The main contributions of this article are: (1) PHAMs, a model of concurrent percept-driven behavior, its formalization, and proofs that the model generates probably, qualitatively accurate predictions; and (2) a resource-efficient inference method for PHAMs based on sampling projections from probabilistic action models and state descriptions. We show how PHAMs can be applied to planning the course of action of an autonomous robot office courier based on analytical and experimental results. ]]>

This use of the relaxed search method to improve on the <i>h<sup>m</sup></i> heuristic is evaluated by comparing two optimal temporal planners: TP4, which does not use it, and HSP*<sub>a</sub>, which uses it but is otherwise identical to TP4. The comparison is made on the domains used in the 2004 International Planning Competition, in which both planners participated. Relaxed search is found to be cost effective in some of these domains, but not all. Analysis reveals a characterization of the domains in which relaxed search can be expected to be cost effective, in terms of two measures on the original and relaxed search spaces. In the domains where relaxed search is cost effective, expanding small states is computationally cheaper than expanding large states and small states tend to have small successor states. ]]>

This note formally introduces LOHMMs and presents solutions to the three central inference problems for LOHMMs: evaluation, most likely hidden state sequence and parameter estimation. The resulting representation and algorithms are experimentally evaluated on problems from the domain of bioinformatics.]]>

We developed two planners to serve as test-beds for our investigation. The first, CAltAlt, is a conformant regression planner that uses A* search. The second, POND, is a conditional progression planner that uses AO* search. We show the relative effectiveness of our heuristic techniques within these planners. We also compare the performance of these planners with several state of the art approaches in conditional planning. ]]>

Here we describe a class of algorithms that solves this typically non-convex constrained minimization problem through a sequence of convex constrained minimizations of upper bounds on the Kikuchi free energy. Intuitively one would expect tighter bounds to lead to faster algorithms, which is indeed convincingly demonstrated in our simulations. Several ideas are applied to obtain tight convex bounds that yield dramatic speed-ups over CCCP.]]>

In this article, we give a full account of Fast Downward's approach to solving multi-valued planning tasks. We extend our earlier discussion of the causal graph heuristic to tasks involving axioms and conditional effects and present some novel techniques for search control that are used within Fast Downward's best-first search algorithm: preferred operators transfer the idea of helpful actions from local search to global best-first search, deferred evaluation of heuristic functions mitigates the negative effect of large branching factors on search performance, and multi-heuristic best-first search combines several heuristic evaluation functions within a single search algorithm in an orthogonal way. We also describe efficient data structures for fast state expansion (successor generators and axiom evaluators) and present a new non-heuristic search algorithm called focused iterative-broadening search, which utilizes the information encoded in causal graphs in a novel way.

Fast Downward has proven remarkably successful: It won the "classical'' (i.e., propositional, non-optimising) track of the 4th International Planning Competition at ICAPS 2004, following in the footsteps of planners such as FF and LPG. Our experiments show that it also performs very well on the benchmarks of the earlier planning competitions and provide some insights about the usefulness of the new search enhancements. ]]>

Problem reductions often lead to highly symmetric SAT instances, and symmetries are known to slow down SAT solvers. In this work, we compare several avenues for symmetry breaking, in particular when certain kinds of symmetry are present in all generated instances. Our focus on reducing CSPs to SAT allows us to leverage recent dramatic improvement in SAT solvers and automatically benefit from future progress. We can use a variety of black-box SAT solvers without modifying their source code because our symmetry-breaking techniques are static, i.e., we detect symmetries and add symmetry breaking predicates (SBPs) during pre-processing.

