtain a new inconsistency in
the above algorithm, that is, Pid,t = Space, we check to see if the time value is already in
the list. We increment the inconsistency measure counter, IT(S), and insert the time value
t into the list only if the time value is not already in the list.

Complexity becomes more difficult to assess for the measures involving space. However,
we have nice results for the case where the regions are rectangular. This is important because
we expect many applications to deal with such a scenario. As stated in the following two
propositions, both IS and ID are in P under the restriction of isothetic rectangular regions.

Proposition 14. Upper for the dimensional inconsistency measure IS is in P under the
restriction of isothetic rectangular regions.

Proof. Proposition 1 states that under the restriction of isothetic rectangular regions, every
minimal inconsistent subset of an ST database has size 2. The algorithm proceeds as follows.
Initialize RS = ∅. We work with one Sid,t at a time. Let Sid,t = {a1, . . . , ak}. If k = 0 or
k = 1 we ignore Sid,t. Otherwise, check each pair {ai, aj}, 1 ≤ i ∕≤ j ≤ k for an inconsistency
(ri ∩ rj = ∅). If ri ∩ rj = ∅, let RS = RS ∪ ri ∪ rj . After finishing all Sid,t, compute |RS |.
Clearly, this algorithm is in P.

Proposition 15. Upper for the dimensional inconsistency measure ID is in P under the
restriction of isothetic rectangular regions.

Proof. Proposition 1 states that under the restriction of isothetic rectangular regions, every
minimal inconsistent subset of an ST database has size 2. The algorithm proceeds as follows.
Initialize ID = 0. We work with one Sid,t at a time. Let Sid,t = {a1, . . . , ak}. If k = 0 or
k = 1 we ignore Sid,t. Otherwise, check each pair {ai, aj}, 1 ≤ i ∕≤ j ≤ k for an inconsistency
(ri ∩ rj = ∅). If ri ∩ rj = ∅, let ID(S) = ID(S) + d(ri, rj). Assuming that d is computable
in polynomial time, this algorithm is in P.

Table 4 summarizes the complexity results stated in this section. Notice that for IS
and ID, membership in P holds under the restriction of isothetic rectangular regions.
This restriction ensures that every minimal inconsistent subset has cardinality 2, while
in the general case a minimal inconsistent subset can have arbitrary cardinality (e.g.,
S = {(id, {p1, p2}, t), (id, {p1, p3}, t), (id, {p2, p3}, t)} yields a ternary minimal inconsistent
subset). For the remaining measures the problem is in P without restrictions.
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Dimensional IMs

IO IT IOT IS ID
Complexity P P P P ∗ P ∗

Table 4: Complexity of dimensional inconsistency measures (∗: under the restriction of
isothetic rectangular regions).

7.2 Complexity Results for Repair-Based Measures

We deal now with the complexity of the repair-based measures. We start with the cases
where the repair is done along the object or time dimension, for which we show NP-
completeness. Membership in NP holds for all metrics dID and dT that can be computed
in polynomial time. Hardness is shown via reductions that employ specific metrics.

Theorem 12. Upper for the repair-based inconsistency measure Iid is NP-complete.

Proof. (Membership) First, it is important to observe that to decide whether Iid(S) ≤ k,
it suffices to decide whether there exists a function idcorr conforming Definition 8 such
that

&
a∈S costid(a, idcorr(a)) ≤ k. In fact, if such a function idcorr exists then there is an

id-correction S ′ such that costid(S,S ′) =
&

a∈S costid(a, idcorr(a)) ≤ k, meaning that every
id-repair S∗ for S is such that costid(S,S∗) ≤ k, which in turn implies that Iid(S) ≤ k.
Thus, to show membership in NP, it suffices to show a guess-and-check strategy for deciding
whether such a function idcorr exists, as follows: first guess idcorr consisting of an id-
update for each atom in S, and then check in polynomial time that (i) the resulting ST
database is consistent (i.e., for each id, t pair, it is the case that

!
(id,r,t)∈Sid,t

r ∕= ∅); and
(ii)

&
a∈S costid(a, idcorr(a)) ≤ k.