An important result of our work is that among the types of instance-independent SBPs we studied and their combinations, the simplest and least complete constructions are the most effective. Our experiments also clearly indicate that instance-independent symmetries should mostly be processed together with instance-specific symmetries rather than at the specification level, contrary to what has been suggested in the literature. ]]>

In this paper, we restrict our attention to the problem of evaluating Quantified Boolean Formulas (QBFs). In this setting, the above outlined deduction process is known to be sound and complete if given a formula in CNF and if a form of resolution, called ``Q-resolution'', is used. We introduce Q-resolution on terms, to be used for formulas in disjunctive normal form. We show that the computation performed by most of the available procedures for QBFs --based on the Davis-Logemann-Loveland procedure (DLL) for propositional satisfiability-- corresponds to a tree in which Q-resolution on terms and clauses alternate. This poses the theoretical bases for the introduction of learning, corresponding to recording Q-resolution formulas associated with the nodes of the tree. We discuss the problems related to the introduction of learning in DLL based procedures, and present solutions extending state-of-the-art proposals coming from the literature on propositional satisfiability. Finally, we show that our DLL based solver extended with learning, performs significantly better on benchmarks used in the 2003 QBF solvers comparative evaluation. ]]>

Here we propose a new method to cancel the attraction to A, by choosing a clause with t > 0 literals satisfied by A with probability proportional to q^t for some q < 1. By varying q, we can generate formulas whose variables have no bias, i.e., which are equally likely to be true or false; we can even cause the formula to "deceptively'' point away from A. We present theoretical and experimental results suggesting that these formulas are exponentially hard both for DPLL algorithms and for incomplete algorithms such as WalkSAT.]]>

This paper aims at filling the gap between the results from these two streams of research, by providing an efficient conversion from the algebraic representation to the equivalent low-level representation based on the mathematical models. In addition, the conversion returns a minimal representation in terms of period length. Our results have a major practical impact: users can more easily define arbitrary granularities in terms of algebraic operators, and then access granularity reasoning and other services operating efficiently on the equivalent, minimal low-level representation. As an example, we illustrate the application to temporal constraint reasoning with multiple granularities.

From a technical point of view, we propose an hybrid algorithm that interleaves the conversion of calendar subexpressions into periodical sets with the minimization of the period length. The algorithm returns set-based granularity representations having minimal period length, which is the most relevant parameter for the performance of the considered reasoning services. Extensive experimental work supports the techniques used in the algorithm, and shows the efficiency and effectiveness of the algorithm.]]>

The second part of this paper proposes a general method for circumventing the above problem. We introduce a modification of VCG-based mechanisms in which the agents are given a chance to improve the output of the underlying algorithm. When the agents behave truthfully, the welfare obtained by the mechanism is at least as good as the one obtained by the algorithm's output. We provide a strong rationale for truth-telling behavior. Our method satisfies individual rationality as well.]]>

We address the problem of matchmaking from a knowledge representation perspective, with a formalization based on Description Logics. We devise Concept Abduction and Concept Contraction as non-monotonic inferences in Description Logics suitable for modeling matchmaking in a logical framework, and prove some related complexity results. We also present reasonable algorithms for semantic matchmaking based on the devised inferences, and prove that they obey to some commonsense properties.

Finally, we report on the implementation of the proposed matchmaking framework, which has been used both as a mediator in e-marketplaces and for semantic web services discovery.]]>

The standard fixpoint-based semantics of logic programs is generalized in two directions, called answer set by reduct and answer set by complement. These definitions, which differ from each other in the treatment of negation-as-failure (naf) atoms, make use of an immediate consequence operator to perform answer set checking, whose definition relies on the notion of conditional satisfaction of c-atoms w.r.t. a pair of interpretations.

The other two definitions, called strongly and weakly well-supported models, are generalizations of the notion of well-supported models of normal logic programs to the case of programs with c-atoms. As for the case of fixpoint-based semantics, the difference between these two definitions is rooted in the treatment of naf atoms.

We prove that answer sets by reduct (resp. by complement) are equivalent to weakly (resp. strongly) well-supported models of a program, thus generalizing the theorem on the correspondence between stable models and well-supported models of a normal logic program to the class of programs with c-atoms.