(Hardness) We show a reduction to our problem from the NP-hard Hitting Set problem (Pa-
padimitriou, 1994), which is defined as follows: given a collection C of subsets of a set U ,
i.e., C = {S1, . . . , Sn} where Si ⊆ U , and a positive integer K, decide whether U contains
a hitting set for C of size K or less, that is, decide whether there is H ⊆ U with |H| ≤ K
and such that H contains at least one element from each subset in C.

Given U,C, and K, we construct an instance of our problem as follows. Let Space =
U ∪ {p∗1. . . , p∗K−1} where p∗1. . . , p

∗
K−1 are new elements not occurring in U , T = {t}, ID =

{id} ∪ {id1, . . . , idK−1} ∪ {id′1, . . . , id′K−1}, and

S = {(id, Si, t) | Si ∈ C} ∪ {(idj , {p∗j}, t) | 1 ≤ j < K}.

Hence, S consists of n+K − 1 atoms, where n = |C|.
Assume dID is as follows:

• For all i ∈ {1, . . . ,K − 1}, dID(id, idi) = 1;

• For all i, j ∈ {1, . . . ,K − 1}, dID(idi, id′j) = n;

• For all j ∈ {1, . . . ,K − 1}, dID(id, id′j) = n+ 1;

• For all i, j ∈ {1, . . . ,K − 1}, i ∕= j, dID(idi, idj) = dID(id
′
i, id

′
j) = 2.

771



Grant, Martinez, Molinaro, & Parisi

Finally, let k = n(K − 1) + (n− 1).

We now show that there isH ⊆ U such that |H| ≤ K and for all i ∈ {1, . . . , n}, H∩Si ∕= ∅
iff Iid(S) ≤ k.

(⇒) Let H = {p0, . . . p|H|−1} ⊆ U be a hitting set for C. W.l.o.g. assume that the elements
in H are ordered by the number of sets of C with which they have non-empty intersection
in descending order, that is, ℓ < j implies |{Si |Si ∈ C, Si ∩ {pℓ} ∕= ∅}| ≥ |{Si |Si ∈
C, Si ∩ {pj} ∕= ∅}|. Let m = |{Si |Si ∈ C, S ∩ {p0} ∕= ∅}| be the maximum number of sets in
C which intersect an element in U (this element is p0 in our construction; clearly m ≥ 1).

Consider the ST database S ′ defined as follows:

S ′ = {(id, Si, t) | Si ∩ {p0} ∕= ∅}∪
{(idj , Si, t) | Si ∩ {pj} ∕= ∅, j ≥ 1, there is no ℓ < j such that Si ∩ {pℓ} ∕= ∅}∪
{(id′j , {p∗j}, t) | Si ∩ {pj} ∕= ∅, j ≥ 1, there is no ℓ < j such that Si ∩ {pℓ} ∕= ∅}∪
{(idj , {p∗j}, t) | j ∈ {|H|, . . . ,K − 1}}.

Thus, cost(S,S ′) = n(|H| − 1) + (n − m) since S ′ is obtained from S by performing
(|H| − 1) id-updates changing idj to id′j with cost equal to n plus (n − m) id-updates
changing id to idj with cost equal to 1.

It is easy to see that S ′ is consistent. This is implied by the fact that H is a hitting set
for {S1, . . . , Sn}. In fact, a model M for S ′ is as follows: M(id, t) = p0, M(idj , t) = pj and
M(id′j , t) = p∗j for all j ∈ {1, . . . , |H|− 1}, and M(idj , t) = p∗j for all j ∈ {|H|, . . . ,K − 1}.
Hence, S ′ is an id-correction for S. Therefore, Iid(S) ≤ n(|H|− 1)+ (n−m) ≤ n(K − 1)+
(n− 1) = k, since |H| ≤ K and m ≥ 1.

(⇐) Let S ′ be an id-repair for S, and idcorr be an id-correction such that Iid(S) =
costid(S,S ′) =

&
a∈S costid(a, idcorr(a)) ≤ k, where k = n(K − 1) + (n− 1).

We first observe that, for each atom ai = (id, Si, t) ∈ S, it is the case that:

1) if idcorr(ai) = (idj , Si, t) then idcorr(idj , {p∗j}, t) = (id′j , {p∗j}, t), and the total cost of
these two id-updates is 1 + n, as dID(id, idi) = 1 and dID(idi, id

′
j) = n;

2) if idcorr(ai) = (id′j , Si, t) then the cost of this id-update is again n+1, as dID(id, id
′
j) =

n+ 1;

3) id-updates changing idi into idj , or id
′
i into id′j (with i ∕= j), are not useful to define

an id-correction whose cost is minimal, as the former leads to inconsistency which
should be resolved with additional and unnecessary id-updates and the latter is never
applied, since the id′i’s do not appear in S.

Therefore, if idcorr updates a single atom ai = (id, Si, t) ∈ S, the minimal cost of such an
id-update is n+ 1.

On the other hand, updating x = |Pj | atoms in Pj = {ai1 = (id, Si1 , t), . . . , aix =
(id, Six , t)} ∈ S for which there exists pj ∈ Space such that pj ∈

!
ℓ∈[1..x] Siℓ has a minimal

total cost equal to |Pj | + n, as this is the cost of |Pj | id-updates of the form idcorr(aiℓ) =
(idj , Siℓ , t) for all ℓ ∈ [1..|Pj |], each of them having cost dID(id, idi) = 1, plus an additional
id-update idcorr(idj , {p∗j}, t) = (id′j , {p∗j}, t) whose cost is n.

From what was said above, it follows that idcorr has the following properties:
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a) For each atom ai = (id, Si, t) ∈ S such that there exists p0 ∈ Space, Si ∩ {p0} ∕=
∅, and p0 = argmaxp∈Space { |{Sj |(id, Sj , t) ∈ S, Sj ∩ {p} ∕= ∅}| }, it is the case that
idcorr(ai) = ai (with cost dID(id, id) = 0). This way, costid(S,S ′) is minimized
because keeping unchanged any other set of atoms of S would have a larger overall
cost.

b) To achieve consistency, the other atoms in S need to be updated, and the minimal
cost to do that is obtained by partitioning them into the minimal number B of sets
P1, . . . , PB such that for each Pj , there exists pj ∈ Space, pj ∈

!
{Si |(id, Si, t) ∈ Pj}.

In fact, it turns out that
&

a∈S costid(a, idcorr(a)) =
&B

j=1(n + |Pj |), as updating a
set of |Pj | atoms in S has minimal cost equal to |Pj |+ n, as discussed earlier.

Observe that
&B

j=1(n+ |Pj |) = nB+(n−m), where m (with 1 ≤ m ≤ n) is the number
of atoms ai ∈ S such that idcorr(ai) = ai, i.e., those whose id is not changed. Therefore
costid(S,S ′) = nB + (n−m) ≤ nB + (n− 1).

Now, as Iid(S) ≤ n(K− 1)+ (n− 1), it must be the case that B ≤ K− 1, meaning that
the p0 defined as in Item a) union the {pj}j∈[1..B] defined as in Item b) above is a hitting
set for {S1, . . . , Sn} of size K or less.

Theorem 13 below also shows an NP-complete result for Itime .

Theorem 13. Upper for the repair-based inconsistency measure Itime is NP-complete.

Proof. Both the membership in NP and the hardness follow by reasoning analogously to
the proof of the Iid inconsistency measure (cf. Theorem 12). Specifically, hardness can
be proved by showing a reduction from an instance 〈U,C,K〉 of the Hitting Set problem
to an instance of our problem where Space = U ∪ {p∗1. . . , p∗K−1} where p∗1. . . , p

∗
K−1 are

new elements not occurring in U , ID = {id}, T = {t} ∪ {t1, . . . , tK−1} ∪ {t′1, . . . , t′K−1},
S = {(id, Si, t) | Si ∈ C} ∪ {(id, {p∗j}, tj) | 1 ≤ j < K}, and dT is as follows:

• For all i such that 1 ≤ i < K, dT(t, ti) = 1;

• For all i, j such that 1 ≤ i, j < K, dT(ti, t
′
j) = n;

• For all j such that 1 ≤ j < K, dT(t, t
′
j) = n+ 1;

• For all distinct i, j such that 1 ≤ i, j < K, dT(ti, tj) = dT(t
′
i, t

′
j) = 2.