We show that the newly defined semantics coincide with previously introduced semantics for logic programs with monotone c-atoms, and they extend the original answer set semantics of normal logic programs. We also study some properties of answer sets of programs with c-atoms, and relate our definitions to several semantics for logic programs with aggregates presented in the literature. ]]>

It therefore becomes important to ensure that rational clients have the right incentives to report honestly. As an alternative to side-payment schemes that explicitly reward truthful reports, we show that honesty can emerge as a rational behavior when clients have a repeated presence in the market. To this end we describe a mechanism that supports an equilibrium where truthful feedback is obtained. Then we characterize the set of pareto-optimal equilibria of the mechanism, and derive an upper bound on the percentage of false reports that can be recorded by the mechanism. An important role in the existence of this bound is played by the fact that rational clients can establish a reputation for reporting honestly.]]>

The ability of the framework to compare algorithms is illustrated by a brief discussion of Fisher consistency. Its utility in improving understanding of multi-category analysis is demonstrated through a derivation of improved generalisation bounds.

It is also described how this architecture provides insights regarding how to further improve on the speed of existing multi-category classification algorithms. An initial example of how this might be achieved is developed in the formulation of a straightforward multi-category Sequential Minimal Optimisation algorithm. Proof-of-concept experimental results have shown that this, combined with the mapping of pairwise results, is comparable with benchmark optimisation speeds.]]>

A contending solution, prioritised planning, is also evaluated and shown to have similar performance albeit at the cost of completeness. The two approaches are not necessarily conflicting; we demonstrate how they can be combined into a single algorithm which outperforms either approach alone. ]]>

We believe current methods for controlling traffic, specifically at intersections, will not be able to take advantage of the increased sensitivity and precision of autonomous vehicles as compared to human drivers. In this article, we suggest an alternative mechanism for coordinating the movement of autonomous vehicles through intersections. Drivers and intersections in this mechanism are treated as autonomous agents in a multiagent system. In this multiagent system, intersections use a new reservation-based approach built around a detailed communication protocol, which we also present. We demonstrate in simulation that our new mechanism has the potential to significantly outperform current intersection control technology -- traffic lights and stop signs. Because our mechanism can emulate a traffic light or stop sign, it subsumes the most popular current methods of intersection control. This article also presents two extensions to the mechanism. The first extension allows the system to control human-driven vehicles in addition to autonomous vehicles. The second gives priority to emergency vehicles without significant cost to civilian vehicles. The mechanism, including both extensions, is implemented and tested in simulation, and we present experimental results that strongly attest to the efficacy of this approach.]]>

]]>

In this article we propose a novel robot action execution system that learns success and performance models for possible specializations of abstract actions. At execution time, the robot uses these models to optimize the execution of abstract actions to the respective task contexts. The robot can so use abstract actions for efficient reasoning, without compromising the performance of action execution. We show the impact of our action execution model in three robotic domains and on two kinds of action execution problems: (1) the instantiation of free action parameters to optimize the expected performance of action sequences; (2) the automatic introduction of additional subgoals to make action sequences more reliable.]]>

In this paper, we provide a unifying framework encompassing most of the properties known so far, both in CSP and other fields' literature, and shed light on the semantical relationships among them. This gives a unified and comprehensive view of the topic, allows new, unknown, properties to emerge, and clarifies the computational complexity of the various detection problems.

In particular, among the others, two new concepts, fixability and removability emerge, that come out to be the ideal characterisations of values that may be safely assigned or removed from a variable's domain, while preserving problem satisfiability. These two notions subsume a large number of known properties, including inconsistency, substitutability and others.