Given this, it can be shown that U contains a hitting set for C of size K or less iff Itime(S) ≤
k, where k = n(K − 1) + (n− 1).

The complexity is different for the repair-based measure dealing with regions. We get a
nice result under the reasonable assumption that the metric among regions is the symmetric
difference. In fact, in such a case, the next result shows that computing Iregion is tractable.

Theorem 14. Upper for the repair-based inconsistency measure Iregion is in P under the
restriction that the symmetric difference is used as the metric.
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Proof. We work with one Sid,t at a time. Clearly, we only need to deal with inconsistent
Sid,ts. The idea of the computation is to find a point that belongs to the maximum number
of regions (of the atoms of Sid,t) and add it to all the other regions as the repair. As
dR is symmetric difference, the addition of a point to a region has distance 1; so this is
the best that can be achieved. For convenience we write more details below. Let Sid,t =
{ai = (id, ri, t)|1 ≤ i ≤ n}. For each p ∈ Space compute count(p,Sid,t) = |{ai} | p ∈ ri}|.
Let pmax be a point with maximum count number. Define f : Sid,t → S ′

id,t where f(ai) =
(id, ri∪{pmax}, t). The function f is a region-correction as S ′

id,t is consistent (pmax is in every
region) and is a region-repair as well. Hence Iregion(Sid,t) = costregion(Sid,t,S ′

id,t) = |Sid,t|−
count(pmax,Sid,t). Finally, Iregion(S) =

&
(id,t)| there exists (id,r,t)∈S cost(Sid,t). Clearly,

the procedure described above can be accomplished in polynomial time, and hence the
computation of Iregion(S) ≤ k is also in P .

Our next result shows that computing the repair-based measure dealing with deletions
is also feasible. This immediately follows from the tractability result for Iregion shown above
and the fact that the value of Icard coincides with that of Iregion when using the symmetric
difference as metric (cf. Theorem 11).

Corollary 2. Upper for the repair-based inconsistency measure Icard is in P.

Finally, under the assumptions of Theorem 10, the tractability of Icard entails that both
Iid and Itime are tractable.

Corollary 3. Given an ST database S, if dID(id, id′) = 1 for all distinct id, id′ ∈ ID and
|ID| ≥ |S|, then Upper for the repair-based inconsistency measure Iid is in P.

Corollary 4. Given an ST database S, if dID(t, t′) = 1 for all distinct t, t′ ∈ T and |T | ≥
|S|, then Upper for the repair-based inconsistency measure Itime is in P.

The complexity results for the repair-based inconsistency measures is summarized in
Table 5. Although we believe that measuring inconsistency as the cost of restoring consis-
tency is a natural approach, our complexity analysis shows that this comes at a cost for Iid
and Itime for general ST databases, though we found some tractable cases for restricted ST
databases.

On the whole, Tables 4 and 5 show that most of the inconsistency measures proposed
can be evaluated in polynomial time. This suggests a nice computational behavior for our
framework, compared with the case of general propositional knowledge bases where the
complexity of inconsistency measurement is much higher, e.g., many measures belong to
the second or third level of the polynomial hierarchy (Thimm & Wallner, 2016; Thimm,
2018).

8. Conclusion and Future Work

Though there has been an extensive body of work on measuring inconsistency in proposi-
tional knowledge bases (Hunter & Konieczny, 2008; Grant & Hunter, 2013, 2011; Thimm,
2016; Doder et al., 2010; Jabbour, Ma, & Raddaoui, 2014; Mu, Liu, Jin, & Bell, 2011),
little work has been done on measuring inconsistency in spatio-temporal databases (Grant
& Parisi, 2020, 2021).
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Repair-based IMs

Iid Itime Iregion Icard
Complexity NP-complete NP-complete P † P

Table 5: Complexity of repair-based inconsistency measures (†: for the symmetric difference
metric).

Some authors have already considered inconsistency measures separately in spatial and
temporal databases, such as Condotta, Raddaoui, and Salhi (2016), who introduced incon-
sistency measures for qualitative constraint networks, and Brisaboa, Luaces, Rodŕıguez, and
Seco (2014), who proposed inconsistency measures to evaluate how dirty a spatial dataset is
with respect to a set of topological constraints. However, for spatio-temporal databases, to
the best of our knowledge, this is new work that follows up on a very preliminary study done
by Grant et al. (2018a). Besides considering more postulates than Grant et al. (2018a), we
introduced the novel notions of repair-based inconsistency measures and analyzed them with
respect to postulate satisfaction, we introduced the concept of dimensional postulates, and
investigated the complexity of the inconsistency measures for spatio-temporal databases.
Notably, this is the first work considering “dimensions” in inconsistency measurement and
postulates—we believe this is an important aspect that should be taken into account in
general non-propositional knowledge bases, not only in ST databases.

Our complexity characterization provides helpful results for addressing also the com-
plexity of the (function) problem of computing the exact value of inconsistency measures.
In fact, for the cases where the investigated decision problem is in P, the algorithms given
in the proofs show that computing the value of the inconsistency measure is polynomial
too. On the other hand, our NP-complete results entail that FPNP [log n] is an upper bound
on the complexity of the problem of computing the value of the repair-based inconsistency
measures Iid and Itime whenever the distance between any pair of object identifiers (resp.,
time values) can be assumed to be bounded by nc, where n is the number of ST atoms in
the database and c is an arbitrary but fixed constant. In fact, under the assumption that
∀id, id′ ∈ ID, dID(id, id

′) ≤ nc (resp., ∀t, t′ ∈ T, dT (t, t
′) ≤ nc), the set V of the distinct val-

ues that Iid (resp., Itime) can have is V = {0, 1, 2, . . . , (n−1) ·nc,∞}. Thus, the cardinality
of V is polynomial in the number of ST atoms. Since we showed that deciding whether
Iid(S) ≤ k (resp., Itime(S) ≤ k) is in NP , it follows that the value of these measures can
be computed by performing a binary search on V , i.e., by asking a logarithmic number of
queries to an NP -oracle deciding whether Iid(S) ≤ k (resp., Itime(S) ≤ k), where k ∈ V
is chosen as usual in the binary search. This means that the value of Iid (resp., Itime) can
be computed by a deterministic polynomial-time algorithm asking a logarithmic number of
queries to an NP oracle solving Upper for Iid (resp., Itime), from which the FPNP [log n] up-
per bound follows. Providing also a lower bound on the complexity of the function problem
for these measures, and thus obtaining a tight characterization, is left for future work.

Many other interesting issues concerning inconsistency measures in spatio-temporal
databases remain to be investigated. We would like to extend our results to the case
where an ST database is augmented with probabilities (Grant et al., 2010; Grant, Parisi, &
Subrahmanian, 2013; Doder, Grant, & Ognjanović, 2013) and integrity constraints (Parisi
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& Grant, 2016, 2020). To address the problem of measuring inconsistency in probabilistic
spatio-temporal databases, we will start by considering the approaches proposed for mea-
suring inconsistency in probabilistic logics (Thimm, 2013; Potyka, 2014; Bona & Finger,
2015; Bona, Finger, Potyka, & Thimm, 2018), where classical rationality postulates have
been revisited for the probabilistic setting and the difficulty of dealing with probabilistic
logics is discussed. Augmenting ST databases with integrity constraints (e.g., expressing
restrictions on how objects can move over time) would yield a more general framework.
Of course, in such a more expressive framework, an ST database can still be inconsistent
because its ST atoms cannot be jointly satisfied as per Definition 3. However, there is now a
new source of inconsistency: the ST atoms may violate the integrity constraints. Studying
how constraints affect inconsistency measures, postulate satisfaction, and the complexity of
inconsistency measures are intriguing issues to be explored. As another direction for future
work, we plan to develop relative inconsistency measures (Grant, 2018) for ST databases—
this is a quite unexplored topic also for propositional knowledge bases and has been recently
addressed by Besnard and Grant (2020). Finally, we would like to consider practical appli-
cations involving GIS databases and data stored using RDF/ontologies.
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