Because of the computational intractability of all the property-detection problems, by following the CSP approach we then determine a number of relaxations which provide sufficient conditions for their tractability. In particular, we exploit forms of language restrictions and local reasoning.]]>

Furthermore, the RBBM is extended to a full scan model in two steps: first, to a full scan model for static environments and next, to a full scan model for general, dynamic environments. The full scan model accounts for the dependency between beams and adapts to the local sample density when using a particle filter. In contrast to Gaussian-based state of the art models, the proposed full scan model uses a sample-based approximation. This sample-based approximation enables handling dynamic environments and capturing multi-modality, which occurs even in simple static environments. ]]>

Our algorithms take sequences of partial observations over time as input, and output deterministic action models that could have lead to those observations. The algorithms output all or one of those models (depending on our choice), and are exact in that no model is misclassified given the observations. Our algorithms take polynomial time in the number of time steps and state features for some traditional action classes examined in the AI-planning literature, e.g., STRIPS actions. In contrast, traditional approaches for HMMs and Reinforcement Learning are inexact and exponentially intractable for such domains. Our experiments verify the theoretical tractability guarantees, and show that we identify action models exactly. Several applications in planning, autonomous exploration, and adventure-game playing already use these results. They are also promising for probabilistic settings, partially observable reinforcement learning, and diagnosis. ]]>

We introduce a new MARL algorithm called the Weighted Policy Learner (WPL), which allows agents to reach a Nash Equilibrium (NE) in benchmark 2-player-2-action games with minimum knowledge. Using WPL, the only feedback an agent needs is its own local reward (the agent does not observe other agents actions or rewards). Furthermore, WPL does not assume that agents know the underlying game or the corresponding Nash Equilibrium a priori. We experimentally show that our algorithm converges in benchmark two-player-two-action games. We also show that our algorithm converges in the challenging Shapley's game where previous MARL algorithms failed to converge without knowing the underlying game or the NE. Furthermore, we show that WPL outperforms the state-of-the-art algorithms in a more realistic setting of 100 agents interacting and learning concurrently.

An important aspect of understanding the behavior of a MARL algorithm is analyzing the dynamics of the algorithm: how the policies of multiple learning agents evolve over time as agents interact with one another. Such an analysis not only verifies whether agents using a given MARL algorithm will eventually converge, but also reveals the behavior of the MARL algorithm prior to convergence. We analyze our algorithm in two-player-two-action games and show that symbolically proving WPL's convergence is difficult, because of the non-linear nature of WPL's dynamics, unlike previous MARL algorithms that had either linear or piece-wise-linear dynamics. Instead, we numerically solve WPL's dynamics differential equations and compare the solution to the dynamics of previous MARL algorithms. ]]>

1. The ratio between the maximal welfare obtained in a correlated equilibrium to the maximal welfare obtained in a mixed-strategy equilibrium. We refer to this ratio as the mediation value.

2. The ratio between the maximal welfare to the maximal welfare obtained in a correlated equilibrium. We refer to this ratio as the enforcement value.

In this work we initiate the study of the mediation and enforcement values, providing several general results on the value of correlation as captured by these concepts. We also present a set of results for the more specialized case of congestion games, a class of games that received a lot of attention in the recent literature.]]>

Both problems can be addressed by reward schemes which (i) cover the cost of obtaining and reporting feedback, and (ii) maximize the expected reward of a rational agent who reports truthfully. We address the design of such incentive-compatible rewards for feedback generated in environments with pure adverse selection. Here, the correlation between the true knowledge of an agent and her beliefs regarding the likelihoods of reports of other agents can be exploited to make honest reporting a Nash equilibrium.

In this paper we extend existing methods for designing incentive-compatible rewards by also considering collusion. We analyze different scenarios, where, for example, some or all of the agents collude. For each scenario we investigate whether a collusion-resistant, incentive-compatible reward scheme exists, and use automated mechanism design to specify an algorithm for deriving an efficient reward mechanism.]]>

The ideas presented here have been utilized in a number of solvers that have been applied to various types of sum-of-product problems. These system’s have exploited the fact that backtracking can naturally exploit more of the problem’s structure to achieve improved performance on a range of probleminstances. Empirical evidence of this performance gain has appeared in published works describing these solvers, and we provide references to these works.]]>

With this in mind, we develop an anytime algorithm to solve the coalition structure generation problem. Specifically, the algorithm uses a novel representation of the search space, which partitions the space of possible solutions into sub-spaces such that it is possible to compute upper and lower bounds on the values of the best coalition structures in them. These bounds are then used to identify the sub-spaces that have no potential of containing the optimal solution so that they can be pruned. The algorithm, then, searches through the remaining sub-spaces very efficiently using a branch-and-bound technique to avoid examining all the solutions within the searched subspace(s). In this setting, we prove that our algorithm enumerates all coalition structures efficiently by avoiding redundant and invalid solutions automatically. Moreover, in order to effectively test our algorithm we develop a new type of input distribution which allows us to generate more reliable benchmarks compared to the input distributions previously used in the field. Given this new distribution, we show that for 27 agents our algorithm is able to find solutions that are optimal in 0.175% of the time required by the fastest available algorithm in the literature. The algorithm is anytime, and if interrupted before it would have normally terminated, it can still provide a solution that is guaranteed to be within a bound from the optimal one. Moreover, the guarantees we provide on the quality of the solution are significantly better than those provided by the previous state of the art algorithms designed for this purpose. For example, for the worst case distribution given 25 agents, our algorithm is able to find a 90% efficient solution in around 10% of time it takes to find the optimal solution.]]>

Our first contribution consists in identifying an interesting special case of WSC which is both significant and more tractable. The special case, which we term "forward effects", is characterized by the fact that every ramification of a web service application involves at least one new constant generated as output by the web service. We show that, in this setting, the reasoning required for belief update simplifies to standard reasoning in the ontology itself. This relates to, and extends, current notions of "message-based" WSC, where the need for belief update is removed by a strong (often implicit or informal) assumption of "locality" of the individual messages. We clarify the computational properties of the forward effects case, and point out a strong relation to standard notions of planning under uncertainty, suggesting that effective tools for the latter can be successfully adapted to address the former.

Furthermore, we identify a significant sub-case, named "strictly forward effects", where an actual compilation into planning under uncertainty exists. This enables us to exploit off-the-shelf planning tools to solve message-based WSC in a general form that involves powerful ontologies, and requires reasoning about partial matches between concepts. We provide empirical evidence that this approach may be quite effective, using Conformant-FF as the underlying planner. ]]>

Specifically, we develop a new class of mechanisms, called "trust-based mechanisms", that can take into account multiple subjective measures of the probability of an agent succeeding at a given task and produce allocations that maximise social utility, whilst ensuring that no agent obtains a negative utility. We then show that such mechanisms pose a challenging new combinatorial optimisation problem (that is NP-complete), devise a novel representation for solving the problem, and develop an effective integer programming solution (that can solve instances with about 2x10^5 possible allocations in 40 seconds). ]]>

Aside from election systems with an NP-hard winner problem, the only systems previously known to be resistant to all the standard control types were highly artificial election systems created by hybridization. This paper studies a parameterized version of Copeland voting, denoted by Copeland^\alpha, where the parameter \alpha is a rational number between 0 and 1 that specifies how ties are valued in the pairwise comparisons of candidates. In every previously studied constructive or destructive control scenario, we determine which of resistance or vulnerability holds for Copeland^\alpha for each rational \alpha, 0 \leq \alpha \leq 1. In particular, we prove that Copeland^{0.5}, the system commonly referred to as ``Copeland voting,'' provides full resistance to constructive control, and we prove the same for Copeland^\alpha, for all rational \alpha, 0 < \alpha < 1. Among systems with a polynomial-time winner problem, Copeland voting is the first natural election system proven to have full resistance to constructive control. In addition, we prove that both Copeland^0 and Copeland^1 (interestingly, Copeland^1 is an election system developed by the thirteenth-century mystic Llull) are resistant to all standard types of constructive control other than one variant of addition of candidates. Moreover, we show that for each rational \alpha, 0 \leq \alpha \leq 1, Copeland^\alpha voting is fully resistant to bribery attacks, and we establish fixed-parameter tractability of bounded-case control for Copeland^\alpha.

We also study Copeland^\alpha elections under more flexible models such as microbribery and extended control, we integrate the potential irrationality of voter preferences into many of our results, and we prove our results in both the unique-winner model and the nonunique-winner model. Our vulnerability results for microbribery are proven via a novel technique involving min-cost network flow. ]]>

In this paper we start exploring the idea of performing automated reasoning tasks in modal and description logics by encoding them into SAT, so that to be handled by state-of-the-art SAT tools; as with most previous approaches, we begin our investigation from the satisfiability in K(m). We propose an efficient encoding, and we test it on an extensive set of benchmarks, comparing the approach with the main state-of-the-art tools available. Although the encoding is necessarily worst-case exponential, from our experiments we notice that, in practice, this approach can handle most or all the problems which are at the reach of the other approaches, with performances which are comparable with, or even better than, those of the current state-of-the-art tools.]]>

Furthermore we prove a surprising result: In most graphical models tasks, if one designs an efficient algorithm for chain graphs, such as HMMs, this procedure can be generalized to polytree graphical models. We prove that the optimizing value of information is $NP^{PP}$-hard even for polytrees. It also follows from our results that just computing decision theoretic value of information objective functions, which are commonly used in practice, is a #P-complete problem even on Naive Bayes models (a simple special case of polytrees).

In addition, we consider several extensions, such as using our algorithms for scheduling observation selection for multiple sensors. We demonstrate the effectiveness of our approach on several real-world datasets, including a prototype sensor network deployment for energy conservation in buildings.]]>

Coalition formation is a key issue in multiagent systems. We provide a framework for quantifying the stability and the performance of various assignment policies and solution concepts in the face of coalitional deviations. Within this framework we evaluate a given configuration according to three measures: (i) IR_min: the maximal number alpha, such that there exists a coalition in which the minimal improvement ratio among the coalition members is alpha, (ii) IR_max: the maximal number alpha, such that there exists a coalition in which the maximal improvement ratio among the coalition members is alpha, and (iii) DR_max: the maximal possible damage ratio of an agent outside the coalition.

We analyze these measures in job scheduling games on identical machines. In particular, we provide upper and lower bounds for the above three measures for both NE and the well-known assignment rule Longest Processing Time (LPT).

Our results indicate that LPT performs better than a general NE. However, LPT is not the best possible approximation. In particular, we present a polynomial time approximation scheme (PTAS) for the makespan minimization problem which provides a schedule with IR_min of 1+epsilon for any given epsilon. With respect to computational complexity, we show that given an NE on m >= 3 identical machines or m >= 2 unrelated machines, it is NP-hard to determine whether a given coalition can deviate such that every member decreases its cost.]]>

Surprisingly, the idea turns out to appear quite hopeless in the context of planning as satisfiability. Evaluating our idea empirically, we run experiments on almost all benchmarks of the international planning competitions up to IPC 2004, and find that even hand-made abstractions do not tend to improve the performance of SATPLAN. Exploring these findings from a theoretical point of view, we identify an interesting phenomenon that may cause this behavior. We compare various planning-graph based CNF encodings F of the original planning task with the CNF encodings F_abs of the abstracted planning task. We prove that, in many cases, the shortest resolution refutation for F_abs can never be shorter than that for F. This suggests a fundamental weakness of the approach, and motivates further investigation of the interplay between declarative transition-systems, over-approximating abstractions, and SAT encodings. ]]>

We first show that an efficient, robust and easy to implement extension is possible if the cost function is additive, and feasible solutions are represented using multi-valued decision diagrams (MDDs). We also discuss the effect on MDD size if the cost function is non-additive or if it is encoded explicitly into MDD. We then discuss interactive configuration in the presence of multiple cost functions. We prove that even in its simplest form, multiple-cost configuration is NP-hard in the input MDD. However, for solving two-cost configuration we develop a pseudo-polynomial scheme and a fully polynomial approximation scheme. The applicability of our approach is demonstrated through experiments over real-world configuration models and product-catalogue datasets. Response times are generally within a fraction of a second even for very large instances. ]]>

The main contributions of this work are the use of mathematical programming for DEC-POMDPs and a better understanding of DEC-POMDPs and of their solutions. Besides, we argue that our alternate representation of DEC-POMDPs could be helpful for designing novel algorithms looking for approximate solutions to DEC-POMDPs.]]>

Besides a first-order theory and finite domain, the input for grounders contains in many applications also additional data. By exploiting this data, the size of the grounder's output can often be reduced significantly. A common practice to improve the efficiency of a grounder in this context is by manually adding semantically redundant information to the input theory, indicating where and when the grounder should exploit the data. In this paper we present a method to compute and add such redundant information automatically. Our method therefore simplifies the task of writing input theories that can be grounded efficiently by current systems. We first present our method for classical first-order logic (FO) theories. Then we extend it to FO(ID), the extension of FO with inductive definitions, which allows for more concise and comprehensive input theories. We discuss implementation issues and experimentally validate the practical applicability of our method.]]>

In this paper, we formally define and analyze this constrained, sequential optimization problem in both the single-agent and multi-agent contexts. We present a family of mixed integer linear programming (MILP) formulations of this problem that can optimally create phases (when phases are not predefined) accounting for costs and limitations in phase creation. Because our formulations multaneously also find the optimal allocations of resources at each phase and the optimal policies for using the allocated resources at each phase, they exploit structure across these coupled problems. This allows them to find solutions significantly faster(orders of magnitude faster in larger problems) than alternative solution techniques, as we demonstrate empirically.]]>

In this paper, an approach to define NTU games is proposed which is based on describing allowed distributions via a set of mixed-integer linear constraints applied to an underlying TU game. It is shown that such games allow non-transferable conditions on worth distributions to be specified in a natural and succinct way. The properties and the relationships among the most prominent solution concepts for NTU games that hold when they are applied on (mixed-integer) constrained games are investigated. Finally, a thorough analysis is carried out to assess the impact of issuing constraints on the computational complexity of some of these solution concepts.]]>

LAMA showed best performance among all planners in the sequential satisficing track of the International Planning Competition 2008. In this paper we present the system in detail and investigate which features of LAMA are crucial for its performance. We present individual results for some of the domains used at the competition, demonstrating good and bad cases for the techniques implemented in LAMA. Overall, we find that using landmarks improves performance, whereas the incorporation of action costs into the heuristic estimators proves not to be beneficial. We show that in some domains a search that ignores cost solves far more problems, raising the question of how to deal with action costs more effectively in the future. The iterated weighted A* search greatly improves results, and shows synergy effects with the use of landmarks.]]>

Our goal is to develop a framework for executing a wide variety of specified perceptions and actions across tasks/domains without human intervention. We observe that the domain/task-specific visual perceptions/actions can be transformed into domain/task-independent spatial problems. We specify a spatial problem as a quantified constraint satisfaction problem in the real domain using an open-ended vocabulary of properties, relations and actions involving three kinds of diagrammatic objects -- points, curves, regions. Solving a spatial problem from this specification requires computing the equivalent simplified quantifier-free expression, the complexity of which is inherently doubly exponential. We represent objects as configuration of simple elements to facilitate decomposition of complex problems into simpler and similar subproblems. We show that, if the symbolic solution to a subproblem can be expressed concisely, quantifiers can be eliminated from spatial problems in low-order polynomial time using similar previously solved subproblems. This requires determining the similarity of two problems, the existence of a mapping between them computable in polynomial time, and designing a memory for storing previously solved problems so as to facilitate search. The efficacy of the idea is shown by time complexity analysis. We demonstrate the proposed approach by executing perceptions and actions involved in DR tasks in two army applications.]]>